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Abstract

In this paper we present a novel convex shape prior functional with potential
for application in variational image segmentation. Starting point is the Gromov-
Wasserstein Distance which is successfully applied in shape recognition and classi-
fication tasks but involves solving a non-convex optimization problem and which is
non-convex as a function of the involved shape representations. In two steps we de-
rive a convex approximation which takes the form of a modified transport problem
and inherits the ability to incorporate vast classes of geometric invariances beyond
rigid isometries. We propose ways to counterbalance the loss of descriptiveness in-
duced by the required approximations and to process additional (non-geometric)
feature information. We demonstrate combination with a linear appearance term
and show that the resulting functional can be minimized by standard linear pro-
gramming methods and yields a bijective registration between a given template
shape and the segmented foreground image region. Key aspects of the approach are
illustrated by numerical experiments.

1 Introduction

1.1 Overview, Motivation

Convex variational approaches have been applied successfully in image processing and
computer vision to obtain nearly global optimizers for models that are originally combi-
natorial and hard to solve exactly [7, 21, 16]. The energy functionals are usually composed
of a data term and a regularizer. In image segmentation the data term can be used to
process various kinds of local features whereas the regularizer aims to keep the resulting
segmentation contours smooth.

To this date the global shape of the contour has not been incorporated into this
framework in a satisfying fashion. Common proposals to formulate shape-prior functionals
describe shapes by parametrizing their contour or as the level set of a function, suitable
for applying machine learning methods to obtain a notion of the set of allowed contours
[9, 8, 27]. However there are several severe drawbacks:
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Figure 1: Shape prior based convex variational segmentation: (a) template shape for
representing prior knowledge. (b) input image, gray values are interpreted as foreground
affinity coefficients (white indicating foreground). (c) globally optimal segmentation: the
correct shape is located. Clutter and objects with wrong shape are neglected.

(i) The contour representation is not computationally compatible with the usual rep-
resentation of segmentation regions by their indicator functions. The map between
the two representations is mathematically complex.

(ii) Except for the simple case of Gaussian statistics more sophisticated penalty functions
employing kernel methods tend to yield highly non-convex functionals.

(iii) Making the prior functional invariant under reparametrization of the contour or
Euclidean isometries is a tedious task. While this alleviates the problem of corre-
spondence between contour points, the mechanisms underlying shape matching and
the integration of such a prior with variational segmentation are involved computa-
tionally and from the viewpoint of optimization.

For the tasks of shape recognition, classification and for finding meaningful correspon-
dences between two shapes powerful approaches based on the Gromov-Hausdorff Distance
and related shape similarity measures have been applied, being able to handle vast classes
of transformations of the data (see Section 2.2). But the power is paid for by compu-
tational complexity. Thus, usually only subsets of the shapes, obtained e.g. by farthest
point sampling, can be compared, which is not enough if the segmentation process requires
resolution on the pixel level. Also these frameworks consider the shapes to be static in
the sense that they are only concerned in computing the distance between fixed shapes
and do not address the question of how one shape should be altered to obtain a better
matching.

1.2 Contribution, Organization

In this paper we propose a novel approach to modelling shape priors for guiding image
segmentation. We will rely on metric measure spaces (mm-spaces) [13, 20] for shape
representation. Due to its computational complexity the Gromov-Wasserstein Distance
cannot be used for the construction of shape prior functionals directly. Its evaluation
involves solving a non-convex quadratic assignment problem and it is non-convex as a
function of the compared shapes. To overcome these problems we present two suitable
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approximation steps, arriving at a modified Wasserstein Distance with a particular cost
function and relaxed marginal constraints.

The representation of shapes by mm-spaces is compatible to the representation of
segmentation regions by relaxed indicator functions which simplifies the application in
variational segmentation approaches. In this paper we demonstrate combination with
a linear appearance term common to many models. We show that in this case shape
optimization and distance computation for the optimal shape can be performed simulta-
neously by solving a single partial linear assignment problem.

The key aspects of the proposed approach are

(i) a sound mathematical basis for both shape and matching,

(ii) its convexity which yields globally optimal results independent of initialization,

(iii) the generation of a full correspondence between two given shapes,

(iv) the implementation of large classes of geometric invariances by choosing a suitable
metric,

(v) representation compatibility which simplifies combination with other terms (e.g. ap-
pearance model) and application in image segmentation tasks (for a related frame-
work see [25]),

(vi) the applicability to a wide range of data within the very same framework based on
metric measure spaces.

The scope of this paper is to present the mathematical framework and to illustrate the
properties above by a range of numerical experiments. The integration of the approach
into a full variational segmentation approach is beyond the scope and subject of our future
work.

The rest of the paper is organized as follows: Section 2 will review related litera-
ture, Section 3 will introduce the necessary mathematical background for our own de-
velopments, described in Section 4. Numerical illustrations of the proposed prior will be
discussed in Section 5. The paper concludes in Section 6.

2 Related Literature

2.1 Wasserstein Distance in Image Processing

The notion of optimal transport dates back to the 18th century when Monge considered
the question of how to move construction materials in the most efficient way. Kantorovich
independently rediscovered the problem in the 20th century in a convex formulation apt
for the language of linear programming. Optimal transport since then has been studied
by numerous researchers and applied to a wide range of problems in various fields (see for
example [29] for a modern comprehensive monograph and a brief historical outline). Thus,
a variety of labels and names is associated with it: Optimal Transport, Mass Transport,
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“Earth Mover’s Distance”, Monge, Kantorovich, Rubinstein, Wasserstein, to name a few.
For the sake of readability we will in the following use the term Wasserstein Distance
without intending to take credit away from everyone else.

Also in mathematical image processing the Wasserstein Distance has become a power-
ful tool: In [14] the L2 Wasserstein Distance between two grayscale images is computed.
The application in mind is to obtain registrations between different images of a non-rigid
object in different states of deformation, a task that for example comes up in analyz-
ing medical imaging data of moving organs. The questions of geometric invariance and
combination with appearance models are not addressed in this paper: A meaningful reg-
istration will only be computed if the images are aligned properly and gray values are
directly converted into mass densities without handling potential detection errors.

The authors of [4] use the Wasserstein Distance as a measure of data-fidelity in an
image regularization task. Given noisy input data a target measure is sought after that
minimizes the weighted sum of a regularization function and the L2 Wasserstein Distance
between input and target. Naturally the target measure is not known beforehand. This
is a common feature of our work presented here although we swap the roles, as we are
not concerned with density estimation: The Wasserstein Distance will play the part of
the regularizer while another function will determine the fidelity between in- and output.

The idea of [22] is to compute the Wasserstein Distance between point clouds of
descriptor vectors taken from two different objects to perform shape classification. For this
purpose working with subsamples (in [22] only taken from the contours) of two shapes is
sufficient. This will not be possible when a full correspondence is wanted. The generation
of the descriptor vectors only uses shape-internal geodesic distances and thus is invariant
under the corresponding class of geometric transformations. Hence, the method is able
to recognize the same shape in different poses which leads up to the next point to be
discussed.

2.2 Isometry Invariant Shape Classification

An important challenge in shape related tasks is the incorporation of various geometric
invariances into the process. In this context it has proven to be a powerful approach
to represent shapes by autonomous metric spaces, detaching them from their embedding
spaces and thus providing large classes of invariances, depending on the choice of the
metric. Equipping an object with the Euclidean metric of the embedding space renders
internal distances invariant under translations, rotations and reflections, the Euclidean
isometries. Articulated, non-rigid objects can appear in various poses with very different
Euclidean distances in the embedding space. The geodesic metric based on pathlenghts
on or within the shapes is (in addition to Euclidean isometries) approximately invariant
under so-called bendings, deformations that for example correspond to the movement of
a joint.

For classification purposes one then has to develop a notion of distance between two
such metric spaces. One could compute some kind of shape signature based only on the
intrinsic metric information and compare these signatures for classification purposes. See
[23, 22] for signatures of different complexity, ranging from a sequence of numbers to
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point clouds in low dimensional spaces. In [11] the shapes are first detached from their
Euclidean embedding space and equipped with their geodesic metrics. Then they are re-
embedded into another low dimensional Euclidean space trying to replace the geodesic by
the Euclidean metric with as little distortion as possible (see Multi-Dimensional Scaling).
This strips off the vast class of non-Euclidean geodesic isometries from the representations.
The remaining isometries can separately be dealt with by the final comparison process.

Alternatively, as proposed in [20] one can use the Gromov-Hausdorff distance (intro-
duced in [13]) to measure directly the similarity of the whole metric structures corre-
sponding to two shapes, yielding equality if and only if the two derived metric spaces are
isometric. Computing the Gromov-Hausdorff distance involves solving a combinatorial
problem. This has led to the development of the closely related Gromov-Wasserstein Dis-
tance which can be computed by solving a quadratic optimization problem with linear
constraints. The objective function however is still non-convex, rendering solving prac-
tically impossible for large problem dimensions [18]. The fully discretized case under
the above-mentioned constraint of measures of equal weights is known as the Quadratic
Assignment Problem in the combinatorial literature [5].

The developers of these methods are naturally aware of such obstacles and thus strive
to supply bounds to the exact distances that are quick to compute and thus can be used
for preliminary decisions [18]. We will pursue a similar direction in this paper.

It should be mentioned that the choice of the underlying metric is a field of research in
itself: The geodesic metric appears to be the obvious choice to make the metric structure
independent of the pose. However it exhibits strong sensibility to noise, especially to what
one calls topological noise, the accidental connection between initially unconnected parts
(for example two legs touching at the lower ends). The diffusion distance of two points
assignes a weighted average of all available paths between these and thus provides more
robustness towards such perturbations [3, 19].

2.3 Extracting features from metric structure

Several ideas have been proposed as to how non-local properties can be extracted from
the metric structure of two-dimensional silhouettes. A well known example is the dis-
tance transform which assigns each point within the silhouette its minimal distance to
the boundary. In [12] the Poisson equation is solved within the boundaries. The solution
indicates the average time that particles starting at a given point require to reach the
boundary by diffusive motion. These two methods therefore stand in a similar relation
than geodesic metric and diffusion metric. From these descriptors one can then infer infor-
mation about the global structure of the objects like part decomposition and orientation
of limbs.

Due to approximations our approach necessarily loses some of the descriptiveness of
the full Gromov-Wasserstein Distance. Hence, we will discuss the potential of including
additional features from such descriptors to improve the quality of our prior functional
while at the same time keeping it computationally feasible.
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2.4 Heuristic Bipartite Matching

Though different in their technical origin there are other attempts to tackle matching and
registration that in their practical implementation somewhat resemble our proposal and
thus should be mentioned here. The shape context, introduced in [2], is a local descriptor
attached to a point that consist of histograms capturing the relative distribution of the
rest of the shape. A heuristic registration between two shapes is then computed based on
a similarity measure of the shape contexts. For the concept of comparing local descriptors
based on histograms over feature distributions see also for example [1]. Such a step to
compute pairwise matching costs between points of two shapes will naturally arise in our
approach in the course of making the model feasible by approximations. Unlike in prior
work, however, our costs are rigorously derived from the Gromov-Wasserstein Distance
leading to a general framework with favorable properties, as discussed in Section 1.2. The
authors of [17] set out to match two graphs equipped with Euclidean metrics based on
their metric and topological structure. The graphs are extracted from image data. To
improve robustness local features from the images such as shape context can be included
into the matching. The resulting optimization problem is combinatorial in nature but
still tractabe due to small tree-widths of the underlying graphical models which is owed
to the restriction to Euclidean metrics.

3 Mathematical Background

3.1 Notation and Setup

In the following (X, dX) and (Y, dY ) are discrete, finite metric spaces with the trivial
topologies (as induced by the metrics) in which all sets are open. P(·) will refer to the
set of Borel-measures on a given space.

A triple (A, dA, µA) where (A, dA) is a metric space and µA ∈ P(A) will be called
metric measure space [13]. We will rely on this concept to describe shapes: A can be
thought of as the embedding space with internal structure given by dA and µA could for
example be interpreted as measure of certainty as to what regions of A belong to the
shape.

For a measurable map f : A → B and a measure µ ∈ P(A), f]µ ∈ P(B) will denote
the pushforward measure of µ via f , defined by (f]µ)(σB) = µ(f−1(σB)) for all measurable
σB ⊆ B.

For two non-negative measures µA ∈ P(A), µB ∈ P(B) with equal mass, µA(A) =
µB(B), the set of coupling measures will be defined as

M(µA, µB) =
{
µ ∈ P(A×B) : µ(σ) ≥ 0∧

µ(σA ×B) = µA(σA)∧
µ(A× σB) = µB(σB)

∀ measurable subsets σ ⊆ A×B,

σA ⊆ A, σB ⊆ B
}
. (3.1)
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M(µA, µB) is always non-empty as it contains at least the (normalized) product measure
of µA and µB.

An element in µ ∈ M(µA, µB) can be understood as multivalued function between
the supports of µA and µB, where an element b ∈ B is assigned to those a ∈ A where
µ(a, b) > 0 and the value being a weight of the “strength” of the assignment. A special
role play assignments that are deterministic, i.e. ∀ a ∈ A with µA(a) > 0 there is precisely
one element b ∈ B such that µ(a, b) > 0 and vice versa. The existence of such assignments
will also be discussed in this paper.

We will not only be concerned with measuring deviations between shapes (for which
one must optimize over some set of coupling measures) but also with shape optimization.
For a non-negative measure µA ∈ P(A) the set of target measures in a measurable space
B will be defined as

TB(µA) =
{
µB ∈ P(B) : 0 ≤ µB(σB) ≤ |σB| ∧ µB(B) = µA(A)

∀ measurable subsets σB ⊆ B
}
. (3.2)

where the constraint 0 ≤ µB(σB) ≤ |σB| ensures that µB will always correspond to a
relaxed indicator function. When performing shape optimization w.r.t. µB for fixed µA
this is the feasible set for which coupling measures M(µA, µB) exist.

3.2 (Gromov-)Wasserstein Distance

Due to space limitations we cannot give a full revision of the mathematical background and
thus need to confine ourselves to stating the most central definitions. For a comprehensive
discussion of the Wasserstein Distances see for example [29].

Definition 3.1 (Wasserstein Distance). For a given cost function c : X×Y → R and two
non-negative measures µX ∈ P(X), µY ∈ P(Y ) with equal mass µX(X) = µY (Y ) define
the Wasserstein Distance as follows:

DW(c, µX , µY ) = inf
µ∈M(µX ,µY )

JW(c, µ) (3.3a)

with

JW(c, µ) =
∑
x,y

µ(x, y) c(x, y) (3.3b)

It is a common setup to choose X = Y and investigate DW(dp, µ1, µ2)1/p, 1 ≤ p <∞
where d is a metric on X.

Remark 3.1. If c(x, y) = c̃(x, y) + ∆c where ∆c is a constant with respect to x and y then
DW(c, µX , µY ) = DW(c̃, µX , µY ) + ∆c · µX(X).

For an introduction to the Gromov-Hausdorff Distance and a stepwise motivation and
development of the Gromov-Wasserstein Distance see for example [18]. For our purposes
the following definition is sufficient:
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Definition 3.2 (Gromov-Wasserstein Distance). For two non-negative measures µX ∈
P(X), µY ∈ P(Y ) with equal mass µX(X) = µY (Y ) define the Gromov-Wasserstein
Distance as follows:

DGW(µX , µY )p = inf
µ∈M(µX ,µY )

JGW(µ) (3.4a)

with

JGW(µ) =
∑

x,x′,y,y′

µ(x, y)µ(x′, y′)×

|dX(x, x′)− dY (y, y′)|p (3.4b)

with 1 ≤ p <∞.

We will denote the explicit dependence of p only in the rare cases where values for
different p are compared. 1 ≤ p <∞ is always assumed from now on.

There is a fundamental difference between the Wasserstein Distance and the Gromov-
Wasserstein Distance: The former assigns costs to each transport assignment from X to Y
independently given by c(x, y), the latter to pairs of transport assignments depending on
the function Γ(x, x′, y, y′) = |dX(x, x′)−dY (y, y′)|p, thus making it computationally much
more complex but at the same time more suitable for the implementation of invariances:
Only the relative position of assignments will matter.

3.3 Weighted Bipartite Matching

We would like to interpret the optimal coupling measures that arise from computing the
similarity function of two mm-spaces as assignment between the two shapes. Naturally a
deterministic assignment is easiest to interpret. Thus we will now provide some mathe-
matical background that will later on allow us to rewrite our optimization problems in a
suitable way to prove that deterministic solutions exist.

For two finite sets X, Y let G(V ;E) = G(X, Y ;E) the bipartite graph with disjoint
vertex sets X, Y and edges connecting each vertex x ∈ X with all vertices y ∈ Y . We
assume |Y | ≥ |X| (concerning the plausibility of this assumption see also Remark 4.1).
The set of neighbours N(X ′) for any subset X ′ ⊆ X then satifies |N(X ′)| ≥ |X ′|, implying
existence of a matching covering all points of X (Thm. of Hall, [15, Thm. 10.3]).

Given some weights w ∈ R|E|+ assigned to the edges E, the maximum matching problem
asks for a subset E ′ ⊂ E of non-incident edges, represented by an edge indicator vector
z ∈ {0, 1}|E|, that maximizes the corresponding weight

∑
e∈E′ we, i.e. it solves

max
z∈R|E|+

〈w, z〉,
∑
e∈E(v)

ze ≤ 1 ∀ v ∈ V.

In terms of the incidence matrix A ∈ {0, 1}|V |×|E| of the graph G, the problem reads

max
z
〈w, z〉 s.t. z ≥ 0, A z ≤ 1|V |. (3.5)
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According to the theorem of Hoffman and Kruskal [15, Thm. 5.19], there will be an integral
solution z, ze ∈ {0, 1}, ∀e ∈ E, because the incidence matrix A of a bipartite graph is
totally unimodular [15, Thm. 5.24] and the vector on the r.h.s. is integral.

For further reference, we detail the structure of A. We order the vertex set V = X∪Y
by adjoining the linearly ordered set Y to the linearly ordered set X, and then edges
e = xy ∈ E, x ∈ X, y ∈ Y , by running through the set X for each y ∈ Y . Then A reads

A =

(
1
>
|Y | ⊗ I|X|
I|Y | ⊗ 1

>
|X|

)
∈ {0, 1}(|X|+|Y |)×|X||Y |, (3.6)

where ⊗ denotes the Kronecker product [28].

3.4 The Quadratic Assignment Problem

Let
Perm(n) =

{
µ ∈ {0, 1}|X|×|Y | : µ1|Y | = 1|X|, µ

>
1|X| = 1|Y |

}
be the set of n× n dimensional permutation matrices.

Consider now the Gromov-Wasserstein distance as introduced in Definition 3.2,

DGW(µX , µY ) =
∑

x,x′,y,y′

Γ(x, y, x′, y′)µ(x, y)µ(x′, y′),

with Γ(x, y, x′, y′) = |dX(x, x′)− dY (y, y′)|p.

for the following specific discrete case: Let |X| = |Y |, µX , µY be the counting measures
on X, Y and fix p = 2. Then, by confining the feasible set to the permutation matrices
Perm(|X|) this becomes an instance of a problem class, known as the Quadratic Assign-
ment Problem (QAP) [5].

It corresponds to the problem of matching weighted graphs X, Y having the same num-
ber of nodes. Let A,B denote the weighted adjacency matrices of X and Y , respectively,
with entries Ax,x′ = dX(x, x′), By,y′ = dY (y, y′) then we find

inf
µ∈Perm(|X|)

∑
x,x′,y,y′

Γ(x, y, x′, y′)µ(x, y)µ(x′, y′) = inf
φ

∑
x,x′

Γ(x, φ(x), x′, φ(x′))

(where we can represent the set of permutation matrices by the set of bijective assignments
φ : X ↔ Y )

= inf
φ

∑
x,x′

(
d2
X(x, x′) + d2

Y

(
φ(x), φ(x′)

)
− 2dX(x, x′)dY

(
φ(x), φ(x′)

))
= inf

µ∈Perm(|X|)

(
c− 2〈A, µBµ>〉

)
,

where the constant c collects the first two terms that do not depend on the variation of φ
and µ, respectively. The resulting objective, for general A,B defines a QAP problem.

The QAP problem belongs to the most difficult combinatorial problems. An estab-
lished benchmark library along with ground truth (global optima) exists [6] for problems
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whose size is considered as large if the number of nodes exceeds say |X| = 50. Further-
more, a hierarchy of relaxation bounds has been established ranging from simple spectral
approaches to advanced and computationally expensive semidefinite relaxations – cf. [24]
and references therein.

4 Approximate Gromov-Wasserstein Distance

Having briefly surveyed the necessary mathematical background we will now develop our
own contributions.

If computational complexity was not an issue, a potential energy functional for varia-
tional image segmentation could be

E(µY ) = E0(µY ) +DGW(µX , µY ) (4.1)

with two mm-spaces (X, dX , µX) and (Y, dY , µY ). (X, dX , µX) will play the role of prior
knowledge by representing a prototype of the shape that we are after. It will therefore
be referred to as template. (Y, dY , µY ) will describe the image and a segmentation pro-
posal therein. The function E0 will contain other typical components of a segmentation
functional (e.g. an appearance model). The density function of µY can be interpreted as
relaxed indicator function thus making the shape representation by mm-spaces compati-
ble to the region representation by indicator functions. So all terms in the functional will
be functions of µY and not require any representation conversion.

Remark 4.1. In the course of this paper we will assume |Y | ≥ |X|. It can be seen here
that this is virtually no restriction for the application of shape segmentation: (Y, dY )
represents the whole image of which the object we are looking for, its shape described by
(X, dX , µX) and its location given by µY , only takes up a fraction (if the object was larger
than the image, we could not make out its shape anyway).

Unfortunately computational complexity is in fact a crucial issue. Computing the
value of DGW requires solving a non-convex optimization problem and it is non-convex
as a function of µY , thus rendering the functional (4.1) unfeasible. In the following we
will propose two suitable approximations to overcome these obstacles while keeping the
favourable properties of the Gromov-Wasserstein Distance like geometric invariance. We
show that for a linear appearance term E0(µY ) the resulting functional is a modification
of the Wasserstein functional with relaxed Y -marginal constraints. We prove existence of
optimal binary µY with deterministic optimal coupling measures that provide a bijection
between the template µX and the optimal segmentation region indicated by µY .

It should be noted at this point that the shape prior proposed here does not yet contain
a model for non-isometric shape variations. We feel however that this is something that
can be built on top of the current approach when the more fundamental problems of
convexity and isometry invariance have been overcome.

Major properties of our approach, including geometric invariance, absence of the ini-
tialization problem, full correspondence, significant noise resistance compared to appear-
ance term alone, will be illustrated in Section 5.
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4.1 Linear Approximation

Computing the Gromov-Wasserstein Distance implies solving a non-convex quadratic
problem which is unfeasible in high-dimensional spaces. Here we discuss a way of ob-
taining an approximate solution by linearizing the functional properly.

Definition 4.1 (Linear Approximation of Gromov-Wasserstein Distance).

D1(µX , µY ) = inf
µ∈M(µX ,µY )

J1(µX , µY , µ) (4.2a)

with

J1(µX , µY , µ) =
∑
x,y

µ(x, y) c1(µX , µY ;x, y) (4.2b)

where

c1(µX , µY ;x, y) = inf
µ′∈M(µX ,µY )

∑
x′,y′

µ′(x′, y′) |dX(x, x′)− dY (y, y′)|p (4.2c)

=DW(|dX(x, ·)− dY (y, ·)|p, µX , µY ). (4.2d)

Note that D1(µX , µY ) = DW(c1(µX , µY ; ·, ·), µX , µY ). It can easily be seen that this
provides a lower bound to the exact Gromov-Wasserstein Distance.

Proposition 4.1.
D1(µX , µY ) ≤ DGW(µX , µY )p

Proof. As

c1(µX , µY ;x, y) ≤
∑
x′,y′

µ(x′, y′)|dX(x, x′)− dY (y, y′)|p

for µ ∈ M(µX , µY ) one finds J1(µX , µY , µ) ≤ JGW(µ) for µ ∈ M(µX , µY ) and therefore
also D1(µX , µY ) ≤ DGW(µX , µY ).

The relaxation D1 can be interpreted as follows: For every potential assignment x↔ y
one evaluates how well the rest of the shapes can be matched with respect to the fixed
assignment x↔ y. For all pairs in X × Y these mismatch-scores are then used as a cost
function for a linear Wasserstein functional.

We will give some analytical results that allow for efficient numerical implementation
of such matchings problem in Sec. 4.4.

4.2 Flexible Y -Marginals

For fixed µY one can easily compute the value of D1(µX , µY ). However it is non-convex as
a function of µY and thus cannot yet be used in an approach like (4.1). The non-convexity
arises from the dependency of c1 on µY . We will now propose a way to estimate a static
cost function with the aid of an appearance term. Let ∆ : P(Y )→ R be a convex function
that for a given µY rates its plausibility as a segmentation based on local features (for
a review on potential local features see for example [10]). Then consider the following
definition:
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Definition 4.2.

Dλ·∆
2 (µX , µY ) = inf

µ∈M(µX ,µY )
Jλ·∆2 (µX , µY , µ) (4.3a)

with

Jλ·∆2 (µX , µY , µ) =
∑
x,y

µ(x, y) c2(µX ;λ ·∆;x, y) (4.3b)

where

c2(µX ;λ ·∆;x, y) = inf
µY ∈TY (µX)

(
inf

µ′∈M(µX ,µY )

∑
x′,y′

µ′(x′, y′) · |dX(x, x′)− dY (y, y′)|p+

λ ·∆(µY )

)
(4.3c)

= inf
µY ∈TY (µX)

(
DW(|dX(x, ·)− dY (y, ·)|p, µX , µY ) + λ ·∆(µY )

)
. (4.3d)

Compared to D1 the relaxation of D2 goes one step further: For a hypothetical as-
signment x ↔ y the best potential assignment of the rest of the shapes is sought-after.
But now µY is no longer fixed but is optimized over while taking the appearance term
into account. For D1 non-convexity is removed by replacing multiple occurences of µ by
different variables, in D2 this step is extended to µY . The flaw of these relaxations is that
after optimizing the different variables need no longer be consistent. On the other hand,
this achieves convexity w.r.t. µY which is vital for application in variational frameworks.
Also, D2 gives a lower bound for the Gromov-Wasserstein distance on the basis of Prop.
4.1 and the following Proposition:

Proposition 4.2.

Dλ·∆
2 (µX , µY ) ≤ D1(µX , µY ) + λ · µX(X) ·∆(µY )

Proof.

c2(µX ;λ ·∆;x, y) = inf
µ′Y ∈TY (µX)

(
DW(|dX(x, ·)− dY (y, ·)|p, µX , µ′Y ) + λ ·∆(µ′Y )

)
(4.4a)

≤DW(|dX(x, ·)− dY (y, ·)|p, µX , µY ) + λ ·∆(µY ) (4.4b)

∀µY ∈ TY (µX)

=c1(µX , µY ;x, y) + λ ·∆(µY ) (4.4c)
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and thus by virtue of Remark 3.1

Dλ·∆
2 (µX , µY ) =DW(c2(µX ;λ ·∆; ·, ·), µX , µY ) (4.4d)

≤DW(c1(µX , µY + λ ·∆(µY ); ·, ·), µX , µY ) (4.4e)

=DW(c1(µX , µY ; ·, ·), µX , µY ) + λ · µX(X) ·∆(µY ) (4.4f)

=D1(µX , µY ) + λ · µX(X) ·∆(µY ) (4.4g)

Summarizing all presented approximation steps we conclude:

Dλ2·∆
2 (µX , µY ) + λ1 ·∆(µY ) (4.5a)

≤D1(µX , µY ) + (λ1 + µX(X) · λ2) ·∆(µY ) (4.5b)

≤DGW(µX , µY ) + (λ1 + µX(X) · λ2) ·∆(µY ) (4.5c)

The approximations (4.5c) → (4.5b) → (4.5a) are necessary because one cannot even
compute the value of (4.5c), and (4.5b) is still non-convex in µY .

Note that this sequence of bounds holds for any convex appearance term ∆.

4.3 Including Appearance and Unique Shape Matching

In this section we combine the presented shape prior functional with a linear appear-
ance term analogous to (4.1) to illustrate the potential application in variational image
segmentation. For a linear appearance term we prove two favorable properties: Exis-
tence of binary optimal µY and for them existence of optimal deterministic couplings
µ ∈ M(µX , µY ). This allows the support of the optimal µY to be interpreted as seg-
mented foreground region and the coupling as a bijection between the template and the
foreground.

First, with the aid of the mathematical background given in Section 3.3, we ex-
tend the convex relaxation approach for the linear assignment problem to partial as-
signments between sets with unequal cardinality and then rephrase the joint optimization
of DW(c, µX , µY ) and ∆(µY ) with respect to µY for a given cost function c to match the
form of the problem.

Partial Weighted Bipartite Matching It is well known that generic solutions to the
linear assignment problem

min
µ∈Rn×n

〈c, µ〉 s.t.µ ≥ 0, µ1n = 1n, µ>1n = 1n (4.6)

for some c ∈ R
n×n
+ correspond to permutation matrices as extrem points of the feasible

set of doubly stochastic matrices (Birkhoff-von-Neumann Thm., [15, Cor. 11.3]), hence
constitute a one-to-one mapping between {1, .., n} and itself.

We next consider the partial assignment problem with upper bound constraint

min
µ∈Rm×n

〈c, µ〉 s.t. µ ≥ 0, µ1n = 1m, µ>1m ≤ 1n,

withm ≤ n. (4.7)
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Proposition 4.3. There are integral solutions µ to the linear programm (4.7): µ ∈
{0, 1}m×n.

Proof. We show that the constraints (4.7) forms a linear system whose matrix has the
structure (3.6). Using the vec operator [28] that stacks column vectors when applied to a
matrix, and the corresponding relationship for matrices B,C,X,

vec(CXB>) = (B ⊗ C) vec(X),

we have

vec(µ1n) = vec(Imµ1n) = (1>n ⊗ Im) vec(µ) = 1m, (4.8a)

vec(1>mµ) = vec(1>mµIn) = (In ⊗ 1
>
m) vec(µ) ≤ 1n. (4.8b)

vec(µ) can be identified with the edge-indicator vector z in (3.5). The left-hand side
correponds to (3.6), and the equality sign in (4.8a) restricts the feasible set to a face of
the integral polyhedron Ax ≤ 1, that is also integral.

Combining Shape Prior and Linear Appearance Term Recall that we confined
ourselves to X and Y being discrete finite metric spaces. The sets of measures thereon thus
correspond to the vector spaces R|X| and R

|Y |, dimensions indexed by elements x ∈ X and
y ∈ Y . Let the template-space X consist only of points belonging to our sample shape
with µX being the counting measure on X, µX(x) = 1 for all x ∈ X. Assume also
|Y | ≥ |X|, this means the image to be segmented must at least have |X| pixels, i.e. “that
there is enough space for X in Y ”.

Consider now, analogous to (4.1), the optimization problem

inf
µY ∈TY (µX)

E(µY ) with E(µY ) = DW(c, µX , µY ) + λ ·∆(µY ) (4.9a)

where DW will become the shape prior functional for proper choice of c. For the appear-
ance term ∆ we choose

∆(µY ) =
∑
y

f(y)µY (y) = 〈f, µY 〉 (4.9b)

where f(y) > −∞ gives the affinity of the pixel y to be part of the foreground, based on
local features (f(y) < 0 ⇒ y tends to be part of the foreground).

Proposition 4.4. Given µX(x) = 1 for all x ∈ X, |Y | ≥ |X|, a cost function c : X×Y →
R bounded from below and a function ∆ : P(Y ) → R bounded from below, as defined by
(4.9b), the problem defined in (4.9a) is equivalent to solving a partial assignment problem
of the form (4.7).

Proof. Note first that

inf
µ′Y ∈TY (µX)

g(µ′Y ) = inf
µ′Y ∈TY (µX)

inf
µ∈M(µX ,µ

′
Y )
g(µ(X × ·))
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for any function g since the inner optimization over M(µX , µ
′
Y ) is trivial as all µ therein

have the same Y -marginal on which only the function g depends here. This double
optimization can then again be rewritten as

= inf
µ∈TMY (µX)

g(µ(X × ·))

where we define the feasible set

TMY (µX)

=
⋃

µ′Y ∈TY (µX)

M(µX , µ
′
Y )

=
{
µ ∈ P(X × Y ) : µ(ν) ≥ 0 ∧ µ(νX × Y ) = µX(νX) = |νX | ∧ µ(X × νY ) ≤ |νY |

∀ measurable subsets ν ⊆ X × Y, νX ⊆ X, νY ⊆ Y
}

(4.10a)

as the set of all possible couplings to µX .
This allows us to rewrite (4.9a) as

inf
µY ∈TY (µX)

DW(c, µX , µY ) + λ ·∆(µY )

= inf
µ∈TMY (µX)

∑
x,y

c(x, y)µ(x, y) + λ ·∆(µ(X × ·)). (4.10b)

Plugging in the choice of ∆ yields

= inf
µ∈TMY (µX)

∑
x,y

c(x, y)µ(x, y) + λ
∑
x,y

µ(x, y) · f(y) (4.10c)

= inf
µ∈TMY (µX)

∑
x,y

(
c(x, y) + λ · f(y)

)
µ(x, y). (4.10d)

We can rewrite the feasible set as

TMY (µX) =
{
µ ∈ R|X|×|Y | : µ ≥ 0 ∧ µ1|Y | = 1|X| ∧
µ>1|X| ≤ 1|Y |

}
(4.10e)

where we have now used the equivalence of P(·) and R
|·| for X, Y and the product space

and rephrased the conditions in vector notation. Now the equivalence of (4.10d,4.10e)
and (4.7) is manifest with an appropriate edge weight vector c(x, y) + λ · f(y).

The edge weights implied by (4.10d) may not be non-negative but by virtue of the
assumptions they are bounded from below. Hence they can be made non-negative by a
constant shift which does not change the minimizing set.

This proposition holds for any bounded cost function c and thus applies to c2 as defined
in (4.3c). This implies that for a linear ∆ the functional (4.5a) has a binary optimizer
and a respective deterministic coupling.
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4.4 Radial distribution comparison

For large metric spaces the computation of c1(µX , µY ;x, y) or c2(µX , λ ·∆;x, y) for all x, y
can be quite costly. A reformulation of c1 will now be derived that only depends on the
“radial” mass distributions of µX and µY relative to x and y respectively. Whatever the
internal structure of X and Y might be, c1 can be computed by solving a mass transport
problem between two subsets of the real line. A similar simplification exists for c2. This
will give a clear insight about the nature of the first relaxation step and be particularly
important for efficient numerical implementation.

The results of this section are based on the following Proposition:

Proposition 4.5. For two discrete sets SX and SY and two measurable maps φX : X →
SX , φY : Y → SY denote by φ the product map φ(x, y) = (φX(x), φY (y)). Then one finds

φ]M(µX , µY ) =M(φX ]µX , φY ]µY ).

Proof. For any µ ∈M(µX , µY ) get

(φ]µ)(σ) = µ(φ−1(σ)) ≥ 0

(φ]µ)(σSX
× SY ) = µ(φ−1

X (σSX
)× Y )

= µX(φ−1
X (σSX

)) = (φX]µX)(σSX
)

and analogous

(φ]µ)(X × σSY
) = (φY ]µY )(σSY

)

for all measurable σ ⊆ SX×SY , σX ⊆ SX , σY ⊆ SY . Thus φ]M(µX , µY ) ⊆M(φX ]µX , φY ]µY ).
For reasons of readability we have moved the step to show that M(φX ]µX , φY ]µY ) ⊆
φ]M(µX , µY ) and thus the two sets are in fact equal to the Appendix.

This can be applied to simplify the computation of

c1(µX , µY ;x, y) and c2(µX , λ ·∆;x, y)

as defined in Eqns. (4.2c,4.3c). Several new symbols will be introduced which depend on
two non-negative measures µX ∈ P(X), µY ∈ P(Y ) and two elements x ∈ X, y ∈ Y . We
will consider everything that follows for a fixed choice of µX , µY , x, y and for the sake of
legibility will not always denote the dependence on this choice.

Let
LX = {dX(x, x′) : x′ ∈ X} and LY = {dY (y, y′) : y′ ∈ Y } (4.11a)

be the (discrete) sets of appearing distances in X and Y relative to the elements x and
y. Let ΠX : X → LX , ΠX(x′) = dX(x, x′) and ΠY : Y → LY , ΠY (y′) = dY (y, y′) be the
corresponding maps onto these sets and denote by

Π = ΠX × ΠY : X × Y → LX × LY (4.11b)

their product.
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For two non-negative measures µX ∈ P(X), µY ∈ P(Y ) and two elements x ∈ X,
y ∈ Y define the radial mass distributions

ρLX
= ΠX]µX and ρLY

= ΠY ]µY . (4.11c)

Now we express c1(µX , µY ;x, y) in terms of the radial distributions ρLX
and ρLY

:

Corollary 4.6. c1(µX , µY ;x, y) can be expressed by a comparison of the radial distribu-
tions ρLX

and ρLY
:

c1(µX , µY ;x, y) = DW(| · − · |p, ρLX
, ρLY

) (4.12)

Proof. By virtue of Proposition 4.5, where we choose SX/Y = LX/Y , φX/Y = ΠX/Y and
thus Π = φ, we find

Π]M(µX , µY ) =M(ρX , ρY ).

So one obtains

c1(µX , µY ;x, y)

= inf
µ∈M(µX ,µY )

∑
x′,y′

|dX(x, x′)− dY (y, y′)|pµ(x′, y′)

= inf
µ∈M(µX ,µY )

∑
lX ,lY

|lX − lY |p(Π]µ)(lX , lY )

(where the sums lX , lY range over the sets of distances LX , LY )

= inf
ρ∈Π]M(µX ,µY )

∑
lX ,lY

|lX − lY |pρ(lX , lY )

= inf
ρ∈M(ρLX

,ρLY
)

∑
lX ,lY

|lX − lY |pρ(lX , lY )

= DW(| · − · |p, ρLX
, ρLY

).

Corollary 4.6 allows for a transparent interpretation of the relaxed functional D1: We
find

D1(µX , µY ) =DW(c1(µX , µY ; ·, ·), µX , µY ) (4.13a)

=DW

(
DW(| · − · |p, ρLX

(µX , ·), ρLY
(µY , ·)), µX , µY

)
(4.13b)

=DW

(
DW,p, ρLX

(µX , ·)]µX , ρLY
(µY , ·)]µY

)
(4.13c)

where DW,p is the Wasserstein Distance on P(R+) with respect to the pth power of the
Euclidean metric on R+ as cost function. This means the measures µX and µY are
transformed into two measures of radial mass distributions in P(P(R+)). We equip this
space with the cost function that is given by the standard p-Wasserstein distance on
P(R+). That is, D1 measures the deviation in radial distributions between µX and µY .

Now we discuss the reformulation of c2:
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Remark 4.2. Consider ∆ as defined in (4.9b). Let (Π, f)Y (y) = (ΠY (y), f(y)) and let
FY = {(Π, f)Y (y′) : y′ ∈ Y } be the set of pairs of distances and affinity coefficients.

Applying Proposition 4.5 with SY = FY , φY = (Π, f)Y and SX = LX , φX = ΠX as
before, we find

(ΠX × (Π, f)Y )]M(µX , µY ) =M(ρX , (Π, f)Y ]µY ). (4.14a)

So we obtain

c2(µX , λ ·∆;x, y)

= inf
µY ∈TY (µX)

(
DW (|dX(x, ·)− dY (y, ·)|p, µX , µY ) + λ ·∆(µY )

)
= inf

µY ∈TY (µX)

(
inf

µ∈M(µX ,µY )

∑
x′,y′

(
|dX(x, x′)− dY (y, y′)|p + λ · f(y′)

)
µ(x′, y′)

)

= inf
µY ∈TY (µX)

 inf
µ∈M(µX ,µY )

∑
lX ,(lY ,fY )∈FY

(
|lX − lY |p + λ · fY

)
((ΠX × (Π, f)Y )]µ)(lX , (lY , fY ))


(where the sum (lY , fY ) runs over the set of pairs FY )

= inf
µY ∈TY (µX)

 inf
ρ∈M(ρX ,(Π,f)Y ]µY )

∑
lX ,(lY ,fY )∈FY

(
|lX − lY |p + λ · fY

)
ρ(lX , (lY , fY ))


= inf

ρ∈S

∑
lX ,(lY ,fY )∈FY

(
|lX − lY |p + λ · fY

)
ρ(lX , (lY , fY )) (4.14b)

with S =
⋃
µY ∈TY (µX)M(ρX , (Π, f)Y ]µY ). This is a partial linear assignment problem on

LX × FY which is a subset of R× R
2.

One can show in a fashion similar to Proposition 4.5 that

S =

{
ρ ∈ P(LX × FY ) : ρ(σ) ≥ 0, ρ(σLX

× FY ) = ρLX
(σLX

),

ρ(LX × σFY
) ≤ |(Π, f)−1

Y (σFY
)|

for all measurable σ ⊆ LX × FY , σLX
⊆ LX , σFY

⊆ FY

}
. (4.14c)

Here the parameter λ has a very intuitive interpretation: When comparing radial distri-
butions (λ · (f1 − f2))1/p is the maximal distance |lX − lY | that mass is transported to
obtain a better feature match f2 < f1.

4.5 The Choice of Metric

The choice which metric to impose on the mm-spaces is crucial as to which geometric
invariances should be implemented into the approach. For rigid objects the Euclidean
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metric is the obvious option enabling recognition of an object in any translated or rotated
state. Similarly for articulated objects that may appear in different poses the geodesic
metric can be applied. The shortest paths can quickly be computed by fast marching
algorithms [26]. To increase robustness to topological noise the diffusion metric might be
considered.

Having said this it must be pointed out that there is a fundamental issue about the
geodesic (and diffusion) metric in the context of our applications: Reasonably defined
the geodesic metric on Y depends on µY as the measure indicates the actual location
of the shape and only within this the shortest paths are to be routed. This raises the
question how the metric should deal with the facts that µY can might be non-binary
and changes during optimization: Will there be a threshold for µY (y) above which a
point y will be considered as “path permeable”? Will points with low µY (y) contribute
longer piecewise path lengths? Moreover updating dY with µY will certainly render the
optimization problem unfeasible again. Ad hoc proposals are conceivable to tackle this.
Yet we consider this problem too delicate for attempting to solve it in passing-by and leave
a corresponding more thorough study for future work. In our numerical experiments we
present application of the geodesic metric in a confined setup that allows to circumvent
these issues and to demonstrate its potential up to the mentioned caveat.

4.5.1 Metric Enhancement

In this paper we approximate the quadratic Gromov-Wasserstein Distance by a linear
problem. When computing the assignment the only remaining interaction between dif-
ferent pixels is via the constraints. To somewhat make up for this loss of non-locality
we now present a heuristic way to incorporate additional geometric information into the
matching process. In this way one can exploit a large class of additional features.

Let F be a feature space (for example a set of labels) with a mismatch cost function
cF and let ϕX,Y : X, Y → F be two functions that assign these features to the elements
in X and Y . This induces an assignment cost function cF(ϕX(·), ϕY (·)) on X × Y .

One can interpret the linear appearance term ∆ (4.9b) as a degenerate example of
such a function where F = R, ϕY (y) = f(y) and cR(ϕX , ϕY ) = ϕY solely depends on
ϕY . But more sophisticated choices are at hand: consider an object that has different
characteristic appearances in different regions. One might then consider an appearance
term that depends not only on µY but on the coupling µ directly and thus can incorporate
such additional information:

∆(µ) =
∑
x,y

f(x, y)µ(x, y) =
∑
x,y

cF(ϕX(x), ϕY (y))µ(x, y) (4.15)

where cF determines how well the appearance feature ϕY (y) found at y matches the
expected appearance ϕX(x) at x.

The definition of c2(µX , λ ·∆;x, y) can be generalized to such a ∆. The simplifications
discussed in Section 4.4 can be applied analogously where, by means of Proposition 4.5,
for the computation of the modified c2 one arrives at a relaxed optimal transport problem
between subsets of LX × F and LY × F with a cost function c((lX , ϕX), (lY , ϕY )) =
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|lX − lY |p + cF(ϕX , ϕY ). Both the modified cost function c2 and ∆ can then be plugged
into an approach as (4.9a) and one will find that Proposition 4.4 still holds.

It should be noted at this point, that this does not simply imply changing ∆ in the
global matching according to (4.9a). Via the computation of the cost function c2 these
additional features are also considered in the first term in (4.9a).

In Section 5 we will present two applications of this extension: the incorporation of an
inhomogeneous appearance term and the usage of the distance transform as an additional
feature to implicitly take into account non-local geometric information.

5 Numerical Examples

In this section we want to demonstrate the potential of the proposed shape prior func-
tional combined with a linear appearance term, as discussed in the previous sections,
for variational image segmentation. We give some numerical examples to illustrate the
favourable properties of our approach and also the limitations implied by the involved
approximations.

The exact approach 4.1, without approximations, is considerably more general than the
QAP problem, in several ways. In particular, |Y | � |X| is an essential relation covering
the image segmentation scenario (recall Remark 4.1). As a consequence, performing
ground truth experiments from the viewpoint of optimization is elusive. Our numerical
experiments are merely supposed to demonstrate the extent to which invariant matching
of metric measure spaces can be enforced by our convex relaxation approach to shape
prior design. A systematic study of further suboptimality bounds and the application to
specific segmentation problems is beyond the scope of the present paper.

Before presenting numerical results, the next section describes technical details of the
implementation, in particular how computational effort can be reduced (including using
the results presented in Sec. 4.4).

5.1 Implementation Details and Computational Complexity

The prior mm-spaces (X, dX , µX) were created from binary images, depicting the template
shapes. All pixels with value 0 were removed from the space. The remaining pixels were
equipped with the Euclidean metric and µX was set to be the counting measure on these
points. For a given experiment (Y, dY ) represents the test-image grid with Euclidean
metric. The function f that defines the appearance term ∆ was constructed from the
gray values of the test-image.

To compute the cost function c2 for some (x, y) one needs to compute a modified
mass transport problem on LX × FX (see Remark 4.2). For this LX was approximated
by a set of equally sized bins on the real line and FX by a set of rectangular bins on
R

2. While only inflicting a small discretization error this reduced the involved problem
sizes by several orders of magnitude. This method becomes particularly efficient when
the affinity coefficients f are binary (e.g. ±1, indicating unweighted preference for yes/no
only) and FX can be approximated by two discretized real lines. Also, it is straightforward
to parallelize the computation of c2 for all (x, y).
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For solving the global matching between X and Y we experimented with constraining
the full coupling space X × Y to smaller subsets to keep the problem size low, while
still solving the global problem Consider the following modification to the partial as-
signment problem (4.7): For any x ∈ X include only a subset Yx ⊂ Y with the lowest
assignment costs. Then, for every x, add an additional overflow element yof,x and a
corresponding variable µ(x, yof,x) whose assignment cost c(x, yof,x) is chosen such that
c(x, y1) ≤ c(x, yof,x) ≤ c(x, y2) for all y1 ∈ Yx, y2 ∈ (Y \ Yx). For each x the coupling
value µ(x, yof,x) will be taken into account when computing the X-marginal constraint,
but there will be no Y -constraints on any of the yof,x. Then for any feasible coupling µ
in the original problem that is non-zero outside of the constrained coupling set, one can
create a feasible coupling in the modified problem with non-zero overflow variables, which
will yield a lower score. This implies that when solving the restricted partial assignment
problem and one gets an optimizer where µ(x, yof,x) = 0 for all x then one knows to have
found an optimizer for the original problem with the full coupling space X×Y . In “easy”
problems this enabled us to find global minimizers while considering only < 5% of the
coupling space, “harder” problems were still generally < 25%. In the special case p = 1
it is easy to show that both c1/2 are Lipschitz. Then one can estimate a suitable subset
of X × Y by subsampling and lower bounds via the Lipschitz condition without scanning
all possible pairs.

In the presented experiments |X| is of the order 103 and |Y | up to the order of several
104. We have set p = 2 but we did not observe a substantial change of results for other
values p ≥ 1.

5.2 Experiments and Discussion

Approximation Quality DGW → D1: The purpose of the first experiment is to gain an
insight into the quality of the relaxation DGW → D1, see Proposition 4.1. We take a simple
shape, rotate it, distort it by non-isometric but mass preserving scalings with factors
qn, q−n along the vertical and horizontal axis and then compute the optimal assignment
according to D1 between the original and the distortion for various n > 0. As an estimate
for ground truth we use the assignment induced by the distortion map (r1, r2) → (qn ·
r1, q

−n·r2). The results are summarized in Fig. 2. For low distortions one can see howD1 is
a good measure for increasing non-isometry, although growing slower than the functional
value of the distortion map. For high n the deviation becomes more significant as D1

decreases, while the upper bound grows further. Here one can assume that the distortion
map is no longer the optimal assignment and thus the estimated “ground truth” is in
fact too high. There is an additional subtlety in in this experiment: D1 was computed
between two rasterizations of a vector graphic, one as is and one undergoing the distortion
transformation. Thus even for n = 0 (applying only a rotation) the two resulting metric
spaces would not be isometric due to different rasterization. When estimating the ground
truth this rasterization cannot be taken into account, since it is unclear how to match the
two rasterized graphics. It has thus been estimated on the vector graphics level. The fact
that such problems appear even for such simple shapes is a clear indicator of how hard it
is to solve the full quadratic problem.
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Figure 2: Linearization of DGW: (a) top-left to bottom right: original shape and three
distortions qn for n = 2, 4, 6 and q = 0.95 (dimensions: ≈ 60 · 70 · (length units)2). (b)
circles: D1 between original and qn-distortion, squares: Gromov-Wasserstein functional
evaluated for assignment induced by distortion map. (c) mean metric deviation between
underlying distortion assignment and assignment computed by D1 (averaged over all as-
signed pairs). For small n ≤ 4, D1 grows with increasing metric distortion, although
slower than the estimated “true” Gromov-Wasserstein distance. For n > 4, D1 first starts
to decrease a little, before eventually growing again. The assignment computed by D1 is
(up to rasterization errors on the pixel level) identical to the underlying distortion trans-
formation for n = 1, deviation grows with increasing non-isometry. From n ≤ 4 we learn
that D1 is a lower bound that grows with increasing level of non-isometry, which is a
favourable property for the functional. For n > 4 presumingly the distortion map itself
is no longer the best distance-preserving assignment between the two shapes and thus
the estimated ground truth value is in fact too high (note how the triangle transforms
from being horizontally elongated to vertically elongated). This is an illustration for the
difficulty of obtaining ground truth data and the need for relaxations.
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Linear Appearance Term and Matching We want to go beyond measuring the
distance between two fixed shapes and perform shape optimization according to the two
criteria shape and appearance. The affinity coefficients f(y) for the linear appearance
term ∆ are generated from a grayscale image: First an imprint of the template shape is
created somewhere in the image and then noise is added in different levels. For low noise
level the shape restortation works perfectly, without any prior knowledge or the need for
proper initialization. Increasing noise will cause an increasing number of assignments to
become inaccurate, while remaining roughly correct. Eventually only the coarse location,
but no longer the contours of the shape can be recovered (see Fig. 3). In Fig. 4 the
influence of the global weighting parameter λ (cf. (4.9a)) is demonstrated: For high
values the optimal µY is determined locally by the appearance coefficients, for low values
the shape prior becomes more dominant and leads to a more accurate restoration of the
original contours.

Binary Appearance Term If the appearance coefficients f are binary, for example
±1, indicating unweighted preference for fore- or background, one can interpret the region
{y ∈ Y : f(y) < 0} as a noisy foreground proposal and extract additional information from
this region. An example for this would be the distance transform (for a noise resistant
alternative see [12]). In a scenario with strong appearance classifier one might assume that
this preliminary foreground region already resembles the true sought-after region. Thus
the distance transform might yield similar values in corresponding places of the template
and the image and can therefore be used as a matching criteria as discussed in Sec 4.5.1,
with ϕX , ϕY being the distance transformations F the real line and cF for example the L1

norm. The experiment presented in Fig. 5 has been specifically designed to demonstrate
how the local Y -marginal estimation during the computation of c2 via the appearance
term can fail: For points near the center of the cross of the template the outer regions
of the “blob” on the right of the input image appear more suitable than the center of
the actually corresponding cross, where one “arm” has been shortened. By including the
additional information encoded in the distance transform this mismatches can be fixed.

The setup of Fig. 5 is also well suited to discuss the implications of the convexity
of the functional. A major advantage is the independence of initialization. An approach
based on active contours would, if initialized around the blob, be stuck on the right hand
side no matter how bad the matching cost will be. The contour could not leave the
blob and move through an area without any mass (and thus without reasonable gradient
information). The proposed approach does not suffer from this issue (up to the discussed
level of confusion caused by approximations of the GW-functional).

The question then arises how the optimal coupling measure looks like if there are
multiple (approximately) equivalent optimal solutions. Up to rasterization artifacts there
is no preferred choice how to map the template cross onto the input: Eight orientations
(rotations, reflections) are equally possible. Each corresponding to one local extremum for
an active contour approach that one would consider as valid solution. For the proposed
approach such symmetries cause degeneration of the space of optimal couplings, making
a whole facet of the feasible polytop extremal. Interior point methods then usually do
not lead to integer solutions. Integer solutions exists and applying a simplex algorithm
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Figure 3: Appearance Term and Noise: (a) top row: appearance coefficients f for the
image (bright indicating higher foreground-affinity), noise increasing from left to right.
bottom row: corresponding optimal µY according to D2, brightness indicating mass den-
sity. (X, dX , µX) as in Fig. 2, Y -image dimensions: 160× 120(length units)2. (c) fraction
of computed assignments that is closer than 3 pixels to the underlying transformation
(c) mean metric deviation between true underlying transformation and assignment com-
puted by D2 (averaged over all assigned pairs). For low noise levels the appearance term in
combination with the metric information can compensate for noisy appearance data and
correctly restore the original shape. Although the location and orientation of the shape
within Y is not known a priori, the isometry invariant approach can extract the correct
transformation. With higher noise levels the number of assignments that is led astray
increases, starting to erode the shape contours, althouth the majority remains correct.
Finally, for very high noise levels the relaxation breaks down completely and hardly any
of the assignments are correct, indicating that the local Y -marginal estimation during the
computation of c2 is no longer powerful enough. Here a more global approach would be
required.
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(a) (b)

Figure 4: Influence of the Global Regularization Parameter λ: (a) appearance coefficients
f , representing a transformed, distorted version of the original shape (see Fig. 2). (b)
from left to right: optimal µY for λ = 104, 103, 102. With decreasing λ the shape prior
becomes more influental and pushes towards restoration of the original shape. It should be
noted here, that tiny holes or jagged contours in the optimal segmentation regions are not
due to numerical instabilities of the optimization implementation but due to discretization
artifacts. Sometimes from, the metric point of view, it is better to drop single pixels when
matching two different rasterizations of the same shape. Spatial regularity of µY on on
the rasterization scale is not enforced by the used functional, so this does not increase the
functional value.

will produce one. Some may correspond to one of the eight possible assignments, some
may be highly discontinuous (meaning that adjacent pixels are assigned to very different
target pixels), but from the viewpoint of the functional they are all equivalent and the
choice is arbitrary.

Inhomogeneous Appearance Term The extension discussed in Sec. 4.5.1 can also
be used to incorporate an inhomogeneous appearance term where different regions of the
shape are associated with different characteristic appearances. See for example Fig. 6:
the shape itself is almost mirror-symmetric and in fact the noise was chosen such that the
matching purely based on background ↔ “fish” confuses front and back of the schematic
fish. Assume now from the underlying image data there is additional information available,
like a dedicated detector for the eye. Then this can be exploited, leading to the desired
effect. Also note that in both cases, corresponding to the assumed orientation of the fish,
the appropriate shape is restored.

Geodesic Metric and Pose Invariance The key to recognizing the same object in
different poses is to equip shapes with the geodesic metric. Figures 7a and 7b the geodesic
metric is used to compute the optimal assignments between two pairs of objects in differ-
ent poses via D1. In Sec. 4.5 the problems were discussed that arise when one wants to
port the concepts of mm-spaces to image segmentation and faces the involved shape opti-
mization task. The estimation of a static cost function c2 can in general not be performed
in a straightforward fashion. Here we demonstrate the potential of the geodesic metric
for a pose invariant shape prior functional in a restricted setup where the aforementioned
difficulties can be avoided. Consider binary appearance coefficients, as introduced earlier,
and assume that all true foreground pixels are in fact also labelled as foreground by the
appearance term. In addition some false positive detections are possible, i.e. regions in
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(a) (b) (c)

Figure 5: Breakdown of Second Approximation Step, Enhancement by Additional Fea-
tures: (a) template (top, white indicates mass) and corresponding distance transform.
(b) input: binary appearance coefficients f (top, white indicates foreground) and dis-
tance transform. (c) top: optimal µY according to D2, bottom: optimal µY according
to matching according to Sec. 4.5.1 with distance transform as additional feature. In
the input image, one arm of the cross has been shortened and the “blob” on the right-
hand side of the input has been designed to confuse the local µY estimation during the
c2 computation, thus causing faulty assignments. This demonstrates the limitations of
the second approximation step. By including additional information like the distance
transform according to Sec. 4.5.1 this confusion can be resolved.

(a) (b) (c)

Figure 6: Inhomogeneous Appearance Term: (a) top: template with features, black in-
dicating background, grey → “body” and white → “eye”; bottom: input image with
detected features. (b) optimal µY (gray shading bottom) and assignment (black lines, sub-
sampling) of homogeneous appearance term: distinguish only background↔ fish (=body
& eye). Due to the approximate mirror symmetry and the noise in the image features,
front and back are confused (while still “correctly” reconstructing the edges according to
the mixup). (c) optimal µY and assignment with an appearance term that penalizes the
matching x↔ y between different feature classes (see Sec. 4.5.1). The confusion between
back and front is remedied.

26



(a) (b) (c)

Figure 7: Geodesic Metric and Pose Invariance: (a) assignment between two different
poses of an object, computed by D1. (b) assignment between two different poses of a
schematic “horse” via D1. Both assignments correctly associate the corresponding parts
of the objects. (c) left: modification of the lower horse from (b) by adding additional
false positive foreground detections; right: optimal marginal µY for matching between
the modified lower and the original upper horse via D2. Excess detections are mostly
removed at the correct locations.

the test image that are wrongfully indicated to be foreground. The template shape and
the apparent foreground region are then equipped with their respective geodesic metrics,
efficiently computed by fast marching methods [26]. This requires that the false positive
detections are rare enough to keep the geodesic metric of the underlying true foreground
approximately unchanged. Figure 7c shows an image of binary appearance-coefficients
with such superfluous false positive foreground labels and the computed optimal µY via
D2. Although the reconstruction is by no means perfect, the method still tends to neglect
the false positive foreground-detections.

6 Conclusion, Outlook

In this paper we have proposed and developed a novel convex shape prior functional with
potential for application in variational image segmentation and demonstrated its com-
bination with a linear appearance term. The starting point is the Gromov-Wasserstein
Distance which has been applied successfully in the field of shape recognition and classifi-
cation. From this the approach inherits the ability to incorporate vast classes of geometric
invariances. Since the Gromov-Wasserstein distance is computationally too complex to
be computed, let alone to perform shape optimization, we proposed and discussed two
successive approximation steps to overcome these two obstacles.

In combination with a linear appearance term we proved for the resulting matching
problem the existence of optimizers that imply a well defined segmentation region and
a bijective assignment to the reference shape. In the final problem shape optimization
and computation of the approximate shape distance are performed in a single pass. Some
analytic results that concern efficient numerical implementation and help to better un-
derstand the approximations were given. Ways were proposed to counterbalance the loss
due to approximations and even to process additional feature information. Key aspects
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of the approach were illustrated and discussed based on numerical examples.
Future work will include incorporation of the functional into a full variational segmen-

tation framework. Application to other types of data that can be described by mm-spaces
(e.g. weighted point data) and a more detailled study of the potential of the matching
enhancement by additional features. Also the delicate question as to how the geodesic
framework is best extended to dynamic shapes remains open.
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Appendix

Step 2 of the Proof of Proposition 4.5 We show by construction for any ρ ∈
M(φX ]µX , φY ]µY ) the existence of some µ ∈ M(µX , µY ) such that ρ = φ]µ. For any
element (sX , sY ) ∈ SX × SY construct the pre-image measure

µ(sX ,sY )(x, y) =

{
0 if ρ(sX , sY ) = 0 ∨ (sX , sY ) 6= φ(x, y)

µX(x)µY (y)
(φX]µX)(sX) (φY ]µY )(sY )

ρ(sX , sY ) else

where this element wise definition for each (x, y) is extended to all subsets of X × Y by

µ(sX ,sY )(σ) =
∑

(x,y)∈σ

µ(sX ,sY )(x, y).

Now consider µ =
∑

(sX ,sY )∈SX×SY
µ(sX ,sY ): First verify that it is indeed contained in

M(µX , µY ):

µ(σ) ≥ 0

since µ(x, y) ≥ 0 for all (x, y). Furthermore

µ(σX × Y ) =
∑
x∈σX
y∈Y

∑
sX ,sY :

φ(x,y)=(sX ,sY ),
ρ(sX ,sY )>0

µX(x)µY (y)

(φX]µX)(sX) (φY ]µY )(sY )
ρ(sX , sY )

=
∑
x∈σX

∑
sY :

ρ(φX(x),sY )>0

µX(x) (
∑

y:φY (y)=sy
µY (y))

(φX]µX)(φX(x)) (φY ]µY )(sY )
ρ(φX(x), sY )

=
∑
x∈σX

∑
sY :

ρ(φX(x),sY )>0

µX(x)µY (φ−1
Y (sY ))

(φX]µX)(φX(x)) (φY ]µY )(sY )
ρ(φX(x), sY )

=
∑
x∈σX

µX(x)

(φX]µX)(φX(x))

∑
sY :

ρ(φX(x),sY )>0

ρ(φX(x), sY )

=
∑
x∈σX

µX(x) = µX(σX)
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and likewise

µ(X × σY ) = µY (σY ).

for all measurable subsets σ ⊆ X × Y, σX ⊆ X, σY ⊆ Y .
Now check whether φ]µ = ρ:

(φ]µ)(σ) = µ(φ−1(σ)) =
∑

(x,y)∈φ−1(σ)

µ(x, y)

=
∑

(x,y)∈φ−1(σ):
ρ(φ(x,y))>0

µX(x)µY (y)

(φX]µX)(φX(x)) (φY ]µY )(φY (y))
ρ(φ(x, y))

=
∑

(sX ,sY )∈σ
ρ((sX ,sY ))>0

∑
(x,y)∈φ−1((sX ,sY ))

µX(x)µY (y)

(φX]µX)(sX) (φY ]µY )(sY )
ρ(sX , sY )

=
∑

(sX ,sY )∈σ
ρ((sX ,sY ))>0

(
∑

x∈φ−1
X (sX) µX(x)) (

∑
y∈φ−1

Y (sY ) µY (y))

(φX]µX)(sX) (φY ]µY )(sY )
ρ(sX , sY )

=
∑

(sX ,sY )∈σ
ρ((sX ,sY ))>0

ρ(sX , sY ) = ρ(σ).

Consequently any ρ ∈ M(φX ]µX , φY ]µY ) is also contained in φ]M(µX , µY ) and the
two sets are equal.
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