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ABSTRACT

When tracking and segmenting multiple objects under heavy
occlusion, a large class of algorithms can greatly benefit from
a preprocessing that reliably assesses the number of individ-
uals in each cluster. This is a difficult task when relying on
local information only, due to scarcity of training examples
and lack of strongly predictive features. In this paper, we de-
velop a deterministic graphical model to address the problem
of counting the number of objects in each foreground region
as global inference across the entire video sequence. We show
that global inference improves over local predictions, and is
able to produce an accurate and coherent output within an
useful runtime.

Index Terms— deterministic higher order potential,
constraint satisfaction, spatio-temporal segmentation

1. INTRODUCTION

Larvae, such as Drosophila, are popular model organisms for
behavioral studies. To allow studying the social dynamics of a
large population in crowded situations, the ultimate aim is to
track single individuals in spite of their non-distinguishable
appearance, and mutual overlap. In this tracking scenario,
where multiple objects cross each other, all algorithms that we
are aware of require the knowledge of the number of individ-
uals in each foreground region: either as a model parameter,
as in tracking by detection methods [3, 9], or as an initializa-
tion, as in tracking by model evolution approaches [2, 7, 4].
The goal of this paper is to provide a reliable estimate of the
number of individuals in each connected component.

Some approaches which rely only on local information
have been proposed [13, 6]. However, in our experiments,
appearance-based features that are local in space-time are not
sufficient to achieve a high accuracy and lead to several in-
consistencies across time. In difficult situations, as shown in
Fig. 1, humans are still able to disambiguate and achieve a
correct count by browsing the sequence forward and back-
ward in time and looking for the separation of the individuals.
Given the assumption that the number of visible individuals is
conserved, Henriques et al. [8] obtained the count of pedes-
trians in merged detections as a minimum cost flow over the
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Fig. 1. How many larvae are there in each cluster from (a)-
(h)? For a human looking at the entire sequence, it is possible
to confirm that the true count is: 0, 1, . . . 7 from the top left to
the bottom right. (a) False positive foreground detection. (b)
Single rearing larva. (c) Two overlapping larvae. (d) Three
overlapping larvae, etc.

detection graph. However, their method requires manual ini-
tialization of isolated individuals, and relies on the size of the
foreground detection only, which is a weak local cue in case
of overlapping objects.

Our approach is to mimic the strategy of the human expert
by using a graphical model with deterministic constraints.
Our main contribution is to integrate multiple local cues to
achieve an object count that is consistent across space and
time. The coupling of all estimates across space and time al-
lows to propagate information from simpler parts of a video
to complex clusters of larvae.

The relation between constraint satisfaction problems and
graphical models has been throughly investigated in the con-
text of Bayesian networks [10]. Akin [3, 9, 11], we formulate
the MAP inference step as an integer linear program (ILP)
that is solved with a standard software package [1]. We show
that this formulation can handle a large volume of high resolu-
tion data. Our experimental evaluation demonstrates accurate
and coherent results which can be exploited by downstream
tracking and segmentation algorithms.
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Fig. 2. An overview of the workflow. Each image is first thresholded into foreground vs. background. Then, a random
variable representing the object count is associated with each spatially connected component. The probability distribution over
the true object count is estimated, based on purely local features extracted from each connected component, by unary factors
(represented by small black boxes). The random variables are also connected in time by deterministic higher order factors (large
black boxes) that encapsulate the “conservation of objects” constraints. The connectivity of these higher order factors follows
from spatio-temporal overlap. Finally, global inference determines the consensus estimate of the true object count.

2. METHODS

2.1. Model definition

Our workflow is depicted in Fig. 2. Firstly, we produce a
set of candidate segmented foreground regions (N in total) as
detailed in Sect. 3.1. Secondly, for each region i, we assign
a random variable xi ∈ {0, ...,M} expressing the number of
contained larvae. We include the label k = 0 since we want
to handle cases in which debris and other contaminations are
segmented as foreground. M represents the maximum num-
ber of objects in a foreground region. Thirdly, as detailed in
Sect. 3.1, we link neighboring foreground regions from con-
secutive time steps in order to build an undirected detection
graph G = (X,E), where X = {xi}Ni=1 is the collection of
all random variables and E = {ei}Li=1 is the set of edges. Our
assumption that larvae cannot enter or leave the field of view1

naturally imposes a set of constraints that relates all variables
in X. To make the structure of the problem explicit, we de-
fine the factor graph G′ = ({X, φ,Φ},E′) where two types
of potentials are present (as depicted by small and big black
squares in the central part of Fig. 2). First order potentials
φ(xi, fi) express our belief that the current region contains a
certain number of larvae based only on a local feature vector
F = {fi}Ni=1; higher order potentials are deterministic func-
tions of the variables in their scope that enforce consistency.
We define Gt,t+1 ⊆ G as the subgraph comprising the vari-
ables at time t and t + 1, and Sj

t,t+1 as the jth connected

1Except for the borders of the image. Boundary conditions are explained
in Sect. 3.1.

component of this subgraph:
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where Xj
t ∈ S

j
t,t+1 is the set of variables at time t in the jth

connected component. The total energy can be expressed in
terms of the factor graph as:

U(X) =
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The Gibbs relation P (X,F) = 1
Z e
−U , where Z is the parti-

tion function, allows to establish the equivalence between the
MAP configuration of the associated probabilistic graphical
model and the argmin of Eq. (2).

2.2. Integer linear program formulation

We implement the MAP inference as an integer linear pro-
gram with indicator variables. To each foreground re-
gion i = 1, . . . , N are associated the binary indicator
variables xki ∈ {0, 1},

∑M
k=0 x

k
i = 1 encoding the num-

ber of objects in the region. We set the unary potential



φki = − log p(xki = 1|fi), where p(xki = 1|fi) is the proba-
bility for component i to contain k object instances given the
features, as estimated by a local classifier. Then we have:

min
xi
k

∑
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φki x
k
i s.t.
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(3)

The third constraint represents the conservation of the number
of larvae as enforced by the higher order potentials of Eq. (1).

2.3. Unary potentials

For reasons both of accuracy and tractability, it is important
to use informative unary potentials. The probability
p(xki = 1|fi) is learned with a classifier from labelled train-
ing data. However, this is a strongly unbalanced classifica-
tion problem since, at least in our data, there are much fewer
training examples available for classes k > 1. Therefore,
we choose the following strategy: firstly, we train a classifier
with examples of label 0, 1, 2, 3,many, where class labelled
“many” includes all examples of foreground regions contain-
ing 4 or more individual instances. Secondly, we take the
probability p(xmany

i = 1|fi) := βi and distribute it among
the classes k ≥ 4 according to the parametric function:

p(xki = 1|fi) = βi exp
(
− (τ̃ − k)2

2σ2

)
/α , k ≥ 4 (4)

Here τ̃ is the size of the foreground region (in pixels) normal-
ized by the average size of all observed foreground regions
and α is a normalization constant. In the following experi-
ments we fix σ = 2. This procedure allows us to obtain a
very sharp unary term for foreground regions containing few
larvae, while we rely mostly on the global inference step to
find the number of instances in big clusters.

3. EXPERIMENTAL RESULTS

3.1. Data and preprocessing

A population of 72 hours old Drosophila larvae was filmed
for 5 minutes with a temporal resolution of 3.3 frames per
second, 1000 frames in total. Images have a spatial resolution
of 135.3 µm/pixel, a size of 1560 × 1600 pixels, and con-
tain on average 323 larvae. For detection and segmentation
of the foreground regions we use the open-source software
ILASTIK [12]. After elimination of tiny isolated objects
(τ < 15 pixels), we compute connected components of each

thresholded foreground probability image of the series. The
graph G is created by linking foreground regions from neigh-
boring timesteps that overlap spatially, by more than 10
pixels. All foreground regions which are not fully inside a
margin of 100 pixels from the image borders are excluded to
avoid dealing with truncated larvae (cluster).

3.2. Training unary potentials

As explained in section 2.3, we obtain the unary term from la-
belled training data. All images in the sequence were labelled
by hand to establish a gold standard. However, for the train-
ing of the classifier (a standard random forest [5]) we use only
10 images from the first 250 timesteps of the sequence (every
25 timesteps, 1% of the available data). A set of 21 object
features describe the size and the shape of each foreground
region: area, convex area, eccentricity, equivalent diameter,
axis lengths, perimeter, solidity, mean intensity, variance of
the intensity, total intensity and the magnitude of the first 10
Fourier contour descriptors.

3.3. Implementation details

In our experiments, we run and evaluate the results on the en-
tire sequence (1000 timesteps). Inference takes 28 minutes.
We use the following optimizations: firstly, not every larva
interacts with all others over the course of time, therefore we
can solve the optimization problem separately for indepen-
dent connected components of the factor graph. We found
our dataset to contain 158 subgraphs, with one huge subgraph
consisting of 266215 foreground regions accounting for 93%
of all regions (solving the problem for this subgraph takes
approximately 14 min). Secondly, we use CPLEX’s warm-
start interface to initialize the solver with the assignments ob-
tained by minimizing the unaries. Thirdly, we add conser-
vative constraints that rule out improbable assignments. In
particular, if τ is the size in pixels of the foreground region,
for τ < 50 we add the constraint xi ≤ 1. In a similar vein,
τ < 120⇒ xi ≤ 2, τ > 50⇒ xi ≥ 1, τ > 300⇒ xi ≥ 2.
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Fig. 3. Comparison between the predicted counts obtained by
simple minimization of the unary potentials (first row) and the
proposed MAP solution (second row). The second row shows
the consistent, and correct, labelling.



Tr
ut

h 

Estimates 

Fig. 4. Comparison between the confusion matrix from sim-
ple minimization of the unary potentials (left) and the pro-
posed MAP solution (right). The false colors reflect the con-
fusion after row-wise normalization.

3.4. Results

Figs. 3 and 4 show consistent improvements of the full model
over local predictions. In particular, Fig. 3 illustrates how the
higher order potentials help disambiguating an inconsistent
assignment. To summarize our findings with a single number,
we define an adjusted precision score for regions containing
three or more individuals:

rec =
T̄P

TP + FP
(5)

where TP and FP are the true positives and false positives. T̄P
is similar to TP but only considers foreground regions that do
not directly violate consistency constraints as in Eq. (1). For
the full model rec is equivalent to standard precision, while
for the reduced model rec penalizes temporally inconsistent
assignments. Under this measure, the score of the prediction
obtained by simply minimizing the unaries is 61.1%, while
the score of the full model is 99.8%.

4. DISCUSSION AND FUTURE WORK

We have demonstrated that the introduction of higher order
deterministic consistency constrains outperforms local pre-
dictions when estimating the number of individuals in clus-
ters of larvae. Our work builds on two assumptions which
allow the introduction of the deterministic constraints: first,
that the detection is sufficiently sensitive such that an iso-
lated object cannot disappear for short periods of time. Sec-
ond, that the temporal resolution of the data is sufficient for
the construction of the consistency graph. As it stands, the
proposed algorithm allows estimating the rate of larvae en-
counters, and the tracking of isolated individuals. These mea-
surements could already support behavioural biologists. The
principal benefit, however, is to provide input for future algo-
rithms that should allow the tracking of each and every larva,
even through complex agglomerates. We are currently de-
veloping a downstream tracking and segmentation algorithm
exploiting the information from the presented method.
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