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Abstract. For image segmentation, recent advances in optimization
make it possible to combine noisy region appearance terms with pair-
wise terms which can not only discourage, but also encourage label tran-
sitions, depending on boundary evidence. These models have the poten-
tial to overcome problems such as the shrinking bias. However, with the
ability to encourage label transitions comes a different problem: strong
boundary evidence can overrule weak region appearance terms to cre-
ate new regions out of nowhere. While some label classes exhibit strong
internal boundaries, such as the background class which is the pool of
objects. Other label classes, meanwhile, should be modeled as a single
region, even if some internal boundaries are visible.

We therefore propose in this work to treat label classes asymmetrically:
for some classes, we allow a further partitioning into their constituent
objects as supported by boundary evidence; for other classes, further
partitioning is forbidden. In our experiments, we show where such a
model can be useful for both 2D and 3D segmentation.

1 Introduction

Image segmentation methods typically rely on two complementary sources of
information: object appearance and boundary evidence. For example, in semantic
labeling tasks [14] a set of object classes of interest is given. Each image can
contain one or more of these instances, but might also contain many objects of
unknown classes (“background”). One approach for semantic segmentation is to
make use of (noisy) local object class probabilities — as obtained from learned
appearance models — which can be regularized using local boundary cues.

On the other hand, pure partitioning problems, as in the Berkeley Segmenta-
tion Dataset [30], do not specify any object classes but rely on boundary evidence
alone [5,3,37].

In this work, we propose a combined semantic labeling and partitioning,
called Asymmetric Segmentation, which can naturally deal with object classes
which are known to have strong internal boundaries and jointly optimizes the re-
gion labeling, the boundaries between classes and the boundaries within classes.
Furthermore we present a novel algorithm called Asymmetric Multi-Way Cut
(AMWOC) for solving those problems.
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Fig. 1: Segmentation of image (a) can combine information from both region ap-
pearance terms (b) and boundary probabilities (c). We examine different variants
of pairwise Conditional Random Field models with Potts potentials.

Graph cut (d) uses positive coupling strengths only, which leads to shrinking
bias. Multi-way cut (e) uses both negative and positive coupling strengths, such
that the creation of boundaries can be actively encouraged. However, this leads
to some spurious labelings, induced by strong boundary evidence. Our proposed
variant, (f), can yield a better segmentation by allowing boundaries within the
background class.

Many segmentation algorithms, including AMWC, are formulated as second-
order Conditional Random Fields [17] over a discrete set of labels, in which the
unary potentials transport local evidence for each object class. The pairwise
potentials are usually chosen to be Potts functions (2) with varying coupling
strengths w € RT, which may depend on boundary evidence. The optimal label-
ing can then be found by minimizing the associated energy function.

Graph cut based algorithms have been extremely influential in the last decade
[12,23,33], because they allow to find the optimal solution for binary labeling
problems and approximate solutions for multi-label problems with non-negative
coupling strengths in polynomial time. They regularize noisy detections by pe-
nalizing boundary length. Unfortunately, this leads to “shrinking bias” [36], i.e.
thin, elongated objects are cut off (Fig 1d). As a countermeasure, the coupling
strength can be chosen as an inverse function of boundary evidence, making
label transitions less costly when strong boundary evidence exists and more
costly when boundary evidence is weak. However, the general problem remains:
positive coupling strengths cannot actively encourage label transitions.

Since negative coupling strengths w encourage label transitions and positive
w discourage label transitions, a model with no restriction on the sign of w may
be more expressive: with strong boundary evidence (resulting in w < 0) along a
thin, elongated object, shrinking bias can be overcome.
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Recently, Kappes et al. [18] presented a method that, contrary to others
[22,24], is able to find the globally optimal solution for these more general mod-
els. This allows us to evaluate the models without any error introduced by ap-
proximate optimization.

However, besides their increased computational hardness, models which can
encourage label transitions also have a major drawback: spurious label transi-
tions are provoked in highly cluttered background (Fig le) or within textured
objects when strong boundary evidence overrules homogeneous region appear-
ance terms.

In this work, we investigate a new class of models, which do allow intra-
category boundaries. The energy function can still be expressed as a pairwise
Conditional Random Field. Fig. 1f shows the result of our new model, in which
we allow internal edges in the “background” class, but disallow internal edges in
the “foreground” class.

Contributions. (i) A novel class of segmentation models, where some classes may
have internal boundaries and others may not. (ii) An exact solver for AMWC
problems based on a formulation using binary edge indicator variables, based on
[19]. (iii) Experiments that show when such a formulation is useful and when it
is not.

The C++-code of our method will be made available within OpenGM [2].

2 Related Work

Let G = (V, £) be a given pixel (or superpixel) adjacency graph. Each node i € V
can be assigned one of k discrete labels: [; € £ ={0,...,k — 1}. Many common
pixel or superpixel labeling problems [12,33,35,36,6,17] are then formulated as
an energy minimization over the sums of unary and pairwise terms:

argmin ZEAM—FZ Eij(li, 1) ¢ . (1)

teelt Liev (ig)e€

The unary terms are functions F; : £ — R and indicate the local preference of
node 7 to be assigned a label. The pairwise terms are functions Fy; : Lx L — R
that express the local joint preferences of two adjacent nodes ¢ and j. A common
choice for the binary term is a Potts function [12]:

0 if 1=1

. 2
wij if li 7é lj ( )

B (li,1;) = {

Depending on the weight w;; a Potts function can either encourage (w;; < 0)
or discourage (w;; > 0) label transitions.

Binary labeling problems with £ = {0, 1} and pairwise potentials with V(i, j) €
€ 1 w;j > 0 (graph cut problems) can be solved in polynomial time with a max-
flow algorithm [12,23,11]. Graph cut has been ubiquitous in image segmentation



4 Kroeger et al.

[33], but penalizes a weighted sum of cut edges which leads to the problem of
shrinking bias [36], for which sophisticated countermeasures were developed.

For k > 2 labels, (1) becomes a multi-label energy minimization problem
that is NP-hard in general, even for non-negative weights w. We will refer to
the general problem of (1) with 2 < k < |V| and w € RI€l as the multi-
way cut problem because the optimal solution can be found as a multicut in
a graph with special structure (reviewed in Sec. 3). Approaches to solve this
problem approximately are, amongst others, move-making algorithms [12,6] and
linear programming [21,25,19,17]. An integer linear program to which violated
constraints are added in a cutting-plane fashion [18,19] is able to find the globally
optimal solution on many problem instances, see Sec. 3.

A special case of the labeling problem with F;(l;) = 0, a virtually unlimited
set of labels k£ = |V| and no restriction on the sign of w;; is called the correlation
clustering [7] or multicut problem [13]. The multicut formulation has recently
become popular for unsupervised image segmentation [3,4,6,20,37,1,27,9] where
the weights w are either learned in a supervised fashion [3,6,4,20,27], or derived
from boundary detectors such as gPb [29] as in [37]. Multicut models have an
inherent model-selection ability [6] such that they recover the optimal number
of regions needed for an accurate segmentation automatically, based only on
boundary evidence. However as region appearance is not taken into account, the
resulting segments are not given a class label, which is left as a post-processing
step, e.g. done in [20]. Note that we review only unified formulations with a
specified objective function here and omit workflows that chain several processing
steps.

3 Multi-Way Cut Formulation

Before we will define Asymmetric Multi-way Cut in Sec. 4 we first review the
Multiway Cut representation of the labeling problem (1) with Potts potentials
(2), based on [18,19].

Given a graph G = (V, ) for (1), we call the nodes V the internal nodes and
edges & the internal edges. We then define a new graph G’ = (V',£’), where a
set of terminal nodes T = {to,...,tx—1}, representing k labels, has been added
(Fig. 2, left). Furthermore, terminal edges are introduced between each pair of
internal and terminal nodes as well as between all pairs of terminal nodes:

Vi=YyurT (3a)
E=EU{(tw)|teT,veV} U {(tit;) |0<i<j<k}. (3b)

Problem (1) with potentials (2) can be written using indicator variables y for
the edges £’ and weights w’, derived from the potentials E;(-) and E;;(-,-) [18]:

argmin ngj “Yij s.t.y € MWCg, (3¢)
y€{0,1}|5/\ (i,j)eS’



Asymmetric Cuts : Joint Image Labeling and Partitioning 5

Datas oy 4 / A oy 4

Graph @&'@ @@OI &.&

Segmentation: - / - / -

Fig.2: Tllustration of the graph representation of (1), as given by (3a)-(3b).
Shown is a 4 x 1 pixel image strip (“Data” row). There are three possible classes
L = {red, blue, yellow}. From the left to the right pixel, the region appearance
terms indicate strong preference for the yellow class (pixels 1, 2), a preference for
yellow over the blue class (pixel 3, ps), and a strong preference for the red class
for the last pixel. Furthermore, there are strong boundaries to the left and right
of p3. Left: Multi-way cut solution. Due to the strong boundary evidence, p3 is
assigned the blue label contrary to its unary potential. Middle: The AMWC
model with A = {yellow} is formulated as a MWC by duplicating the terminal
nodes for the yellow class [V| = 4 times. Right: With the modified constraint
(4c"), the number of terminal nodes does not have to be increased.

where MWCg is the multi-way cut polytope defined by linear constraints [19]:

Z yz’j Zyuv V(u,v) €&

(G.o)ep P € Path(u,v) C € (4a)

Y =1 Vtt)eT t#¢ (4b)

You T Yo 2 Yup V(w0) €ELET (4¢)

Yout Yo 2 Yy V(wv)€ELET (4d)

Yoo+ Yuo 2 Ypu Y (w0) €ELET. (4e)

For internal nodes, the cycle constraint (4a) [13,3] intuitively forbids dangling

boundaries. Constraint (4b) ensures that all terminals are always separated. Fi-

nally, (4c)-(4e) constitute cycle constraints for all cycles of three nodes involving

one terminal. In particular, (4c) says that, if there is a label transition (y,, = 1),

label ¢ cannot belong to both u and v (which would be the case for y,,, = 0 and
» =0).

Although a complete description of MWCg needs a possibly exponential
number of constraints, in practice only a small set of active constraints is needed
to find the (valid) globally optimal solution. The cutting plane method [18,19]
first formulates an unconstrained integer linear program and then identifies vio-
lated constraints in the solution, which are subsequently added to the problem.
This is repeated until a solution does not violate any of the constraints in (4a)-
(4e), yielding the globally optimal solution.
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Fig. 3: Tllustration of allowed cuts, depending on A. Blue denotes background
(label 0) and yellow foreground (label 1). From left to right we demand no label
transitions within foreground and background regions (A = ), we allow label
transitions within the background class (A = {0}), or only within the foreground
class (A = {1}) or in both classes (A = {0,1}). In all cases, we admit only closed
contours (black boundaries).

4 The Asymmetric Multi-way Cut Formulation

In the proposed asymmetric multiway cut (AMWC) model, we want to allow
internal boundaries within regions labeled as [ € A, and disallow internal bound-
aries in all regions labeled [ € ({0,...,k — 1} \ \A), as illustrated in Fig. 3.

4.1 Formulation within the Binary Edge Labeling Framework

We first give the advantageous formulation of AMWC in terms of the binary
labeling of £ in (3¢). One way to formulate the model as a multiway cut is to
replace every terminal node ¢, € A with a set T, = {t%,. .., Lv‘_l}, as shown in
Fig. 2, middle and Fig. 4, for which edge weights are copied from the existing
terminal edges. These new nodes can represent a partitioning of class a into
sub-classes, which are separated by salient boundaries in the image. Similar to
the multicut formulation, the label space has to be increased dramatically. By
setting |T,| = |V|, solutions where every node is assigned a different label from
the set T, are made possible.

However, instead of adding |A| - (|[V| — 1) additional terminal nodes, the
same effect can be achieved by simplifying a single constraint in the binary edge
labeling formulation of Sec. 3. We relax constraint (4¢) to be

Yiu F Yo = Yo V (u,0) € E;t € (T\ A). (4¢”)

In practice, we can extend the implementation of [19] such that constraint (4c)
is only added in the cutting-plane procedure when ¢ ¢ A holds.

With this simple change, we have a method that is able to solve our new
AMWC-type models to global optimality.

4.2 Formulation as a Node Labeling Problem

Our AMWC model can still be formulated as a second-order Conditional Ran-
dom Field (1) with Potts potentials. Starting from the edge labeling formulation
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- Fig. 4: In this example with 4 = 0, the background class (la-

bel zero, shown in blue) actually consists of several distinct seg-

‘ ments tJ, ¢4, 3 and t3 (different shades of blue), all separated by

boundaries (black). Another region, ¢; ¢ A cannot be split into
sub-segments.

from the previous section, we construct the corresponding model by choosing
a new set of labels £’ as well as constructing appropriate unary and pairwise
potentials £(-) and EJ;(-,-). Let the original set of labels be £ = {to,...,tx—1}.
Then we set

= ({tg,...,tiy\—l}) UL\ A) (52)

acA

E;(l if I
EZ(CL) lf l; = tfl
E;J(Z,IL, l;) = Ei7j(a, b) with tZ = li, t}; = lj V’UJ, . (5C)

In (5a), we introduce |V| — 1 additional labels for each label class for which
internal boundaries are allowed. These extra labels are assigned the same weights
in the new unary terms (5b) as the original label class. Finally, the Potts terms
do not change (5c¢).

The inflated label space makes this formulation unwieldy for practical opti-
mization methods: similar to multicut models, a large number of different label-
ings, obtained by label permutations, have the same energy.

4.3 Labeling of regions and boundaries

At first sight, it may seem that an optimal solution of AMWC can also be
obtained by first running the Multi-way cut algorithm using the original label
set £L = {0,...,k — 1} to obtain a segmentation into regions Ry,..., R, and
then to run the multicut algorithm for each region R; separately to obtain an
internal partitioning. We give two toy examples in the supplementary material
which show that this decomposition is not possible.

5 Experiments
Here, we show qualitatively when the AMWC model is useful and when it is not.

2D Segmentation. We consider foreground/background segmentation problems
with £ = {0,1} and A = {0}. For all images, we first compute an over-
segmentation into superpixels using a seeded watershed algorithm on an ele-
vation map combining gradient magnitude and the output of the generalized
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probability of boundary (gPb) detector from [29]. Then, the superpixel adja-
cency graph G = (V,€) defines the structure of the Conditional Random Field
(1). For each edge (i,7) € £ which represents the shared boundary between su-
perpixels 7 and j, we compute the mean boundary probability, f;;, as given by
the gPb detector. Weights w;; € R are then obtained as follows

log £ — & + log %,
where 8 € [0,1] is a hyper-parameter giving the prior boundary probability.
As region appearance terms, we use the output of the object saliency detector
[32], or region appearance terms derived from manually placed object bounding
boxes. Again, there is a bias hyper-parameter o which gives the prior foreground
probability. Finally, we write the energy function (1) as

(6)

argmin ¢ v - ZE Z B (L) ¢ s (7)

lechvl =% (i,7)€€

where the hyper-parameter v weights unary and pairwise terms.

Fig. 5 gives examples where the AMWC formulation can help and where it
cannot. Column (a) shows the original images, taken from benchmark datasets
[31,30,10]. Column (b) shows foreground maps either obtained using [32] or given
as manual bounding box annotations (rows 1-4). The boundary probability for
superpixel edges is visualized in column (c). The Multicut algorithm, column
(d), ignores the region appearance terms and gives a decomposition into regions
which are shown with random colors. Column (e) shows the visually best solution
of a standard graph cut model. Finally, columns (f) and (g) show results for both
the Multi-way cut model as well as the AMWC model with A = {background}.

For each row, hyper-parameters «, 3,y — shared among Multicut, Multi-way
cut and Asymmetric Multi-way Cutmodels — were chosen to give reasonable and
comparable results for these three algorithms.

For the pedestrian detection (Fig. 5, rows 1-4) both the local appearance
and edge detection terms are weak. The latter leads to regions which “leak” into
the background when using multicut segmentation. Classical graph cut methods
suffer severely from the very rough local data terms and show many artifacts
caused by shrinking bias. While Multi-way cut generates foreground-artifacts
due to strong edges present in the background, the proposed AMWC model
can handle these by introducing closed contours in the background at these
locations. Here, AMWC performs best, even though strong within-foreground
contours produce some artifacts (row 2 and 4).

For the examples using saliency detection as the region appearance model
(Fig. 5, rows 5-8), both the region and edge terms are more confident. However,
graph cut still shows shrinking artifacts and MWC sometimes “hallucinates*
foreground-regions in the background, though this is no longer as significant as
with the weaker data terms in rows 1-4.

The run times for Multicut, Multi-way cut and AMWC are comparable with
less than 10 seconds per image.
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(a) image (b) region (¢) bound- (d) MC (e) GC  (f) MWC (g) AMWC
terms ary terms

Fig.5: Example segmentations of various pairwise Conditional Random Fields
Models. Multicut (MC) is uninformative as regards to category predictions.
Graphcut (GC) suffers from shrinking bias. Multi-way cut (MWC) may pro-
duce spurious regions induced by strong boundary evidence. AMWC is a joint
semantic labeling and partitioning methods that suffers from none of the above.
However, it requires specification of the asymmetry (which classes can be parti-
tioned).
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Fig.6: From the raw volume image (a), a mitochondria versus background prob-
ability map (b) was obtained using ilastik [34]. Boundary probabilities are ob-
tained from a random forest classifier using local edge features (c). The multicut
algorithm (d) yields a decomposition of the volume image into segments, relying
only on the boundary evidence in (c). Finally, Asymmetric Multi-way Cut is the
first method that can jointly find a similar segmentation to the one in (d), while
at the same time labeling regions by their appearance.

8D Data. To better understand the functioning principles of the brain, re-
searchers use electron microscopy techniques to obtain ultra high-resolution
isotropic volumetric images of brain tissue. These exquisite images contain densely
packed neurons, which can only be distinguished by their separating membranes.
In addition, intra-cellular structures such as mitochondria are visible. In the past,
automatic methods to segment mitochondria [28], synapses [26,8], as well as the
segmentation of the volume into distinct neurons, e.g. [15,4,16] have been con-
sidered separately. The AMWC allows to combine both problems into a single,
joint model. We consider two classes, mitochondrion m and cytoplasm c. We
set A = {c}. Fig. 6 shows results on the FIBSEM dataset from [1], where we
combine learned pixel-wise mitochondrion probabilities with learned membrane
(boundary) probabilities.

This is the first time that a joint partitioning into neurons and labeling of
intracellular structures becomes possible.

6 Conclusion

We have introduced a new sub-class of non-submodular pairwise multi-label
Conditional Random Fields with Potts potentials in which (i) label transitions
can be both discouraged as well as encouraged and (ii) some labels, such as
background, are allowed to have internal boundaries. As a consequence, strong
boundaries within these classes can be naturally accommodated by a further
partitioning. The proposed model can be solved exactly using an extension of
an existing Multi-way cut solver. We expect this model to be most useful in a
regime where regional appearance terms and boundary evidence are both noisy,
but (and this is crucial) complementary. In this setting, the present paper offers
a principled unified approach to simultaneous labeling and partitioning.
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