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Abstract

The importance of laser welding in industry increases. Mamjds have high quality demands
and one possibility to satisfy the quality requirementsoigrtonitor the welding process with high
speed cameras. Laser welding is a highly dynamic processstherefore challenging to distinguish
between normal process fluctuations and abnormal errot®uethe recorded sequences.

This paper investigates a novel classification method t@raatically analyze the recorded
welding sequences and robustly find the abnormal error sv@atour knowledge it is the first time
that a framework to detect and track sputters in welding seges is proposed and evaluated. To
achieve a high usability of the classification algorithmthe training phase the user only needs to
mark suspicious sequences, but does not need to labeldodivirames within the sequences. The
framework is tested on two challenging datasets from redding processes. The results show that
the material particles can be tracked accurately. On a sanggiaset, the new approach finds all

erroneous welds with a small false positive rate and outpers previously developed methods.

Index Terms

Automated visual inspection system, Laser welding, Rartiacking, Computer vision, Quality

inspection

I. INTRODUCTION

I N recent years, industries increasingly substitute camnweal welding processes with
laser welding units. The major benefits of lasers are thaetleeno mechanical contact
with the work piece, that a high energy concentration can d@esed and that a high

degree of automation is possible. However, laser welding sghly dynamic and chaotic



process and thus vulnerable to process errors such as ahamariters, weld break-ins or weld
reinforcements. Although process errors occur rarely itital to ensure that all faulty welds
are detected, since errors can lead to a malfunction or aletenputage of the manufactured
component part. Therefore quality sensitive welding psses have to be monitored. Several
groups are working on algorithms to automatically analymd aontrol industrial welding
processes using the outputs of various sensor types [1]-Pie possibility to automatically
detect laser welding errors is to on-line monitor the laseldimg process with a high-speed
camera [2], [4]. When laser radiation interacts with the kvprece, secondary radiation is
generated. This radiation contains information about treegss stability and can thus be
used to detect process errors. A schematic setup to moheowelding process is shown in
Fig. 1.

In the remainder of this paper, we will focus on welding esrdue to material sputters
which can lead to pores in the welding seam. An example of éhisr event is shown in
Fig. 2 in terms of four consecutive frames (6464 pixels) of a recorded welding process.
The big dark object in the middle of the frames is the melt péalke color representation,
dark pixels represent high intensities). A smaller objectr{aterial particle) is flying away

from the melt pool towards the lower right corner of the frame

high-
speed laser
camera radiation

laser optic

secondary radiation

\l
U

work piece

Fig. 1. Schematic setup for monitoring a laser welding pssce
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Fig. 2. Inthe middle of the frame the dark melt pool can be s&#em which a small material particle moves to the lower
right corner. The field of view is approximately 3 mm 3 mm. The cross, square and circle mark the predicted, meshsur
and a posteriori position of the object according to the @lgm described in section II.
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Fig. 3. Suspicious objects flagged by the change detectiamomsecutive frames. The brightness fluctuations found are
not due to an error event.

During the welding process, the cylindrical part is rotateder the laser radiation and thus
the position of the melt pool in the recorded frames does hanhge over time. As shown
in Fig. 2, sputter events appear as dark objects in the redomiage sequences. Moving
objects can be detected by analyzing the gray-level diffe¥eof successive frames [8], [9].
The change detection allows to find even weak brightnessgasarut has the disadvantage
that many false positives are found, as shown in Fig. 3. A HEghsitivity of the change
detection is necessary, since the material sputters camhb# i size and low in intensity
and for quality monitoring purposes it is necessary to avaiske negatives. It can be assumed
that the sputter events are sufficiently long-lived to beeobsd in several consecutive frames
of the recorded sequences.

In [10], a two-stage algorithm for process monitoring israciuced, the so-calle@SG
method. It classifies suspicious events found in the chamgection on a frame-per-frame
basis and then aggregates these classification scores thageautive frames. The algorithm
does not establish whether two suspicious events from catige frames are related. Since
random fluctuations of the brightness of background pixals @ccur in consecutive frames
due to the dynamic behavior of a welding prodesslarge number of false positives may
result. In contrast, the approach proposed and tested srptper uses a tracking algorithm
to establish whether or not slightly suspicious objects #na flagged in different frames by
the change detection algorithm may be related. Dependintpierdecision, the objects may

1The recorded melt pool of laser welding processes variess isize and brightness. These brightness changes alsb effec
the background pixels.



either be discarded as harmless fluctuations, or be coesi@derindicative of a welding error.
The paper is organized as follows: In section 2, the algarithframework is introduced.
The performance of the tracking algorithm is validated ggimo different datasets in section

3. Conclusions are offered in section 4.

[I. TRACKING OF SPUTTER EVENTS

The Kalman Filter (e.g. [13]) is the most widely used alduont for object tracking. It
belongs to the family of Bayes filters, which estimate thdest#f a dynamic system from
a sequence of noisy observations. The main advantage of dlmeaf Filter is its ease of
computation and memory efficiency. A disadvantage is thas itmited to linear systems
with Gaussian noise and requires accurate sensors withupigiite rates [14]. If non-linearity
and non-Gaussianity need to be included, possible extessie the Extended Kalman Filter
or the Particle Filter [15]. The Particle Filter is the mosngral tracking approach and a
very flexible tool with a low implementation overhead, bugher computational cost. Since
the tracking algorithm has to be deployed in a mass produaivironment with a rapid
clock cycle, its computational efficiency is of great importe. With state of the art CMOS
cameras it is possible to achieve a high update rate. Theareljalman Filter with a linear
system model and Gaussian noise has proven to be a suitabite dor the system under

investigation [16].

A. System Description

A block diagram for thelflSGmethod is shown in Fig. 4(a) and for the tracking algorithm
in Fig. 4(b). For both approaches, suspicious objects aggdid by the change detection
algorithm. TheTISGmethod rates the detected suspicious objects in each fremimg a
polynomial classifier. The classifier outputs are then simebttemporally and if the result
exceeds a certain threshold, the sequence is marked ag@uon

In the tracking approach, the change detection and featdiraction stages are followed
by an object filter which rejects objects that are not relevan the tracking proceduré.
The object filtering is followed by the object tracking stepection 11-B). The output of the
object tracking are trajectories which are summarized withple and rapidly computable

2The object filtering allows to reduce the computation time ipriori knowledge is available.
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Fig. 4. Block diagrams for th&1SGapproach (a) and object tracking and subsequent claswificaroposed here (b).

features such as direction and length of trajectory, or tlezage area of the tracked object.
The decision whether or not a sputter really occurred is niadlee trajectory feature space.
Thus a single label is obtained for an entire welding pracess
A disadvantage of the th&ISGapproach is that it requires labels on a frame-per-frame

basis. All suspicious objects in each frame have to be ldbeianually if they belong to a
sputter event during the training procedure. In contrastithcking framework proposed here
requires only a single label for an entire welding sequehebeled data is often scarce in
practice. The tracking framework increases the computdtioe, but is an approach, which
does not need object labels for training. In essence, thveseapproaches trade human for

computational effort.

B. Object Tracking

The complete image sequen8econsisting of7” images/; with ¢t € 1,...,T is available
before starting the tracking procedure. The assumed systedel A describes a constantly

accelerated motion:

110500 0
01 1 00 0
00 1 00 0

A= (1)
00 0 1 1 05
00 0 01 1
00 0 00 1



TABLE |
VARIABLES IN THE KALMAN ALGORITHM

A | System model, describing a constantly accelerated
motion

y,. | Measurement vector of th&" object in framel,

X;; | Prediction of the state vector using the system
model A (see (3)) for the!” object of frame

I,_; in frame I,

X.; | Estimated state vector of th& object in framel,
after the measurement update

P.. | Covariance matrix ok, ;

P.. | Covariance matrix ok, ;

Raw Sequence
Data Prc_
> ; Measurment
rocessin
P 5 Vector y,,
Predicted State Assignment
Time Measure-
Update ment
Update

Estimated Estimated

State Vector x,.,, State Vector x,;

Delay |

Fig. 5. Block diagram for the object tracking algorithm.
and the state vectog, ;, for the i’ object in framel,, is given by:

Xt = (pr; v, ax, py, vy, a’y)T ) (2)

i.e. the coordinates for the center of mass, its velocity acakleration inc andy-directions,
respectively. Velocity and acceleration can only be ediahdf the object is tracked at least
over two and three consecutive frames, respectively. Teeesy modelA is used to predict

the state vectok,, ; for thei’* object in framel,,, from x,; with:
Xiy1i = AXy;. (3)

The notation for the variables used in the Kalman algoriterstimmarized in Table 1.
A block diagram of the tracking framework is shown in Fig. B.the Preprocessingtage,
the change detection algorithm is applied to the entirerdsmb image sequenc® outliers

are marked in each frame and the positions of the segmenjedtslare determined. The



state vectors of the objects in the previous fraing are predicted fot; in the Time Update
step. It is possible that several objects are detected imglesiframe, such that more than
one sputter event has to be tracked. Since the Kalman Fdieroaly track a single object,
multihypothesis tracking (MHT) is used to track severaleat$ simultaneously [14]. MHT
treats each hypothesis with a separate Kalman Filter. Thw@itomes are combined in the
Hypothesis Managemestep. MHT is computationally exponential in both memory &nte
[14]. Here however the number of simultaneously occurripgtter events is small (normally
< 3) and thus the computation time is not increased signifigalmtladdition, we assume that
an observation can only be assigned to a single track ancladem only be the source of a
single observation per frame. This reduces the complexitgeohypothesis management step.
After the Object Assignmenthe velocity and acceleration of the sputters can be cdtxuila
and the predicted values can be reconciled with the obsenvasing the Kalman gain. In
the following, each step of the block diagram in Fig. 5 is expéd in more detail:

1) Preprocessing:Following the change detection algorithm described in §&ch pixel

Ii(z,y) is normalized with:

B \Ii(z,y) — med(I(z,y))|
Tenorn(©2) = T 555 med (11, 5) — med UL (o )] “

wherex andy specify the pixel positions in each frame amdd is the median operator in

the temporal direction. Then, a binary image is obtainedhogsholding:

0 for I norm(z,y) < bin
Ibin,t('ra y) = (5)
1 for Iy norm(x,y) > bin

where bin specifies the applied threshold. The normalization in (4pd@void the use of
absolute intensities and thus makes the system more rabuatiations in the weld materials,
sensore degradation etc. The optimum was determined &tbe 3.9 for sputter detection in
laser welding sequences [8]. For the tracking approach,imhportant to chooskn such that
all sputter objects are flagged as suspicious objectgnlis chosen too low, the processing
time increases along with the number of suspicious objects.

2) Time Update:In this step, the state vectors for the objects found,in are predicted

for I;. Since it is possible that objects are lost due to the pregssing step, a track



continuation function is implemented. The track contimuatunction predicts the state vector
of trajectories in the absence of observations. The paexmetall specifies the allowed
number of consecutive frames in which it has not been passibfind an object for a given
trajectory. If, afterrecall consecutive frames, no further object for the trajectorfpimd, the
track is terminated.

If an object appears for the first time, the predicted vatugis missing. Therefore; ;
is initialized with the observed state vectgr, and the covariance matri; ; is set to high
values. The covariance matrices for the uncertainty of t{retesn model and measurement
model are kept constant during the tracking procedure.

3) Hypothesis Managementhe trajectories describe the motion of a tracked objecehfro
the point at which it is detected until it is no longer obsétea Objects belonging to
the same trajectories are described with the assignmemtxndt,;, where M, ; with ¢ =
1,...,Np(t) andM; € {1,2,..., Ny} specifies the index number of the trajectory to which
thei’* detected object in framebelongs to andV,, is the total number of found trajectories.
For MHT, it is necessary to define an appropriate metric fer distance between the state
vector for the currently observed and for the predicted abjm order to take the infor-
mation of the covariance matrix into account the followinmglmability assignment matrix is

calculated:

1
(2m) [Py /2

1 . _ A
exp (_5 (Vei = Xtvj)T P i = XM)) ’ ©

PM(yt,iv Xt.5)

wherei and; are varied over all measured and predicted objects in flgmespectively. Only
the values for the object positions are used for the calicuaif (6). For the measured state
vector, the velocity and acceleration are not yet knowns the- 2 andy, ; = (pz, py). The
observed objects are assigned to the trajectories in atildgamanner in order of decreasing
P,;. Measured objects for which the maximum probability estioé P, are below a certain
thresholdp,;, are not assigned to an already existing trajectory andhlizé a new trajectory.
4) Measurement Update:After matching the observed objects inwith the trajectories,
the missing values for the velocity and acceleration in theasored state vectors can be

calculated from the difference in the position and veloatyobjects belonging to the same



trajectory in the previous frame. Now the predicted and mesk values can be reconciled

by using the Kalman gain to form the final estimate for theestagctorx; ;.

[1l. EXPERIMENTS

The tracking algorithm is evaluated on two different datssecorded from real welding
processesDataset Awas recorded with a CMOS camera with 1000 frames per secpsil (f
In total, 129 erroneous sequences containing sputter ®weate obtained. The dataset is
used to validate how accurately the Kalman filter can traakitep events. It was tested on
challenging error events, where several particles had toaoked simultaneously over a short
period of time. In general, these events occur rarely.

The frame rate of the CMOS camera fDataset Awas relatively low. State of the art
CMOS cameras offer a frame rate of uplte) fps with a frame size 01024 x 1024 pixels.
Selection of a region-of-interest allows to trade spataltemporal resolution; for instance,
when restricting the region-of-interest 40 x 40 pixels, up t040000 fps can be achieved. In
most welding applications a spatial resolution betwé@r 40 and64 x 64 pixels is sufficient
and the temporal resolution is then limited by the intensitythe back scattered radiations
which prevents exposure times below a certain limit. Higheme rates increase the temporal
correlation and thus allow for better results with the objeacking algorithm. Therefore a
second datasetDataset B- was investigated, which was obtained with a CMOS camera wit
a frame rate of 8000 fps. This dataset was compared with theedure presented in [10] for
guality monitoring of laser welding processes. In this agtion the sputters were caused by
material remains from a preprocessing step; the materialiised upon interaction with the

laser beam and this leads to errors on the weld seam.

A. Comparison between Manual and Automatic Object Tracking

Fig. 2 shows the results of the object tracking with the Kairdter for a sequence from
Dataset A For each frame, three different positions are visualitled:estimated object posi-
tion (cross), the measured coordinates from the object setation (box) and the estimated
state vector after the measurement update (circle). Simegarticle is moving slowly and

with constant velocity, the tracking algorithm can folloletobject accurately.
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Fig. 6. Slowly moving particle. Given an appropriate prabgbthreshold, the Kalman Filter tracks the object cothgc

TABLE Il
ASSIGNMENTMATRIX FOR THE SEQUENCE SHOWN INFIG. 6 AND FOR DIFFERENT PROBABILITY THRESHOLD ;.
THE NUMBER IN THE COLUMNS BELOW AB AND C SPECIFIES THE INDEX OF THE TRAJECTORY TO WHICH THE OBIH
IS ASSIGNED. THE MANUAL ASSIGNMENT IN THE LAST ROW IS CONSIDERED AS THE GROND TRUTH. A LOW C'-VALUE
CORRESPONDS TO A HIGH AGREEMENT BETWEEN THE GROUND TRUT{IANUAL ) LABELS AND THE OUTCOME OF THE

ALGORITHM.

Dth a b c|C

10°% |1 2 3|2
Kalman| 10" |1 2 2| 1

107201 1 1|0
Manual - 1 1 1| -

The first step in the evaluation was to compare the calculatgelctories of the proposed
tracking procedure with the ones obtained by visual exanwnal he manual determination of
object trajectories is regarded as ground truth in the¥ahlg. In the129 erroneous sequences
of Dataset A 2220 suspicious objects were found by means of the change dmteadtjorithm
(in a single sequence normally betweHh— 20). Since the suspicious objects are found by
temporal brightness changes, not all of the objects can be sBethe raw data (see e.qg.
Fig. 3). If the brightness of background pixels is relayvebnstant (small variance) at a
certain position of the frame over time, small brightnesangfes are already sufficient to
detect an imginary object.

In Table Il the results for the manual and automatic deteation of the assignment matrix
for a sample sequence are shown. Visual inspection sugtiedtshe objects in the three
frames belong together. Hence, all objects have the safeettyey index number. The results
show that the lower the probability threshalg,, the better the tracking algorithm agrees

with the manual trajectory assignment.

1) Performance Measure for the Tracking Algorithrihe C-value is a measure of how
well the results from the algorithm correspond to the marassignments. A low'-value
corresponds to a high agreement between the ground truéisiand the outcome of the

algorithm. The value of” is increased by one whenever an object is assigned to adafiffer
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Fig. 7. Sputter event with ambiguous object assignment.

TABLE 11l
ASSIGNMENT MATRIX FOR THE SEQUENCE SHOWN INFIG. 7

Dth a b c d e flC

1-10% |1 1 2 3 4 5|3
Kalman|1-107%|1 1 2 2 3 4| 3
1-10720 |1 1 2 2 3 4|3

Manual - 1 2 3 2 4 2| -

trajectory by the algorithm compared to the manual assignminereforeC' has the value
of 2 in Table Il forp,, = 108, Suspicious objects andc are both incorrectly assigned to a
new trajectory. If, after assigning the object to a wrongetrtory no further errors occur' is
not increased. For instance, fay, = 1071¢, the number of wrong assignments(is= 1. The
objectb is incorrectly considered as the beginning of a new trajgcthus C' is increased
by one; but object is then correctly assigned to the same trajectory as objeutd C' is
not increased any further.

Fig. 7 shows an example of a challenging tracking scenarloseCto the melt pool
irregularities are found which do not have sharp boundaage®.g. the objects in Fig. 6. This
makes it difficult to obtain the ground truth labels. In suateae, manual assignments tend to
be strongly subjective. Table Il compares the assignmieons the algorithm with the ground
truth. The visual examination considers the objdxtd andf as a single particle that moves
downwards very quickly. The tracking algorithm, bases #ésision only upon the measured
coordinates of the objects and groups objects which lieectogether. In contrast, a visual
examiner takes into account the shape and brightness of ekingnparticle. In addition, the
tracking algorithm uses only the information from previdug not from upcoming frames.
Since the complete sequence is available before startedr#étking algorithm, a Kalman
Smoother could be used to overcome this shortcoming. A Kal8raoother is a non-causal
filter which bases the correspondence decision on the fralpe® time index t and the

upcoming frames (e.g. [17]).
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Fig. 8. Recorded image sequence of an explosion; many shjecure.

TABLE IV
ASSIGNMENT MATRIX FOR THE SEQUENCE SHOWN INFIG. 8

Dtn abcdefghiijkICC

1081 1234521678224
Kalman| 1076 |1 1 2 3 45 2 16 6 7 23

107201112 3 4321565¢6 24
Manual - 123456 375583

Fig. 8 shows the recorded frames of an explosion. Many natearticles are moving away
from the melt pool. Table IV compares the assignments fardélient. The visual examination
assigns the objects, g, | ande, i, | to two separate trajectories. The trackg, | is also
automatically detected by the algorithm for all used patanse Objects andj are assigned
to one trajectory fop,, smaller thanl0~'¢. Objecte is always regarded as the start of a new
trajectory, since the distance to objeds too large.

Fig. 9 illustrates the effects of preprocessing errors entthcking algorithm. The material
particles are too close together, so that the threshold eegtion cannot detect them as
separate objects. The two objects move from the melt podh@éddwer right corner. In the
first frame, they overlap completely and then travel witledtént velocities and thus separate
in the following frames. The Kalman Filter is not capableraicking the objects correctly due

to the preprocessing errors. The tracking algorithm findstthjectorya, d, e for p,, = 10~%.

Fig. 10 evaluates the performance of the tracking algorithmaifferent probability thresh-
olds betweeni0~16 and10~2 for all of the 129 erroneous sequences. In general, the number

of wrong matches decreases for lower probability threshdtdr a high probability threshold,

d

'*‘b

(=3
a

e

Fig. 9. Sequence with problems in the segmentation stage.
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Fig. 10. Number of wrong assignments of the tracking algorithm compared to the ground truth lakmtained from
visual inspection, for dataset containing 2200 suspicimjects. 150 wrong assignments correspond to approxiynasdh
correct object assignments

the algorithm tends to assign objects to new trajectorien éliough they should belong to
the same, whereas for smaller thresholds the algorithmpgrthe objects. From,;, < 1071,

no further improvement can be obtained. The number of wresggamentg’ varies between
145 and160. This corresponds to approximatel§% correct object assignments. In addition,
the influence of therecall parameter is studied. It is varied between valuesnd 3. The
graph shows that the influence of thecall parameter on the performance of the tracking

algorithm is negligible foDataset A

B. Object Tracking for Automatic Quality Control

Dataset Bis obtained from a welding process with a larger dynamic eai@p the number
of detected suspicious objects is an order of magnitudeehi¢gbn average 0.1 suspicious
objects are detected per frame) than for Detaset A(on average 0.01 suspicious objects
per frame). The parameters of the change detection aretedjssch that even weak sputter
events can be foundix = 3.7). The frame rate of the CMOS camera w880 fps and the
duration of the welding process was approximatels.

The test scenario consisted of 44 sputter sequences and dflingv sequences without

process errors. The error sequences were gathered frorh@edaction process over a time
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Fig. 11. Feature space of suspicious objects. As an exarmplenean gray value and the area of suspicious objects are
presented. The false positives are marked with a circle sfheter objects with a cross. The feature space shows a high
degree of overlap between the two classes.

period of 3 months. In the recorded laser welding sequerckEsge number of false positive
objects are found. In Fig. 11, the feature space withoutguaimy sequence information is
shown. The suspicious objects are manually labeled aspalsiéves (circle) or sputter events
(cross). Fig. 11 clearly shows the high overlap between kasses.

Both approaches sketched in Fig. 4 were compared. To enstmg aomparison, the
polynomial classifier was used both times. In both approschee feature selection was
performed with a wrapper approach and the classifiers wareetl using a 10 fold cross-
validation so as to avoid false negatives (all parts witlosrishould be found).

In total, 13 object based features were calculated for Th@Gapproach. The best feature
combination of the first stage consisted simply of the meawy galue of a suspicious object,
the polynomial degree was 1 and the optimal temporal filtegtle of the second stage was
2.

For the tracking approach, 11 trajectory features wereutatied. The best feature combi-
nation consisted of 3 features (the aggregated track lesagdhthe start and stop position of
the trajectory) and the optimal polynomial degree in thgetri@ry feature space was 3. The
trajectory feature space of the tracking approach is shawhig. 12, which shows a clear

separation between the normal and erroneous welding seggien
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TABLE V
SUMMARY OF THE RESULTS OF THETISCAPPROACH AND THE SPUTTER TRACKING AND SUBSEQUENT CLASSIFATION.
THE FALSE POSITIVE(FP)RATE IS DETERMINED SUCH THAT ALL ERRONEOUS SEQUENCES ARE FOID.

FP rate| Computation| Labelling
Times Costs
TISGapproach 30.1% ~bHS High
Tracking & Classific.|| 2.7% ~ 13 s Low

The results show that the tracking approach can reduce tbe positive (FP) rate from
30.1% for the TISCapproach t®.7% for the tracking and subsequent classification. The error
rates were both determined with a 10-fold cross-validafmna false negative rate d@f%.
The primary reason for the performance improvement is thattd the large number of false
positive objects, the object based classification in thé $tesge of theTISGapproach shows
poor results which cannot be compensated with the tempdiead ifn the second stage. Only
the information on the correspondence of objects enableparation. For comparison five
sequences that showed only weak sputter events were eledifieom the dataset and the
classification was performed again. In this case, the FPwag®.2% for the TISC approach
and 1.2% for the tracking and subsequent classification. This shdwas éven when NOK
borderline cases are eliminated, the tracking approachediarms theTISC approach by
approximately an order of magnitude.

Both approaches were implemented in Heurisko [18], a digitage processing software.
The total processing time increased frdm for the TISC approach tol3s for the object
tracking on a Pentium 4 personal computer. Reasons for the lacrease in the processing
time are that the tracking approach could not be implemewitdtbut loops that have a high
execution time in Heurisko, and that a large number of falssityes are found. Since the
clock cycle time was met by the implementation in Heurisko further improvements were
considered. A further advantage of the tracking approadhas entire trajectories and not
individual objects as in th&ISCapproach have to be labeled in the training stage. Therefore
the labeling costs can be decreased dramatically. Tablenwrsuizes the results of the two

approaches.
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Fig. 12. Trajectory feature space with the erroneous sexsemarked with crosses and the normal sequences withscircle
The feature on the x - axis describes the aggregated tragithlédaum of the length of all detected trajectories withire on
sequence) and the feature on the y - axis shows the distantiee Gfuspicious objects from the weld pool at the track
termination. The overlap between the classes is reducestatally in comparison to Fig. 11.

I[V. CONCLUSIONS

We propose a tracking framework for the automatic onlineect&n of sputter events in
welding processes that can lead to critical pores in the welin. The training procedure
avoids a tedious labeling of individual suspicious obje@s have compared the performance
of the tracking algorithm with respect to ground truth labebtained by visual examination
of the sequences. With proper parameter settings, theitigaekgorithm makes correct object
assignments in up 3% of all cases. We have also compared our method with the prelio
developedlISC[10] method for the quality monitoring of industrial proses. We were able
to reduce the false positive rate by an order of magnitudet® for the given dataset.

An obvious limitation of the proposed approach is the regméstion of each suspicious
object merely in terms of its position, velocity and accalem, i.e. the loose coupling of the
model with the underlying observations. Yet, experimentsntlude further object features
such as the mean grayvalue or area in the system model ontp @dlight improvement of
the tracking performance. The main reason is that due tolthage detection algorithm in
the preprocessing stage, more detailed object featurgsstamgly from frame to frame for
one object. Thus, no accurate system model for the Kalmaan @thuld be found and a high

uncertainty for the system covariance matrix had to be asdum
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