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Modern biological research increasingly relies on image  
data as a primary source of information in unraveling the 
cellular and molecular mechanisms of life. The quantity 
and complexity of the data generated by state-of-the-art 
microscopes preclude visual or manual analysis and require 
advanced computational methods to fully explore the wealth 
of information. In addition to making bioimage analysis more 
efficient, objective, and reproducible, the use of computers 
improves the accuracy and sensitivity of the analyses and helps 
to reveal subtleties that may be unnoticeable to the human eye.  
Many methods and software tools have already been developed 
to this end, but there is still a long way to go before biologists 
can blindly trust automated measurements. Here, we 
summarize the current state of the art in bioimage analysis  
and provide a perspective on likely future developments.

As in many other facets of life in the twenty-first century, images have 
come to play a major role in biology. Whether the aim is to get a first 
glimpse of a suspected cellular mechanism in action or to rigorously 
test a biological hypothesis and convince others of its validity, images 
are increasingly the medium of choice. Our inclination to rely on 
images as a key source of information should not come as a surprise, 
with more than half of the human brain involved in vision1, explain-
ing the age-old adage ‘seeing is believing’. At the heart of our abil-
ity to visualize and investigate life at the cellular and molecular level 
with ever-increasing detail and sensitivity are technological advances 
in various fields. The past few decades have celebrated Nobel-prize 
winning inventions that have turned microscopy into nanoscopy and 
spurred the development of a broad arsenal of imaging modalities2 that 
are now becoming widely available. Their adoption and application to 
important biological problems, however, would not have been possible 
without equally groundbreaking advances in computing technology. 
Not only are computers indispensable for advanced signal reconstruc-
tion during image acquisition, they are now also largely responsible for 
handling much of the ‘big data’ resulting from microscopy.

Since the first uses of computers in biological imaging about  
50 years ago3, when a single experiment typically involved just a few 

images of some 200 × 200 pixels taking only 40 kilobytes of memory,  
data sets have grown exponentially in size. Today’s automated  
microscopes may capture information about three spatial dimensions, 
multiple time points, multiple viewpoints, multiple wavelengths,  
multiple biological parameters and more, resulting in terabytes 
of data. In response to the growing need for powerful automated  
solutions in processing and analyzing these data, a new field of bio-
technology has emerged known as bioimage informatics4. In this 
rapidly evolving field, computer scientists, image analysis experts, 
bioinformaticians, and biologists are joining forces in creating innova-
tive computational methods and user-friendly software tools to facili-
tate image-based biological experimentation. The ultimate goal is to 
replace human labor as much as possible with computer calculations, 
so that biologists can focus fully on formulating high-level hypotheses 
and designing increasingly sophisticated experiments, while improv-
ing the objectivity and reproducibility of these experiments. This will 
accelerate discoveries and breakthroughs, from basic biology all the 
way to clinical research.

The biggest challenge in this endeavor is to make computers ‘see’ 
and measure; that is, to enable them to automatically distinguish 
between relevant and irrelevant image information and to recognize 
and model spatial or temporal patterns of interest that could confirm 
or refute the hypotheses underlying the given experiment through 
quantitative analysis. This task of bioimage informatics is what we 
refer to as ‘bioimage analysis’. To date, methods addressing parts of 
the challenge have been developed in numerous studies, and flex-
ible software platforms5 are available for building bioimage analysis 
pipelines. In practice, however, it turns out to be very hard to design 
pipelines that work out of the box or across applications, and substan-
tial human effort is often spent on tuning parameters and correcting 
faulty output. This suggests that we are still very far from the ultimate 
goal. In this Perspective, we reflect on the current status of the field 
and ponder the future of bioimage analysis.

Virtues and vices of current methods
From our own human experience in interpreting visual information, 
we are easily tempted to think that it should not be too difficult to 
automate this task. Indeed, in the early days of artificial intelligence 
research (1960s), it was apparently considered not too much to ask 
an undergraduate student to “spend the summer linking a camera to 
a computer and getting the computer to describe what it saw”6. Since 
then, the enormous complexity of the problem has become apparent, 
and many subproblems of bioimage analysis have grown into vivid 
research areas (Fig. 1).

The first step in making sense of the image data is usually to pre-
process the data to reduce noise and other imaging artifacts. A promi-
nent example of preprocessing is deconvolution7, which attempts to 
undo the signal blurring inevitably introduced by any microscope. 
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Another frequently needed preprocessing step is image registration8, 
where images from, for example, different organisms or different time 
points of the same organism are aligned to allow a pixel-by-pixel 
comparison, fusion, or joint analysis of the images. The next step 
commonly taken is to detect the presence of various types of objects 
by extracting a range of image features using image-filtering tech-
niques9. Arguably, the most challenging step in bioimage analysis 
is image segmentation10, which aims to classify and group pixels as 
objects of interest or background. In the case of time-lapse image data, 
a related problem is to determine the trajectories of moving objects by 
frame-to-frame association of image information11. Once objects have 
been segmented and tracked, it is relatively easy to compute a host 
of quantitative descriptors of, for example, dynamics11, shape12, and 
texture13, which subsequently allow the objects to be characterized 
and distinguished using pattern recognition methods14. Many experi-
ments further require inspecting, correcting, or annotating results via 
interactive visualization15. The ultimate goal is building realistic com-
puter models to aid understanding of the cellular or molecular process 
under investigation16, which requires rigorous analytical approaches 
for information mining and statistical testing.

Well-designed bioimage analysis workflows based on these steps 
enable biologists to turn their data into biological discoveries and 

insights that otherwise would have proven elusive, as has been success-
fully shown in various areas. An obvious example is high-throughput  
screening (Fig. 2a), where the sheer volume of the data precludes 
manual analysis. State-of-the-art methods for cell segmentation and 
subsequent classification based on hundreds of morphological features 
extracted from nearly 200,000 time-lapse microscopy movies have 
been crucial in determining which of the ~22,000 human genes play 
a role in mitosis, via RNA interference experiments17. Other examples 
can be found in the area of neuroscience (Fig. 2b,c). Sophisticated 
tools for image registration and pattern recognition, though still 
requiring expert input, have been instrumental in reconstructing  
the connectome of, for example, the Drosophila optic medulla from 
electron microscopy image stacks, leading to the identification of  
the cell types constituting a motion detection circuit18. Bioimage 
analysis has also transformed the study of intracellular dynamic 
processes (Fig. 2d). Computational methods for particle detection, 
tracking, and statistical processing of their intensity fluctuations in 
fluorescence speckle microscopy movies revealed that the process of 
protrusion in cell migration is mediated by two spatially co-localized 
yet distinct actin networks19. More recently, related methods have 
identified the regulation of focal adhesion dynamics in cell migration 
by specific signaling pathways20.

Despite the successes, developing powerful bioimage analysis  
solutions is far from trivial for a given experiment. It requires 
researchers to identify the necessary processing steps to go from pixel 
information to biologically meaningful measurements and models, to 
select suitable computational algorithms for each step and tune their 
parameters, and to link them in a software workflow as automated 
as possible. The fact that one can easily find hundreds of research 
papers proposing image segmentation methods for even just one part 
of an analysis, all of them using different algorithms or parameter 
settings10, suggests that, apparently, none of them really solves the 
segmentation problem at large, but only in a very limited context. We 
observe that, at present, nearly every biological experiment requires 
substantial effort in fine-tuning the analysis pipeline. This does not 
bode well, as experiments continue to grow in scale and throughput. 
The rapidly increasing rate of experimentation and image acquisi-
tion demands that bioimage analysis methods become more robust 
and generic so they can be reused in a wide range of applications 
with minimal effort. As biology zooms in on more complex cellular 
systems, the analysis task will only become harder, underscoring the 
need for flexible solutions. To this end, several challenges will need to 
be addressed, both cultural and technical, as discussed below.

Cultural issues in bioimage analysis
Broadly speaking, bioimage analysis is where computer vision meets 
biology21. As a branch of artificial intelligence, computer vision is 
concerned with the development of theories and algorithms to make 
machines interpret visual data autonomously and quantitatively. Its 
numerous applications include video surveillance, biometric verifica-
tion, medical diagnostics, and many others6. The physical principles 
used to capture images and the physical properties of the objects of 
interest in these images vary widely from application to application. 
Thus, expert domain knowledge is critical to make computer vision 
tools successful. In biology, developing a tool that can, say, distinguish 
between normal and abnormal cell migration in a cancer screening 
assay, requires profound knowledge of the labeling technique, how this 
affects cell appearance in the images given the type of microscopy used, 
and what, biologically, defines a normal or abnormal phenotype.

Clearly, to optimally design and execute experiments involving 
bioimage analysis, expertise in both computer vision and biology 
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Figure 1 Common steps in bioimage analysis. The ultimate goal is to 
increase our knowledge of the biological process under investigation. 
Based on existing knowledge, new hypotheses are posed and new imaging 
experiments performed. Many steps are often needed to extract new 
knowledge from the images: preprocessing (quality control, illumination 
correction, denoising, deconvolution, registration); detection (determining 
the presence of objects based on image-filtering techniques); segmentation 
(grouping of pixels relating to the same object or class); tracking (linking 
detected objects from frame to frame in a movie); quantification (of shape, 
dynamics, texture, and other object properties); recognition (clustering or 
classifying objects and patterns); visualization (rendering high-dimensional 
images or results and allowing inspection, correction, or annotation); 
analytics (statistical processing of the extracted information); and modeling 
(constructing high-level descriptions of the results). Depending on the 
application not all steps may always be needed (shortcuts are possible). 
Two-headed arrows are used everywhere to indicate the interrelation and 
possible feedback between the steps. Any of the steps may also contribute 
to knowledge along the way, affecting other steps.
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is needed. For researchers from the two fields to work productively 
together, they must not only learn each other’s specialized language, 
but also understand differently emphasized scientific principles 
across these fields. Computer scientists tend to be dismayed at the 
irreproducibility of biological systems and the seemingly fuzzy ques-
tions asked. For their part, biologists find computer scientists tend 
toward overly reducing complex systems to make problems tractable. 
Increasing the exposure of students to the practices and philosophies 
of both disciplines will yield a generation of researchers who can meet 
closer to the middle.

Each discipline’s rewards culture will also need to shift to favor col-
laboration. Computer vision and biology are both highly competitive 
fields of their own, with different primary goals and constraints22. 
Computer scientists often shy away from problems likely solvable 
with existing algorithms, as papers lacking mathematical novelty are 

less publishable in their favored venues. But novel algorithms can 
take so much time to develop that biologists shift to manual analysis, 
or more feasible problems, to secure publishable output of their own. 
Many biology laboratories hire their own computational technician, 
who typically works in isolation on the laboratory’s very specific data 
analysis problems, often coming up with solutions that are neither 
optimal, reusable by others, nor publishable. Moreover, although well-
engineered software is crucial to ensure long-term stability, neither 
computer vision researchers nor biologists generally consider soft-
ware engineering their main responsibility, and do not usually look 
ahead to software support.

As research in biology becomes more and more multidisciplinary, 
it is crucial that funding bodies come to recognize and foster each 
and every aspect, including software engineering23. At present, it is 
not uncommon for a grant application to get rejected even in inter-
disciplinary programs because the research (or the principal inves-
tigator’s expertise) is deemed too applied by computer scientists and 
not sufficiently biological by life scientists. Academia and research 
institutes need to become highly attractive places for professional soft-
ware engineers. These experts should not be judged by the traditional 
measuring sticks of success in science (notably publications) but by 
criteria reflecting software impact and (re)usability24.

Computer vision versus human vision
A cornerstone of bioimage analysis, computer vision research itself 
has traditionally been inspired by human vision. The prevailing 
view among vision scientists is that “there is no single equation that 
explains everything25” but visual information is processed in various 
stages involving increasingly sophisticated levels of representation. 
Upon entering the eyes, light is first probed by the retinal receptive 
fields operating at a wide range of scales, resulting in a ‘primal sketch’ 
of the image information, such as the presence, location, orientation, 
and velocity of blobs, edges, ridges, and other features. These fea-
tures have been studied extensively in computer vision26 and methods  
for their detection are used in virtually every bioimage analysis  
pipeline. But as we move from the retina into the different areas of the 
visual cortex and deeper into the brain, our understanding decreases 
of how low-level information extraction drives high-level cognition 
and vice versa (feedback). Therefore, it is not surprising that many 
computational concepts have been proposed over the years, based on 
different assumptions27.

What is clear is that, for humans, seeing is a matter of learning. 
Our capacity to make sense of visual data so effortlessly, even when 
the data are very complex or incomplete, can be attributed to the 
brain’s continuous association of new input with the memory of pre-
vious observations and interpretations. This memory is enormous28 
and accommodates highly structured (generalized) representations 
beyond the level of individual items29. A long-standing challenge in 
artificial intelligence is to emulate this capacity with computers, using 
machine learning methods30. The rules of operation of such methods 
may be learned from explicit input–output relationships provided by 
the user (‘supervised learning’), or derived implicitly from the data 
itself (‘unsupervised learning’), or based on a combination of both 
(‘semi-supervised learning’). In this process, a fundamental trade-off 
must be made between the amount of knowledge that can be built 
into a system and the amount of available data to learn from. Given a 
well-defined problem and sufficient data, machine-learning methods 
can be successfully applied in biology31, and software tools to build 
bioimage analysis pipelines based on them are freely available5,14.

One important question is to what extent bioimage analysis systems 
should strive to mimic the human vision system. This is especially 

a b

c d

Figure 2 Examples of bioimage analysis in various applications.  
(a) In high-throughput image-based experiments, thousands to millions  
of images are acquired by automated microscopes, requiring fully 
automated segmentation algorithms that are robust to unusual cell 
phenotypes. Here, two-dimensional (2D) images (top left) showing DNA 
(blue) and a green fluorescent protein (GFP)-labeled protein (green) 
undergo model-based segmentation of nuclei (top right). Then, thousands 
of features are computed for each cell, resulting in a matrix (bottom) of 
cells versus feature values (shown color coded) used for morphological 
profiling48. (b) In neuroscience, the morphology of neuronal cells is 
often studied in relation to function. The example shows the result of 
automated three-dimensional (3D) reconstruction of a single neuron from 
fluorescence microscopy image stacks based on intensity thresholding 
followed by graph searching and pruning49. (c) Volume electron 
microscopy allows analysis of neural tissue at the nanometer scale.  
Here, automated synapse segmentation in 3D image stacks is achieved 
by interactive machine learning for semantic pixel classification, followed 
by another machine learning step at the object level to discriminate 
postsynaptic densities (green) from other structures (red)50. (d) In studies 
of intracellular dynamic processes, the trajectories of thousands of 
particles need to be extracted from time-lapse image data. The example 
shows a 2D+time spatiotemporal visualization (time runs along the 
vertical axis) of automatically tracked microtubule tips moving in the 
cytoplasm. The rendering also shows one time frame of the movie. ©
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relevant because advanced deep-learning methods are now able to 
perform comparably to humans in certain tasks32. Some strengths 
of human vision also imply serious weaknesses that are best avoided. 
For example, humans tend to focus on phenomena that support pre-
conceived ideas, and depending on prior experiences, two observers 
may focus differently. Also, the association of new input with previous 
observations bears the risk of missing subtle differences between simi-
larly looking yet distinct image events21. This lowers the objectivity, 
reproducibility, and sensitivity of analyses, whereas the aim of using 
computers should be to maximize them. Future computational bioim-
age analysis will greatly benefit from more research into the precise 
limitations of human vision and how to overcome them. This also 
touches on the issue of whether or not an expert biologist’s observa-
tions should serve as the ‘gold standard’ in any part of the analysis, 
and in what ways humans and computers can best complement each 
other (man–machine interaction).

Acceleration by community efforts
Choosing an appropriate computational method for each step in a bio-
image analysis pipeline requires in-depth knowledge not only of which 
methods are available, but especially which of these is best under which 
conditions. Discerning this from the literature is usually impossible. 
Biology-oriented papers generally aim to answer a biological question 
by any means possible, and thus rarely include comparative analyses of 
alternative methods or usable code. Conversely, papers from computer 
vision groups typically aim to demonstrate the superiority of a new 
method and provide much mathematical detail, but the claims are 
often based on very limited biological data, or very narrow and possi-
bly biologically irrelevant performance criteria. In the rare case of pub-
lished comparative analyses, the methods are usually (re)implemented 
or tuned by the authors, not by the original inventors.

The need for establishing well-defined subgoals and performing fair 
and consistent evaluations and comparisons of methods to accelerate 
progress in computer vision has been apparent for several decades33. 
Since the early 2000s, this has led to the organization of so-called 
challenges, in which researchers working on a particular problem 
are stimulated to put their methods to the test, based on standardized 
data and performance metrics. In biomedical imaging at large, over 
100 such challenges have been held to date (http://grand-challenge.
org/). Examples in bioimage analysis include challenges on neuron 
reconstruction34, particle tracking35, cell tracking36, single-molecule 
localization37, and mitosis detection38,39 (Table 1). Such community 
efforts reduce potential sources of bias and greatly help the field by 
revealing the strengths and weaknesses of current methods and estab-
lishing a ‘litmus test’ for future developers aiming to improve on the 
state of the art.

A limiting factor in the current modus operandi of challenges is 
that the competing teams continue working in isolation on their own 
methods and in their own software environments. Not only does  
this often give rise to technical issues (e.g., in importing data and 
exporting results), it also bears the risk of duplicate work (the same 
basic algorithms are implemented by multiple teams), and may lower 
reproducibility and hamper utilization of the results. We suggest 
that the impact of challenges can be further increased by encourag-
ing competing teams to port their methods to a common software  
platform (to be chosen by the community) and even to embark  
on collaborative development of new methods. An example project 
currently pioneering this approach is BigNeuron40.

Organizing and participating in challenges is generally a lot of 
work and rarely supported by research funders. This makes many 
researchers (whether from computer vision or biology) reluctant to 

engage in them. However, these same researchers often spend enor-
mous amounts of time (and thus project funding) on figuring out 
and reimplementing the best methods themselves. We argue that the 
return on investment will be higher through involvement in well-
organized challenges. But even outside the context of such community 
efforts, the release of results in the form of user-friendly open-source 
software22–24 and annotated image data sets41 should be increas-
ingly favored by funding agencies to maximize reproducibility and  
minimize wasting resources42.

Future directions
Bioimage analysis has come a long way since its first steps half a  
century ago, yet there is a long way to go before computers can inter-
pret data autonomously and biologists can blindly trust the findings. 
We have already touched upon various technical and cultural issues 
and hinted at possible future directions. In closing this article, we 
attempt to extrapolate some of the developments in the field and how 
they may impact bioimage analysis in the longer term.

On the technical side, much can be gained simply by better 
organization of the current state of the art. For example, published  
solutions for any of the discussed subproblems (Fig. 1) are increas-
ingly becoming available as stand-alone software tools or as modules 
of general-purpose bioimage analysis platforms. This has generally 
been extremely helpful in minimizing the effort required to enable the 
testing of multiple approaches against each other on a problem, often 
suiting both computer scientists and biologists with no training in 
image analysis or computation. However, a failure to provide detailed 
specification of their design criteria, operation modes, boundary 
conditions, and optimal parameter settings for a range of example 
applications can lead to inappropriate reuse of methods, suboptimal 
performance, and lost time in correcting faulty results. This problem 
could be remedied by an online centralized database where devel-
opers and users contribute to cataloging the applicability of avail-
able tools by sharing their knowledge and experience. A first step in  
this direction is the BioImage Information Index (http://biii.info/) 
supported by Euro-BioImaging (http://www.eurobioimaging.eu/),  
the pan-European research infrastructure project for bioimaging  
technologies, and NEUBIAS (http://eubias.org/NEUBIAS/), the  
network of European bioimage analysts. Going one step further,  
interoperable versions of the tools themselves could be collected in 
the database, and software platforms capable of interactive construc-
tion of analysis workflows could connect to the database, enabling  
users to quickly identify, select, and use the best solutions for their 
problems. Not only could this stimulate optimal usage of existing  
tools by experimental biologists, but also it could reveal lacunas 
where new solutions are very much needed, providing highly valuable  
guidance to computer scientists.

Another very important technical development in dealing with the 
ever-increasing capacity of modern microscope systems to produce 
big data volumes concerns the interplay between image acquisition 
and image analysis. Often the paradigm in bioimaging experiments 
is to simply acquire as much image data as possible and afterwards let 
the analysis software separate the wheat from the chaff. Typically, this 
results in data sets that are vastly larger than needed to address the 
specific biological question under study and, in addition to causing  
unnecessarily high exposure of the sample, requires excess data 
storage and computational power. Treating acquisition and analysis  
as independent experimental steps is often a non-viable option. 
Biologists, microscopists, and computer scientists will need to join 
forces in developing ‘smart imaging’ systems43 and more generally 
‘smart instrumentation’44, in which sample preparation, targeting, 

©
 2

01
6 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

http://grand-challenge.org/
http://grand-challenge.org/
http://biii.info/
http://www.eurobioimaging.eu/
http://eubias.org/NEUBIAS/
http://www.nature.com/naturebiotechnology/


1254	 VOLUME 34 NUMBER 12 DECEMBER 2016 nature biotechnology

P e r s P e c t i v e

acquisition, and analysis are tightly connected through intelligent 
feedback mechanisms to minimize data overhead and maximize 
information content. This could be as simple as first acquiring  
images at low resolution, then identifying the areas of interest using 
appropriate detection methods, and subsequently acquiring high-
resolution images of only those areas. A more sophisticated strategy 
would be to iterate over multiple resolutions and to involve higher-
order analysis steps (Fig. 1) in the process, ultimately resulting in a 
fully integrated approach.

On the cultural side, the importance of fostering cross-fertiliza-
tion and collaboration between the disciplines involved can hardly 
be overstated. The dialog between biologists and computer scientists 
has already been greatly improved in recent years by the organiza-
tion of bioimage analysis workshops at biology conferences as well as  
at computer vision conferences, and by multidisciplinary meetings, 
such as the BioImage Informatics conference series (http://www. 
bioimageinformatics.org/). A more profound recent trend is the estab-
lishment of multidisciplinary education programs. For example, some 
technical universities and biomedical institutes are joining forces to 
offer students training in cell and molecular biology as well as in the 
computational sciences, thus resolving cultural barriers. As the new 
breed of professionals rises and takes on leading roles in the com-
ing years, we can expect fundamental changes in the way research is 
being organized and also in how it is recognized by funding agencies. 
In the shorter term, a great opportunity for fruitful collaboration in 
taking bioimage analysis to higher levels is offered by the challenges 
framework. Standardization of benchmarks, including arriving at a 
consensus regarding representative data, performance criteria, algo-
rithm implementation, integration, and dissemination, requires active 
participation of computer scientists and biologists and is probably the 
fastest route to improving the development, availability, and interop-
erability of bioimage analysis solutions. Engagement in such activities 
is being made considerably easier by online platforms, such as those 
developed by the Consortium for Open Medical Image Computing 
(https://grand-challenge.org/Contributors/).

We expect bioimage analysis solutions to become increasingly auto-
mated and robust. The capabilities of current solutions are already 
moving beyond simply automating what a biologist can do and are 
beginning to enable comprehensive analysis of all available informa-
tion. This is especially important, given that imaging is not the only 
source of information in biology. Genomics, proteomics, transcrip-
tomics, metabolomics, and other ‘omics’ all provide complementary 
views on biological processes, and their combination with imaging 

will yield a much more complete picture than any of these fields can 
offer individually45. The data deluge in all these fields poses major 
challenges in terms of standardized data storage and retrieval46 but 
even more so for integrative data analysis. Although the develop-
ment of methods for single-source data analysis remains important, 
methods that properly account for the links between data sets from 
multiple sources have the potential to achieve gains that go far beyond 
those possible when each data set is analyzed separately47. Thus we 
anticipate research in the field to become even more multidiscipli-
nary. Meanwhile, ongoing advances in bioimage analysis are already 
putting more and more useful tools into the hands of biologists and 
will prove essential in unraveling the cellular and molecular processes 
of health and disease.
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