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1 Philips Research Europe - Hamburg, Germany
2 CVGPR Group, University of Mannheim, Germany

Stefan.Schmidt@ti.uni-mannheim.de

Abstract. The detection and extraction of complex anatomical struc-
tures usually involves a trade-off between the complexity of local feature
extraction and classification, and the complexity and performance of the
subsequent structural inference from the viewpoint of combinatorial op-
timization. Concerning the latter, computationally efficient methods are
of particular interest that return the globally-optimal structure.

We present an efficient method for part-based localization of anatomi-
cal structures which embeds contextual shape knowledge in a probabilis-
tic graphical model. It allows for robust detection even when some of the
part detections are missing. The application scenario for our statistical
evaluation is spine detection and labeling in magnetic resonance images.

1 Introduction

Problem Description. We investigate a new method for automatically locating
the human vertebral column (spine) and for simultaneously labeling the inter-
vertebral disks in 3D T1-weighted magnetic resonance (MR) survey images of
total spine. The method provides robust input for further automatic processing,
e.g. initialization of vertebra models to segment individual vertebrae or extrac-
tion of regions of interest for subsequent image acquisition or processing.

The human spine typically consists of 24 vertebrae (7 cervical: C1-C7, 12
thoracic: T1-T12, 5 lumbar: L1-L5) with in-between situated intervertebral disks,
aligned in a double-S shaped curve. In T1-weighted fast field-echo (FFE) images,
the disks typically appear as bright structures, and the vertebrae themselves
give virtually no signal and appear dark. We therefore use the disks as high
level features (parts) for localizing the spine column and individual vertebrae.
Integration of spatial context is essential, however, for coping with erroneous
local detections and missing features, in order to label vertebrae anatomically.

There are several pathologies that may significantly affect the appearance of
the spine such as fracture, neoplasm, deformity (e.g. scoliosis) and degeneration.
Also the number of vertebrae may differ from 24, e.g. by lumbalization of the
cranial sacral segment into an L6. Our objective is the design of a probabilis-
tically sound model for reliably detecting and localizing the spine column, that
copes with the complexity of the depicted anatomy and the variability in image
quality. In this paper, we concentrate on the standard case of 24 vertebrae.
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Approach. We use a probabilistic graphical model for representing both the
appearance of local parts and the shape of the anatomy in terms of geometric
relations between parts. Features for detecting parts are learned from a set of
training data in manually marked image regions.

In the detection stage, a multi-class classifier is applied to detect potential
locations for each part in a new image. In a subsequent step, the graphical
model provides a contextual decision by fusing these data with the geometrical
prior knowledge and inferring the globally optimal configuration of the parts.

2 State of the Art and Contribution

Related Work. At present, not many fully automated methods for locating
the spine in MR images have been reported in the literature.

Peng et al. [1] detect the intervertebral disks in MR images in connection with
segmenting the whole spine column. The detector used convolves a gray value
template of a disk with the image, followed by searching for the disk centers and
further local postprocessing. The method is not 3D but processes (sagittal) 2D
slices only which may not intersect the whole spine. Furthermore, the approach
does not model and employ contextual (non-local) prior knowledge. The study
reports good results for 5 subjects, but the performance of the method for low-
quality scout data, or when local disk detection fails, is unclear.

Weiss et al. [2] propose a semi-automatic algorithm for localizing the spine
and for labeling the intervertebral disks. Operator assistance is used to provide
a single seed point in the C2-3 disk. The procedure relies on intensity thresholds
for detecting the remaining disks, rendering the method highly dependent on
image quality and intensity correction in a preprocessing step. This also applies
to the approach of Vrtovec et al. [3] who locate the spinal canal by searching
for circular areas of homogeneous intensity in axial slices.

A well-known class of approaches that exploits geometrical prior knowledge
for anatomy segmentation tasks is based on the Active Shape Model (ASM) [4].
ASMs are known for their dependency on a good search initialization, and on
the reliability of local feature detection. Despite using a non-local shape model,
the optimization strategy is merely local. If the search is misled by ambiguous
landmarks, the optimization process cannot recover. In principle, the same crit-
icism applies to the Active Appearance Model (AAM) [5,6], that extends the
ASM by additionally representing the texture within the shape.

Recently, a combination of ASM and robust point-matching (RPM) has been
proposed [7], that uses soft-assign for matching the model and image features.
This work is closer to our approach regarding the ability to revise erroneous
local decisions through contextual prior knowledge. The success of the method
for finding the globally optimal configuration depends crucially on the annealing
schedule that is used in the nonconvex energy minimization whereas the inference
algorithm that combines local and global information in our approach guarantees
global optimality.

Our model can be regarded as an instance of the object recognition framework
suggested in [8] that describes the image as a deformable configuration of local
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parts. While this work only considers tree-structured constellations for computa-
tional efficiency, we use a fully interconnected model which enables the efficient
detection of missing parts. Other instances of this class of approaches include
[9], [10] and [11] where the geometry is described by a multivariate normal dis-
tribution of part positions relative to a non-occluded reference part. Our model
does not rely on any particular reference part and is invariant against translation
and rotation. The graphical shape templates proposed by Amit [12] for anatomy
detection are defined by potential functions on triples of parts, and require a de-
composable graph structure enabling the application of a dynamic programming
algorithm for second order Markov chains. The specific graph structure causes
the approach to be sensitive to missing part detections, a limitation which is
overcome in our formulation.

Contribution. The basic features of our approach are:

– The design of the part detectors is completely determined by learning from
the data. It does not involve any model assumptions (e.g., template).

– Local information is fused with non-local geometrical prior information and
results in a globally optimal configuration. Favorable consequences of this
globally optimal inference are (i) that problems due to a poor initialization
are obsolete, and (ii) that evaluations of the result only judge the model and
cannot be misinterpreted as poor local minima.

– Missing parts are explicitly taken into account by the probabilistic graphical
model. In case of failure of a local detector, we are still able to predict the
most probable position of a missing part.

– Any further available information, e.g., identification of the up-most inter-
vertebral space (C1-2) as anchor point, can be easily integrated and fully
exploited during inference.

3 Methods

Graphical Model. Our probabilistic model represents the image appearance of
single parts as well as the relative geometry of pairs of parts, in terms of vertices
V and edges E of a graph G = (V, E). Each vertex s ∈ V indexes a random
variable xs that assigns to the part its unknown image location. Accordingly,
x = {x1, x2, . . . , x|V |} denotes a configuration of parts.

Given an image I, the objective is to localize the object of interest by deter-
mining the most probable configuration x that maximizes

P (x|I, θ) = PA(x|I)PS(x|θ) , (1)

where PA represents the appearance of parts and PS captures shape information
using a set of parameters θ. We model P (x|I, θ) by the Gibbs distribution

P (x|I, θ)=
1
Z

exp(−E(x|I; θ)) , E(x|I; θ)=
∑

s∈V

ψs(I, xs)+α
∑

(s,t)∈E

ψst(xs, xt; θ),

(2)
whose components will be detailed below.
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Part Appearance Potentials. The unary potential functions ψs in (2) are
directly given by the output probability P (xs|I) provided by the classifier that
is used to detect candidates for part s in an image, as described below. Note
that we assumed mutual independence of local detections in (2).

Relative Geometry of Part Pairs. The potential functions ψst in (2) repre-
sent the relative geometry of pairs s, t of parts.

We evaluate two alternative models: The first version models the distance of
the parts by the 1D Gaussian,

ψst(xs, xt) =
(‖xs − xt‖ − μst)2

2σ2
st

. (3)

This representation is invariant against joint translations and rotation of both
parts. The second version uses instead of (3) a multivariate normal distribution
to represent the part locations relative to each other:

ψst(xs, xt) =
1
2
(xs − xt − μst)�Σ−1

st (xs − xt − μst) . (4)

This variant captures the geometry more accurately but is no longer rotational
invariant. In applications where the absolute orientation of the structure of in-
terest does not vary too much relative to the image frame (i.e. scanner axis),
this second formulation is preferable.

In connection with spine detection, it is undesirable to allow disks to over-
lap. To account for this, we truncate the Gaussians by multiplying them with
the indicator functions ICst(xs, xt) that take the value 1 inside the sets Cst :=
{(xs, xt) | ast ≤ ‖xs−xt‖ ≤ bst}, where the parameters ast and bst are determined
in relation to the minimum and maximum lengths in the training set. Hence,
overlapping parts and pairs too far apart are assigned a pairwise probability of
0 and effectively are no longer considered together.

We point out that, while truncated Gaussian distributions are appropriate for
the application studied in this paper, the model adopted from [13] also copes
with more general, e.g. multimodal, local distributions.

Part Detection. Randomized classification trees allow for fast evaluation and
can be used to detect points of interest [14]. Training such a classifier amounts
to creating a set of decision trees and collecting the statistics of the training data
under the trees’ classifications. The branching tests at tree nodes are chosen at
random from a set of very simple tests, each involving only few feature space
dimensions.

For our application, we use sub-volumes of 15x15x15 voxels as local feature
vectors. The tree tests are plain comparisons of two of their dimensions, trans-
lating to simple ”brighter than resp. darker than” decisions for pairs of voxels
in a neighborhood. The overall performance and robustness against noise results
from the aggregation of the statistics over a large number of such tests, that
are distributed over the ensemble of decision trees used. As only the ordering of
intensity is taken into account, the resulting detector is insensitive to intensity
distribution variation as commonly observed in MR images.
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Local rotation and scale tolerance is achieved by augmenting the training set
by resampled copies of the training images, which have been randomly trans-
formed to vary within the expected range of orientation and scale changes.

Applying the classifier to an image yields a probability volume for each class
(Fig. 1). After sorting by descending probability, we pick candidates for each
class, starting with the most probable location, and add further candidates as
long as a specified number of candidates and a given probability threshold are not
exceeded. We impose a minimum spacing constraint between a class’s candidate
points to suppress non-maxima, and to restrict further the set of candidates.

Modeling Undetected Parts. Missing detections of individual parts are han-
dled by introducing an artificial candidate for each node of the graphical model,
the location and appearance of which is declared ”hidden”. As its position is
not known, we would need to marginalize the associated potentials over the im-
age domain, which is computationally infeasible. Instead, we approximate this
marginalization by setting the hidden candidate’s potentials to their expectation
with respect to the training data plus a penalty for the miss:

ψs(·)=− log β Exs

[
exp(−ψs(xs))

]
, ψst(·, ·) = − log γ Exs,xt

[
exp(−ψst(xs, xt))

]

(5)
Here, Exs resp. Exs,xt denote the expectation with respect to the ground

truth training data, and the parameters β, γ are empirically determined from
the training set such that these ”hidden”-probabilities indeed incur a penalty
for omitting parts in the majority of training cases.

Inference Algorithm. We use the graphical model as specified above to infer
the most likely configuration x (position and overall pose) of the model in any
novel image I. This maximum a posteriori (MAP) estimate

x̂ = argmax
x∈Ω

P (x|I, θ) (6)

is obtained by searching over all configurations consistent with detected part
candidate points. This is done using the A∗ algorithm [15] based on a tight
upper-bound estimate for efficiently pruning the search space. This estimate
is computed by exact inference on a tree-structured subgraph and guarantees
not to miss the global optimum [13]. As described below, it turned out empir-
ically that A∗-search terminates after reasonable computation time. Therefore,
we preferred this method over alternative approaches to approximate graphical
inference based on nonconvex optimization [16].

Missing Part Postprocessing. We can estimate the approximate location of
parts detected as missing in a postprocessing step. This is done by greedily
searching for these locations while keeping the already inferred parts fixed. For
each missing part h, treated individually now, we predict its position by aggregat-
ing the evidence from all neighbors Nh of h that have been successfully identified.
Specifically, using the learned distributions xt−xs ∼ N (μst, Σst) and the identity
N (a, A) · N (b, B) ∝ N (c, C) where C = (A−1 + B−1)−1, c = CA−1a + CB−1b
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Fig. 1. Left: Labeling result. Yellow labels denote the graphical model’s MAP es-
timate(+), green labels represent parts found by postprocessing(#), and blue labels
show the ground truth annotation(*). Larger dots indicate positions located in the
viewing plane and smaller dots positions next to it. Right: Classifier probability
maps for four classes in a new image, produced by the randomized tree classifier that
was trained on independent datasets. Clockwise, the corresponding classes are C1-2,
C2-3, L1-2, and S1-2. The depicted slices from the probability volumes were normalized
for visualization such that the value 1 represents the most likely pixels with respect
to these classes. Note that particularly in case of the L1-2 class, the neighboring disks
are highly similar in appearance. Thus, local classification cannot discriminate between
them, but has to be complemented by “geometrical context” as studied in this paper.
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for the multiplication of Gaussians, we compute the maximum at the mean of
the product

x̂h = max
xh

∏

s∈Nh

N (xs + μsh, Σsh) = (
∑

s∈Nh

Σ−1
sh )−1(

∑

s∈Nh

Σ−1
sh (xs + μsh)) . (7)

Optionally, we incorporate the appearance term by multiplying the product of
Gaussians by the classifier’s probability map of the missing part, and then locate
the maximum.

Scale Estimation and Invariance. The learned geometry representation ex-
hibits a high variance if the training examples are not normalized in scale. Hence,
tighter geometry constraints are obtained if both training and test data are on a
common scale. For training images, this can be achieved by Procrustes analysis,
for instance. But for the test images, the scale information is not readily avail-
able, because the correspondences have not been established prior to detection.

In order to compensate for global changes in scale in a new image, we extend
our algorithm by a second run of the graphical model inference. After the first
run, which is performed with the original geometry model without scale nor-
malization, we obtain an estimate for the global scale correction parameter as
follows: For each pair of detected parts, the ratio of their distance to the model’s
mean distance is entered into a weighted histogram H( (||xs−xt||

μst
; 1

σst
) with the

weight derived from the model’s standard deviation, so that less reliable pairs
of parts have lesser influence on the estimate. After smoothing the histogram H
using kernel density estimation with a Gaussian kernel, we use its mode as the
global scale compensation parameter for this image.

A second inference run is then performed using the scale-compensated inter-
part geometry together with a geometry model learned from scale-normalized
training examples. The scale estimates for the training data needed to build
this latter model are extracted using the same histogram-based procedure, using
ground truth pairs of parts instead of part detections.

4 Experimental Results

We evaluate the performance of our graphical model and its components for
spine detection and localization, based on annotated ground truth data.

Data Sets. T1-weighted MR images were acquired on a Philips 1.5T Achieva
scanner with a multi-station 3D FFE sequence. These 30 datasets each consist
of two station scans (224 × 224 × 180 voxels of extent 1.96mm × 1.96mm
× 1.5mm), which were combined into a single image and resampled to obtain
an isotropic voxel size of 2mm edge length. The image quality of these MR
acquisitions varied greatly. Artefacts and intensity distribution fluctuations due
to field inhomogeneities as well as pathologies such as vertebra fractures were
present in these data.

Training and Parameter Values. The tree classifiers were trained on 5000
positive examples for each of the 26 classes (intervertebral disks C1-2 to S2-3)
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Fig. 2. Local detection performance. A part is detected if any of the best k can-
didates is within 14mm of the ground truth location. Left: Detection performance
increases as more classification trees are used. Searching among the best 10 candidates
for each class gives about 70% detection rate with 150 trees. Right: Producing more
candidates increases the probability of detection, shown here for 150 trees. The line
indicates our choice of 10 candidates used in subsequent experiments. Note that using
a single local decision (the best candidate only) yields a poor detection rate of 36%.

and 50000 background examples (randomly picked patches from other image
regions), all generated by resampling from a training set of 16 images. During
resampling, the images were anisotropically scaled (±20%) and rotated (±π/4)
about a randomly defined axis.

For scale detection, we always used model (4). It identifies sufficiently many
parts such that the estimated scale correction factor differs from an estimate
using ground truth by at most 4%. Further parameters used were β = 0.01 and
γ = 0.1 in Eq. 5. In (2), we set α = 2

|V | . The parameters ast, bst for truncating
the Gaussians (3) and (4) were determined by multiplying by 0.8 (1.15) the
minimum (maximum) distance between parts observed in the training data.

Part Detector Performance. The part detectors are parametrized by the
number of trees and the tree depth. We limited the maximum tree depth to 30
and pruned at branches with less than 10 training samples, so that most branches
are actually much shorter. In order to set the number of trees to a reasonable
value, we conducted a series of experiments for assessing the detection accuracy
relative to annotated ground truth positions.

A detection is considered as “correct” if it occurs within a radius of 14mm
from the ground truth annotation, resulting in good overall localization.1 Fig. 2,
left, shows the results.

Another important parameter is the number of candidate points we produce
for each part class. This number determines the average running time of the
inference algorithm based on the graphical model. Motivated by the experimental
findings (cf. Figs. 2 right, and Fig. 3), we set the number of candidates per class

1 This value equals the minimum intervertebral disk distance in our data.
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Fig. 3. Local detection performance for each part. While the detection proba-
bility increases with the numbers of trees, it varies significantly for different parts. The
subsequent non-local inference using the graphical model is therefore essential in order
to cope with parts that are more difficult to detect.
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Fig. 4. Localization accuracy of the overall model variants. The box plots show
the median (center line), the lower and upper quartiles (box), and the extent of the
data (whiskers extending by at most 1.5 times the interquartile distance) excluding
outliers, which are separately plotted as crosses. Symbol A indicates the use of orienta-
tion information in the geometry model (4); symbol B indicates the rotational invariant
geometry model (3). Symbol p1 indicates missing-part postprocessing with appearance
information, and p0 without. Left: Distances to ground truth locations, averaged over
all classes, for each model variant A,p0A, p1A, B, p0B, p1B. Right: Proportion of cor-
rectly identified parts for each model variant.

to 10 in all subsequent experiments. An obvious modification is to let this number
vary for different part classes. We did not investigate this option, however.
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Overall Performance and Cross Validation. We determined the localization
accuracy and robustness of the complete model by leave-one-out cross validation
with 30 annotated images. In each of the 30 runs, 29 datasets were used for train-
ing the randomized tree classifier as well as either of the two geometry models
(3) and (4), and the remaining dataset was used for testing the resulting model,
utilizing the classifier together with graphical model inference, scale estimation,
and missing part postprocessing.

Localization accuracy results are summarized in Fig. 4. Due to the restriction
to interest points on the voxel grid as candidate locations, our model is not
expected to yield sub-voxel accuracy. Nevertheless, Fig. 4, left, shows that most
detected part locations are within a few millimeters of the ground truth position.

Using the geometry model with orientation (4) yielded an average ground
truth distance of 6.2mm (lower quartile 4.6mm, upper quartile 6.5mm) and a
part detection rate of 0.91. The rotational invariant model (3) resulted in an
average ground truth distance of 5.8mm (lower quartile 4.8mm, upper quartile
6.3mm) and a part detection rate of 0.95. Including appearance in the search for
missing parts improved this to 5.5mm and 5.1mm (part detection rates 0.94 and
0.97), respectively. Fig. 5 shows the localization errors for each class separately.
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Fig. 5. Localization accuracy for each part class. The class numbers correspond
to intervertebral disks C1-2 (class 1) to S2-3 (class 26). Left: Model using a geometry
model with orientation, and missing part postprocessing with appearance information.
Right: Rotational invariant geometry model, and missing part postprocessing with
appearance information.

Using the rotational invariant geometry model results in more accurate localiza-
tions with less outliers. An example result of the overall model fit, i.e. the most
probable configuration x, is visualized in Fig. 1.

Generalization to Novel Images. We tested the algorithm also on a set of 37
new images, that were not used for training nor for optimizing the parameters.
Using the rotational invariant geometry model and appearance information in



132 S. Schmidt et al.

the search for missing parts, yielded an average ground truth distance of 7.8mm
(lower quartile 5.3mm, upper quartile 9.5mm). This indicates that our models
generalizes well to novel data.

Semi-automated Incorporation of Expert Knowledge. We investigate
if, and to what extent the incorporation of expert knowledge (as used in semi-
automatic algorithms by ”clicking” on relevant anatomical structures) improves
the localization accuracy. We repeated the same series of experiments as described
above, but replaced the candidates for C1-2 with the expert’s annotation (ground
truth) and assigned to them an appearance probability of 1, while disallowing to
declare it as missing. The results improved slightly: The model including orien-
tation yielded an average ground truth distance of 5.8mm (lower quartile 3.9mm,
upper quartile 5.5mm) and a part detection rate of 0.94. The rotational invari-
ant model resulted in an average ground truth distance of 5.7mm (lower quartile
4.2mm, upper quartile 5.3mm) and also a part detection rate of 0.94.

5 Conclusion and Further Work

We presented a probabilistic graphical approach to the localization of spinal
structures, by fusing local part detection with non-local geometrical context.
The latter enables to revise local detections in case of ambiguous image data
or missing features. The inference algorithm returns always the globally optimal
configuration of parts conditioned on the observed image data, and does therefore
not suffer from initialization problems.

While our approach enables robust localization and appears to generalize well
to novel image data, it fails in cases of severe fractures that lead to geometrical
configurations not covered by the training data. Enlarging the latter will most
likely fix this problem.

Surprisingly, regarding computational complexity, the limiting component of
our current implementation are the local part detectors. For a full volume, they
take several minutes computation time. The subsequent combinatorial search
for the optimal configuration, on the other hand, runs below 1 second on the
average, despite the size of 1026 possible configurations. This proves empirically
the tightness of our upper-bound estimate used within the A∗-algorithm.

Our approach can be extended in several ways. For example, subvoxel localiza-
tion can be achieved by fitting more elaborate part models in a post-processing
step. Reduction of the processing time mainly depends on a more sophisticated
implementation of the part detectors. We also would like to point out, that our
model is sufficiently flexible to be adapted to the localization of other anatomical
structures.

An important topic of our future work concerns to handle also cases where
the total number of vertebrae differs from the standard of 24. The latter can be
achieved by extending the graphical model to include a latent unknown variable
that represents the major cases of anatomy deviation and has to be inferred as
part of the overall process.
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