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Abstract

We consider the energy minimization problem for
undirected graphical models, also known as MAP-
inference problem for Markov random fields which is
NP-hard in general. We propose a novel polynomial
time algorithm to obtain a part of its optimal non-
relaxed integral solution. Our algorithm is initialized
with variables taking integral values in the solution of
a convex relaxation of the MAP-inference problem and
iteratively prunes those, which do not satisfy our cri-
terion for partial optimality. We show that our prun-
ing strategy is in a certain sense theoretically optimal.
Also empirically our method outperforms previous ap-
proaches in terms of the number of persistently labelled
variables. The method is very general, as it is appli-
cable to models with arbitrary factors of an arbitrary
order and can employ any solver for the considered re-
laxed problem. Our method’s runtime is determined
by the runtime of the convex relaxation solver for the
MAP-inference problem.

1. Introduction

Finding the most likely configuration of a Markov
random field (MRF), also called MAP-inference or en-
ergy minimization problem for graphical models, is
of big importance in computer vision, bioinformatics,
communication theory, statistical physics, combinato-
rial optimization, signal processing, information re-
trieval and statistical machine learning, see [1, 10, 29]
for an overview of applications. This key problem how-
ever is NP-hard. Therefore approximate methods have
been developed to tackle big instances commonly aris-
ing in image processing, see [10, 27] for an overview
of such methods. These approximate methods often
cannot find an optimal configuration, but deliver close
solutions. If one could prove, that some variables of the
solution given by such approximate algorithms belong
to an optimal configuration, the value of such approx-
imate methods would be greatly enhanced. In partic-

ular, the problem for the remaining variables could be
solved by stronger, but computationally more expen-
sive methods to obtain a global optimum as done e.g.
in [12].

In this paper we propose a way to gain such a par-
tially optimal solution for the MAP-inference problem
with general discrete MRFs from possibly also non-
exact solutions of the commonly used local polytope
relaxation (see [30]). Solving over the local polytope
amounts to solving a linear problem for which any LP-
solver can be used and for which dedicated and efficient
algorithms exist.

1.1. Related Work

We distinguish two classes of approaches to partial
optimality.
(i) Roof duality based approaches. The ear-
liest paper dealing with persistency is [18], which
states a persistency criterion for the stable set prob-
lem and verifies it for every solution of a certain re-
laxation. This relaxation is the same, as used by the
roof duality method in [2] and which is also the ba-
sis for the well known QPBO-algorithm [2, 19]. The
MQPBO method [14] extends roof duality to the multi-
label case. The authors transform multi-label prob-
lems into quadratic binary ones and solve them via
QPBO [2]. However, their transformation is depen-
dent upon choosing a label order and their results are
so as well, see the experiments in [26], where the label
order is sampled randomly. It is not known how to
choose an optimal label order to obtain the maximum
number of persistent variables.

The roof duality method has been extended to
higher order binary problems in [4, 7, 9]. The general-
ized roof duality method for binary higher order prob-
lems [9] computes partially optimal variables directly
for higher order potentials, while Ishikawa’s and Fix et
al’s approaches [4, 7] transform the higher order prob-
lem to one with unary and pairwise terms only. Fix et
al’s method [4] is an improvement upon Ishikawa’s [7].
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Windheuser et al [31] proposed a multi-label higher-
order roof duality method, which is a generalization
of both MQPBO [14] to higher order and Kahl and
Strandmark’s work [9] to the multi-label case. How-
ever Windheuser et al neither describe an implementa-
tion nor provide experimental validation for the higher
order multi-label case.

(ii) Labeling testing approaches. A different ap-
proach, specialized for Potts models, is pursued by
Kovtun [17], where possible labelings are tested for per-
sistency by auxiliary submodular problems. The dead-
end elimination procedure [3] tests, if certain labels of
nodes cannot belong to an optimal solution. It is a
local heuristic and does not perform any optimization.

Since for non-binary multi-labeling problems the
submodular approximations constructed by approaches
of class (i) are provably less tight than the standard lo-
cal polytope relaxation [23, Prop. 1], we consider class
(ii) in this paper. Specifically, based on ideas in [26]
to handle the Potts model, we develop a theoretically
substantiated approach to recognizing partial optimal-
ity for general graphical models, together with a com-
petitive comparison to the 5 approaches [4, 7, 9, 14, 17]
discussed above, that define the state-of-the-art.

Shrinking technique. The recent work [21] proposes
a method for efficient shrinking of the combinatorial
search area with the local polytope relaxation. Though
the algorithmic idea is similar to the presented one, the
method [21] does not provide partially optimal solu-
tions. We refer to Section 4 for further discussion.

1.2. Contribution and Organization

Adopting ideas from [26], we propose a novel
method for computing partial optimality, which is
applicable to general graphical models with arbitrary
higher order potentials and provides a higher num-
ber of persistent variables than the competing meth-
ods [4, 7, 9, 14, 17]. Similarly to [26] our algorithm is
initialized with variables taking integral values in the
solution of a convex relaxation of the MAP-inference
problem and iteratively prunes those, which do not sat-
isfy our persistency criterion. We show that our prun-
ing strategy is in a certain sense theoretically optimal.
Though the used relaxation can be chosen arbitrar-
ily, for brevity we restrict our exposition and experi-
ments to the local polytope one. Tighter relaxations
provably yield better results. However even by using
the local polytope relaxation we can achieve a substan-
tially higher number of persistent variables, than com-
peting approaches, which we confirm experimentally.
Our approach is very general, as it can use any, also
approximate, solver for the considered convex relax-
ation. Moreover, the computational complexity of our

method is determined only by the runtime of the used
solver.

The code is available at http://paulswoboda.net.

Organization. In Section 2 we review the energy min-
imization problem and the local polytope relaxation, in
Section 3 we present our persistency criterion. The cor-
responding algorithm and its theoretical analysis are
presented in Sections 4 and 5 respectively. Extensions
to the higher order case and tighter relaxations are dis-
cussed in Section 6. Section 7 provides experimental
validation of our approach and a comparison to the
existing methods [4, 7, 9, 14,17].

Due to the space limit the proofs were moved to the
supplementary materials.

2. MAP-Inference Problem

The MAP-inference problem for a graphical model
over an undirected graph G = (V, E), E ⊂ V ×V reads

min
x∈XV

EV(x) :=
∑
v∈V

θv(xv) +
∑
uv∈E

θuv(xu, xv) , (2.1)

where xu belongs to a finite label set Xu for each node
u ∈ V, θu : Xu → R and θuv : Xu × Xv → R are
the unary and pairwise potentials associated with the
nodes and edges of G. The label space for A ⊂ V is
XA =

⊗
u∈AXu, where

⊗
stands for the Cartesian

product. For notational convenience we write Xuv =
Xu×Xv and xuv = (xu, xv) for uv ∈ E . Notations like
x0 ∈ XA implicitly indicate that the vector x0 only
has components x0

u indexed by u ∈ A. For two sets
A ⊆ B ⊆ V and x ∈ XB denote by x|A ∈ XA the
restriction of x to A.

More general graphical models with terms depend-
ing on three or more variables can be considered as well.
For brevity we restrict ourselves here to the pairwise
case. An extension to the higher order case is discussed
in Section 6.

Problem (2.1) is equivalent to the integer linear
problem

min
µ∈ΛV

∑
v∈V

∑
xv∈Xv

θv(xv)µv(xv) +
∑
uv∈E

∑
xuv∈Xuv

θuv(xuv)µuv(xuv)

s.t. µw(xw) ∈ {0, 1} for w ∈ V ∪ E , xw ∈ Xw , (2.2)

where the local polytope ΛV [29] is the set of µ fulfilling∑
xv∈V µv(xv) = 1, v ∈ V,∑
xv∈V µuv(xu, xv) = µu(xu), xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv(xu, xv) = µv(xv), xv ∈ Xv, uv ∈ E ,

µuv(xu, xv) ≥ 0, (xu, xv) ∈ Xuv, uv ∈ E .

(2.3)

We define ΛA for A ⊂ V similarly. Slightly abusing
notation we will denote the objective function in (2.2)

http://paulswoboda.net


Figure 1. An exemplary graph con-
taining inside nodes (yellow with
crosshatch pattern) and boundary
nodes (green with diagonal pat-
tern). The blue dashed line en-
closes the set A. Boundary edges
are those crossed by the dashed line.

as EV(µ). The formulation (2.2) utilizes the overcom-
plete representation [29] of labelings in terms of indi-
cator vectors µ, which are often called marginals.The
problem of finding µ∗ ∈ argminµ∈ΛV EV(µ) without in-
tegrality constraints is called the local polytope relax-
ation of (2.1).

While solving the local polytope relaxation can be
done in polynomial time, the corresponding optimal
marginal µ∗ may not be integral anymore, hence in-
feasible and not optimal for (2.2). For a wide spec-
trum of problems however most of the entries of opti-
mal marginals µ∗ for the local polytope relaxation will
be integral. Unfortunately, there is no guarantee that
any of these integral variables will be part of a globally
optimal solution to (2.2), except in the case of binary
variables, that is Xu = {0, 1} ∀u ∈ V, and unary and
pairwise potentials [5]. Natural questions are: (i) Is
there a subset A ⊂ V and a minimizer µ0 of the origi-
nal NP-hard problem (2.2) such that µ0

v = µ∗v ∀v ∈ A?
In other words, is µ∗ partially optimal or persistent on
some set A? (ii) Given a relaxed solution µ∗ ∈ ΛV , how
can we determine such a set A? We provide a novel ap-
proach to tackle these problems in what follows.

3. Persistency

Assume we have marginals µ ∈ ΛA for A ⊆ V. We
say that the marginal µu is integral if µu(xu) ∈ {0, 1}
∀xu ∈ Xu, u ∈ A. In this case the marginal corresponds
uniquely to a label xu with µu(xu) = 1.

Let the boundary nodes and edges of a subset of
nodes A ⊂ V be defined as follows:

Definition 1 (Boundary and Interior).
For the set A ⊆ V the set ∂VA :=
{u ∈ A : ∃v ∈ V\A s.t. uv ∈ E} is called its bound-
ary. The respective set of boundary edges is defined
as ∂EA = {uv ∈ E : u ∈ A and v ∈ V\A}. The set
A\∂VA is called the interior of A.

An exemplary graph illustrating the concept of in-
terior and boundary nodes can be seen in Figure 1.

Definition 2 (Persistency). A labeling x0 ∈ XA on a
subset A ⊂ V is partially optimal or persistent if x0

coincides with an optimal solution to (2.1) on A.

In the remainder of this section, we state our novel
persistency criterion in Theorem 1. Taking addition-

ally into account convex relaxation yields a computa-
tionally tractable approach in Corollary 1.

As a starting point, consider the following sufficient
criterion for persistency of x0 ∈ XA. Introducing a
concatenation of labelings x0 ∈ XA and x̃ ∈ XV \A as

(x0, x̃) :=

{
x0
v, v ∈ A,
x̃v, v ∈ V\A , the criterion reads:

∀x̃ ∈ XV \A : (x0, x̃) ∈ argmin
x∈XV

xv=x̃v∀v∈V\A

EV(x) . (3.1)

This means that if we fix any labeling x̃ on the comple-
ment of A and optimize with respect to x0 on A, the
concatenated labeling (x0, x̃) will be always optimal.
Informally this means that the solution x0 is indepen-
dent of what happens on V \A. This criterion however
is hard to check directly, as it entails solving NP-hard
minimization problems over an exponential number of
labelings x̃ ∈ XV\A.

We relax the above criterion (3.1) so that we have
to check the solution of only one energy minimiza-
tion problem by modifying the unaries θv on boundary
nodes so that they bound the influence of all labelings
on V \A uniformly.

Definition 3 (Boundary potentials and energies). For
a set A ⊂ V and a boundary labeling y ∈ X∂VA , we
define for each boundary edge uv ∈ ∂EA, u ∈ ∂VA the
“boundary” potential θ̂uv,yu : Xu → R as follows:

θ̂uv,yu(xu) :=

{
maxxv∈Xv

θuv(xu, xv), yu = xu
minxv∈Xv

θuv(xu, xv), yu 6= xu
.

(3.2)
Define the energy ÊA,y on A with boundary labeling y
as

ÊA,y(x) := EA(x) +
∑

uv∈∂EA : u∈∂VA

θ̂uv,yu(xu) , (3.3)

where EA(x) =
∑
u∈A

θu(xu) +
∑

uv∈E:u,v∈A
θuv(xuv) is the

energy with potentials in A.

Given a boundary labeling y ∈ ∂VA, we have wors-
ened the energy in (3.3) for all labelings conforming
to y and made them more favourable for all labelings
not conforming to y. An illustration of a boundary po-
tential can be found in Figure 2. As a consequence, if
there is an optimal solution to the energy (3.3) which is
equal to the boundary labeling y on ∂VA, Theorem 1
below shows that it is not affected by what happens
outside A and is hence persistent on A.

Theorem 1 (Partial optimality criterion). A labeling
x0 ∈ XA on a subset A ⊂ V is persistent if

x0 ∈ argminx∈XA
ÊA,x0

|∂VA
(x) . (3.4)
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θ(1, i)

y = 2

Figure 2. Illustration of a boundary potential θ̂y con-
structed in (3.2). The second label comes from the bound-
ary conditions y, therefore entries are maximized for the
second row and minimized otherwise.

Checking the criterion in Theorem 1 is NP-hard, be-
cause (3.4) is a MAP-inference problem of the same
class as (2.1). By relaxing the minimization prob-
lem (3.4) one obtains the polynomially verifiable per-
sistency criterion in Corollary 1.

Corollary 1 (Tractable partial optimality criterion).
Suppose marginals µ0 ∈ ΛA and a labeling x0 ∈ XA

are given such that µ0
u(x0

u) = 1 ∀u ∈ A (in particular
µ0
u, u ∈ A, is integral). If

µ0 ∈ argminµ∈ΛA
ÊA,x0

|∂VA
(µ) , (3.5)

x0 is persistent on A.

4. Persistency Algorithm

Now we concentrate on finding a set A and labeling
x ∈ XA such that the solution of minµ∈ΛA

ÊA,x|∂VA (µ)
fulfills the conditions of Corollary 1. Our approach is
summarized in Algorithm 1.

In the initialization step of Algorithm 1 we solve the
relaxed problem over V without boundary labeling and
initialize the set A0 with nodes having an integer la-
bel. Then in each iteration t we minimize over the local
polytope the energy ÊAt,xt

|∂V
At

defined in (3.3), corre-

sponding to the set At and boundary labeling coming
from the solution of the last iteration. We remove from
At all variables which are not integral or do not con-
form to the boundary labeling. In each iteration t of
Algorithm 1 we shrink the set At by removing vari-
ables taking non-integral values or not conforming to
the current boundary condition.
Convergence. Since V is finite and |At| is monoton-
ically decreasing, the algorithm converges in at most
|V| steps. Solving each subproblem in Algorithm 1 can
be done in polynomial time. As the number of itera-
tions of Algorithm 1 is at most |V|, Algorithm 1 itself
is polynomial as well. In practice only few iterations
are needed.

Algorithm 1: Finding persistent variables.

Data: G = (V, E), θu : Xu → R, θuv : Xuv → R
Result: A∗ ⊂ V, x∗ ∈ XA∗

Initialize:
Choose µ0 ∈ argminµ∈ΛV EV(µ)

A0 = {u ∈ V : µ0
u ∈ {0, 1}|Xu|}

t = 0
repeat

Set xtu such that µtu(xtu) = 1, u ∈ VAt

Choose µt+1 ∈ argminµ∈ΛAt
ÊAt,xt

|∂V
At

(µ)

t = t+ 1
W t = {u ∈ ∂VAt−1 : µtu(xt−1

u ) 6= 1}
At = {u ∈ At−1 : µtu ∈ {0, 1}|Xu|}\W t

until At = At−1;
A∗ = At

Set x∗ ∈ XA∗ such that µtu(x∗u) = 1

After termination of Algorithm 1, we have

µ∗ ∈ argminµ∈ΛA∗
ÊA∗,x∗|∂VA∗

(µ) , (4.1)

µ∗ is integral and µ∗ and x∗ correspond to the same
labeling on ∂VA. Hence µ∗, x∗ and A∗ fulfill the con-
ditions of Corollary 1, which proves persistency.
Choice of Solver. All our results are independent
of the specific algorithm one uses to solve the relaxed
problems minµ∈ΛA

ÊA,y, provided it returns an exact
solution. However this can be an issue for large-scale
datasets, where classical exact LP solvers like e.g. the
simplex method become inapplicable. It is important
that one can also employ approximate solvers, as soon
as they provide (i) a proposal for potentially persis-
tent nodes and (ii) sufficient conditions for optimality
of the found integral solutions such as e.g. zero dual-
ity gap. These properties have the following precise
formulation.

Definition 4 (Consistent labeling). A labeling c ∈⊗
v∈V (Xv ∪ {#}) is called a consistent labeling for the

energy minimization problem (2.1), if from cv ∈ Xv

∀v ∈ V follows that c ∈ argminx∈X EV(x).
We will call an algorithm for solving the energy min-

imization problem (2.1) consistency ascertaining, if it
provides a consistent labeling as its output.

Consistent labelings can be constructed for a wide
range of algorithms, e.g.:

• Dual decomposition based algorithms [11, 15, 16,
20, 22] deliver strong tree agreement [28] and al-
gorithms considering the Lagrange dual return
strong arc consistency [30] for some nodes. If for
a node one of these properties holds, we set cv as
the corresponding label. Otherwise we set cv = #.



• Naturally, any algorithm solving minµ∈ΛV E(µ)
exactly is consistency ascertaining with

cv =

{
xv, µv(xv) = 1
#, µv /∈ {0, 1}|Xv| .

Proposition 1. Let operators µ ∈ argmin(...) in Al-
gorithm 1 be exchanged with

∀v ∈ V, xv ∈ Xv, µv(xv) :=

 1, cv = xv
0, cv /∈ {xv,#},

1/|Xv|, cv = #

where c are consistent labelings returned by a consis-
tency ascertaining algorithm applied to the correspond-
ing minimization problems. Then the output labeling
x∗ is persistent.

Comparison to the Shrinking Technique [21].
The recently published approach [21], similar to Al-
gorithm 1, describes how to shrink the combinatorial
search area with the local polytope relaxation. How-
ever (i) Algorithm 1 solves a series of auxiliary prob-
lems on the subsets At of integer labels, whereas the
method [21] considers nodes, which got fractional la-
bels in the relaxed solution; (ii) Algorithm 1 is poly-
nomial and provides only persistent labels, whereas
the method [21] has exponential complexity and either
finds an optimal solution or gives no information about
persistence. While the subsets of variables to which the
method [21] applies a combinatorial solver to achieve
global optimality are often smaller than those of our
present method, because potentials remain unchanged
in contrast to the perturbation (3.3), the presented
methods finds the largest persistent labeling with re-
gard to the persistency criterion in Corollary 1 as de-
tailed next.

5. Largest Persistent Labeling

Let A0 ⊆ V and µ0 ∈ ΛA0 be defined as in Algo-
rithm 1. Subsets A ⊂ A0 which fulfill the conditions of
Corollary 1 taken with labelings µ0|A can be partially
ordered with respect to inclusion ⊂ of their domains.
In this section we will show that the following holds:

• There is a largest set among those, for which there
exists a unique persistent labeling fufilling the con-
ditions of Corollary 1.

• Algorithm 1 finds this largest set.

This will imply that Algorithm 1 cannot be improved
upon with regard to the criterion in Corollary 1.

Definition 5 (Strong Persistency). A labeling x∗ ∈
XA is called strongly persistent on A, if x∗ is the
unique labeling on A fulfilling the conditions of The-
orem 1.

Theorem 2 (Largest persistent labeling). Algorithm 1
finds a superset A∗ of the largest set A∗strong ⊆ A∗ ⊂ V
of strongly persistent variables identifiable by the crite-
rion in Corollary 1.

Corollary 2. If there is a unique solution of
minµ∈ΛAt ÊAt,xt

∂VA
(µ) for all t = 0, . . . obtained dur-

ing the iterations of Algorithm 1, then Algorithm 1
finds the largest subset of persistent variables identi-
fiable by the sufficient partial optimality criterion in
Corollary 1.

If uniqueness of the optimal marginals µt during the
execution of Algorithm 1 does not hold, then Algo-
rithm 1 is not deterministic and the obtained set A∗ is
not necessarily the largest persistent set identifiable by
the criterion in Corollary 1. The simplest example of
such a situation occurs if the relaxation minµ∈ΛV EV(µ)
is tight, but has several integer solutions. Any convex
combination of these solutions will form a non-integral
solution. However this fact cannot be recognized by
our method and hence the non-integral variables of the
solution will be discarded.

6. Extensions

Higher Order. Assume now we are not in the pair-
wise case anymore but have an energy minimization
problem over a hypergraph G = (V, E) with E ⊂ P(V)
a set of subsets of V:

min
x∈X

EV(x) :=
∑
e∈E

θe(xe) . (6.1)

All definitions, our persistency criterion and Algo-
rithm 1 admit a straightforward generalization. Ana-
loguously to Definition 1 define for a subset of nodes
A ⊂ V the boundary nodes as

∂VA := {u ∈ A : ∃v ∈ V\A,∃e ∈ E s.t. u, v ∈ e} (6.2)

and the boundary edges as

∂EA := {e ∈ E : ∃u ∈ A,∃v ∈ V\A s.t. u, v ∈ e} .
(6.3)

The equivalent of boundary potential in Definition 3
for e ∈ ∂EA is

θ̂e,y(x) :=


max

x̃∈Xe : x̃|A∩e=x|A∩e
θe(x̃), x|A∩e = y|A∩e

min
x̃∈Xe : x̃|A∩e=x|A∩e

θe(x̃), x|A∩e 6= y|A∩e
.

(6.4)
Now Theorem 1, Corollary 1 and Algorithm 1 can be
directly translated to the higher order case.
Tighter Relaxations. Essentially, Algorithm 1 can
be applied also to tighter relaxations than ΛA, e.g.



when one includes cycle inequalities [24]. One merely
has to replace the local polytope ΛA for A ⊂ V by the
tighter feasible convex set:

Proposition 2. Let the polytope Λ̃A contain all in-
tegral marginals of ΛA and be such that Λ̃A ⊂ ΛA
∀A ⊆ V. Use Λ̃A in place of ΛA in Algorithm 1
and let Ã∗ be the corresponding persistent set returned
by the modified algorithm. Let A∗strong ⊆ A∗ be the
largest subset of strongly persistent variables identifi-
able by Corollary 1 subject to the relaxations Λ̃A and
ΛA. Then A∗strong ⊆ Ã∗strong.

7. Experiments

We tested our approach on several datasets from
different computer vision and machine learning bench-
marks, 96 problem instances overall, see Table 1. We
describe each dataset and corresponding experiments
in detail below.
Competing methods. We compared our method to
MQPBO [14,23], Kovtun’s method [17], Generalized
Roof Duality (GRD) by Kahl and Strandmark [9], Fix
et al’s [4] and Ishikawa’s Higer Order Clique Reduction
(HOCR) [7] algorithms. For the first two methods
we used our own implementation, and for the other
the freely available code of Strandmark [25]. We were
unable to compare to the method of Windheuser et
al. [31], because the authors do not give a description
for implementing their method in the higher order case
and only provide experimental evaluation for problems
with pairwise potentials, where their method coincides
with MQPBO [14].
Implementation details. We employed TRWS as
an approximate solver for Algorithm 1 and strong
tree agreement as a consistency mapping (see Propo-
sition 1) for most of the pairwise problems. We stop
TRWS once it has either arrived at tree-agreement, a
small duality gap of 10−5 or 1000 iterations. For the
side-chain pairwise models and all higher-order mod-
els we employed CPLEX as an exact linear program-
ming solver, because TRWS either was not applicable
or got stuck in clearly suboptimal points.
Datasets and Evaluation. We give a brief charac-
terization of all datasets and report the obtained total
percentage of persistent variables of our and compet-
ing methods in Table 1. We refer to the supplementary
material for detailed results for each individual prob-
lem instance.

The problem instances teddy, venus, family, pano,
Potts and geo-surf were made available by [10], while
the datasets side-chain and protein-interaction

were made available by [1].
The problem instances teddy and venus come from
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Figure 3. Iterations needed by TRWS [15] in Algorithm 1
for three Potts instances.

the disparity estimation for stereo vision [27].
None of the competing approaches was able to find even
a single persistent variable for these datasets, presum-
ably because of the large number of labels, whereas
we labeled nearly half of them as persistent in teddy,
though only 15 in venus.

Instances named pano and family come from the
photomontage dataset [27]. These problems have
more complicated pairwise potentials than the dispar-
ity estimation problems, but less labels. For both
datasets we found significantly more persistent vari-
ables than MQPBO, in particular, we were able to label
more than half of the variables in pano.

We also chose 12 relatively big energy minimization
problems with grid structure and Potts interaction
terms. The underlying application is a color segmen-
tation problem previously considered in [26]. Our gen-
eral approach reproduces results of [26] for the specific
Potts model. See detailed results in our supplementary
materials.

We considered also side-chain prediction problems
in protein folding [32]. The datasets consist of pair-
wise graphical models with 32 − 1971 variables and
2 − 483 labels. The problems with fewer variables are
densely connected and have very big label spaces, while
the larger ones are less densely connected and have la-
bel space up to ∼ 100 variables. Our method labels
as persistent an order of magnitude more nodes than
MQPBO.

The protein interaction models [8] aim to find
the subset of proteins, which interact with each other.
Our method labeled more than three quarter of nodes
as persistent, whereas all methods absed on roof dual-
ity, i.e. Fix et at, GRD, HOCR [4, 7, 9], gave similar
results and labeled around a quarter of them as persis-
tent.

The cell tracking problem consists of a binary
higher order graphical model [13]. Given a sequence
of microscopy images of a growing organism, the aim
is to find the lineage tree of all cells, which divide
themselves and move. This is done by tracking de-
veloping cells across time. For implementation reasons



Experiment #I #L #V O MQPBO Kovtun GRD Fix HOCR Ours

teddy 1 60 168749 2 0 † † † † 0.4423
venus 1 20 166221 2 0 † † † † 0.0009
family 1 5 425631 2 0.0432 † † † † 0.0611
pano 1 7 514079 2 0.1247 † † † † 0.5680
Potts 12 ≤12 ≤424720 2 0.1839 0.7475 † † † 0.9231
side-chain 21 ≤483 ≤1971 2 0.0247 † † † † 0.6513
protein-interaction 8 2 ≤14440 3 † † 0.2603 0.2545 0.2545 0.7799
cell-tracking 1 2 41134 9 † † † 0.1771 † 0.9992
geo-surf 50 7 ≤1111 3 † † † † † 0.8407

Table 1. Percentage of persistent variables obtained by methods [4,7,9,14,17] and our method. Notation † means inapplica-
bility of the method. The columns #I,#L,#V,O denote the number of instances, labels, variables and the highest order of
potentials respectively. We refer to the supplementary material for results for each individual dataset. The column ”Ours”
reveals the superior performance of our approach.

we were not able to solve cell-tracking dataset with
Ishikawa’s [7] method. However Fix [4] reports that
his method outperforms Ishikawa’s method [7]. Other
methods are not applicable even theoretically, whereas
we managed to label as persistent more than 99.9% of
the nodes.

Last, we took the higher order multi-label geomet-
ric surface labeling problems (denoted as geo-surf
in Table 1) from [6]. They consist of instances with
29− 1111 variables and 7 labels each with unary, pair-
wise and ternary terms. Note that MQPBO cannot
handle ternary terms, Fix et al’s [4] Ishikawa’s [7] meth-
ods and the generalized roof duality method by Strand-
mark and Kahl [9] cannot handle more than 2 labels.
Hence we report our results without comparison. We
considered only those 50 instances out of the total 300,
which could not be solved with the local polytope re-
laxation. Again the number of variables, which we were
able to mark as persistent is high - more than 80% on
average.

Runtime. The runtime of our algorithm mainly de-
pends on the speed of the underlying solver for the
local polytope relaxation. Currently there seems to
be no general rule regarding the runtime of our algo-
rithm. We show three iteration counts for instances
of the Potts dataset in Figure 3. In the clownfish

instance the number of iterations of TRWS [15] drops
fast after the first iteration. On the crops instance the
number of iterations is initially much lower, however
it does only decrease moderately and more iterations
are needed to prune variables. For the hard pfau in-
stance Algorithm 1 needed many iterations and number
of TRWS [15] iterations does not drop significantly. We
refer to the supplementary materials for more plots.

Pruning. In all our experiments, set A0 in Algo-
rithm 1 contained at least 97% (but usually more than

99%) of the variables, hence at most 3% of all vari-
ables were pruned initially due to not being consistent.
In subsequent rounds always more than 99.99% of all
variables were consistent, and variables were mainly
pruned due to not agreeing with the boundary condi-
tions.

8. Conclusion and Outlook

We have presented a novel method for finding persis-
tent variables for undirected graphical models. Empiri-
cally it outperforms all tested approaches with respect
to the number of persistent variables found on every
single dataset. Our method is general: it can be ap-
plied to graphical models of arbitrary order and type of
potentials. Moreover, there is no fixed choice of convex
relaxation for the energy minimization problem and ar-
bitrary, also approximate, solvers for these relaxations
can be employed in our approach.

In the future we plan to significantly speed-up the
implementation of our method and consider finer per-
sistency criteria, which are also able to ascertain per-
sistency not only in terms of variables taking a single
label but falling into a range of labels.
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S. Nowozin, D. Batra, S. Kim, B. X. Kausler, J. Lell-
mann, N. Komodakis, and C. Rother. A comparative
study of modern inference techniques for discrete en-
ergy minimization problem. In CVPR, 2013. 1, 6

[11] J. H. Kappes, B. Savchynskyy, and C. Schnörr. A bun-
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1. Appendix

To prove Theorem 1 we need the following technical
lemma.

Lemma 1. Let A ⊂ V be given together with
y ∈ X∂VA . Let x0 and x′ be two labelings on V with
yu = x0

u. Then it holds for uv ∈ ∂EA, u ∈ ∂VA that

θuv(x
0
u, x
′
v)+θ̂uv,y(x′u)−θ̂uv,y(x0

u) ≤ θuv(x′u, x′v) . (1.1)

Proof. The case x′u = x0
u is trivial. Otherwise, by Def-

inition 3, inequality (1.1) is equivalent to

θuv(x
0
u, x
′
v) + min

xv∈Xv

θuv(x
′
u, xv)

− max
xv∈Xv

θuv(x
0
u, xv)− θuv(x′u, x′v) ≤ 0 . (1.2)

Choose xv x
′
v in the minimization and the maximiza-

tion in (1.2) to obtain the result.

Proof of Theorem 1. Assume x0 ∈ argminx∈XA
ÊA,y(x)

conforms to the boundary labeling x0
v = yv ∀x ∈ ∂VA.

Let

x̃ ∈ argminx∈X E(x) s.t. xv = x0
v ∀v ∈ A . (1.3)

and let x′ ∈ X be an arbitrary labeling. Then

E(x̃)
= EA(x0) + EV \A(x̃) +

∑
uv∈∂EA θuv(x

0
u, x̃v)

= EA(x0) +
∑
uv∈∂EA θ̂uv,y(x0

u)

+EV \A(x̃) +
∑
uv∈∂EA

[
θuv(x

0
u, x̃v)− θ̂uv,y(x0

u)
]

= ÊA,y(x0)

+EV \A(x̃) +
∑
uv∈∂EA

[
θuv(x

0, x̃v)− θ̂uv,y(x0
u)
]

≤ ÊA,y(x′)

+EV \A(x′) +
∑
uv∈∂EA

[
θuv(x

0, x′v)− θ̂uv,y(x0
u)
]

= EA(x′) +
∑
uv∈∂EA θ̂uv,y(x′u)

+EV \A(x′) +
∑
uv∈∂EA

[
θuv(x

0
u, x
′
v)− θ̂uv,y(x0

u)
]

≤ EA(x′) + EV \A(x′) +
∑
uv∈∂EA θuv(x

′
u, x
′
v)

= E(x′) .
(1.4)

The first inequality is due to the optimality of x0 for
ÊA,y and the optimality of x̃ for (1.3). The second
inequality is due to Lemma 1. Hence x0 is part of a
globally optimal solution, as x′ was arbitrary.

Proof of Corollary 1. Expression (3.5) implies

µ0 ∈ argminµ∈ΛA,µ∈{0,1} ÊA,x0
|∂VA

(µ) (1.5)

because µ0 is integral by assumption. As (2.1)
and (2.2) are equivalent and the corresponding labeling
x0 satisfies the conditions of Theorem 1, x0 is partially
optimal on A.

To prove Theorem 2 we need the following technical
lemma.

Lemma 2. Let A ⊂ B ⊂ V be two subsets of V and
µA ∈ ΛA marginals on A and xA ∈ XA a labeling
fulfilling the conditions of Corollary 1 uniquely (i.e. xA

is strongly persistent). Let yB ∈ X∂B be a boundary
labeling such that xAv = yBv ∀v ∈ ∂A ∩ ∂B.

Then for all marginals µ∗ ∈ argminµ∈ΛB
ÊB,yB (µ)

on B it holds that µ∗v(x
A
v ) = 1 ∀v ∈ A.

Proof. Similar to the proof of Theorem 1.

Proof of Theorem 2. We will use the notation from
Algorithm 1. It will be enough to show that for every
A ⊆ V such that there exists a unique persistent la-
beling x ∈ XA fulfilling the conditions of Corollary 1
we have A ⊆ At in each iteration of Algorithm 1 and
furthermore xv = xtv for all v ∈ VA.

Apply Lemma 2 with A := A and B := A0(= V ).
Condition xv = yBv for all v ∈ ∂A∩∂V = ∅ in Lemma 2
is an empty condition. Hence, Lemma 2 ensures that
for all µ0 ∈ argminµ∈ΛV E(µ) it holds that µ0

v(xv) = 1

for all v ∈ A.
Now assume the claim to hold for iteration t − 1.

We need to show that it also holds for t. For this
just invoke Lemma 2 with A := A, B := At−1 and
yB := xt−1

|∂VAt−1
. The conditions of Lemma 2 hold by

1



assumption on t − 1. Lemma 2 now ensures the ex-
istence of µt ∈ argminµ∈ΛAt−1

ÊAt−1,xt−1
|∂V

At−1

(µ) with

the required properties.

Proposition 1

Proof. At termination of Algorithm 1 we have obtained
a subset of nodes A∗, a boundary labeling y∗ ∈ X∂VA ,
a labeling x∗ equal to y∗ on ∂VA and a consistency
mapping cu = x∗u for u ∈ A∗. Hence, by Definition 4,
x∗ ∈ argminx∈XA

ÊA∗,y∗ and x∗ fulfills the conditions
of Theorem 1.

Proposition 2.

Proof. Every strongly persistent labeling which is iden-
tifiable by the conditions of Corollary 1 with the relax-
ation ΛA is also a identified as strongly persistent by
Corollary 1 with the relaxation Λ̃A, which is obvious.
Hence, by the results of Theorem 2 applied to the ΛA
and Λ̃A we get that Algorithm 1 find all strongly per-
sistent variables for the relaxations ΛA and Λ̃A and
by the aforementioned the latter are included in the
former.
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Potts

Instance MQPBO Kovtun Ours Instance MQPBO Kovtun Ours

clownfish-small 0.1580 0.7411 0.9986 crops-small 0.1533 0.6470 0.9976
fourcolors 0.1444 0.6952 0.9993 lake-small 0.1531 0.7487 1.0000

palm-small 0.0049 0.6865 0.9811 penguin-small 0.1420 0.9199 0.9998
pfau-small 0.0069 0.0559 0.1060 snail 0.7842 0.9777 0.9963

strawberry-glass-2-small 0.0275 0.5499 1.0000 colseg-cow3 0.4337 0.9989 1.0000
colseg-cow4 (∗) 0.9990 1.0000 colseg-garden4 0.0150 0.9496 0.9990

(∗): MQPBO could not compute solution due to implementation limitations.

Table 1. Percentage of persistent variables obtained by Kovtuns’s method [11], MQPBO [9] and our approach for image
segmentation problems with Potts interaction terms provided by [1,8]. Instances have 21000− 424720 variables with 3− 12
labels.
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Figure 1. Iterations needed by TRWS [10] by our Algorithm for Potts-datasets.



Side-chain Prediction

Instance MQPBO Ours Instance MQPBO Ours Instance MQPBO Ours

1CKK 0.0002 0.3421 1CM1 0.0000 0.5676 1SY9 0.0004 0.5758
2BBN (∗) 0.2162 2BCX (∗) 0.4103 2BE6 0.0008 0.2000
2F3Y 0.0000 0.0857 2FOT 0.0011 0.3714 2HQW 0.0000 0.2778
2O60 0.0000 0.2632 3BXL 0.0000 0.5833 pdb1b25 0.0265 0.9615

pdb1d2e 0.0496 0.9857 pdb1fmj 0.0339 0.9707 pdb1i24 0.0486 1.0000
pdb1iqc 0.0707 0.9894 pdb1jmx 0.0428 0.9783 pdb1kgn 0.0355 0.9708

pdb1kwh 0.0344 0.9646 pdb1m3y 0.0720 0.9677 pdb1qks 0.0526 0.9957

(∗): MQPBO could not compute solution due to implementation limitations.

Table 2. Percentage of persistent variables obtained by MQPBO [9] and our approach for side-chain prediction problems
from [2,12]. Instances have 32− 1971 variables with 2− 483 labels.

Protein Protein Interaction

Instance GRD Fix HOCR Ours Instance GRD Fix HOCR Ours

1 0.1426 0.1357 0.1357 0.7614 2 0.3818 0.3766 0.3766 0.8682
3 0.1426 0.1327 0.1357 0.7614 4 0.3740 0.3720 0.3720 0.9952
5 0.3706 0.3706 0.3706 0.5811 6 0.1478 0.1398 0.1398 0.8436
7 0.1456 0.1352 0.1352 0.7772 8 0.3772 0.3735 0.3735 0.6510

Table 3. Percentage of persistent variables obtained by the generalized roof duality (GRD) method of Kahl and Strand-
mark [7], Fix et al’s [3] approach, Ishikawa’s higer order clique reduction (HOCR) approach [5] and our approach for protein
protein interaction problems from [2, 6]. Instances have 14257 − 14440 variables with 2 labels. Potentials are up to order
three. Fix et al’s method [3] and Kahl and Strandmark’s method [7] gave the same persistent variables, hence we do not
report values separately.

Geometric Surface Labeling

Instance Ours Instance Ours Instance Ours Instance Ours

4 0.5969 10 0.7713 12 0.9828 18 0.7068
23 0.7216 25 0.7674 31 0.912 34 0.9950
42 0.9089 43 0.7726 48 0.7508 49 0.8055
54 0.7071 59 0.7004 65 0.944 100 0.4585

102 0.9596 104 0.9858 111 0.9972 115 0.8417
116 0.7511 120 0.9626 124 0.9699 130 0.9691
144 0.9593 147 0.9608 148 0.5524 150 0.6006
160 0.9147 166 0.9865 168 0.8950 176 0.8225
179 0.9592 214 0.9720 231 0.9370 232 0.9603
234 0.7847 237 0.8959 250 0.7106 253 0.9653
255 0.9573 256 0.7496 264 0.9951 276 0.8863
277 0.7651 281 0.5775 284 0.8980 288 0.9956
293 0.8191 297 0.5781

Table 4. Percentage of persistent variables obtained by our approach for surface labeling problems problems from [4].
Instances have 29 − 1111 variables with 7 labels and ternary terms. Of the 300 instances that were in the dataset 50
could not be solved by the local polytope relaxation. We list the average percentage of persistent variables for these harder
instances only.


