Generative regularization with latent topics for discriminative

object recognition

Jose C. Rubio, Angela Eigenstetter, Bjorn Ommer

Heidelberg Collaboratory for Image Processing and Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Germany

ARTICLE INFO

ABSTRACT

Article history:

Received 3 January 2015
Received in revised form
1 June 2015

Accepted 23 June 2015

Keywords:

Visual object recognition
Part-based models

Non-Negative Matrix Factorization
Latent SVM

Mixture models

Popular part-based approaches to recognition are currently limited to few localized parts, which only
poorly represent the fine-scale details and large variability of object categories. Extending to hundreds of
specific part detectors helps to capture peculiar characteristics but due to their specificity, for each object
instance different parts will be helpful and others will yield noisy responses that actually impair
classification. While training the part-based model, we thus need to learn which parts are relevant for
which training instances. To automatically discover these latent topics of parts and instances we employ
generative non-negative matrix factorization and seek topics with low reconstruction error. To assure
recognition performance this generative approach is embedded within a discriminative latent max-
margin procedure that separates classes while optimizing the latent topics. Consequently, generative
reconstruction is regularizing discriminative classification, while the latter ensures that topics actually
help in recognition. Experiments on PASCAL VOC demonstrate the recognition performance of our model

as well as the construction of meaningful topics.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The complexity and large intra-class variability of present-day
category-level object recognition datasets such as PASCAL VOC
require representations that go beyond holistic models. Part-based
representations [1-4] are the leading paradigm in the field
because they effectively deal with articulation, occlusion, pose,
and other variability. Currently very popular models are based on
only a small number of informative parts (between 5 and 50) that
describe the appearance of semi-local regions of an object cate-
gory. To take into account category variability and the locality of
parts, we instead sample a large number of parts (more than 1000
per category). Each part is specific to details of a local region in
training instances, and trained with a single positive instance
against negatives [5]. Consequently, different parts are helpful in
different images. For instance, only some images of the car
category feature a certain type of radiator grille, while others
show radiator parts of vastly different shape and appearance, or no
radiator parts at all.

The high specificity of parts helps to capture fine-scale details of
the objects. However, for certain instances these parts may lead to
noisy responses in the images where they are not meaningful.
Therefore, when learning the part-based object model we need to
learn which parts are relevant for which instances so that we can
train with the right subset of parts on their corresponding
samples. This goes beyond feature selection, where a fixed set of
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best parts for all instances is sought. In contrast, we aim to
associate parts and instances to latent topics. These topics need
to be learned automatically without relying on topic training
annotations. The goal is then threefold: (i) discriminating positive
instances of a category from negatives in order to detect objects
amidst clutter, (ii) identifying which parts are meaningful for each
instance and (iii) generating topics of instances and parts, which
enable training models with the respective parts. These problems
are directly inter-related and must be solved jointly. On one hand
our overall setting is a discriminative classification problem
(category-level recognition with labeled training bounding boxes).
On the other hand, discovering topics of parts and instances so
that the parts are meaningful for the respective instances is a
generative scenario without labeled data for the topics.

We propose a latent max-margin approach that jointly solves
the categorization problem and infers topics of parts and
instances. The discriminative model assures competitive categor-
ization performance, while the learning process is regularized
with a generative model for the grouping, which seeks topics with
optimal reconstruction performance. For regularization and topic
formation we employ Non-Negative Matrix Factorization (NMF),
which has been shown to be an effective unsupervised grouping
procedure [6,7]. The NMF penalizes the reconstruction error of a
low-rank decomposition of the training data. This decomposition
naturally represents the strong coupling that arises when group-
ing instances and parts, and it is integrated in the latent
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max-margin learning as latent variables that represent soft-
assignments of parts and instances to topics. We demonstrate
the performance of our model on the challenging PASCAL VOC
dataset and show that jointly tackling categorization and the
grouping of parts and images to topics is superior to commonly
used part-based models that do not integrate grouping in the
learning process.

2. Related work

A simple popular approach to grouping instances is clustering
based on views or aspects. In [1] objects are clustered into three
modes according to their aspect ratio. [8] exchanged the aspect
ratio clustering by a k-means grouping with HOG features.
Exemplar SVM (ESVM) was introduced in [5] where instead of
grouping positive instances, each instance represents its own
mode. While [5] use exemplar classifiers to describe whole objects,
we use part classifiers trained on individual instances to describe
specific local constituents of objects. In [2] and [9] exemplar part
classifiers are employed in the context of recognition, where
multiple parts are combined individually to form less-specific part
classifiers. Instead, we retain a large number of specific parts and
group them by learning the overall object model.

Other previous works aim to integrate the learning of aspects
into a discriminative model [1,10], usually in a latent SVM frame-
work. The work of [10] finds the modes of the positive data in two
steps: grouping and then learning from the groups. In [11] the
optimal number of mixture components is learnt using a group-
sparsity inducing norm. An important difference of our approach
compared to these works is that we model the grouping of
instances as a continuous soft-assignment instead of a discrete
labeling. Moreover, instead of implementing a-posteriori categor-
ization as other works concerned with latent aspect modeling (i.e.,
max decision over all topics) we learn the weighted combination
of topic classifiers.

In [6,7] Non-negative Matrix Factorization (NMF) has been
shown to be an effective unsupervised grouping procedure and
so we employ it for for regularization and topic formation. As
shown in [12], NMF is equivalent to the probabilistic version of
Latent Semantic Analysis (LSA) when the objective function is the
KL-divergence. So in principle LSA, which much like NMF has been
widely applied to grouping problems in vision, language proces-
sing, and beyond, is another grouping procedure that is also
conceivable. However, the optimization of the KL-divergence is
computationally burdensome and its probabilistic nature prevents
us from relaxing the non-negativity constraints which, as we will
see later, is a necessary step to improve the discriminativity of
topics. Moreover, the LSA decomposition requires orthogonality on
the discovered bases, while NMF does not impose this restriction.
Our approach in contrast to LSA not only aims at creating mean-
ingful topics, but it optimizes the recognition performance. In
contrast to LSA we therefore follow a discriminative approach to
separate different categories and regularize it using the generative
model. Contrary to LSA we are thus explicitly optimizing the
discriminativity of our representation.

NMF was originally proposed by [13], and Lee and Seung [6]
highlighted its semantic decomposition properties. Since then,
NMF has found wide applicability in various recognition tasks in
computer vision, including face recognition [14], object recogni-
tion [15] and action recognition [16]. The benefits of combining
generative and discriminative models into hybrid approaches have
been pointed out in several works [17,18]. The integration of
discriminative models with NMF has been investigated in
[19,12], where the NMF objective is coupled with a SVM classifier.
These approaches profit from the NMF decomposition to map

features to a low-dimensional space that favors the separability of
the data. However, we are not interested in performing feature
learning but we aim to tighten the coupling between the NMF and
a latent max-margin approach. Not only does NMF act as a
regularizer for the classifier, but the elements of the decomposi-
tion themselves are modeled as latent variables that intervene in
the learning process.

3. Method

In this section we present a latent max-margin model that
jointly infers groupings of parts and instances and learns to
discriminate between positive and negative examples. First we
introduce the part-based representation on which the rest of the
method is based. Then we review the NMF formulation and
present the generative component. Finally we introduce the joint
model and discuss the details of the training process.

3.1. Part-based object representation

We represent an image as a set of responses from part
classifiers, each specifically trained on a local region of one
training image. We start by randomly sampling M squared regions
from positive training images of a category at different locations
and sizes. Then we train M region classifiers ¢, in an Exemplar
SVM (ESVM) fashion [5] using HOG features extracted from each of
those local patches. As in [5] a single positive is trained against a
large set of hard negatives mined from training images. For each
training sample [;, each ¢, is evaluated densely on the image I;.
Then, [; is divided into a regular 4 x 4 grid and we retain only the
maximum of ¢, in each of those 16 cells. Concatenating the
D = 16M part classifier responses yields the object representation
¢ ;) e RP. We abbreviate this vector of all localized part responses
by ¢;. The goal is then to find a classifier f(¢h;) =w T ¢h; trained on
those part-based representations that is able to distinguish
between positive and negative objects.

3.2. Latent topics of parts and instances

For a training sample we seek its subset of meaningful parts
and to train the category classifier on a subset of parts we need a
set of training samples where those parts are meaningful. Thus,
the problems of finding meaningful parts and grouping training
samples into aspects or topics that share the same parts are
directly coupled. Since no training annotations are provided for
identifying relevant parts or for the groups of instances they
occur in, we need to tackle both problems jointly. Subsequently,
we present an approach that jointly assigns parts to topics,
assigns training instances to the topics, and trains discriminative
classifiers for the topics that resolve the original categorization
problem.

Non-negative matrix factorization minimizes the reconstruc-
tion error of the original representations ¢b; by a decomposition
into topics. Given a set T* of N positive training samples, let
d=(,,...5)" € RPN denote the matrix of all part-based
representations. The NMF aims to find a low-rank decomposition
of the data matrix ¢ into two matrices G e RP*X, and H e RN,
The K columns of the matrix G are basis vectors that can be
interpreted as the groups of relevant parts of each of the K topics.
The dimensions of the basis vectors with high values indicate a
strong contribution of localized parts, while zero elements indi-
cate non-contributing parts. By taking all non-zero elements of the
basis j we identify a group of parts that are relevant for the topicj.
Analogously, the coefficients of H serve as indicators of the extent
to which an image is represented by each of the K topics, and
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Fig. 1. General scheme of the approach. Data matrix ¢¢ decomposes in the matrix of part groups G and the matrix H of image groups. Black or shaded areas correspond to
matrix elements with low values. The arrows show the optimization steps, with references to the corresponding subsections of Section 3.5. The green boxes show the
relationship between an element on the original matrix and its corresponding row and column in G and H. The histogram in the right side represents the topic classifier
weights w for 3 topics, and the red box show visualizations of the part-based models of each topic. (For interpretation of the references to color in this figure caption, the

reader is referred to the web version of this paper.)

therefore provide a soft assignment of instances to topics. For-
mally,
minji¢ ~GH|Iz, G=0, H=0 1)
where the Frobenius norm is used to measure the reconstruction
error. We can interpret the columns of G as topic classifiers. By
discovering those K topic classifiers g; we are dividing our original
classification problem into K simpler sub-problems fj(qb):nggb
that only focus on the parts relevant for the respective topic j.
Retrieval phase: Now, to classify a new test sample I we need to
project its ¢p(I) first into the space of the part-topics, and linearly
combine the contributions of each topic classifier in a final
decision f(¢p)=wT G " ¢h. Note that compared to the D-dimen-
sional original classifier weights, the weight vector w now has K
dimensions, since samples are now categorized in the space of
part-topic classification scores f; instead of all parts ¢.

3.3. Combined discriminative and generative approach to
recognition and reconstruction

The topic classifiers g; in the previous section have been
obtained using a generative approach that aims at an optimal
reconstruction of latent topics of positive training samples. How-
ever, for the final problem of classifying image regions and
detecting objects we are not only interested in these generative
abilities but also in g; classifiers that discriminate objects from
clutter. Therefore we now combine the generative model from (1)
with a discriminative approach. However, this is not merely a
discriminative matrix decomposition. The groupings of parts and
instances inferred by the generative process should have an active
role in the learning of topic classifiers and of the overall classifier f
that combines all topics. We propose a latent max-margin
approach that jointly learns the matrix decomposition, the topic
classifiers and the final overall classifier. The generative compo-
nent supports topic discovery. Moreover, by ensuring that topics
can actually reconstruct the original representation, it also reg-
ularizes the discriminative classifier, which itself enables object
recognition. Fig. 1 shows an overview of the approach.

Latent SVM: Let us first review the general approach of Latent
Support Vector Machines (LSVM). Assume that a set T of training
instances is provided, where each instance I; is described by a
feature vector ¢;, and has corresponding label y; = {1, — 1} indicat-
ing if it belongs to a particular category. In the general setting, the
scoring of the LSVM has the form f(¢h)=max, W' (¢, h),
where the joint feature vector y depends on the data point ¢
and the latent variables h. The learning problem is then

formulated as

argmm f||w||2 +Y & )
ieT

st yf(@p=1-&, VieT 3)

E>0. 4

From an optimization perspective, the usual procedure is to
alternate between finding the best parameters w given an assign-
ment h of latent variables, and inferring the best assignment of
latent variables given the current state of w.

Joint model: Let us now incorporate the generative NMF into the
latent max-margin approach for discriminative classifier training. In
the latent formulation part classifier parameters G, assignments of
instances to topics H and the overall classifier weights w are jointly
optimized. The model is formulated as follows:

arg m1n—||w||2+Z<§,+CZZhuC.J ||¢—GH||% (5)
ieT ieTj=1

st yw'G p)=1-¢, Vi (6)

vig' i=1-C; Vij (7)

H>0,{;;>0,&>0, Vij 8)

G>0 )

where fl,-J-zh,-J vieT™", and fl,-J:l VieT~. This distinction

between positive samples in T* and negative samples in T~ is
necessary because the entries h;; of the matrix H are only defined
for positive samples. Recall from Section 3.2 that negative samples
are not related to any topic. The constraint (6) assures discrimina-
tive power in the original categorization problem, and the con-
straint (7) enforces individual topic classifiers to be discriminative.
The latent assignments of instances to topics determine during
training which samples are selected to train each of the part-topics
g;. To achieve this, we introduce slack variables {;; which are
weighted according the coefficients of H: if the positive instance i
has a strong affinity with topic j, then the matrix entry h;; has a
high value, and the topic classifier g; gets penalized when mis-

classifying the instance i (since Y h;;¢;; is minimized and
ij

vig' ¢;=1-C;; with positive ¢;; ). Contrarily, low values of hy;
allow the classifiers to ignore the positive training samples that do
not belong to the topic. The negative samples always contribute
with a cost when misclassified, given that their corresponding h; jis
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fixed to 1. The parameter A; regularizes the weights of the overall
classifier, while the parameter A, regularizes the topic classifiers.
The parameter C indicates the importance of fulfilling the topic-
classifier loss against the overall classifier loss.

The number of topics should be sufficiently large to adequately
represent the variability of category instances and their parts. In
particular, we need a finer granularity than the few, generic views of
DPM [1]. We set the initial number of topics to be 1/15 of the number
of positive training instances and let the overall classifier boost or
suppress  topics acoording to their importance. Note
that topic classifiers g; that fail at categorizing training samples
correctly penalize their corresponding coefficients in H due to the
margin violations expressed by the slacks £. Therefore, topic classifiers
which repel instances lose most of their training data and eventually
converge to very few outlier images. Consequently the overall classifier
w will assign to those topics a near-zero weight, thus minimizing their
influence on the decision function, and achieving a data-driven
adaptation of topics utilized per category.

3.4. Constraints on the topic classifiers

So far we have followed the rationale of NMF and constrained G
to be strictly positive. Thus, parts with high weight in G contribute
to the presence of an object. Conversely, parts with low weight do
not help in deciding about the presence/absence of an object.
However, in the discriminative setting parts should also be able to
vote for the absence of objects.

To let parts contribute negatively and thus gain discriminative power,
we relax the NMF factorization by dropping the non-negativity con-
straint on G (Eq. (9)) retaining the non-negativity on H of assignments
from instances to topics. This increases the discriminative power of the
approach, but at first sight one might fear that this is at the cost of
reducing the interpretability of the basis vectors g;. However, performing
the matrix decomposition while allowing negative values in the matrix
G is directly related to clustering, as shown in [20]. The columns of G
denote cluster centroids and the rows of H are the assignments of data
points to clusters. Thus the approach is grouping instances, relating them
to parts, and discovering common topics, while trading classification
performance against the reconstruction error.

Let us now consider other potential constraint relaxations. We
started our implementation of the approach by directly using the
non-negative bases as classifiers (non-negativity constraint on G and
H). The results were not competitive (around 20% drop in accuracy),
since constraining the classifier weights means limiting the classifier
model space (the hyperplane cannot be arbitrarily aligned) and thus
restricting the ability to separate the data. Regarding dropping non-
negativity of H, since the matrix H expresses the degree to which
training samples belong to classifiers, negative values in H would not
make sense and need to be prevented.

3.5. Training

The optimization of the objective in (5) is a non-convex
problem due to the coupling between the unknowns w, G and
H. We approximate its solution by alternating three convex
optimization problems.

(A) Contributions of topics to the category (w): First we initialize
the matrices G and H. The strategy used for initialization is
discussed in detail in Section 4.1. With both G and H fixed we
solve for the parameters of the general classifier w using a support
vector machine in the topic space by projecting features into
topics: G ¢p.

(B) Updating Part Contributions (G): With w and H fixed, we can
denote the objective over the elements of the matrix G (the topic

classifiers) as follows:

LA
argcmmilllw 17+ "max(0,1-y,w' G" ¢y)

ieT
K A
+CZ Z hijmax(0,1-yg;" ¢;) (10)
ieTj=1
A2 2
+7||¢_GH||F (11

We optimize the previous objective using a stochastic sub-
gradient descent (SGD) algorithm in the primal. As in standard
SVM we use the hinge loss as a surrogate, which is convex and
sub-differentiable. Following common practice, we compute the
sub-gradient with respect to the model parameters,

K .
Ve=—> Vi > Wihj—C > hiyip;—A2(pH" —GHHT)

icA ] {ijleB
A=ilyw' G ¢;+b)<1, B={(ij}|yg ¢;<1.
ieT, 1<j<K (12)

The sets A and B define the domain where the objective
function is differentiable. In practice, during optimization the
SGD assigns a zero gradient to any incoming sample that does
not belong to sets A or B.

(C) Updating instance groupings (H): This step consists of
determining the optimal soft-assignment of positive instances to
topics given the current state of the topic classifiers G. If a positive
image is inside the margin of a given topic-classifier j, that is
ng¢,-< 1, then the latent variable h;; is penalized with a cost
proportional to the degree of margin violation of the training
sample. Samples correctly classified will induce zero cost on their
corresponding latent variables. Egs. (10) and (11) comprise a linear
and a quadratic term respectively over the variables h;;. Given the
matrix of topic classifiers G computed in Section 3.5. B, inferring
the latent values of H amounts to solving a standard quadratic
program. After some algebraic manipulation the objective can be
compactly defined as

arg min%hT (oI ® GT G)h+vec(E—1,GT ¢p)h, (13)
h

where h>0. The term E(i,j) denotes the matrix of C max
(0,1—ying([)i) vi,j, I is the identity matrix of size |T*|, ® is
the Kronecker product, and vec(-) is an operator that stacks the
columns of a matrix above another.

4. Experiments

We utilize the challenging PASCAL VOC 2007 [21] benchmark
dataset to evaluate the proposed discriminative recognition
approach with generative regularization based on latent topics.
Images of VOC exhibit high intra-class variability in terms of visual
appearance, object deformation and pose. The dataset contains
more than 12,000 objects for training which are divided in 20
classes. We train our models on training and validation set and
show Average Precision (AP) results on the test set. The AP is given
by the area under the precision/recall curve. Recall is defined as
the proportion of all positive examples ranked above a given rank.
Precision is the proportion of all examples above that rank which
are from the positive class.

4.1. Experimental set-up
We follow the standard protocol and train our model on

training and validation set and evaluate performance in the
object detection challenge on novel images from the test set
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(measured with the usual 50% PASCAL overlap criterion for AP).
Object models are trained on the positive object bounding boxes
and using a set of candidate regions extracted with DPM [1]
(using a conservative, low threshold of —1.1 ) from the back-
ground as hard negatives. We are only using these boxes, but no
ranking information or DPM scores. In each candidate window
we extract the part-based representation from Section 3.1 (1000
parts for a category) and compute ¢h. We follow the same setup
during testing to compute ¢ for all candidates. Parameters A;, 4,
and C are obtained by cross-validation on the training data. As it
is common practice, the step size of the stochastic gradient
descent (SGD) algorithm is set to decrease each iteration as
1, = 1/2,t. The number of epochs of the SGD is set to 5 and the
number of iterations of the overall learning process is set to 40.
To initialize G and H and start the learning from Section 3.5 we
first assign random values and run 10 rounds of NMF optimiza-
tion (Eq. (1)) by applying the multiplicative update rules of [7].
This initialization has shown better performance than initializing
H with k-means clustering on ¢ (h; =1 if instance i belongs to
cluster j ) and training a topic model to initialize G with its
weights. This latter strategy boosts the performance very early in
the learning process but ends in local minima without reaching
significant gain over the baseline.

4.2. Topics of parts and instances

Our model not only addresses the categorization problem but
also infers latent topics of parts and instances. Fig. 2(A) shows 75
instances of the bicycle category picked at random from the most
important 6 topics (with highest bfw). The columns of H serve as a
low-dimensional representation of the images by capturing their
degree of correspondence to each of the topics. We compute a 2-
dimensional embedding from that k-dimensional representation
using the Isomap algorithm to produce the scatter plot, and assign
each instance to the topic with maximum value according to
matrix H. Fig. 2(B) shows a single prototypical instance per topic
that has smallest average distance over H to all other instances in
the topic. Fig. 2(C) and (D) shows visual representations of
instance topics and part topics respectively, computed by running

A

the part filters of each topic over all images of that same topic and
averaging all detections. The topics discovered by the algorithm
reveal subtle conceptual information beyond a mere aspect ratio
or view clustering. For instance, the red group represents bikes
with no person riding them, while the green group contains
bicycle riders. The yellow set groups bikes that are tilted. The blue
set shows frontal racing bikes, while the pink set gathers frontal
street or mountain-bikes. The cyan group covers rare instances like
kid's bikes and cropped bicycle parts like handlebars. As expected,
the visual representation of this outlier topic looks cluttered and
structureless due to the heterogeneity of the instances belonging
to the topic. Examples of topic visualizations of other categories
are presented in Figs. 7 and 8.

The optimum number of topics varies per category. With cate-
gories like potted plant or sheep is hard to discover multiple fine-
grained groups that improve overall categorization, and therefore
such categories can be represented by a small number of topics.
However, categories like car or aeroplane are favoured by a large
number of topics. In order to avoid hand-picking the number of
topics per category we follow the strategy of choosing a sufficiently
large number of topics, proportional (1/15) to the number of positive
training samples available. During training, if a category suffers from
over-clustering, the weaker topic classifiers will loose training
samples until remaining with very few outliers. These classifiers will
be assigned with a low weight by the general classifier and therefore
adapt dynamically to the optimal number of groups. Fig. 3 analyzes
the impact of the initial number of topics on performance. Accuracy
saturates at about 1/15 of the number of positive training samples
with minor fluctuations afterwards. This suggests to simply select a
sufficiently large number of initial topics (e.g., proportional to 1/15 of
the number of positive training samples) so that the proposed
algorithm can afterwards automatically infer relevant topics.

4.3. Convergence of the optimization

In Fig. 4 (left) we empirically confirm the convergence of the
optimization from Section 3.5. The red curve shows that overall
cost is decreasing rapidly in the first iterations. The black curve
gives the area under the precision/recall curve (AUC) after

Fig. 2. (A) Scatter plot illustrating the instance grouping. Different colors denote different topics. (B) shows one prototypical representative for each topic to provide a more
concise overview. (C) instance topics: images with high values in each row of the instance grouping matrix H. (D) Examples of the corresponding part topics, each of them
defined by those parts with highest values in each column of part grouping matrix G. (For interpretation of the references to color in this figure caption, the reader is referred

to the web version of this paper.)
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Fig. 3. Variation of the mean average precision in PASCAL VOC depending on the
number of initial topics (relative to the number of positive training samples of the
respective object category). When the number of initial topics is sufficiently large, e.g.,
around 1/15 of the number of positive instances, the precision saturates, as the proposed
approach can automatically discover relevant topics and discard irrelevant ones.
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objective cost

applying the classifier on the test data. In order to evaluate the
contribution of the NMF regularization we repeat the experiment
by removing G from the NMF regularization in Eq. (5) and instead
regularize G using L-2 Norm, Z]K llg;ll?. When removing G from the
NMF term, H might become unbounded. Thus we insert a
surrogate G in [|®—G,H||2, which is obtained by solving Eq. (1)
once at initialization, and keep G, fixed afterwards throughout
training. We denote this baseline as BS-nmf. The convergence
results after removing the regularization are presented in Fig. 4
(right), showing a significant drop of performance (8%) as well as a
slower convergence of the cost function. This suggests that the
topic classifiers are more likely to end in bad local minima with
L-2 instead of NMF regularization.

The convergence speed depends on the number of training
samples N and the number of topics K. The time complexity is
O(NK), but since N is much larger than K, the number of training
samples dominates over the number of topics.

4.4. Results on PASCAL VOC

Table 1 shows results on the PASCAL 2007 dataset. On the top
part of the table we compare a baseline version of our approach
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Fig. 4. Left: convergence of the cost function against area under precision/recall curve (AUC) for the class person. Right: convergence and AUC of BS-nmf. (For interpretation
of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Test results on PASCALVOC 2007. The BS-nmf column provides baseline results of running our part-based model without NMF regularization
(see Section 4.3). In BS-km we pre-cluster instances using k-means and train classifiers per each group (using all parts). TCa shows the results
of our approach without DPM filters. TCb includes DPM filters. KLSO refers to the work of [10] on mixture learning. GN is the Group Norm

learning of [11], and AOT refers to the And-Or-Tree models of [4].

Category BS-km BS-nmf TCa TCb DPM KLSO GN AOT
Aeroplane 36.1 36.5 37.2 37.8 33.2 333 33.6 353
Bicycle 58.5 60.9 63.2 63.2 60.3 53.6 57.6 60.2
Bird 5.9 6.8 9.5 10.1 10.2 9.6 9.4 11.0
Boat 13.1 13.0 15.2 15.1 16.1 15.6 15.5 16.6
Bottle 21.2 22.7 22.0 22.3 273 229 289 295
Bus 52.1 53.2 59.1 59.2 54.3 48.8 51.7 53.0
Car 58.0 58.6 59.6 59.7 58.2 51.5 55.3 571

Cat 23.7 24.4 26.1 26.4 23.0 16.3 20.2 23.0
Chair 19.1 20.2 20.5 20.6 20.0 16.3 221 229
Cow 241 24.5 26.8 274 241 20.0 304 272
Table 28.7 29.0 29.8 299 26.7 23.8 289 28.6
Dog 175 17.2 19.3 19.5 12.7 11.0 11.5 13.1

Horse 52.4 53.2 54.7 55.1 58.1 55.3 58.1 58.9
Motorbike 47.2 48.8 52.5 531 48.2 43.8 46.4 49.9
Person 39.7 40.0 413 47.7 432 36.9 388 414
Plant 115 11.9 12.8 13.2 12.0 10.7 14.1 16.0
Sheep 203 20.7 20.8 215 211 22.7 16.2 224
Sofa 36.3 36.9 39.2 39.8 36.1 235 323 372
Train 45.0 45.7 47.8 474 46.0 38.6 45.6 48.5
Tvmoitor 421 43.5 451 45.2 435 41.0 43.8 424
Mean 325 334 351 354 33.7 29.8 33.0 34.7
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without topics with our approach with Topic Classifiers (TC) in two
different set-ups. In TCa we do not include the DPM parts (only the
randomly sampled 16 K localized part classifiers), while in TCb we
include the strong filters trained by the DPM model. Adding DPM
filters does not alter significantly the results (+0.3% AP).

The bottom part of Table 1 compares with DPM and three
recent works that also deal with instance grouping and part-based
models. In some of the categories the topics do not necessarily
play an important role (e.g bottle), cases in which the gain against
the monolithic baseline is not compelling. Moreover, categories in
which parts are not very meaningful, or which are very often
occluded or cluttered (e.g potted plant) our structured topics of
parts are outperformed. We clearly improve upon the results of
[10], which also tackles the problem of latent learning of groups of
positive instances. In comparison to [4] our model shows superior
performance, improving on 11 categories.

We have focused our comparison on other part-based models
that deal with the problem of grouping (either instances or parts).
There are other methods that without dealing explicitly with the
grouping problem also provide state-of-the-art results, as is the
case of [22] which holds the best performance in PASCAL VOC
(mAP 41.7). However, the results reported in [22] vary significantly
depending on which types of features used. When using HoG as
we and the majority of approaches on this challenge, they report a
mAP of 35.1%, which is in line with our performance (35.4%). Some
detection results can be seen in Fig. 5, together with the visual
representation of the topic classifier that contributed the most to
the detection score.

Regarding the computational effort, our most expensive step is
to compute the responses for the 1000 part classifiers. However,
due to the linear nature of the classifiers, evaluation for such a
large number of parts is very efficient, taking around 13 s for a
thousand parts. Actually, most of the computation time is spent on

HOG feature computation and extracting sliding-windows, which
is independent of the number of parts.

4.5. Results on scene classification

We report results on Scene Classification using the MIT indoor
database introduced in [26]. We provide results in terms of
average precision, and compare our performance to 7 other
approaches (see Table 2). Our method in its standalone set-up
(TC) shows an accuracy on line with the state-of-the-art. If we
focus our comparison on approaches that rely solely on HOG
features and part-based representations, we outperform mid-
level-patches [25] as well as BoP [9] by 11% and 5.6% respectively.
In this experiment, given that the amount of positive samples per
category is significantly lower than in PASCAL VOC (around 80
training positive images per category), we fix the number of
groups K =3 in all categories. Having a larger number of groups

Table 2
Scene categorization results on MIT indoor dataset.

Method Av. precision
Object Bank [23] 376
RBoW [18] 379
DPM -+ GIST-color +SP [24] 431
Patches+GIST+SP+DPM [24]  49.4
Mid-Level Patches [25] 38.1
BoP [9] 43.5
IFV+BoP [9] 63.1
Ours (baseline) 46.5
Ours (baseline —nmf) 442
Ours (TC) 49.1
Ours (TC+IFV) 61.3

Fig. 5. Example detections (green boxes) of categories horse, sheep, airplane and bicycle. The black box at the upper corner shows a visual representation of the topic classifier
that scored the highest for that object instance. The representations are constructed by averaging part detections across the whole topic of instances, and placed in the
highest scoring locations of the test image. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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Fig. 6. Classification results on the indoor MIT dataset. For each category we show examples of the top ranked testing instances.

Fig. 7. Visualization of topics of the airplane category. The decomposition of instances distinguishes planes flying (red and pink groups) from planes landed in an airport
(green and yellow groups). The cyan group gathers planes that are occluded. Other types of semantics can also be spotted: the red group tends to gather modern war planes
with sharp edges, while the pink group covers planes with soft shapes such as seaplanes or old-school war planes. a) Scatter plot of grouped instances, b) Topics: prototypical
representative, ¢) Instance topics and d) Part topics.(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

hampers the quality of the topic classifiers due to an insufficient
amount of positive training samples, ultimately resulting in a
lower average precision of the joint model. The performance boost
obtained by combining our model with Fisher Vectors is of 11%,
significantly lower than the one reported by BoP (19%). Note that
we are using our own implementation of Fisher Vectors and that
in [9] there has been additional fine tuning of the parameters of
this postprocessing stage, which is, however unrelated to our
actual contribution. Fig. 6 shows examples of the top ranked
testing images for different categories.

5. Conclusions

In this work we have shown that jointly grouping parts and
instances is a beneficial avenue when dealing with high visual
variability in the context of object recognition. Part-based models
provide an excellent framework to tackle this problem, especially if
the parts are very specific and a large number of them are available.
The problems of grouping instances and parts into topics present two
main challenges: first, the strong mutual inter-dependency between
them. Second, the high specificity of the parts, that entails noisy
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Fig. 8. Visualization of topics of the car category. Red and pink groups cover cars seen from the side, while green and blue gather cars seen from the front/back. The yellow
topic gathers cars with tilted perspective. The cyan group in this case gets the outlier instances, that happen to be either occluded cars or weird examples like Formulal cars
or vintage old cars. a) Scatter plot of grouped instances, b) Topics: prototypical representative, c) Instance topics and d) Part topics.(For interpretation of the references to

color in this figure caption, the reader is referred to the web version of this paper.)

observations when inferring specialized topics of instances. We
alleviate both problems using a latent max-margin classifier that
jointly solves the categorization problem and the grouping problem.
A generative regularizer (NMF) guides the grouping process, while
the discriminative (Max-Margin classifier) contributes to categoriza-
tion task. Our results in the PASCAL VOC 2007 dataset show that the
grouping of parts and instances significantly improves the perfor-
mance of a monolithic detector. We provide results comparable with
the state-of-the-art, as well as showing that the generated grouping
of parts and instances is semantically meaningful.
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