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Abstract. Variational problems have proved of value in many image
processing and analysis applications. However increase of sensor reso-
lution as occurred in medical imaging and experimental fluid dynamics
demand for adapted solving strategies to handle the huge amount of
data.

In this paper we address the decomposition of the general class of qua-
dratic variational problems, which includes several important problems,
such as motion estimation and image denoising. The basic strategy is to
subdivide the originally intractable problem into a set of smaller con-
vex quadratic problems. Particular care is taken to avoid ill-conditioned
sub-problems. We demonstrate the approach by means of two relevant
variational problems.

1 Introduction

Variational approaches to motion estimation are nowadays routinely used in
many image processing applications. A key problem, however, concerns the ever
increasing sizes of data sets to be processed, in particular for analysing 3D im-
age sequences in medical imaging and experimental fluid dynamics. For exam-
ple, the next generation of imaging sensors in experimental fluid will deliver
data volumes taken with high-speed cameras, that cannot be handled within the
working memory of a single PC. This necessitates to investigate coarse problem
decompositions that can process in parallel large-scale problems with off-the-
shelf hardware.

In this paper, we present a decomposition approach for a fairly general class
of variational problems, including higher-order regularisation, for instance. We
pay attention to obtain easy-to-solve subproblems that communicate in order to
compute provably the unique global solution.

Related Work and Contribution. The use of variational domain decompo-
sition for motion estimation has been introduced to the field of image processing
by Kohlberger et al. [1]. This approach is not applicable however to variational
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models involving higher-order regularisation, like [2] for instance, because sub-
problems in inner domains become inherently singular, and because the corre-
sponding handling of boundary conditions becomes involved.

In this paper, we therefore adopt the viewpoint of convex programming to
tackle the decomposition problem [3]. We consider the general class of convex
quadratic optimisation problems and propose a method to decompose any in-
stance into a sum of still convex sub-functions. This allows to apply the dual de-
composition approach. The initial problem can then be solved as several smaller
independent convex problems and computationally cheap synchronisation steps
without changing the overall objective. We describe an extension that allows
to improve the numerical properties of the underlying problem, hence improv-
ing convergence rate. Two problems from motion estimation are decomposed
exemplarily. Error measurements in comparison to single-domain solutions are
presented.

Organisation. In section 2 we summarise the underlying idea of dual problem
decomposition and specialise it to the considered class of optimisation problems.
Section 3 describes an iterative method for solving the problem in its decomposed
formulation. An extension is proposed to improve the numerical properties of the
sub-problems. Experimental results for the application to two variational motion
estimation problems are given in section 4.

2 Problem Decomposition

2.1 Dual Decomposition of Convex Optimisation Problems

Our approach is based on the idea known as dual decomposition [4]. The method
requires that the objective function of a convex optimisation problem,

min
u

f(u) , f(u) : Rn 7→ R , (1)

can be decomposed into a sum of d convex sub-functions, so f(u) =
∑d

l=1 fl(u).
For demonstrating the basic idea we restrict ourselves to d = 2. The variable
vector u is split up into internal variables ul ∈ Rnl that are only involved in
exactly one sub-function, and a vector of complicating variables y ∈ RnC that are
common to f1 and f2. Next we introduce an own set of complicating variables yl

for each sub-function and enforce their identity by a consistency constraint,
leading to an optimisation problem equivalent to (1):

min
{ul,yl}

f1 (u1, y1) + f2 (u2, y2) s.t. y1 = y2 (2)

For briefness we denote a set of vectors {x1, . . . , xd} as {xl}. With the Lagrangian
function which is defined as L({ul, yl}, λ) := f1(u1, y1)+f2(u2, y2)+λ>(y1−y2)



we can make the constraints implicit and gain the primal (P) and dual (D)
Lagrangian problem corresponding to (2),

(P) p∗ := min
{ul,yl}

sup
λ

L(u, λ) (3)

(D) d∗ := max
λ

inf
{ul,yl}

L(u, λ) (4)

Their optimal values are related as p∗ ≥ d∗ (weak duality). For convex functions
without inequality constraints this relation holds strictly and allows to solve the
primal problem by the way of its dual formulation,

max
λ

inf
u1,y1

f1(u1, y1) + λ>y1︸ ︷︷ ︸
sub-problem 1

+ inf
u2,y2

f2(u2, y2)− λ>y2︸ ︷︷ ︸
sub-problem 2︸ ︷︷ ︸

master problem

. (5)

The problem decomposes into two convex sub-problems with independent vari-
ables embedded into a master problem that updates λ. This formulation allows
to specify an iterative method,

initialise λ← 0, ul ← 0, yl ← 0, k ← 0
repeat

for l = 1, . . . , d do:(
u

(k+1)
l , y

(k+1)
l

)
← solution of sub-problem l

λ(k+1) ← λ(k) + α(k)∇λL
({

u
(k+1)
l , y

(k+1)
l

}
, λ(k)

)
k ← k + 1

until convergence .

In each iteration the primal variables are refined by solving smaller sub-problems
which are preferably of a simple structure. Due to their independence this task
can be performed in parallel. Afterwards the dual variables are updated, e.g.
by a sub-gradient method such as cutting plane, bundle or trust region which
choose α(k) – we refer to [3] for details. The update steps are iterated until
a stopping criteria is met, for example the change in the primal and/or dual
variables.

2.2 Considered Class of Problems

Here we consider the class of convex quadratic optimisation problems given in
the form

min
u∈Rn

1
2
‖Du + c‖22 with D ∈ Rm×n, c ∈ Rm (6)



which for example includes the variational approach to optical flow estimation
by Yuan et al. [2]:

min
u

1
2

∫
Ω

∥∥∇g>u + gt

∥∥2

2
+ β1‖∇div u‖22 + β2‖∇curl u‖22 dx

+
1
2
β3

∫
∂Ω

‖∂nu‖22 dx (7)

In section 4 we solve this problem in its decomposed form.

2.3 Decomposition of Convex Quadratic Problems

We assume that the problem description can be rearranged by permuting the
order of variables in u and the row order in D and c in order to get a form that
makes the separable structure explicit:

f(u) =
1
2
‖Du + c‖22 =

1
2

∥∥∥∥∥∥∥∥∥∥


D1,C 0 · · · 0 D1,C

0 D2,I
. . .

... D2,C

...
. . . . . . 0

...
0 · · · 0 Dd,I Dd,C




u1

...
ud

y

 +


c1

c2

...
cd


∥∥∥∥∥∥∥∥∥∥

2

2

(8)

Then Dl,I ∈ Rml×nl and Dl,C ∈ Rml×nC represent the coefficients of the in-
ternal respectively complicating variables and cl ∈ Rml the constant parts. The
objective function decomposes into

d∑
l=1

1
2

(
ul

y

)>(
Dl,I

Dl,C

)>(
Dl,I

Dl,C

)
︸ ︷︷ ︸

Al

(
ul

y

)
+

(
ul

y

)>(
D>

l,I

D>
l,C

)
cl︸ ︷︷ ︸

−bl:=

+
1
2
c>l cl︸ ︷︷ ︸

const

 (9)

=
d∑

l=1

1
2

(
ul

y

)>
Al

(
ul

y

)
−

(
ul

y

)>
bl︸ ︷︷ ︸

fl(ul,y):=

+ const =
d∑

l=1

fl(ul, y) + const .

Note that Al are symmetric and due to x>Alx =
∥∥(

Dl,I Dl,C

)
x
∥∥2

2
≥ 0 ∀x

positive semidefinite matrices. Hence each sub-function is convex and quadratic
by construction. We further assume that the decomposition is chosen such that
the matrices Al are also non-singular.

3 Optimisation of Decomposed Quadratic Problems

In the previous section we showed that the objective function (8) can be de-
composed into a sum of convex sub-functions and hence we can apply the dual
decomposition method for solving the problem (6).



First of all we combine the internal and complicating variables of each sub-
function into xl :=

(
u>l y>l

)> and define a set of linear operators {Cl} to repre-
sent the consistency constraints, e.g. as

y1 − y2

y2 − y3

...
yd−1 − yd

 =
d∑

l=1

Clxl = 0 .

Note that although xl contains local variables the constraints only involve com-
plicating ones. Then the following decomposed problem is equivalent to (6).

min
{xl}

d∑
l=1

1
2
x>l Alxl − x>l bl s.t.

d∑
l=1

Clxl = 0 (10)

With the definition of the Lagrange function,

L ({xl}, λ) =
d∑

l=1

(
1
2
x>l Alxl − x>l bl + λ>Clxl

)
,

the problem in its decomposed dual form reads

max
λ

d∑
l=1

(
inf
xl

1
2
x>l Alxl − x>l

(
bl − C>l λ

))
. (11)

For the considered class of optimisation problems, each sub-problem is an un-
constrained convex qua et aldratic optimisation problem. Due to this benefi-
cial properties, any first-order optimal solution xl with ∇fl(xl) = 0 is also a
global minimum for fl. This can efficiently be found by solving the linear system
Alxl = bl − C>l λ, e.g. by a conjugate gradient method [5].

The variables λ of the enveloping master problem are updated by moving
along the gradient of the Lagrange function, ∇λL({xl}, λ) =

∑d
l=1 Clxl. The

update steps for the primal and dual variables then read

x
(k+1)
l ← A−1

l

(
bl − C>l λ(k)

)
, l = 1, . . . , d (12)

λ(k+1) ← λ(k) + α(k)
d∑

l=1

Clx
(k+1)
l . (13)

The step scaling α(k) > 0 may be chosen constant or – as proposed in [3] – as a
sequence with limk→∞ α(k) → 0 and

∑∞
k=1 α(k) →∞.

3.1 Extension for Badly Conditioned Sub-Problems

The matrices Al which arise from the decomposition (9) are positive definite but
may be badly conditioned, depending on the problem and actual decomposition.



We propose a framework that allows to improve the numerical properties of the
underlying optimisation problems without altering the overall objective.

Instead of solving minxl
fl(xl) in each iteration and for each sub-problem we

modify the objective functions by adding a regularisation term which involves
the current value of x

(k)
l :

fl(x) +
1
2

∥∥∥B
1
2
l

(
x−x

(k)
l

)∥∥∥2

2
=

1
2
x>(Al + Bl) x−x>

(
bl + Blx

(k)
l

)
+

1
2

∥∥∥B
1
2
l x

(k)
l

∥∥∥2

2

with an arbitrary symmetric positive semidefinite matrix Bl. Then the new it-
eration steps (replacing (12)) for the primal variables are

x
(k+1)
l ← (Al + Bl)

−1
(
bl + Blx

(k)
l − C>l λ(k)

)
. (14)

In this representation it becomes apparent that Bl allows to directly modify the
linear system that has to be solved for each sub-problem. For Bl = 0 ∀l we
obtain the original update step (12).

In order to show that the altered method still solves the original problem,
we rewrite the steps (14) together with the unmodified update for the dual
variables (13) as a single system of the form

A1 + B1 0 0
. . .

...
0 Ad + Bd 0
C1 · · · Cd − 1

αI


︸ ︷︷ ︸

M :=


x

(k+1)
1
...

x
(k+1)
d

λ(k+1)


︸ ︷︷ ︸

z(k+1):=

=


B1 0 −C>1

. . .
...

0 Bd −C>d
0 · · · 0 − 1

αI


︸ ︷︷ ︸

N :=


x

(k)
1
...

x
(k)
d

λ(k)


︸ ︷︷ ︸

z(k):=

+


b1

...
bd

0


︸ ︷︷ ︸

b:=

which can be interpreted as a splitting method, a class of iterative methods for
solving linear problems – we refer to [5] for details.

Theorem 1. [5, Th. 10.1.1] If M −N and M are nonsingular and the singular
values of G := M−1N lie within the unit circle, i.e. ρ(G) < 1, then the iter-
ation Mz(k+1) = Nz(k) + b converges to a solution of (M − N)z = b for any
initial z(0).

Corollary 2. The iteration (13)-(14) solves (11) if it converges.

Proof. Due to Theorem 1 the fix-point of the proposed iteration method reads

(M −N)z =


A1 0 C>1

. . .
...

0 Ad C>d
C1 · · · Cd 0




x1

...
xd

λ

 =


b1

...
bd

0

 = b .

These equations exactly represent the first order Karush-Kuhn-Tucker conditions
of the original problem,

∇xl
L({xl}, λ) = 0 ∀l and ∇λL({xl}, λ) = 0 . (15)

Hence the method solves the original problem for any Bl if it converges. ut



4 Experiments and Discussion

In this section we apply the proposed decomposition method to two variational
motion estimation approaches. In order to measure the exactness we compare
the results to the non-decomposed solution of the problem. We examine the
evolution of the error measurements over iterations of the master problem to
investigate the time complexity of the method.

A synthetic image pair of size 500 by 500 pixels was used as input data for
the experiments. The ground truth vector field (see Fig. 1(d)) is affine in the
coordinates and has a maximum magnitude of 1 and 0.46 pixels in average.

In all experiments we chose a geometrical based method to determine the
decomposition into sub-functions. The sub-problems were solved as linear pro-
grams with a conjugate gradient method. For the master problem we defined

α(k) =
1

a + bk

1
‖∇λL({xl}, λ)‖2

. (16)

Both the primal and dual variables were initialised with all-zero vectors.
For every grid position x ∈ Ω we determined the Euclidean distance e(x)

between the solutions of the decomposed and non-decomposed problems. The
following overall error measurements were evaluated:

µe :=
1
|Ω|

∑
x∈Ω

e(x) , σe :=

√∑
x∈Ω

(e(x)− µe)2

|Ω| − 1
and max e := max

x∈Ω
e(x)

The results and error measurements were recorded for each iteration. Reaching
the maximum number of iterations - ten - was the only stopping criteria used.

4.1 Horn and Schunck

In [6], Horn and Schunck proposed the following variational approach to globally
estimate the optical flow field:

min
u

∫
Ω

1
2

∥∥∇g>u + gt

∥∥2

2
+

1
2
β ‖∇u1‖22 +

1
2
β ‖∇u2‖22 dx

where u(x) :=
(
u1(x) u2(x)

)>. A finite difference scheme was used for discreti-
sation, allowing to write the discrete version of the objective function as

f(u) :=
1
2
‖DOFCu + cOFC‖22 +

1
2
β ‖D∂xu‖22 +

1
2
β

∥∥D∂yu
∥∥2

2

with the linear operators DOFC, D∂x and D∂y and constant vector cOFC. To
make the proposed decomposition method applicable, we rewrite the objective
function as

f(u) =
1
2

∥∥∥∥∥∥
 DOFC√

βD∂x√
βD∂y

 u +

cOFC

0
0

∥∥∥∥∥∥
2

2

.

For the decomposition we divided the grid into four areas which overlap by one
grid unit, see Fig. 1(a).



(a) (b) (c) (d)

Fig. 1. Discretisation grid and decomposition, dots represent variables, shadings repre-
sent the four (overlapping) subdivisions: (a) approach by Horn&Schunck, (b) approach
by Yuan et al. with original boundary terms and (c) with additional terms on sub-
division boundaries, (d) ground truth vector field (sub-sampled).

Results. For the experiments we chose the regularisation parameter as β = 0.1.
The parameters for the dual variable update rule (16) were set to a = −300
and b = 400.

The error plot over the iterations one to ten in Fig. 2(b) shows a steep
drop of all error measurements within few iterations. After ten iterations they
reach µe = 3.57 · 10−6, σe = 4.04 · 10−5 and max e = 0.0028. According to
Fig. 2(a) the errors of the order of max e are located at only few positions at the
artificial borders especially where all four areas meet and quickly reach 10−15 in
the remaining parts of the subdivisions.

(a) error positions, max e = 0.0028

0 1 2 3 4 5 6 7 8 9 10

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

iteration

er
ro

r:
 m

ea
n/

st
an

da
rd

 d
ev

ia
tio

n/
m

ax
im

um

µ
e

σ
e

max
e

(b) error history (logarithmic scale)

Fig. 2. Horn&Schunck: error of decomposed solution compared to single-domain result,
(a) distribution over coordinates after ten iterations, (b) evolution over ten iterations.



4.2 Optical Flow Estimation with Higher Order Regularisation

The second approach we consider for decomposition uses higher order regulari-
sation of the vector field (7). Mimetic differences as described in [7] were used
for discretisation. In Fig. 1(b) the underlying variable grid is depicted. Using the
notation introduced in [2] the discrete version of the objective function reads

1
2
‖Gu + ∂tg‖2HV

+
1
2
β1

∥∥GDiv u
∥∥2

HS
+

1
2
β2

∥∥GCurl u
∥∥2

HE
+

1
2
β3 ‖Pu‖2bc

where G, G, Div, ∂t, Curl and P are linear operators and g = 1
2 (g1 + g2) repre-

sents the image information in a vector representation, i.e. the columns stacked
together. Due to the fact that the definitions of the HV -, HS-, HE- and bc-
norms are equivalent to the Euclidean norm we are able to rewrite the objective
function as

f(u) =
1
2

∥∥∥∥∥∥∥∥


G√
β1 G Div√
β2 G Curl√

β3 P

 u +


∂tg
0
0
0


∥∥∥∥∥∥∥∥

2

2

.

This is exactly the form presumed by the proposed decomposition method.

Results. First experiments showed that the decomposition by the proposed
method leads to convex sub-functions but with badly conditioned matrices Al.
This causes a divergent behaviour of the algorithm. In order to improve the prob-
lem properties we imposed additional terms 1

2 ‖∂nu‖22 on the artificial bound-
aries. Thereby each modified sub-problems has regularisation terms at all its
boundaries just as if it was a smaller instance of the original one. In Fig. 1(c)
the location of the boundary terms are represented as shaded areas. In contrast
Fig. 1(b) shows the unmodified grid decomposition where each sub-problem is
only regularised by boundary terms at the borders of the original problem. The
discrete forms of the new regularisation terms were concentrated into the matri-
ces Bl and applied as described in section 3.1. As a result of this modification
the condition number dropped from ρ(Al) ≈ 108 to ρ(Al + Bl) ≈ 105 and the
algorithm converged quickly. The problem parameters were set to β1 = β2 = 0.4
and β3 = 0.2. The algorithm parameters were chosen by hand, a = 900 and b =
100. The four areas overlap by two grid cells.

Figure 3(b) shows that the error measurements reduce drastically within
the first iteration and reach the order of their final values, µe = 1.22 · 10−4,
σe = 6.39 · 10−4 and max e = 0.02. The errors are mainly located around the
artificial boundaries (see Fig. 3(a)) and tend to 10−15 in the remaining areas.

5 Conclusion and Further Work

We presented a convex programming approach to the decomposition of a fairly
general class of variational approaches to image processing. The overall algorithm



(a) error positions, max e = 0.02
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Fig. 3. Yuan et al.: error of decomposed solution compared to single-domain result,
(a) distribution over coordinates after ten iterations, (b) evolution over ten iterations.

converges to the optimality conditions and can be carried out by solving well-
conditioned subproblems in parallel.

Our further work will focus on estimates of the convergence rate, and on con-
nections to the domain decomposition literature [8] concerning preconditioning.
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