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Joint Segmentation and Shape Regularization With
a Generalized Forward–Backward Algorithm

Anca Stefanoiu, Andreas Weinmann, Martin Storath, Nassir Navab, and Maximilian Baust

Abstract— This paper presents a method for the simultaneous
segmentation and regularization of a series of shapes from a
corresponding sequence of images. Such series arise as time
series of 2D images when considering video data, or as stacks
of 2D images obtained by slicewise tomographic reconstruction.
We first derive a model where the regularization of the shape
signal is achieved by a total variation prior on the shape
manifold. The method employs a modified Kendall shape space
to facilitate explicit computations together with the concept
of Sobolev gradients. For the proposed model, we derive an
efficient and computationally accessible splitting scheme. Using
a generalized forward–backward approach, our algorithm treats
the total variation atoms of the splitting via proximal mappings,
whereas the data terms are dealt with by gradient descent. The
potential of the proposed method is demonstrated on various
application examples dealing with 3D data. We explain how to
extend the proposed combined approach to shape fields which,
for instance, arise in the context of 3D+t imaging modalities, and
show an application in this setup as well.
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I. INTRODUCTION

WHEN segmenting multi-dimensional data sets such as
data from computed tomography (CT), video data, or

even 3D+t acquisitions as for instance arising from magnetic
resonance imaging (MRI) data of a beating heart, one usually
obtains not only a single, but a whole collection of shapes.
These shapes typically enjoy a natural spatial, temporal, or
even spatio-temporal ordering. In video sequences for exam-
ple, the shapes corresponding to a tracked object have a natural
temporal ordering. Another example is organ segmentation,
where the segmentation is performed slicewise. The resulting
shape collection, obtained from outlines of the segmentations,
enjoys a natural spatial ordering induced by the ordering of
the slices.

In both cases, we have a univariate sequence of shapes
called shape signals. In case of 3D+t data, we even face
a bivariate sequence of shapes which we call shape fields.
Viewing a shape as a point in a shape manifold, such data
can be seen as manifold-valued data sampled on a (regular)
one- or two-dimensional grid. For an elaborate discussion on
the manifold perspective in data processing we refer to [1].
We emphasize that shape spaces are challenging since they
are high-dimensional manifolds (or, even Banach or Hilbert
manifolds when considering non-polygonal model spaces).

In this paper, we present a method for the joint segmentation
and total variation regularization of shape signals and shape
fields. In contrast to an a-posteriori regularization of
previously computed shape signals as proposed by Baust et
al. [2], we will see that a joint segmentation and regularization
is more robust to slice-wise errors while enjoying comparable
computational costs.

A. Related Work
There is an extensive body of literature on segmenting spa-

tial, temporal, or spatio-temporal collections of images such
as variational approaches, e.g. Yezzi et al. [3], Unger et al. [4],
graph-based methods, such as Shi and Malik [5],
Tarabalka et al. [6], and Grundmann et al. [7], atlas-
based techniques, e.g. Riklin Raviv et al. [8], probabilistic
approaches, e.g. Xue et al. [9], methods using super-pixels,
e.g. Papazoglou and Ferrari [10], or hybrid approaches such
as Ochs et al. [11]. These examples employ spatial and
temporal regularity constraints in Euclidean space, where, in
contrast, the proposed method utilizes regularity constraints
in a shape space which leads to a (non-flat) manifold setting.
As the proposed approach involves concepts from active
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contours (Sobolev-type regularization, active-contour-based
tracking), shape spaces (Kendall shapes), and processing of
manifold-valued data (cf. previous work [2]) we focus on the
discussion of related work with respect to these categories.

1) Active Contours and Sobolev Gradients: In the area of
active contours, it is a well-known fact that gradients com-
puted from (noisy) image data yield unstable gradient flows,
cf. [12]. Thus, regularization has been an important aspect of
active contours right from the beginning, cf. Kass et al. [13].
A special regularization concept, which is also employed in
this paper, is the one of Sobolev gradients; for an introduction
we refer the interested reader to the book of Neuberger [14].
Sobolev gradient methods have been successfully applied
to active contour methods by Charpiat et al. [15] and
Sundaramoorthi et al. [16], [17] – in particular for tracking
applications. However, it should be noted that tracking using
Sobolev gradient methods only yields a forward regularity
where the segmentation in the current frame is regularized
by the previous ones, cf. also the discussion in [2]. We also
note that – apart from the already cited works on active-
contour-based tracking – there is a large body of literature on
integrating various cues, such as shape, motion, or appearance,
for making active contours more robust. Examples include,
but are not limited to the works of Yezzi and Soatto [3],
Cremers et al. [18], Rathi et al. [19], and Jackson et al. [20].

2) Shape Spaces: Similar to the recent work of
Baust et al. [2], we employ a discrete shape space which
is a variant of the one proposed by Kendall [21]. The
choice of such a space is motivated by the existence of
explicit formulas for computing geodesics, cf. also [2].
In contrast to this, there is also a considerable body
of literature on continuous shape spaces, such as the
articles of Michor and Mumford [22], Younes et al. [23],
Michor and Mumford [24], Srivastava et al. [25],
Wirth et al. [26], or Bauer et al. [27], [28] to name
just a few. We note that some of these works had also an
influence on the development of Sobolev gradient methods
for active contours, e.g. [22]. We also mention that, as long as
a particular shape representation facilitates the computation
of geodesics, the proposed algorithm can be adapted to this
shape space. This includes the works of Srivastava et al. [25],
Wirth et al. [26], and Bauer et al. [28].

3) Processing Manifold-Valued Data: The processing of
manifold-valued data has gained considerable interest dur-
ing the last decade, but total variation regularization for
manifold-valued data has only been considered very recently,
cf. Lellmann et al. [29], Weinmann et al. [30], and
Grohs et al. [31]. Concerning the theoretical foundations of
total variation for manifold-valued data we refer the inter-
ested reader to Giaquinta and Mucci [32], [33]. Previous
algorithmic approaches for total variation regularization of
manifold-valued data only considered rather low dimensional
manifolds, such as the one and two-dimensional sphere as well
as the three-dimensional group of rotations [29], [30], [34],
or the space of symmetric positive matrices for processing
diffusion tensor data [30], [35]. High-dimensional manifolds,
such as shape spaces, have been, for instance, considered
by Durrleman et al. [36], Fletcher [37], Samir et al. [38],

Su et al. [39], or Shrivastava et al. [40]. The paper [2] has
been the first to consider total variation regularization for shape
spaces. In [2], however, only a pure denoising/regularization
setup is considered. Moreover, all of these methods take
manifold-valued data as an input whereas our method directly
works with the given images. In contrast to this, the present
work combines the segmentation of individual shapes with
the regularization of shape signals or even shape fields.
We mention the relation between total variation minimiza-
tion and iterative median filtering in linear spaces [41];
median filtering for shape spaces has been considered by
Berkels et al. [42].

B. Contributions

In this paper, we provide a novel variational formulation for
the joint segmentation and total variation (TV) regularization
of shapes in a Riemannian manifold setup. A manifold setting
is natural since shape spaces are not vector spaces but typically
non-linear manifolds. Similar to [2], we choose a variant of
the Kendall shape space as underlying manifold, because it
allows for an efficient computation of the exponential as well
as the inverse exponential map. We develop an algorithm
for the joint segmentation and TV regularization of shapes
(shape signals and shape fields). We provide a splitting of the
model which is computationally accessible using a generalized
forward-backward scheme. For the forward part, we employ a
Sobolev-gradient-type scheme, cf. Sundaramoorthi et al. [12]
and Charpiat et al. [15], in order to allow for a stable
numerical treatment. Our approach is efficient since all steps
of the algorithm have linear complexity implying a very
low overall runtime. Furthermore, we note that the algorithm
is parallelizable to a large extent. Finally, we provide an
experimental validation of the algorithm. As a baseline for the
proposed method, we consider a non-joint two-stage approach.
The first step consists of an item-wise plain active contour
segmentation method based on Sobolev gradients [12], [15].
The second step is the regularization of the obtained shapes
proposed in [2]. We compare the proposed approach with this
baseline approach as well as with the state-of-the-art method
of Grundmann et al. [7] in order to show its potential. We note
that the proposed framework is also applicable to other shape
spaces such as the ones discussed in [27].

C. Organization of the Article

In Section II we derive the proposed approach for joint
segmentation and shape regularization. After introducing the
concept, we derive the proposed model Section II-A and
Section II-B. In Section II-C, Section II-D and Section II-E
we derive the proposed algorithmic framework and concrete
algorithms. Finally, extensions to multivariate domains are
discussed in Section II-F.

In Section III we perform numerical experiments to show
the potential of the proposed approach. In the main part
which is Section III-A we compare the proposed approach
with the baseline approach of sequential segmentation and
regularization as well as with the state-of-the-art method of
Grundmann et al. [7]. In Section III-B, we briefly illustrate
the application of the method to shape signals.



3386 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 7, JULY 2016

II. PROPOSED APPROACH FOR JOINT SEGMENTATION

AND SHAPE REGULARIZATION

In order to deal with the competing goals of approximating
the data and achieving regularity of the shapes over multiple
frames/slices, we consider the variational model

min
U∈U

Jγ (U, F), where (1)

Jγ (U, F) = D(A(U), F) + γT V(U). (2)

Here, D measures the distance between the measured
data F and a nonlinear measuring/modeling operator A
applied to an element U belonging to the signal space model-
ing U . The input data F = (Fi )i is a sequence of images Fi

with a (temporal or spatial) ordering, for example a video. The
Riemannian manifold U is a modified Kendall shape space
as explained below. The operator A is a mapping from the
Riemannian manifold to the vector space of measurements.
More precisely, A maps a sequence of shapes to a sequence of
binary images that represent these shapes. T V denotes a total
variation (TV) regularizer acting on the Riemannian manifold;
it is the sum of distances between consecutive shapes. γ > 0
is a model parameter which controls the balance between data
fidelity and regularity.

The remainder of this section is organized as follows.
We start with the underlying model space U which is a
(modified) Kendall shape space as explained in Section II-A.
Then, we will concentrate on the energy functional acting
on U in Section II-B and derive a generalized forward back-
ward algorithm for the proposed model in Section II-C. The
building blocks required for the algorithm are finally derived
in Section II-D and Section II-E, respectively. We discuss
extensions to multivariate domains in Section II-F.

A. Model Space–Kendall Shape Space

As a model space, we consider a (modified) Kendall shape
space which is, due to constraints, a Riemannian manifold
rather than a linear space. Besides its simplicity, a major
advantage of the employed space is that the Riemannian
exponential mapping and its inverse can be implemented using
closed form expressions and thus yielding high computational
efficiency of the proposed approach. The classical shape space
introduced in the context of underlying planar curves by
Kendall in [21] is invariant w.r.t. rotations, scalings, and
translations. Similar to [2], we here employ a rotation-sensitive
variant termed oriented Kendall shapes. For the intended
application, this representation is particularly suited for the
TV regularization of shape signals as demonstrated in [2].

Let us recall the concept: We consider a polygon which
discretizes a simply connected planar shape. These are shapes
represented by closed curves in two-dimensional space which
do not intersect themselves. We obtain an n-gon which can be
represented by a vector

z = (z1, . . . , zn) ∈ (R2)n, (3)

where each entry zm ∈ R
2 is a vertex of this polygon. Note that

we do not employ a repetition of the first point, i.e., z1 �= zn.

We further assume a normalization with respect to translation
which means that

n∑

m=1

zm = 0 ∈ R
2. (4)

This restricts the shape representations to the subspace

V2n−2 = {z ∈ (R2)n :
∑n

m=1
zm = 0}. (5)

Since a shape z can be scaled by any real number s > 0, all
equivalent shapes (all representations of the same shape) lie
on the half-line

Lz = {s · z : s ∈ R\{0}}. (6)

This means that we obtain a space

S = V2n−2/L (7)

isomorphic to the sphere S
2n−3. Using this model, the expo-

nential mapping and its inverse are given by

expz(v) = cos(φ) · z + ‖z‖ sin(φ)

φ
· v, φ = ‖v‖ , (8)

and

logz(y) = φ · y − �z(y)

‖y − �z(y)‖ , φ = arccos(
〈z, y〉

‖z‖ ‖y‖ ). (9)

Since these operations only require basic linear algebra oper-
ations, they can be implemented efficiently using the BLAS
library.

B. Proposed Model

We consider a variational model of the form (2) on the
oriented Kendall shape space S. To explain the model, let us
start with a discrete signal {Ui }i of shapes; shape fields (Uij )i j

are a straightforward generalization. As data term, we consider
frame-wise operations of the form

D(A(U), F) =
∑

i
D(A(Ui ), Fi ). (10)

In order to prevent the notation from becoming too compli-
cated, we use the symbols A and D for the component-wise
operations as well. The measurement operator Ai acting on
the i -th component is mapping shapes in S to implicit curve
representations, i.e., images with values in [0, 1] defined on a
k × l-grid. However, being elements of the oriented Kendall
shape space, the shapes Ui do not have a particular position or
scale. Thus, the measurement operator A has to endow each
representation of the shape with a position x (translational
part) and a scaling factor s to obtain a particular implicit
representation of the form

Ax,s(Ui ) = μin1�x,s + μout1�C
x,s

(11)

as illustrated in Fig. 1. �x,s denotes the interior of the
shape Ui anchored at x and normalized such that the
sum over the squared distances to the anchor equals s2.
In order to keep the notation simple, we drop the dependency
of x and s on i . The symbol �C

x,s denotes the complement
of �x,s which is the outer part determined by the curve Ui .
Furthermore, μin and μout denote the means of intensity values
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Fig. 1. Action of the Measurement Operator: Ax,s maps a Kendall
shape Ui to a translated, i.e., positioned, and scaled version Ax,s (Ui ) in the
image space. �x,s and �C

x,s denote the areas inside and outside Ax,s (Ui ),
respectively.

of I = Fi (i th frame) computed w.r.t. �x,s and �C
x,s ,

respectively. The global measurement operator A now consists
of all Ax,s .

Using the standard L2 distance on [0, 1]k×l we define the
data term D(A(·), Fi ) as

D(A(Ui ), Fi )

= min
x,s

( ∑

j∈�x,s

|(Fi ) j − μin|2 +
∑

j∈�C
x,s

|(Fi ) j − μout|2
)
.

(12)

We note that the term in brackets is similar to the data
term employed in the Chan-Vese model [43] which is the
two-phase version of the classical Potts model (or piecewise
constant Mumford-Shah model) [44]. We further note that,
keeping the shape fixed, the minimization problem in (12)
is a registration problem w.r.t. position and scale. The mini-
mization over x and s in Eq. (12) reflects the necessary scale
selection process as the shapes Ui do not carry the respective
information any more. Since already one function evaluation
requires solving a registration problem, a naive approach to the
corresponding variational problem (2) is not reasonable from a
computational perspective. Thus, we propose an approximate
strategy which employs the concept of Sobolev gradients as
described in Section II-D.

Since the model space is a Riemannian manifold, any
regularization involving neighboring data items has to be
formulated in terms of the distance induced by the Riemannian
metric. We here consider the (discrete) TV regularizer

T V(U) =
∑

i
d(Ui , Ui+1) =

∑
i

∥∥logUi
(Ui+1)

∥∥
Ui

, (13)

where d denotes the distance induced by the Riemannian
metric on the considered Kendall shape space as defined in
Section II-A. This means that d(Ui , Ui+1) is the length of the
shortest geodesic joining the two shapes Ui and Ui+1. As it
is well-known in Riemannian geometry, the distance between
these shapes agrees with the length of the tangential element
logUi

(Ui+1) in the tangent space at the shape Ui . This length
is measured by the norm ‖ · ‖Ui which is given by the square-
root of the Riemannian metric (i.e., a smoothly varying tensor
field defining a scalar product at each point Ui ) applied to
logUi

(Ui+1). Here, logUi
(Ui+1) denotes the (locally unique)

tangent vector at Ui such that the geodesic starting at Ui with
this tangent vector reaches Ui+1 at time t = 1.

We briefly explain why we call the manifold object in (13)
total variation. Note that for a sequence of points (xi )i ⊂ R

2

in the Euclidean plane, i.e., R
2 with the standard scalar product

Algorithm 1 Proposed Scheme for Problem (1)

at each point, we have ‖ logxi
(xi+1)‖xi = ‖xi+1−xi‖2. Hence,

T V((xi )i ) = ∑
i ‖xi+1 − xi‖2 is just a discrete version of

the total variation, or the total variation of the corresponding
polygonal curve. When the underlying manifold is R, our
definition agrees with the total variation of the corresponding
Radon measure.

C. A Generalized Forward Backward Approach

We propose an algorithm for problem (2) with data
term (12) and TV regularizer (13). We split our target func-
tional in a way such that it is computationally accessible to a
generalized forward-backward scheme. The used terminology
is in the spirit of Raguet et al. [45] who propose a related
splitting scheme for vector valued data. A related approach
for diffusion tensor imaging (DTI) can be found in [46].

At first, we split the TV regularizer T V according to

T V(U) =
∑

i
T V i (U), T V i (U) = d(Ui+1, Ui ).

Using this splitting, we write the functional Jγ as

Jγ (U) = D(A(U), F) + γ
∑

i
T V i (U). (14)

In the forward step, we treat the data term D(A(U), F)
in an explicit way, which means that we apply a gradient
descent for the data term D(A(U), F). To this end, we recall
from (12) that the data term is separable, i.e., D(A(U), F) =∑

i D(A(Ui ), Fi ). This means that the forward step reduces
to dealing with all individual atoms D(A(Ui ), Fi ) separately,
which will be explained in Section II-D.

In the backward step, we treat the non-differentiable atoms
T V i implicitly. This means that the next iterate is determined
by an implicit condition. More precisely, we compute the
proximal mappings of these atoms (see Section II-E) and apply
them in a cyclic way, i.e., we successively apply the proximal
mappings of T V1, T V2, T V3, …. This corresponds to one
step of a cyclic proximal point algorithm [48], [49].

The resulting algorithm performs an iteration of the forward
step, using the Sobolev gradient method, and backward steps
applying the proximal mappings of the TV atoms cyclically.
We summarize the iteration scheme in Algorithm 1. The step-
size (for both explicit and implicit steps) within the iteration
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is chosen such that it is square-summable but not summable
which is needed for the backward step. Furthermore it is
chosen such that it does not increase the energy in the forward
step. To this end, we perform a line search to determine the
optimal step size for each data term atom. Next, we take
the minimum of these step sizes and 3l−(0.95+0.5l−0.18) (where
l denotes the iteration number, cf. [2]) in order to obtain the
final step size.

We observe convergence of the proposed algorithm in the
performed experiments, cf. Section III. A proof is, however,
challenging and topic of future research; convergence in the
mathematical sense has not been proven yet. So far, con-
vergence has only been shown in the non-inverse setup for
Hadamard spaces [30] as well as for the 1D circle with rather
severe restrictions [50].

D. Computing Sobolev Gradients

The data term D acting on the sequence U may be written as

min
x1,...,s1,...

∑
i

∑
j
|Axi ,si (Ui ) j − (Fi ) j |2. (15)

Neglecting the regularizer for the moment, the minimization
of (2) requires minimizing (15) w.r.t. the shapes Ui in the
shape space S. We note that the triples (V , y, t) of shapes
V ∈ S, translations y and scalings t , parametrize the space of
plain curves. Thus minimizing (15) w.r.t. Ui is equivalent to
minimizing the sums in (15) with respect to plain curves given
by the corresponding triples (Ui , xi , si ). In other words, the
minimization of (15) corresponds to a classical active contour
evolution.

We recall the standard principle of evolving active contours.
Assuming that Axi ,si (Ui ) is registered to the image data Fi ,
one needs to compute a deformation field

�Vxi ,si = α(zm)ηm , (16)

where ηm denotes the (approximate) outer normal at the m-th
boundary point zm (m = 1, . . . , n), cf. Fig. 4, and

α(zm ) = |Fi (zm) − μin|2 − |Fi (zm) − μout|2 (17)

is the velocity in normal direction evaluated at zm . In standard
active contours, one evolves the contour according to �Vxi ,si to
improve the segmentation. However, in order to evolve the
shape Ui itself, we remove the scale and the translational
component of �Vxi ,si before applying it to Ui . Denoting this

scale and translation adjusted version of �Vxi ,si by �V , the
forward step reads

expUi
(−τ �V ), (18)

where expUi
denotes the exponential mapping at Ui . This

update step is, of course, also applicable in connection with a
regularizing term.

It is important to note that we perform the registration of the
shapes in an incremental way: Based on the initialization of Ui

we are able to specify (and store) initial values for xi and si .
When computing the deformation field �Vxi ,si , we simply apply
the current values xi and si , estimate the scale change 	si

as well as the translational change 	xi caused by �Vxi ,si ,
and update xi and si accordingly.

In practice, �Vxi ,si can be severely affected by noise as
it inherits all the local behavior of Fi . To deal with this
issue, we propose to regularize �Vxi ,si based on the concept of
Sobolev gradients [12], [15]. Therefore, we interpret the scaled
and translated version of Ui as the discretized version of a
continuous curve C in the manifold of smooth immersed curves
modulo parametrization, cf. [12]. This allows us to consider
�Vxi ,si as an element of the tangent space of this manifold at C.
This tangent space can now be endowed with the inner product

〈 �V , �W
〉

H1
= avg( �V ) · avg( �W ) + θ L

∫ L

0

�Vs · �Ws ds, (19)

where s denotes the arc length, L the length of C, ·s the partial
derivative w.r.t. s, and avg( · ) the translational component of
the respective argument, cf. [12]. Computing active contour
gradients w.r.t. to this inner product yields so-called Sobolev
gradients which favor translations over smooth deformations.
Fortunately, there is a simple and efficient way of turning �Vxi ,si

into a Sobolev gradient: we just have to convolve it with the
smoothing kernel

Kθ = 1

L
(1 + (s/L)2 − (s/L) + 1/6

2θ
) (20)

as described in [12]. As suggested in [12] we chose θ > 1/24.

Here, we use θ = 0.05 for all experiments. Based on Kθ ∗ �Vxi ,si

we can now reliably estimate 	si and 	xi as described in the
previous paragraph.

E. Proximal Mappings of the Regularizer

As stated in Section II-C, the proximal mappings of the
regularization atoms T V i (U) = d(Ui , Ui+1) can be computed
explicitly. More precisely, the corresponding proximal map-
ping proxλT V i

is, for λ > 0, defined by

proxλT V i
(U) = argminU ′

1

2
d2(U ′, U) + λd(U ′

i , U ′
i+1). (21)

As shown in [30], these proximal mappings proxλT V can be
computed explicitly:

[proxλT V i
(U)] j

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

U j , if j �= i, i + 1,

expUi

(
min(λ, 1

2 ) exp−1
Ui

Ui+1

)
, if j = i,

expUi+1

(
min(λ, 1

2 ) exp−1
Ui+1

Ui

)
, if j = i + 1.

(22)

The relevant terms take two shapes as input, and compute
two new shapes which are closer using (9) and (8). These
new shapes both lie on the geodesic joining the old shapes.
Each new shape always stays nearer to its corresponding old
associate than the other new shape with the extreme case
of both new shapes being equal. The distances to their old
associates are equal for both new shapes.

F. Extension to Shape Fields

In order to extend the approach to shape fields, i.e. two
dimensional collections of shapes, we extend the functional (2)
such that they deal with arguments defined on a multivariate
grid. This is no issue for the separable data term, and we obtain

D(A(U), F) =
∑

i j
D(A(Uij ), Fij ). (23)
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Fig. 2. Benefits of the Joint Approach on a cardiac MRI image sequence (six slices shown) with every third member (artificially) corrupted by noise (image
data from [47].). First and second row. Segmentation using a Sobolev active contour w.r.t. the piecewise-constant Mumford-Shah model. The segmentation fails
on those frames corrupted with noise. Third and forth row. The shape signal of the first row regularized with the method of [2]. Most of the information can
be restored, but the faulty segmentations distort the correct ones from the true myocardial boundary in the neighboring slices. Fifth and last row. Regularized
shape signal obtained with our method. Note that segmentations in the noise-free frames are not affected.

Since the TV term is non-separable, its extension to 2D is a
bit more involved. We use the simplest anisotropic variant

T V(U)=
∑

i, j
d(Uij , Ui+1, j )+

∑
i, j

d(Uij , Ui, j+1). (24)

To get more isotropic variants, one might also include addi-
tional diagonal or knight move directions; see [52], [53]. The
proposed algorithm generalizes easily to 2D: We only notice
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Fig. 3. Robustness w.r.t. to Consecutive Corrupted Frames: In contrast to the experiment in Fig. 2, we corrupted multiple consecutive frames of the left
ventricle data set (Fig. 2) with noise – in this case frames 4,5,6,7, and 8 as well as 15,16, and 17. We display the shape signals obtained with different
methods, where the shapes of the corrupted frames are highlighted in red. From top to bottom: plain segmentation with Sobolev active contours without noise;
plain segmentation with noise; Sobolev active contours segmentation regularized by a posteriori shape-TV model of [2]; proposed approach. The proposed
approach comes closest to the shape signals obtained from noise-free data.

Fig. 4. Estimation of the Outer Normal: The outer normal η at point zi is
estimated via the orthogonal projection of zi onto the line [zi−1, zi+1].

that proximal mappings are now to be computed for all atoms
d(Uij , Ui+1, j ) and d(Uij , Ui, j+1) in (24).

III. EXPERIMENTS

In order to demonstrate the potential of the pro-
posed approach, we performed a qualitative comparison,
see Figs. 2, 3, and 6, as well as a quantitative comparison,
see Tab. I and II. The baseline approach consists in segmenting
the respective image data using a two-phase piecewise con-
stant model using a Sobolev active contour method (without
additional regularization), cf. [12]. We further compare our
method to a state-of-the-art unsupervised video segmentation
method of Grundmann et al. [7] which in particular takes the
temporal regularity of the segments into account. Finally, we
provide more applications (Fig. 5) as well as an extension to
shape fields (Fig. 8).

A. Comparison

In Fig. 2, we segmented a temporal sequence of one slice
of the left ventricular cavity acquired with magnetic resonance
imaging (MRI). The first two rows show the segmentations
obtained with a plain Sobolev active contour method minimiz-
ing the piecewise constant model. One may easily notice that
the segmentation fails in those frames which are artificially
corrupted by noise. Using this faulty shape sequence as an
input for the method proposed in [2] (with regularization

TABLE I

ROBUSTNESS W.R.T. INITIALIZATION: WE ADDED WHITE GAUSSIAN
NOISE TO THE INITIALIZATIONS OF THE BRAIN TUMOR SEQUENCE IN

FIG. 5 AND COMPUTED THE AVERAGE SURFACE DISTANCE TO THE

SEGMENTATIONS OBTAINED WITHOUT NOISE ADDED.
WE CONCLUDE THAT THE PROPOSED METHOD IS

SLIGHTLY MORE ROBUST W.R.T. THE

INITIALIZATION. NOTE THAT THE

REGULARIZATION PARAMETERS ARE
NOT NECESSARILY COMPARABLE

parameter γ = 2.0) we obtain a nicely regularized shape
signal, cf. second two rows of Fig. 2. However, as the method
of [2] is unaware of the original image data, the corrupted
segmentations distort the shapes of the neighboring frames.
In contrast to this, the proposed approach, with regularization
parameter γ = 1.0, shown in the last two rows of Fig. 2, does
not suffer from this issue as it uses the original image data
as “anchors”. This effect becomes even more prominent when
corrupting a series of images with noise as done in Fig. 3,
where we applied noise to frames 4, 5, 6, 7, and 8 as well
as 15, 16, and 17. We observe in Fig. 3 that the proposed
approach comes closest to the shape signals obtained from
noise-free data.

We also investigated the robustness of the proposed
approach w.r.t. to the initialization. Therefore, we added white
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Fig. 5. Further Application Examples: First row: Multiple slices of a brain tumor segmented from MRI data (γ = 2), which has also been used for the
quantitative analysis in Tab. I (image data from [51]). Second row: Several slices of a microscopic video (by David Rogers at Vanderbilt University) showing
a leukocyte chasing a bacterium. Both data sets have been used for the quantitative analysis in Tab. II.

Fig. 6. Comparison to a State-of-the-art Method with Temporal Regularity Constraints [7]: We run our method on 2D+t MRI data (100×100 pixel, 20 frames).
Bottom: The method of [7] is affected by the adjacent blood pool (result obtained with the implementation provided at www.videosegmentation.com, runtime
(only processing) 15 sec.). Top: The proposed method segments the left ventricular cavity reliably (runtime 0.1 sec.).

TABLE II

ROBUSTNESS W.R.T. IMAGE NOISE: WE ADDED WHITE GAUSSIAN NOISE

TO THE INPUT IMAGES OF THE BRAIN TUMOR SEQUENCE (FIG. 5), THE

CELL SEQUENCE (FIG. 5), AND THE LEFT VENTRICLE SEQUENCE
(FIG. 2). THEN WE COMPUTED THE AVERAGE SURFACE

DISTANCE TO THE SEGMENTATIONS OBTAINED WITHOUT

NOISE ADDED. WE CONCLUDE THAT THE PROPOSED
METHOD IS MORE ROBUST W.R.T. IMAGE NOISE

Gaussian noise to the initializations of the brain tumor data
of Fig. 5 (first row) and compared the results obtained with
(i) the plain segmentation method, i.e., Chan-Vese data term
minimized with Sobolev gradient method, (ii) the method
proposed in [2] on the results of the plain segmentation, and

(iii) the proposed method applied to the noisy initializations.
We varied the regularization parameter γ in the range [0.5, 3]
and found that the proposed method is robust w.r.t. to perturbed
initializations, as the obtained average surface distances (w.r.t.
to the segmentations obtained without noisy initializations)
are below the standard deviation of the added noise, cf.
Table I. Furthermore, the proposed method achieves slightly
better results in terms of initialization robustness than the
baseline method, i.e., plain segmentation combined with the
regularization method of [2]. Moreover, we applied white
Gaussian noise with different variances to three different
image sequences and compared the results to the ones obtained
from the original sequences. It becomes apparent in Table II
that the proposed method is less susceptible to image noise
than the baseline approach, i.e. a Sobolev active contour with
a posteriori regularization.

In Fig. 6 we compare the proposed method with the
video segmentation method of Grundmann et al. [7] when
segmenting a basal slice of a left ventricle. For the method
of [7], we have used the default parameters where we adapted
the label range from 5 (minimum possible) to 10 labels.
We observe that the method proposed in [7] erroneously
segments parts of the neighboring blood pools as well, cf.
Fig. 6. In contrast, the proposed method segments the left
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Fig. 7. Robustness to Scale Changes: Our method deals well with large scale changes of the tracked object (γ = 0.5).

Fig. 8. Joint Segmentation and Regularization of Shape Fields: We segmented the left ventricular cavity from 3D+t MRI data (20 axial slices for 9 time
steps; partial data already used in Fig. 6) using the proposed method. We consider this collection of ventricular boundaries as a shape field, because it enjoys
a natural spatio-temporal ordering. We segmented and regularized this data set with the proposed method. An important aspect of using the proposed method
for shape fields is that one can employ different regularization parameters for the spatial direction (γ = 1) and the temporal direction γ = 0.1.

ventricular cavity reliably. Moreover, the runtime of the pro-
posed method (0.1 sec) is significantly lower than that of [7]
(15 sec., only processing time without up- and download).
Fig. 7 illustrates that the proposed method is robust w.r.t. scale
changes of the segmented object. For all frames the number
of boundary points has been kept fixed to 200. The runtime
is 22 seconds for 480 × 854 pixels and 50 frames which
corresponds to 2.3 frames/sec. We note that these numbers
have been obtained using a non-optimized and non-parallelized
implementation.

B. Further Examples and Extensions

As discussed in Sec. II-F, it is furthermore possible to
extend the proposed approach to shape fields, e.g. collec-
tions of shapes which enjoy a spatial and temporal ordering.
To demonstrate this possibility, we consider 3D+t cardiac
MRI shown in Fig. 8. Note that the apical slice has to
be chosen after the papillary muscles and before the cavity
ends as suggested in [54]. This example also demonstrates
the efficiency of the method: 1000 iterations of our single-
threaded C++ implementation, which is partially based on

the Eigen library (eigen.tuxfamily.org), take less than
one second on a laptop with 2,8 GHz Intel Core i7 processor.

IV. CONCLUSION

We presented the first Riemannian formulation for joint
segmentation and TV regularization of shapes (shape fields and
shape signals). Our shape representation employs a modified
version of the classical Kendall shape space, which has been
proven to be well-suited for the TV regularization of shape
signals, see [2]. Using this shape representation for image
segmentation is, however, not straightforward as this repre-
sentation is translation- and scale-invariant. In order to address
this problem, we proposed to minimize the functional in the
modified Kendall shape space with a generalized forward
backward algorithm augmented by a separate evolution of
the non-shape characteristics position and scale. Furthermore,
we stabilize both the shape and this separate evolution via
Sobolev gradients. The resulting method is efficient as demon-
strated by the experimental evaluation. The computation of the
exponential and the inverse exponential maps as well as the
computation of the Sobolev gradients are of linear complexity.
Thus, each iteration step has linear complexity yielding a very



STEFANOIU et al.: JOINT SEGMENTATION AND SHAPE REGULARIZATION 3393

low runtime. The proposed method can be easily adapted to
more sophisticated segmentation models such as a piecewise
smooth model. Future research includes applications to cell
tracking as well as the usage of other shape spaces.
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