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Abstract We present a complete pipeline for the segmentation and analysis of 3-dimensional
electron microscopy data. Considerable algorithmic optimizations and parallelization have
been applied to make the system applicable to data as large as 8 gigavoxels. Discrete geom-
etry plays a prominent role at several processing stages (initial watershed segmentation, cell
complex representation, reduction of oversegmentation by a graphical model, topological
and geometric feature computation). We will demonstrate our algorithms and visualization
tools in an on-site software demo.

1 Introduction

Understanding the human brain is one of the most challenging problems in science. High-resolution
3-dimensional electron microscopy of brain tissue is an important tool in this area. Special staining
techniques are used to mark the cell membranes of all neurons, and a segmentation of these
images will eventually provide a complete map of the neurons, their adjacency and their network
of synaptic connections. This information can be represented as a graph, the so called connectome

[13], which is an invaluable input for subsequent brain function analysis.
Isotropic resolution of at least 25 nm is necessary for reliable segmentation and interpretation

of these images. Since the smallest known functional units of the mammalian brain beyond single
neurons (the cortical columns) comprise about 1 mm3 of neural tissue, the data for a single cortical
column will eventually consist of about 400003 voxels. Currently available data sets contain 20003

to 60003 voxels (8...216 GBytes). Figure 1 left shows a small sub-region of a data set we are
working on, which has been acquired by serial block-face scanning electron microscopy (SBFSEM
[6]). Our analysis proceeds in the following steps:

1. Compute feature vectors describing the local neighborhood of every voxel.

2. Compute each voxel's membrane probability.

3. Compute an initial over-segmentation by means of the seeded watershed algorithm.

4. Compute a cell complex representation of the segmentation.

5. Compute features for all surface segments.

6. Reduce oversegmentation by a probabilistic graphical model on surface segments.

7. Characterize and visualize the resulting neural regions.

Digital geometry and mathematical morphology play a prominent role in this approach: watershed
segmentation, creation of a cell complex representation, extraction of topological and geometric
features for the di�erent cells, and visualization of intermediate and �nal results. Space only per-
mits a brief description of steps 1 to 3: Features comprise gradient magnitudes, eigenvalues of the
structure tensor and Hessian matrix at multiple scales, as well as statistics of these measurements
in isotropic neighborhoods. Feature vectors are transformed into membrane probabilities with a
random forest classi�er [4] that is trained from labels provided by a human expert. Watersheds
are determined with a seeded version of the Vincent-Soille algorithm [14] where seeds are de�ned
as connected regions of voxels whose membrane probability is very low (< 0.5%).



2 Computing Cell Complexes on Large Datasets

Kovalevsky [9] proved that a topologically consistent representation of a N -dimensional segmen-
tation requires explicit representation of all cell types up to dimension N . Therefore, we need
to represent surfaces (2-cells), surface intersections (1-cells), and junctions (0-cells) in addition to
the 3-dimensional regions (3-cells). Generalized combinatorial maps [5, 11] are the most powerful
representations in this context because they not only store cells and their adjacencies, but also en-
code the topology of their embedding into 3D space. Unfortunately, these maps require a massive
number of auxiliary darts, so that they are not feasible for our data which typically contain about
3 million regions and 80 million cells in total. The slightly weaker cell complex representation [8]
which needs signi�cantly less storage, is su�cient in our context, because the embedding can be
easily reconstructed on demand from the labeled watershed image. The cell complex is constructed
by a 3-dimensional generalization of the crack insertion algorithm [10]:

1. Create a topological grid with twice the resolution of the original grid. This is necessary in
order to store explicit labels for the cells of dimension < 3.

2. Map region labels from the watershed segmentation onto topological grid points with three
even coordinates. Each component of like-labeled points becomes a 3-cell.

3. Mark topological grid points with a single odd and two even coordinates as active when they
are located between two di�erently labeled region points. Connected components of those
active points become 2-cells (surfaces) of the cell complex.

4. Likewise, create 1-cells as connected components of active points with two odd and one even
coordinates which are located between two or more di�erently labeled surface points.

5. Label topological grid points with three odd coordinates when they are located between two
or more di�erently labeled 1-cells to get 0-cells.

6. For each k-cell, create a list of the points (coordinates) belonging to this cell.

7. Create adjacency lists for the cells' bounding relation.

To speed up computations, a large volume can be split into blocks that can be processed in
parallel. To integrate the resulting pieces into a consistent whole, block must start and end at
odd topological coordinates, and neighboring blocks must have one voxel overlap. Since the cell
complex does not �t into memory at once, a sophisticated �le format is required which supports
fast access to subsets of the data and fast insertion of newly processed pieces. We found the
Hierarchical Data Format (HDF5 [1]) to be ideally suited for this purpose. On our 20003 data set,
the entire processing chain from region label image to cell complex takes about a day and results in
a data structure of about 229 GB for the topological grid, 2 GB for the adjacency information, and
23 GB for the lists of coordinates constituting each cell. A detailed description of the algorithm
can be found in [2], �gure 1 right shows surface segments overlaid over the raw data.

3 Topological and Geometric Features

Since the watershed algorithm produces an oversegmentation, a correct segmentation can only be
obtained by deleting surface segments in order to merge falsely split regions. We perform this
task by means of a probabilistic graphical model [3] whose parameters are learned from training
data. In our model, a random variable is assigned to each surface segment which takes a value
of 1 when the system is certain that the corresponding surface should be kept, and 0 otherwise.
A global energy function measures the probability of each con�guration of kept/deleted surfaces
(i.e. of each 0/1 assignment), and a (locally) optimal solution is computed by means of the belief
propagation algorithm [15]. The de�nition of the energy function relies heavily on methods of



Figure 1: Left: 2503 subset of the raw data. Right: Raw data with color-coded surface segment
overlay (yellow: �keep�, red: �delete�, black: �uncertain�, according to the unary potential p1).

discrete geometry. First, in order to assign a random variable to each surface segment, these
segments and their constituting points must be identi�ed by the labels derived during the creation
of the cell complex representation. Second, geometric and topological features for these segments
are used in the de�nition of the probabilities that comprise the global energy function. The energy
to be maximized is de�ned as

E(x) = log p(x) ∝ α

S∑
i=1

log p1(xi) +

(1− α)

[
I3∑

k=1

log p3 (xk1 , xk2 , xk3) +
I4∑

k=1

log p4 (xk1 , xk2 , xk3 , xk4)

]

where S, I3, and I4 are the number of surface segments, ternary and quaternary intersections
respectively, and xi denotes the state (�keep� vs. �delete�) of surface segment i. The unary poten-
tials log p1 of the surface segments describe the log probabilities for each segment to be correct,
based on features pertaining to one segment alone. These probabilities summarize various mea-
sures of membrane strength, as well as geometric features such as size and curvature. In contrast
to voxel-based features, we are now able to compute features on data-dependent neighborhoods
de�ned by the cells' shapes, similar to the superpixel approach of [12]. Feature measurements are
transformed into probabilities by a second random forest classi�er. The color-coding in �gure 1
right illustrates the values of the potential p1 for the surfaces depicted.

The ternary and quaternary potentials log p3 and log p4 assess properties of con�gurations of
three or four adjacent surface segments, i.e. of surfaces that share a common intersection (a com-
mon 1-cell). The cell complex representation is obviously required to identify these con�gurations,
but discrete geometry is also necessary to evaluate their probabilities. These probabilities, also
learned by a random forest from expert labels, have two e�ects: On the one hand, they prevent
dangling or isolated surfaces that could occur when surface segments are deleted without regard to
neighboring segments. On the other hand, they favor con�gurations that lead to good continuation
of the resulting surfaces. That is, adjacent segments are likely to be kept when they enclose an
angle around 180◦, whereas a segment is likely to be deleted when is meets the other segments
at an angle of about 90◦. These angles are measured by means of standard estimators of tangent
planes known from discrete geometry [7].



Figure 2: Left: A region that has been correctly merged by the graphical model after severe
oversegmentation. Right: Some neurons of the �nal segmentation of the entire data set.

This objective function provides a well-de�ned probabilistic model for the reduction of over-
segmentation. Since every surface segment is part of several intersections, global optimization of
the objective leads to an implicit non-local propagation of local information. A locally optimal
solution is found by belief propagation [15], and results are very satisfactory both empirically and
w.r.t. ground truth, see �g. 2 left. The entire work�ow (from initial computation of voxel features
to convergence of the graphical model) takes about 1 week on 16 parallel machines.

4 Visualization

Visualization of the results is another important part of the project. On the one hand, the
visualization of individual regions (i.e. neurons) and their relations helps biologist understanding
the detailed anatomy of the brain. On the other hand, it is a indispensable tool for image analysis
in order to improve the segmentation method: When the segmentation does not conform to ground-
truth provided by the biologist (for small subsets of the data), it is possible to �nd out exactly where
the algorithm went wrong, and why it arrived at incorrect surface probabilities. Visualization of
3-dimensional data, especially of the size encountered in this project, is a challenging problem,
and methods of discrete geometry are once again central to its solution.

In particular, our software supports several visualization modes:

• In the standard view, the original data are displayed on three orthogonal, axis-aligned slices
which can be placed arbitrarily in the data set by simple interactions. On top of these slices,
any segment of the cell complex representation can be displayed as an overlay. Overlays can
be switched on and o� interactively and via programming. This is possible because the set
of points constituting each segment is explicitly known.

• Overlays may also be color coded in order to visualize features and probabilities. Thus,
undesirable feature assignments (that would lead to false removal or false preservation of
surfaces) can be quickly spotted.

• Regions and sets of regions can be surface rendered and arbitrary rotated on a mouse click.
To this end, the interpixel boundary of each region is triangulated (by splitting each surface
square into a pair of triangles and subsequent standard mesh simpli�cation).

An example of the resulting segmentation can be seen in �gure 2.



5 Conclusions

We presented a hierarchical segmentation algorithm for the detection of neurons in SBFSEM data.
At the �rst level, supervoxels are determined by a seeded watershed algorithm. Since supervoxels
partition the domain in a data-driven manner, more informative features can be computed for the
graphical model that forms the second level of our algorithm. Thanks to the balancing between
probabilities of individual surface patches (unary potentials) and surface con�gurations (higher-
order potentials), oversegmentation can be successfully reduced without introducing signi�cant
undersegmentation. However, segmentation accuracy must still be improved about threefold in
order to be usable for connectome determination.

Parallelization reduced the computation time on 20003 voxels to about a week. Feature com-
putation, classi�cation, and cell complex construction are relatively easy to parallelize, whereas
parallelization of more complex parts (watersheds, graphical model optimization) was not neces-
sary as they consume only a small part of the total time.
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