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Abstract

Background: The reliable extraction of features from mass spectra is a fundamental step in the automated

analysis of proteomic mass spectrometry (MS) experiments.

Results: This contribution proposes a sparse template regression approach to peak picking called NITPICK.

NITPICK is a Non-greedy, Iterative Template-based peak PICKer that deconvolves complex overlapping isotope

distributions in multicomponent mass spectra. NITPICK is based on fractional averagine, a novel extension to

Senko’s well-known averagine model, and on a modified version of sparse, non-negative least angle regression,

for which a suitable, statistically motivated early stopping criterion has been derived. The strength of NITPICK

is the deconvolution of overlapping mixture mass spectra.

Conclusions: Extensive comparative evaluation has been carried out and results are provided for simulated and

real-world data sets. NITPICK outperforms pepex, to date the only alternate, publicly available, non-greedy

feature extraction routine. NITPICK is available as software package for the R programming language and can

be downloaded from http://hci.iwr.uni-heidelberg.de/mip/proteomics/.
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Background

The reliable extraction of proteomic features from complex biological mixtures is of utmost interest for

unraveling the intricate biomolecular interplay at the heart of many systems biology research questions. In

this context, mass spectrometry (MS) has become a key technology which provides peptide and protein

identification, modification characterization and quantification capabilities. In contrast to gene expression

microarray technologies, MS analysis yields a direct view on the whole set of proteins (the proteome)

present in the system under investigation and can thus contribute to a richer picture of protein interaction,

real-time dynamics and their regulation [1]. MS contributes to clinical research and the diagnosis

process [2], it is used to detect, grade and characterize cancer diseases [3], it serves as a general purpose

tool for microorganism characterization [4, 5] and provides sensitive and specific means for pharmaceutical

quality control.

MS experiments typically contain tens to thousands of spectra, each of which holds intensity information

for tens to hundreds of thousands of mass channels. These data stem from a set of different mass analysis

technologies, combining chemical separation procedures (chromatography), ionization methods

(electrospray ionization, matrix-assisted laser desorption/ionization) and mass analyzers (time-of-flight,

quadrupole, ion cyclotron motion). Despite physicochemical preprocessing and the availability of high mass

resolution instruments, spectra which stem from complex biochemical mixtures (e.g. cell lysate, blood or

serum) frequently exhibit overlapping isotope distributions of independent molecular species. Moreover, in

many quantitative MS approaches, these mixtures are present by design and their manual unmixing,

quantification and interpretation is tedious or infeasible.

As a consequence, the automated analysis and interpretation of multicomponent mass spectra is highly

desirable. An (incomplete) set of challenges for MS feature extraction includes the sheer data set sizes,

mixtures of isotope patterns, the presence of multiple charge states, chemical and detector noise,

species-dependent ionization efficiencies, chemical reproducibility and deviations from detector linearity.

Among all requirements that derive from these challenges, it is important to emphasize the crucial nature

of the feature extraction step: as all subsequent analysis steps rely on the set of extracted features,

meaningful biological conclusions are highly dependent on the adequacy and reliability of the feature

extraction method.

Apart from few special alternate approaches [6, 7], all automated methods for feature extraction from

isotope-resolved mass spectra compare the observed (experimental) spectral pattern to a set of

precalculated theoretical isotope patterns. The calculation of isotope patterns is based on the estimation of
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average stoichiometries for a particular molecular mass (averagine [8] and related methods [9]) or on

relative isotope abundance estimation [10] or on protein database-driven mean isotope distribution

calculation [11]. The computation of isotope patterns is based on efficient implementations [12–14] of

Yergey’s original polynomial method [15,16].

Comparison of theoretical and experimental isotope distributions is typically accomplished based on

subtractive fitting and peak selection algorithms, attempting to sequentially detect the dominant

components in a mixture spectrum. These subset selection methods attempt to determine a small set of

basis functions capable of approximating the observed signal well. Facing the infeasibility of an exhaustive

search over all possible subsets of explanatory basis functions, they apply greedy search strategies. Here,

“greediness” refers to the fact that these approaches consistently overestimate individual feature

contributions and are incapable of excluding a basis function once it has been included in the active set.

Hence, although providing sparseness, they are not globally optimal. In the context of mixture modeling of

mass spectra, these approaches amount to sequential isotope distribution template matching

procedures [6, 8–11,17–22]. Fitting is carried out via χ2 distances [8, 20], least squares [9–11,17,21–23],

weighted least squares [19], or cross-correlation [18,24]. The automatic determination of the charge state

associated with an isotope pattern present in an experimental spectrum is based on cross-correlation [19,25]

or on dot products in Fourier space [25,26], exploiting the shift theorem of the Fourier transform. There

are only few [27] non-greedy feature selection algorithms and mixture model approaches for MS

data [28–31]. Among these, Matching [28] and Roussis’ method [29] rely on manual preselection of

contribution candidates. Sparse non-greedy procedures include pepex [30] and Du’s method [31]. The pepex

approach is suitable for single charge data and is based on a non-negative sparse regression scheme, with an

approximate L0-norm constraint. Du and Angeletti [31] perform data reduction prior to feature extraction

and apply a sparseness-promoting variable selection scheme [32]. With the exception of Du’s [31] and

Kaur’s [19] methods, none of the mentioned mixture model approaches provide support for the detection of

a sparse set of a priori unknown peptide peaks under an arbitrary set of charge states. Du’s method [31]

and NITPICK overcome Kaur’s greedy iterative weighted least squares fitting approach. In contrast to [31],

NITPICK does not rely on a heuristic parameterization and is instead based on statistical model selection,

making use of an algorithmically more efficient non-greedy sequential feature selection procedure with a

statistically motivated termination criterion. NITPICK was designed to support the calculation of accurate

monoisotopic peak lists from raw mass spectra and was specifically tailored to cases where the raw spectra

stem from unknown, possibly overlapping experimental isotope patterns of multiple charge states.
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The methods section details the mixture modeling approach, fractional averagine for improved

stoichiometry estimation and data fitting, and our main contribution, a computationally efficient method

for improved non-negative feature selection and the corresponding statistical complexity estimation

approach in conjunction with the derivation of a lower bound for early termination. Comparative results

on simulated and real-world data sets are given in the results and subsequently discussed. Eventually, we

conclude and offer perspectives. Derivations of the formulas used in the main article are available in the

appendix.

Methods

The NITPICK algorithm (cf. figure 1) models an observed mixture spectrum as a linear combination of

theoretical isotope distribution patterns. Statistically, finding a sensible parameterization of this mixture

model amounts to a constrained regression problem in which we seek to minimize the raw signal

reconstruction error in a least-squares sense while adhering to a set of additional constraints. Such an

approach requires reliable underlying isotope patterns, and we propose an improvement for the well-known

averagine model to achieve this goal. We subsequently introduce NITPICK’s iterative feature selection

procedure, which employs a novel, non-greedy isotope distribution selection method and is based on a

statistically motivated termination criterion, attempting to eliminate premature or late iteration

termination.

Mixture model

We assume that observed spectra are available in a discrete (not necessarily equispaced) mass binning

scheme defined by a mass vector m = (m1,m2, . . . ,mN )T and represent a raw multicomponent mass

spectrum by a vector s of size N × 1, where si corresponds to the abundance observed in the ith mass bin

mi. In practical applications, the vector s may also result from preprocessing steps such as relevant region

detection [19] and may thus represent only a part of a complete raw spectrum. The basic assumption

behind the mixture model approach is that s be a linear combination of mass spectrum abundances of K

pure components φi,

s =
K∑
k=1

ciφi = Φc. (1)

Each of the concentration coefficients ci, i = 1, . . . ,K is associated with a column φi of the N ×K model

matrix Φ. We regard these columns as basis functions and their elements φji correspond to the mass

spectrum abundance expected in the jth mass bin mj of the ith pure component φi.
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For the estimation of the concentration vector c, the model matrix Φ has to be available, and in general

this is not the case. One hence resorts to approximating the basis functions by a large set of theoretical

isotope distributions (i.e. isotope abundance patterns) densely spread over the prespecified mass/charge

binning scheme. Effectively, this recasts the original peak picking task into the framework of a feature (i.e.

basis function) selection problem.

Model matrix calculation

Given an elemental stoichiometry, the corresponding theoretical isotope distribution is well-defined and can

easily be calculated [12–15]. Hence, if a prespecified set of stoichiometries of potential pure components is

available, the calculation of the respective set of theoretical isotope distributions (including chemical

modifications and multiple charge states) is straightforward. These isotope distributions are subsequently

convolved with instrument-specific, possibly mass-dependent peak shape functions, yielding the basis

functions φi.

Fractional averagine

In many practical applications prior knowledge about potential components is not at hand. Thus, one

needs to resort to expected average stoichiometry estimates as a best-effort approximation. In this case,

the quality of the feature selection procedure is highly dependent on the quality of the stoichiometry

model. We therefore extended the widely used averagine approach [8] to amend its discrete and

discontinuous nature, gaining models without mass error and improved true isotope distribution

reconstruction properties. Fractional averagine (FA) provides a real-valued element stoichiometry

ρ = (ρ1, . . . , ρ5)T according to the mapping f : R→ R5 between a mass value and the number of element

atoms in an averagine (H7.75833C4.9384N1.35777O1.4773S0.0417) molecule. The calculation of the theoretical

isotope distribution of ρ is based on the observation that isotope abundances follow a multinomial

distribution [33], and that fractional numbers of trials in a multinomial can be modeled as linear

interpolation between the probability functions of the multinomials parameterized with the surrounding

integers (see appendix A). For computational ease, calculations are carried out in the realm of the

corresponding moment generating function (MGF) [34] of the multinomial probability mass function. For
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the ith stoichiometry element, the MGF given ρi can be factorized according to

Mx(t1, . . . , tk−1|ρi)

=
[
p1e

t1 + · · ·+ pk−1e
tk−1 + pk

]bρic+(ρi−bρic)

= Mx1(t1, . . . , tk−1|bρic)Mx2(t1, . . . , tk−1| (ρi − bρic))

(2)

where pl is the probability of occurrence of the lth isotope (
∑k
l=1 pl = 1), x = (x1, . . . , xk)T denotes the

number of times a particular isotope is chosen (
∑k
l=1 xl = ρi) and t = (t1, . . . , tk)′ is the corresponding

variable of the MGF. By rearrangement of the MGFs of all elements, it is possible to separate integer and

real-valued contributions, yielding the common averagine model ρ̂ = (bρ1c, bρ2c, . . . , bρ5c)T for the integers

and the fractional averagine correction ρ̃ = (ρ1−bρ1c, ρ2−bρ2c, . . . , ρ5−bρ5c)T for the remaining fractional

masses. The theoretical isotope distribution for ρ̃i is given by the linear combination of a peak of intensity

one at mass zero and the theoretical isotope distribution of the ith averagine element, weighted by 1− ρ̃i

and ρ̃i, respectively. Thus, efficient calculation of the theoretical isotope distribution of the stoichiometry ρ̂

is carried out based on the Mercury7 algorithm [14], and the theoretical isotope distribution for the

fractional stoichiometry ρ is subsequently obtained with five additional convolution steps.

Basis function selection

Given the set of basis functions Φ = [φ1 φ2 · · ·φK ], basis function selection and subsequent determination

of the contribution coefficients ci provides a solution to eq. (1). Thus, as the modeling parameters and, in

particular, the monoisotopic masses for all basis function are known, one can determine which isotope

distributions are present and in what abundance (assuming
∑
k φki = 1).

In practice, basis functions are calculated for each possible monoisotopic mass and each expected charge

state, yielding model matrices Φ with K > N (in the case of one basis function per mass/charge bin and

charge, we have K = nZN , where nZ corresponds to the number of charge states observable in the

experiment; hence, for nZ > 1, there exists an infinite number of solutions for eq. (1)). This is a problem

intrinsic to the proposed mixture modeling approach and has been observed previously [23,28,30].

The least absolute shrinkage and selection operator (LASSO) [32] enjoys favorable properties of

regularization and subset selection. Because the LASSO is capable of shrinking coefficients to exactly zero,

it offers a non-greedy way to gain sparse models. The LASSO solution ĉ for equation (1) is given by

ĉ = arg min
c
{‖s−Φc‖2}

s.t.
K∑
i=1

|ci| ≤ t,
(3)
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where t ≥ 0 is a user-defined tuning parameter [31,32]. Mass spectra intensities si, basis function values

φji, and basis function contributions ck are strictly non-negative, thus adding a non-negativity constraint

to the solution space of ĉ, yielding

ĉ = arg min
c
{‖s−Φc‖2}

s.t.
K∑
i=1

|ci| ≤ t, ci ≥ 0.
(4)

For fixed t, this is a quadratic programming problem with linear inequality constraints which can be solved

by an active set algorithm, sequentially introducing the inequality constraints and seeking a feasible

solution satisfying the Kuhn-Tucker conditions [32,35,36]. Equation (4) corresponds to

ĉ(λ) = arg minc{‖s−Φc‖2 + λ
∑K
i=1 |ci|} with ci ≥ 0 where the parameter t is related to the Lagrangian

multiplier λ which determines the number of free parameters df(λ) in the linear model [32,36–38].

Common procedures for the optimal selection of λ or df(λ) are based on the minimization of the prediction

error. This involves estimation of training optimism via Cp-statistics, the Akaike Information Criterion

(AIC), or the Bayesian Information Criterion (BIC) [37]. Alternatively, direct estimation of prediction

error can be carried out via cross-validation or generalized cross-validation (GCV) [37]. All these methods

require the LASSO trace ĉ(λl), where λl ∈ L and L = {λ1, . . . , λ|L|} defines the set of LASSO

regularization parameters for which the prediction error is calculated. In general, the calculation of the

LASSO trace is computationally intensive and it is not clear how the elements of L should be selected [36].

Least angle regression (LARS) [39] is an algorithmically different approach to variable selection which can

be modified such that the LARS algorithm implements the non-negative LASSO from equation (4). The

LASSO-modified LARS is a constructive active set procedure which constructs the LASSO regularization

path in a stepwise manner. Denote by A(λ) the set of indices i ∈ {1, . . . ,K} of those φi which are in the

active set for a particular choice of λ. Starting from λ =∞ and letting λ→ 0, the algorithm computes

non-negative LASSO solutions for all λ for which the active set changes, thus implicitly defining L. The

LASSO-modified LARS guarantees A(λj) 6= A(λj+1), but it allows for the deletion of previously selected

basis functions, and hence |A(λj)| need not increase monotonically for increasing j. Basis functions can be

required to enter the active set in their predefined directions [39] which allows the implementation of a

non-negativity constraint. Necessary matrix inversions are constrained to |A(λ)| × |A(λ)|-sized scatter

matrices ΦT
A(λ)ΦA(λ) and can be implemented as iterative updates, thus the procedure is computationally

efficient.
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Complexity estimation

It is desirable to terminate active set updates as soon as the basis functions in the active set are able to

explain the observed data sufficiently well, i.e. until the increase in explanatory power does not justify the

increase in model complexity anymore. We now describe a modification to the non-negative

LASSO-modified LARS, which enables us to sequentially build a BIC trace along the LASSO

regularization path and to identify minima along this trace. Upon termination, the proposed procedure

returns the estimate ĉA and the set A = {i|ĉAi > 0} of active basis functions.

BIC measure

The LARS Cp-type risk reestimation formula [39] for optimal selection of λ does not hold under the

non-negative LASSO modification. Instead, we recalculate a BIC measure

BIC(λ) =
1
σ2
‖s−ΦA(λ)ĉ

q
A(λ)‖

2︸ ︷︷ ︸
N ·MSE(λ)

+df(λ) logN, (5)

in each LARS iteration [40]. For the calculation of the unbiased training error MSE(λ) in eq. (5) we

require an additional non-negative least squares fit

ĉqA(λ) = arg min
cA(λ)

‖s−ΦA(λ)cA(λ)‖2

s. t.
(
ĉqA(λ)

)
i
≥ 0.

(6)

The noise variance σ2 in eq. (5) is estimated as the mean residual sum of squares of a low-bias

non-negative least squares estimate [37].

Estimation of df(λ)

The calculation of BIC(λ) in eq. (5) requires an estimate for the degrees of freedom df(λ), which can be

obtained via the generalized degrees of freedom (GDF) [38]. The GDF of an NN-LASSO-modified LARS

model based on an active set A(λ) are given by

GDF(λ) =
1
σ2
sTΦA(λ)ĉ

q
A(λ). (7)

Because the coefficients (ĉqA(λ))i > 0 are nonnegative, the estimate ĉqA(λ) solves

ĉqA(λ) = arg min
cqA(λ)

{
‖s−ΦcqA(λ)‖

2 + λ

K∑
i=1

(
cqA(λ)

)
i

}
(8)
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which is differentiable with respect to
(
cqA(λ)

)
i
. Setting the derivative to zero, we obtain

ĉqA(λ) = (ΦT
A(λ)ΦA(λ))−1(ΦT

A(λ)s−
1
2
λ1A(λ)). (9)

Hence, given an active set A(λ), the generalized degrees of freedom from eq. (7) can be written as

GDF(λ)

= sT
1
σ2

(ΦA(λ)ĉ
q
A(λ))

= sT
1
σ2

ΦA(λ)(ΦT
A(λ)ΦA(λ))−1(ΦT

A(λ)s−
1
2
λ1A(λ))

(10)

which is monotonously increasing for decreasing λ (see appendix B for a proof).

Optimal termination

The minimal possible training error of the model is attained when all variables are in the active set, in

which case the respective coefficients ĉq are given by ĉq = arg minc ‖s−Φc‖2 subject to ci ≥ 0, and the

corresponding error is MSE = 1
N ‖s−Φĉq‖2. Thus, a lower bound for BIC(λ) is given by

BICmin(λ) =
N

σ2
MSE + GDF(λ) logN (11)

(see appendix C for a proof). In general, BIC(λ) will have several minima for increasing values of GDF(λ),

hence we track the minimum BIC(λmin) through the NN-LASSO-modified LARS cycles and accept λmin

as a minimizer as soon as the lower bound BICmin(λ) of a subsequent LARS step exceeds the current best

estimate BIC(λmin), i.e. BIC(λmin) < BICmin(λ) (see figure 2).

Regression on selected models

The sum constraint in equation (4) is ultimately responsible for the sparseness property of the LASSO. Its

regularizing effect is similar to the one of the regularization term found in ridge regression, especially with

respect to the fact that all LASSO estimates ĉi, i = 1, . . . ,K are subject to shrinkage [32,37] and represent

biased versions of the least squares estimates. Given an active set A, the shrinkage bias on the ĉi can

effectively be removed by introducing a subsequent non-negative least squares regression step after the

basis functions have been selected by the LASSO procedure [32]. This also holds true for the

NN-LASSO-modified LARS procedure, and the corresponding unbiased quantification estimate ĉqA is given

by equation (6) with A(λ) = A.
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Postprocessing

The estimate ĉ is subject to modeling errors and these shortcomings lead to suboptimal

NN-LASSO-modified LARS estimates and active sets. In particular, the estimation depends on the match

between the observed and theoretical peak shape function. Especially in high mass resolution experiments,

one can frequently observe spurious peak detections in bins directly adjacent to monoisotopic mass bins of

true peaks [30]. A possible remedy is a local maximum detection implemented as a postprocessing filter

ϕ(·) applied to the active basis function index set A:

A′ = ϕ(A|G)

= {j ∈ A|(ĉqA)j = max{(ĉqA)l|l ∈ νG(j)}}
(12)

where νG(j) = {k ∈ A||bk − bj | ≤ G−1
2 } defines an m/z -neighborhood of size G around each peak and bj is

the mass/charge bin index of the monoisotopic mass m0 of the jth theoretical isotope distribution φj . If

A 6= A′, ĉqA is reestimated using eq. (6) with A(λ) = A′.

Results
Stoichiometry models

The fractional averagine stoichiometry model was compared against the classical averagine model based on

the analysis of their respective approximation errors using simulated theoretical peptide isotope

distributions.

Data Set

All UniProt (version 51.4.) [41] human proteins were subjected to in silico tryptic digestion. For each of

the R digestion product peptides Pr, r ∈ {1, . . . , R}, exact element stoichiometries ρxr and exact theoretical

isotope distributions dxr were calculated. Peptides with monoisotopic masses above m/z 5000 were

discarded.

Comparison of deviations

Classical and fractional averagine were used to estimate approximate element stoichiometries ρ̂r and ρr,

respectively, for all peptides Pr in the data set. Based on ρ̂r and ρr, the corresponding theoretical isotope

distribution intensity vectors d̂r and dr were calculated. Figure 3 shows the cumulative distribution of the

squared differences between the classical averagine and the true theoretical isotope distribution intensity

vectors (||d̂r − dxr ||22, dashed black), and fractional averagine and the true theoretical isotope distribution

intensity vectors (||dr − dxr ||22, solid red).
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Peak picking

For peak picking/feature extraction performance evaluation, we determine representative peak picking

statistics: we calculate accuracy, sensitivity, specificity, and positive and negative predictive values on

simulation data. Further, and in contrast to previous contributions, we explicitly perform manual

validation on a real-world data set.

Data sets

Simulation data set. For the simulation, all UniProt (version 51.4.) [41] human protein sequences were

subjected to in silico tryptic digestion. Simulation sets were generated by random drawing of digestion

product peptides and intensities. To ensure a fair comparison with the pepex procedure (which was

selected for benchmarking as the only publicly available procedure implementing non-greedy feature

extraction) which is limited to singly charged data sets, all simulated peptide were endowed with a single

charge. Mercury7 [14] was used for the calculation of the respective theoretical isotopic distributions.

After convolution with an m/z -dependent Gaussian aperture function [42], intensity-weighted linear

combinations of peptide spectra were calculated and a Poisson noise model (see appendix D) was applied

to obtain spectra of different signal to noise (SNR) ratios. Simulations were performed in the densely

populated m/z 500− 700 range (see Additional file 1 for the data sets).

Real-world data set. Experiments on real-world data were performed using Bovine Serum Albumin (BSA)

LC/(ESI-)MS calibration data. The data set was acquired on a QSTAR XL mass spectrometer (Applied

Biosystems/MDS Sciex) equipped with microscale capillary HPLC system (Famos Autosampler, LC

packings, Agilent 1100 HPLC pump). A mixture spectrum with many overlapping peaks was obtained by

integration of the LC/MS data set over the retention time domain (see Additional files 2 and 3). Peak

identification was carried out in the m/z 500− 700 range and peak shape functions were modeled according

to mass-dependent Gaussian distributions with standard deviations σ(m/z) = 0.005m/z [42].

Performance estimation

We characterize peak picking performance based on a set of measures from statistical test theory, all of

which depend on the availability of the numbers of true positives (TP), true negatives (TN), false positives

(FP) and false negatives (FN).
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Ground truth is based on knowledge of the complete set of peptide signals present in a mass spectrum. For

simulated data sets, this information is available. In real-world experiments, the definition of ground truth

is complicated by sample complexity, stochastic sample modification, non-peptidic components and limited

dynamic range. As a consequence, TNs, FNs and the overall number of true peaks are not available for

real-world data, limiting the available statistical measures to positive predictive values and the ratio of true

positives (sensitivity ratios).

Nevertheless, we can determine the number of TPs and FPs in both cases: we check whether a detected

peak really exists and if it has been assigned its correct monoisotopic mass m0 and charge z. If so, it is

counted as true positive (TP) or, otherwise, as false positive (FP).

Simulation data. As the complete set of simulated peaks is known, the remaining set of undetected peaks

can be determined and its members are counted as false negatives (FN). With the true number of positives

and negatives available the calculation of the number of true negatives (TN) is straightforward, thus

enabling the use of related statistical test error measures for performance characterization:

• accuracy (ACC) measures the rate of correct peak vs. no peak decisions, i.e. ACC = TP + TN
TN + FP + TP + FN

• the negative predictive value (NPV) gives the rate at which there is no peak at positions where the

procedure was unable to find a peak, NPV = TN
TN + FN .

• the positive predictive value (PPV) measures the rate of correct peak detections among all peaks

detected by the procedure, PPV = TP
TP + FP

• sensitivity (SE) measures the method’s ability to detect a peak if it exists, SE = TP
TP + FN

• specificity (SP) measures the method’s ability to correctly identify the absence of peaks in the

spectrum, SP = TN
TN + FP

All measures have been computed with and without the application of postprocessing.

Real-world data. Resorting to LC/MS data and creating a semi-artificial data set by integration over the

retention time domain was motivated by the fact that this approach yields a data set accessible to human

manual validation. With LC resolution power available to the human expert (and resorting to
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comparatively simple mixtures), all peaks detected in the integrated mixture can still be manually verified.

Exemplary peak picking results are illustrated below.

Comparative results

Pepex. We chose to compare NITPICK to a conceptually similar, model-based approach called pepex [30].

In contrast to model-free approaches and in accordance with NITPICK, pepex models observed spectra

based on a linear mixture model, which is augmented by a complexity constraint. It uses the averagine

model to describe unknown features and is capable of terminating its feature selection routine after a

sufficient number of basis functions has been selected. However, as the publicly available implementation of

the pepex approach is limited to charge state z=1 data sets, NITPICK comparison against pepex was

limited to the simulated data set.

For the analysis, the pepex algorithm was tailored to the problem at hand: its parameters were heavily

optimized to maximize peak picking performance on the simulation data set. As a consequence, the

reported results underestimate the pepex generalization error and overestimate its performance (see

Additional file 4). For NITPICK, no specific parameter optimization was carried out, postprocessing was

kept to a minimum (G = 3), and the reported results are representative (see Additional file 5).

MarkerView. We also compared NITPICK’s ability to extract peak information from a retention time

integrated mixture spectrum against the proprietary MarkerView application (Applied Biosystems/MDS

Sciex, Concord, Canada) version 1.2, which includes an LC/MS peak picking algorithm. In contrast to

NITPICK, MarkerView was provided with the original LC/MS data set and thus had retention time

information available. Peak picking was carried out in the m/z 400-1400 range and detected peaks were

manually validated (see Additional files 6 and 7).

Discussion
Stoichiometry models

In comparison (see figure 3, classical averagine in dashed black, fractional averagine in solid red), Senko’s

classical averagine [25] features a larger number of very small deviances from the truth than fractional

averagine. This is caused by the rounding to integers property of the classical approach, yielding exact

models more often. At the same time, the deviance distribution of the fractional averagine model has a

significantly lighter tail, i.e. the model generates significantly less stoichiometries whose theoretical isotope
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distributions have large deviations. The cumulative distribution based on the fractional averagine model

approaches 1 more quickly, and its use yields an overall decrease in theoretical isotope distribution

deviations. This finding is supported by the corresponding one-sided non-parametric Mann-Whitney test

(p < 2.6× 10−11). Because the overall impact on the peak picking performance depends on the squared

mean error magnitude (7.6 · 10−4 for classical averagine, 6.3 · 10−4 for fractional averagine, corresponding

to a 17% decrease for fractional averagine), fractional averagine clearly is the preferable model.

Peak picking
Simulation data set

Figure 4 shows the results for the peak detection performance analysis. As expected, ACC, NPV and PPV

improve with increasing SNR. Postprocessing causes a decrease in NPV and an increase in PPV for all

SNR levels as the removal of spurious peaks decreases FP but also, erroneously, increases FN. The ACC

plot (top left) illustrates the fact that NITPICK is successful at simultaneously maximizing PPV and

NPV. Postprocessing can then be used to trade specificity for sensitivity as supported by the

sensitivity-specificity trace in figure 4 (bottom right). Here, each dot marks sensitivity and specificity of a

given NITPICK postprocessing parameterization. Lines connect points of different SNRs. As expected, the

introduction of a postprocessing step increases specificity and decreases sensitivity. Further analysis of FNs

in the simulated data reveals that false negatives are predominantly due to low-intensity components in

complex mixtures (data not shown).

Comparative results

In comparison with pepex, NITPICK exhibits better results with respect to all statistical measures in

figure 4. It is especially obvious that pepex suffers from a severe increase in false positives (FPs) for very

low SNR situations, yielding significant decreases in accuracy (ACC) and specificity (SP). For PPV,

although the pepex approach outperforms NITPICK when no postprocessing is applied, it is inferior to the

full NITPICK algorithm with simple spurious peak removal corresponding to eq. (12). With respect to

sensitivity (SE) and specificity (SP), figure 4 reveals constant high (above 0.99) and superior specificity

values for NITPICK at greatly increased sensitivity. Thus one can conclude that the NITPICK algorithm

is more sensitive than pepex and, at the same time, provides picked peaks with higher confidence.
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Real-world data set

We give peak picking illustrations for the mass ranges m/z 507–525 (with a zoom on m/z 518–525), m/z

636–646, m/z 695–725 and m/z 775–782, detailing positive and negative peak picking performance aspects.

In the m/z 507–525 mass range (figure 5), all picked peaks could be verified, including the monoisotopic

masses of the mixture distribution with components located at m/z 523.23 (z=3) and m/z 523.82 (z=5).

Upon re-examination of the raw data, we detected a missed low-intensity peak at m/z 515.76.

Figure 6 zooms onto two cases of overlapping isotope distributions in the m/z 518–525 mass range. At m/z

518.22 and m/z 519.11 NITPICK resolves two distinct monoisotopic masses, in spite of their unfavorable

mass distance. Although the second isotope peak of the doubly charged ion with monoisotopic mass m/z

518.22 exhibits a heavy overlap with the monoisotopic peak of the ion at m/z 519.11, NITPICK is still able

to correctly detect the monoisotopic peaks of the two isotope distributions. NITPICK also separates two

isotope distributions located at m/z 523.23 (z=3) and m/z 523.82 (z=4). The detection of the

monoisotopic mass at m/z 523.82 is particularly non-trivial because of its heavy overlap with an isotope

peak of the isotope distribution located at m/z 523.23 and also because the detected monoisotopic mass

peak at m/z 523.82 is not the most abundant peak within its isotope distribution.

In the m/z 636–646 mass range (figure 7) we observe an example of incomplete unmixing: the isotope

distribution (z=3) with monoisotopic mass located at m/z 636.29 heavily overlaps the distribution (z=3)

located at m/z 636.64 (left triangle marker). The overlap proves inseparable and the monoisotopic mass of

the second distribution is wrongly detected at m/z 636.96. Further, due to conservative noise

level/complexity estimation, the isotope distribution located at m/z 642.33 (right triangle marker) is not

detected. Note that in both of the correctly detected distributions located at m/z 636.29 and m/z 639.65,

the monoisotopic mass peak does not correspond to the most prominent peak.

In the m/z 695–725 mass range (figure 8), with one exception, all detected peaks could be verified. The

wrongly detected peak at m/z 714.29 corresponds to the first isotope peak of the isotope distribution

located at m/z 713.78 (z=2). Especially in the m/z 718 to m/z 724 region the algorithm proves capable of

resolving nontrivial low-intensity mixtures.

In the m/z 775–782 range (figure 9), the separation of two heavily overlapping isotope distribution clearly

illustrates the benefits of NITPICK’s intensity model-based approach to the peak picking/feature

extraction problem: the second isotope peak of the isotope distribution located at m/z 779.32 (z=2) and

the monoisotopic peak of the distribution located at m/z 780.35 (z=2) overlap completely and can only be

distinguished by taking intensity information into account.
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Overall, the results obtained on real-world data are in agreement with simulation results: after manual

validation of 192 peaks detected in the real-world dataset, we observe 127 true positives, yielding a positive

predictive value of PPV = 66.15%.

Comparison with MarkerView

On the BSA data set, MarkerView detected 388 peaks, for 96 (24.7%) of which charge state information

was available. Peaks without charge state assignment were counted as true peaks if their detected

mass/charge ratio was correct. This resulted in 205 true positives for 82 (40.0%) of which charge state

information was available. In comparison to NITPICK, this yields a sensitivity ratio of

SER = SEMarkerV iew
SENITPICK

= 205
127 = 1.61 and a positive predictive value of PPV = 0.53.

As expected, with retention time information available, MarkerView manages to detect a significantly

larger number of peaks. Surprisingly, though, retention time information did not contribute to an increased

PPV. The partial lack of charge state information also caused the performance interpretation to favor

MarkerView: for peaks with correct mass/charge ratio, we assumed completely error-free charge state

assignments, which is unlikely to hold true in reality. In contrast, in absence of retention time information,

NITPICK delivered charge state information for each and every peak and peaks were counted as true

positives if and only if their assigned charge state was correct. MarkerView’s PPV and SER are subject to

overestimation, whereas NITPICK’s PPV is not. Even under this pro-MarkerView bias, if joint

maximization of PPV and sensitivity is desired, NITPICK arguably proved competitive with MarkerView:

despite the 1.6-fold increase in sensitivity, only slightly more than half of the peaks reported by

MarkerView are true positives.

Analysis CPU time on the real-world spectrum was 114s on a 2GHz AMD Opteron machine.

Measurements are based on native, interpreted R code. Preliminary tests with an in-house C++

implementation (to be published elsewhere) yielded a speed increase by a factor of ≈ 20.

Conclusions and perspectives
Conclusions

We present NITPICK, an iterative, non-greedy, globally optimal mixture modeling approach for feature

extraction from multicomponent mass spectra. The calculation of the set of explanatory theoretical isotope

distributions is based on fractional averagine, a mass error-free extension to the well-known averagine [8]

model. Subsequent feature selection is driven by a modified least angle regression [39] algorithm for which
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we derived a suitable, statistically motivated early stopping criterion. Experiments show that NITPICK is

able to unmix and deconvolve complex mixture mass spectra. The algorithm was thoroughly evaluated on

simulated and real-world data sets and was found to perform better than a conceptually similar algorithm.

NITPICK was even found to deliver competitive results when compared against a vendor-supplied

algorithm which, in contrast to NITPICK, had retention time resolution available.

We would like to note that although the analysis at hand was confined to a proteomics data set, the

application of the proposed methodology is in no way limited to this type of data and can easily be

adapted to similar problems outside the field of proteomics.

NITPICK is available as software package for the R programming language and can be downloaded from

http://hci.iwr.uni-heidelberg.de/mip/proteomics/.

Perspectives

The constrained least squares regression model in equation (3) implicitly assumes Gaussian noise on the

observed spectra. Especially with low-intensity time-of-flight spectra the Gaussian approximation is crude,

yielding suboptimal estimates. The incorporation of a data type- and intensity-dependent procedure

pursuing a suitable Poisson regression approach [36] in appropriate cases could improve on this

shortcoming.

The non-negative least squares step in equation (6) assumes error-free basis functions φi. Although

fractional averagine improves over the classical averagine model, this assumption is still violated. Possible

remedies include direct intensity estimation techniques [43,44] and enhanced sparse feature selection

methodology which allows for errors in explanatory variables. Alternatively, extended stoichiometry models

could provide problem-tailored basis functions if model bias is not an issue.

For charge states z < 3 and mass ranges m/z . 1400, there exist so-called forbidden regions [45] within the

mass spectrum, i.e. mass ranges which are inaccessible to peptides (including modifications). Such

information has been reported to be suitable as a preprocessing filter [31].

Further computational efficiency could be achieved by a complexity-driven hierarchical estimation

approach, resorting to subtractive feature extraction for simple signals and to the full mixture modeling for

complex samples only.
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Appendix
A Computation of fractional averagine

For the computation of the isotopic distribution of fractional averagine, we build on the fact that the

distribution of the isotopes of an element follows a multinomial [33]. The multinomial is discrete, hence for

fractional counts of events we can interpolate between the two adjacent integer multinomials for each

element such that

Pn=c(X1 = x1, . . . , Xk−1 = xk−1)

= (dce − c)Pn=bcc(X1 = x1, . . . , Xk−1 = xk−1)

+ (c− bcc)Pn=dce(X1 = x1, . . . , Xk−1 = xk−1)

(13)

with dce = minj∈N(j ≥ c), bcc = maxj∈N(j ≤ c) and Xi representing the number of times the ith isotope of

an element occurs. Under the (reasonable) assumption of independence of the atomic distributions of the

elements, the resulting joint distribution for a molecule follows from the multiplication of the distributions

of its elements.

By changing the order of multiplication and separating the highest possible integer number from the

remaining fractional numbers, the calculation of fractional averagine can be related to the Mercury7

algorithm [14], yielding a highly efficient calculation scheme (see eq. (2)). For the convolution of the

Mercury integer results and the fractionals we follow [46]: Let gp(i) represent the ith element of the

probability vector of the first and fp(j) the jth element of the second distribution, then

hp(k) =
∑
i

gp(i)fp(k − i) (14)

can be used to compute hp(k), the kth element of the new vector of probabilities for the joint distribution.

Similarly, the corresponding mass vector hm can be computed using the probability vectors gp and fp and

the corresponding mass vectors gm and fm using

hm(k) =

(∑
i

gp(i)fp(k − i)

)−1

∑
i

gp(i)fp(k − i) (gm(i) + fm(k − i)).
(15)
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B Proof of the monotony of the GDF for the non-negative lasso

As long as a given set ΦA(λ) is valid, it can be easily shown that the GDF are monotonous in λ. Starting

with the GDF (λ) of equation (10),

GDF(λ)

= sT
1
σ2

ΦA(λ)(ΦT
A(λ)ΦA(λ))−1

(
ΦT
A(λ) −

1
2
λ1A(λ)

)
=

1
σ2

N∑
i=1

si(
ΦA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1
(

ΦT
A(λ)s−

1
2
λ1A(λ)

))
i

=
1
σ2

N∑
i=1

si

(
ΦA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)s

)
i

− λ 1
2σ2

N∑
i=1

si

(
ΦA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ)

)
i

(16)

To show that the GDF are monotonously increasing for decreasing values of λ, it suffices to analyze the

following part of the formula,

N∑
i=1

(
si

(
ΦA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ)

)
i

)

=
N∑
i=1

(
eTi

(
ΦA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ)

))T (
eTi s

)
=

N∑
i=1

(
1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)

)
eie

T
i s

=
(

1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)

)
INs

=
(

1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)

)
s

=
K∑
j=1

ĉ
LSA(λ)
j

(17)

where ei denotes the ith canonical unit vector of length N and IN =
∑N
i=1 eie

T
i is the identity matrix of

size N .

ĉ
LSA(λ)
j is the least squares regression coefficient for the corresponding least squares problem of the active

19



set. It is known that all non-negative lasso coefficients ĉqA(λ)j
are greater or equal zero, so

K∑
j=1

ĉqA(λ)j
≥ 0

(eq. 9)⇐⇒
(

1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)

)
s

− 1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1 1
2
λ1A(λ) ≥ 0

⇐⇒
(

1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

ΦT
A(λ)

)
s

≥ 1
2
λ1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ) ≥ 0

⇐⇒
K∑
j=1

ĉ
LSA(λ)
j

≥ 1
2
λ1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ) ≥ 0

(18)

as
(
ΦT
A(λ)ΦA(λ)

)−1

is the inverse of a covariance matrix and, thus, positive-semidefinite, and λ is by

definition always greater or equal 0. Thus, the second part of equation (16) is monotone with regard to λ

and therefore the GDFs are monotone as long as a given active set is valid.

It remains to be shown that changes of ΦA(λ) do not influence the monotony, so it needs to be shown that

neither the addition of φj to the set ΦA(λ) nor the removal of φk from ΦA(λ) lead to a decrease of

cov(s,ΦA(λ)ĉ
q
A(λ)) as given in (10). A formal proof is given further below, nevertheless, this can also be

argued intuitively.

In the non-negative LARS implementation as described above and in [39], a variable φj will be added to

the active set φA(λ) only if it is positively correlated with the remaining residuals, i. e. if

cov
(
φj , s−ΦA(λ)ĉ

q
A(λ)

)
> 0 (19)

This obviously leads to an increase of cov
(
s,ΦA(λ)ĉ

q
A(λ)

)
as less unexplained variation remains. A

variable φk is removed from the active set ΦA(λ) only if cov
(
φk, s−ΦA(λ)ĉ

q
A(λ)

)
< 0, so if the residuals

are negatively correlated with the variable its removal leads to an increase of cov
(
s,ΦA(λ)ĉ

q
A(λ)

)
as well.

Thus, as long as changes of the set ΦA(λ) appear one at a time (which is ensured by the active set

implementation), they do not influence the monotonous character of the estimate of the degrees of freedom.

More formally, when a variable φj is added to the current set of variables ΦA(λ), the solution for

ΦA(λ)+ = ΦA(λ) ∪ φj can be constructed from the solution of ΦA(λ) in the following manner [39]:

ΦA(λ)+ ĉ
q
A(λ)+

= ΦA(λ)ĉ
q
A(λ) + γ̂uA(λ)+ (20)
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where

γ̂ = min+
j∈A(λ)C

{
D̂ − d̂j

BA(λ) − bj

}
> 0 (21)

is strictly positive by definition and gives the magnitude of the change.

d̂ = ΦT (s−ΦA(λ)ĉ
q
A(λ)) (22)

is the vector of the current correlation and

D̂ = maxj{d̂j |d̂j > 0}. (23)

In addition,

BA(λ) =
(

1TA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ)

)− 1
2

(24)

and

uA(λ) = ΦA(λ)BA(λ)

(
ΦT
A(λ)ΦA(λ)

)−1

1A(λ) (25)

leading to

b = ΦTuA(λ). (26)

We need to show that

cov
(
s,ΦA(λ)+ ĉ

q
A(λ)+

)
≥ cov

(
s,ΦA(λ)ĉ

q
A(λ)

)
⇐⇒ cov

(
s,ΦA(λ)+ ĉ

q
A(λ)+

−ΦA(λ)ĉ
q
A(λ)

)
≥ 0

⇐⇒ sT
(
ΦA(λ)+ ĉ

q
A(λ)+

−ΦA(λ)ĉ
q
A(λ)

)
≥ 0.

(27)

Using the construction of ΦA(λ)+ ĉ
q
A(λ)+

from above, this leads to

⇐⇒ sT
(
ΦA(λ)ĉ

q
A(λ) + γ̂uA(λ)+ −ΦA(λ)ĉ

q
A(λ)

)
≥ 0

⇐⇒ sT
(
γ̂uA(λ)+

)
≥ 0.

(28)

It is known from its definition that γ̂ is strictly positive, thus it can be dropped from the inequality and

sTu+ ≥ 0

⇐⇒ sTΦA(λ)+BA(λ)+

(
ΦT
A(λ)+

ΦA(λ)+

)−1

1A(λ)+ ≥ 0.
(29)

It is also known from the idea of the non-negative lasso that all variables in XA are positively correlated

with the remaining residuals, so

cov
(
ΦA(λ), s−ΦA(λ)ĉ

q
A(λ)

)
≥ 0

⇐⇒
(
s−ΦA(λ)ĉ

q
A(λ)

)T
ΦA(λ) ≥ 0

⇐⇒ sTΦA(λ) ≥
(
ΦA(λ)ĉ

q
A(λ)

)T
ΦA(λ).

(30)
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Using this result,

sTΦA(λ)+BA(λ)+

(
ΦT
A(λ)+

ΦA(λ)+

)−1

1A(λ)+

≥
(
ΦA(λ)+ ĉ

q
A(λ)+

)T
ΦA(λ)+BA(λ)+(

ΦT
A(λ)+

ΦA(λ)+

)−1

1A(λ)+

(31)

holds true and it suffices to show that(
ΦA(λ)+ ĉ

q
A(λ)+

)T
ΦA(λ)+BA(λ)+(

ΦT
A(λ)+

ΦA(λ)+

)−1

1A(λ)+ ≥ 0

⇐⇒
(
ΦA(λ)+ ĉ

q
A(λ)+

)T
uA+ ≥ 0

⇐⇒ ĉqA(λ)+
1TΦT

A(λ)+
uA(λ)+ ≥ 0.

(32)

When further recalling the fact from [39] that ΦT
A(λ)uA(λ) = BA(λ)1A(λ), this can be reduced to(

ĉqA(λ)+

)T
BA(λ)+1A(λ)+ ≥ 0, (33)

but as BA(λ)+ is strictly positive by definition, it follows that(
ĉqA(λ)+

)T
1A(λ)+ ≥ 0

⇐⇒
∑
i

(
ĉqA(λ)+

)
i
≥ 0.

(34)

This is always fulfilled for the non-negative lasso as it is the constraint on its initial optimization problem.

The case of the removal of φk from ΦA(λ) can be argued almost identically with the only difference being

that now

ΦA(λ)+ ĉ
q
A(λ)+

= ΦA(λ)ĉ
q
A(λ) + γ̃uA(λ)+ (35)

where

γ̃ = min
γj>0
{γj} (36)

which is also always positive and thus can be dropped from the resulting inequality in exactly the same

fashion as γ̂ could be dropped for the case of the addition of a variable. Consequently, changes in ΦA(λ) do

not change the monotony of the GDF estimate.

C Lower bound properties of BICmin

BICmin is a lower bound for BIC, if ∀k ≥ i

BICmin(i) ≤ BIC(k), (37)

22



which equals
N

σ2
ε

MSE +df(λi) logN ≤ N

σ2
ε

MSE(λi) + df(λk) logN (38)

which is always fulfilled because MSE ≤ MSE(λi) and df(λi) ≤ df(λk) for i ≤ k and N ≥ 1, σ2
ε > 0.

D SNR definition for simulated spectra

Given the undistorted simulated signal s, the effect of Poisson noise is simulated with si ← vi, where vi is

drawn from a Poisson distribution with mean ksi + 1. The signal-to-noise ratio (SNR) thus depends on the

parameter k. In order to determine k for a selected set of SNR values, we consider the definition

SNR .=
σ2
s

σ2
n

. (39)

The empirical variance of the original signal s multiplied by a scalar k is defined as

σ2
s(k) .= k2

N∑
i=1

(si − s̄)2, (40)

where s̄ denotes the mean over all si. For Poisson noise, location and dispersion parameters coincide, i.e.

with X ∼ P(λ) we have Var(X) = E(X) = λ, and we approximate the variance of a set of Poisson variables

ni ∼ P(ksi), i = 1, . . . , N by their average

σ2
n(k) .=

1
N

N∑
i=1

ksi. (41)

For a given SNR, this allows the estimation of k because

SNR =
σ2
s(k)
σ2
n(k)

= k
σ2
s

σ2
n

(42)

and thus

k =
σ2
n

σ2
s

SNR . (43)
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30. Samuelsson J, Dalevi D, Levander F, Rögnvaldsson T: Modular, Scriptable and Automated Analysis
Tools for High-Throughput Peptide Mass Fingerprinting. Bioinformatics 2004, 20:3628–3635.

31. Du P, Angeletti RH: Automatic Deconvolution of Isotope-Resolved Mass Spectra Using Variable
Selection and Quantized Peptide Mass Distribution. Analytical Chemistry 2006, 78:3385–3392.

32. Tibshirani R: Regression Shrinkage and Selection via the LASSO. Journal of the Royal Statistical
Society 1996, Series B 58:267–288.

33. Kaur P, O’Connor PB: Use of Statistical Methods for Estimation of Total Number of Charges in a
Mass Spectrometry Experiment. Analytical Chemistry 2004, 76:2756–2762.

25



34. Casella G, Berger RL: Statistical Inference. Duxbury Press 2001.

35. Lawson CL, Hanson RJ: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs, N J 1974.

36. Park MY, Hastie T: An L1 Regularization-path Algorithm for Generalized Linear Models. Journal of
the Royal Statistical Society, Series B 2007, 69:659–677.

37. Hastie T, Tibshirani R, Friedman J: The Elements of Statistical Learning; Data Mining, Inference, and
Prediction. Springer Verlag New York 2001.

38. Ye J: On Measuring and Correcting the Effects of Data Mining and Model Selection. Journal of the
American Statistical Association 1998, 93:120–131.

39. Efron B, Hastie T, Johnstone I, Tibshirani R: Least Angle Regression. Annals of Statistics 2004,
32(2):407–499.

40. Zou H, Hastie T, Tibshirani R: On the “Degrees of Freedom” of the Lasso. Annals of Statistics 2007,
35(5):2173–2192.

41. Bairoch A, Apweiler R: The SWISS-PROT Protein Sequence Database and its Supplement
TrEMBL in 2000. Nucleic Acids Research 2000, 28:45–48.

42. Tibshirani R, Hastie T, Narasimhan B, Soltys S, Shi G, Koong A, Le QT: Sample Classification from
Protein Mass Spectrometry, by Peak Probability Contrasts. Bioinformatics 2004, 20(17):3034–3044.

43. Wallace WE, Kearsley AJ, Guttman CM: An Operator-Independent Approach to Mass Spectral Peak
Identification and Integration. Analytical Chemistry 2004, 76:2446–2452.

44. Kearsley AJ, Wallace WE, Bernal J, Guttman CM: A Numerical Method for Mass Spectral Data
Analysis. Applied Mathematics Letters 2005, 18:1412–1417.

45. Mann M: Useful Tables of Possible and Probable Peptide Masses. In 43rd Conference on Mass
Spectrometry and Allied Topics 1995.

46. Rockwood AL, Kushnir MM, Nelson GJ: Dissociation of individual isotopic peaks: predicting isotopic
distributions of product ions in MSn. Journal of the American Society for Mass Spectrometry 2003,
14(4):311–22.

Additional files
Additional file 1 — simulation data.zip

A zip folder containing all simulation files (R data files)

• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20-spectra-SNR-5.rda

containing 500 simulated spectra with a signal to noise ratio of 5

• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20-spectra-SNR-10.rda

containing 500 simulated spectra with a signal to noise ratio of 10

• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20-spectra-SNR-25.rda

containing 500 simulated spectra with a signal to noise ratio of 25

• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20-spectra-SNR-50.rda

containing 500 simulated spectra with a signal to noise ratio of 50
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• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20-spectra-SNR-100.rda

containing 500 simulated spectra with a signal to noise ratio of 100

• uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20.rda contains the ground

truth for each simulated spectrum, so the exact m/z-position as well as the amino acid sequence of

the peptide

• relevantRegions-uniprot sprot-HUMAN-tryptic-equispaced11-500-700-charge-1-N-500-k-20.rda list of

the relevant regions in which NITPICK and pepex were evaluated

• mz.bins.500-700.equispaced11.rda gives the underlying mass binning for all simulated spectra in the

range of m/z 500-700

Additional file 2 — BSA-sample.zip

The zipped original LC/MS .wiff-file on which MarkerView was run (as acquired by the AB/Sciex QStar

instrument)

Additional file 3 — TOF-MS-yylBSAstd-sample4-23.817-29.278-rebinned.txt

The original spectrum of BSA-sample.wiff integrated over retention time (23.817-29.278 minutes) on which

NITPICK was run

Additional file 4 — pepex simulation results.zip

A zip-folder containing all pepex results on the simulated data

• pepex parameter optimization describing the gradient descent parameter optimization applied for

each SNR starting from the preset SNR-threshold-parameter of 2

• thresh’j’ for j in 0.5,1,2,3,4,5,7 as a folder containing a folder for each signal to noise ratio

– a folder for each SNR containing preSNR’SNR’ ’i’ pepex.xml as the output of pepex for the

respective preSNR’SNR’ ’i’.txt file and SNR’SNR’ ’i’.txt, the parsed peak list of pepex

– TP SNR’SNR’ ’N’.rda containing the number of peaks correctly identified by pepex for a given

spectrum, N is the number of spectra included (as optimization was restricted to 50 first spectra)

– FP SNR’SNR’ ’N’.rda containing the number of peaks incorrectly identified by pepex for a given

spectrum, N is the number of spectra included (as optimization was restricted to 50 first spectra)
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Additional file 5 — NITPICK simulation results.zip

A zip-folder containing all NITPICK results on the simulated data sets and for each SNR (SNR in 5, 10,

25, 50, 100) a R data file called

• resultList 0 ’SNR’ 0.1.RDA gives the peaks found by NITPICK for all spectra of a certain SNR

• length ResultList 0 ’SNR’ 0.1.RDA gives the number of peaks found by NITPICK for each spectrum

• correct 0 ’SNR’ 0.1.RDA gives the number of correctly identified peaks found by NITPICK for each

spectrum

• tooMany 0 ’SNR’ 0.1.RDA gives the number of incorrectly identified peaks found by NITPICK for

each spectrum

• pp resultList 0 3 0 ’SNR’ 0.1.RDA gives the peaks found by NITPICK for all spectra of a certain

SNR after postprocessing with g=3

• length ResultList 0 3 0 ’SNR’ 0.1.RDA gives the number of peaks found by NITPICK for each

spectrum after postprocessing with g=3

• correct 0 3 0 ’SNR’ 0.1.RDA gives the number of correctly identified peaks found by NITPICK for

each spectrum after postprocessing with g=3

• tooMany 0 3 0 ’SNR’ 0.1.RDA gives the number of incorrectly identified peaks found by NITPICK

for each spectrum after postprocessing with g=3

Additional file 6 — BSA-sample NITPICK.xls

Excel sheet containing the peaks detected by NITPICK (mz-position, charge, intensity) as well as their

manual validation

Additional file 7 —BSA-sample MarkerView.xls

Excel sheet containing the peaks detected by MarkerView (mz-position, charge, if available) as well as their

manual validation
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Figure 1: NITPICK workflow overview: raw spectrum preprocessing, relevant region detection, region-wise
peak picking, merging of detected peaks and peak list postprocessing. At the heart of the method lies an
iterative feature selection procedure controlled by a statistical termination criterion, as illustrated by the
large box in the center. As a tightly interconnected prerequisite to the main workflow, the column on the
left depicts the steps required for the calculation of the regression model matrix. Numbers in parentheses
give the manuscript sections in which the specific steps are detailed.
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Figure 2: Efficient automated determination of the number of components in an area with overlapping peaks
using the BICmin(λ) termination criterion: the mean squared error MSE (scaled, dotted) decreases monoton-
ically over the LARS steps and the generalized degrees of freedom GDF(λ) (dashed) increase monotonically.
The resulting BIC(λ) measure (solid) exhibits a minimum BIC(λ9) in the 9th LARS step and λ9 is accepted
as a minimizer because the lower bound BICmin(λ10) exceeds BIC(λ9) in the 10th LARS step.
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Figure 3: Comparison of the impact of averagine and fractional averagine stoichiometry estimation errors on
the estimation of theoretical isotope distributions: the cumulative histograms of least squares deviations from
the true theoretical isotope distribution illustrate the superior overall performance of fractional averagine
(solid line) compared to Senko’s classical averagine (dashed line): fractional averagine causes a 17% decrease
in mean squared error magnitude.
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Figure 4: Evaluation and comparison with the pepex algorithm on simulated data: accuracy (top left),
negative predictive values (top right), positive predictive values (bottom left) and sensitivity-specificity
traces (bottom right). Plots show NITPICK results in solid red, NITPICK results without postprocessing
in dashed blue and pepex results (optimized, see text) in dashed-dotted black. NITPICK is clearly superior
in terms of accuracy, specificity and sensitivity.
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Figure 5: Peak picking in the m/z 507-525 mass range: Illustration of observed (top) and reconstructed
(bottom) spectra. All detected peaks could be confirmed, including the monoisotopic masses of the mixture
distribution with components located at m/z 523.23 (z=3) and m/z 523.82 (z=5).

32



518 520 522 524
m/z

in
te

ns
ity

 (
a.

u.
)

51
8.

22

51
9.

11

52
1.

22

52
3.

23

52
3.

82

  true positive
  false positive
  false negative

Figure 6: Zoom on the m/z 518–525 mass range: NITPICK proves capable of resolving overlapping isotope
distributions and assigning correct monoisotopic masses for the distributions located at m/z 518.22 and
519.11 and at m/z 523.23 and 523.82. See text for details.
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Figure 7: Peak picking results in the m/z 636–646 mass range: Illustration of observed (top) and recon-
structed (bottom) spectra. At m/z 636.64 and m/z 636.96 we observe incomplete unmixing: The isotope
distribution (z=3) with monoisotopic mass m0 located at m/z 636.29 heavily overlaps the distribution (z=3)
withm0 = 636.64m/z (left triangle marker). The overlap proves inseparable and the monoisotopic mass of the
second distribution is wrongly detected at m/z 636.96. Further, due to conservative noise level/complexity
estimation, the isotope distribution located at m/z 642.33 (right triangle marker) is not detected. Note that
in both of the distributions located at m/z 636.29 and m/z 639.65, the monoisotopic mass peak does not
correspond to the most intensive peak.
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Figure 8: Peak picking in the m/z 695–725 mass range: Illustration of observed (top) and reconstructed
(bottom) spectra. With a single exception, all detected peaks could be manually confirmed. The peak
detected at m/z 714.29 corresponds to the first isotope peak of the isotope distribution located at m/z
713.78 (z=2). In the m/z 718–724 region the algorithm proves capable of resolving nontrivial low-intensity
mixtures.
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Figure 9: Observed (top) and reconstructed (bottom) mass spectrum in the m/z 775–782 range: the sepa-
ration of two heavily overlapping isotope distribution clearly illustrates the benefits of NITPICK’s intensity
model-based approach to the peak picking/feature extraction problem: the second isotope peak of the isotope
distribution located at m/z 779.32 (charge 2) and the monoisotopic peak of the distribution located at m/z
780.35 (charge 2) are exactly superimposed and can only be distinguished by taking intensity information
into account.
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