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Abstract

We present an optimal high-level postprocessing of single-voxel 1H

magnetic resonance spectra, and assess the benefits and limitations of

automated methods as diagnostic aids in the detection of recurrent brain

tumor.

In a previous clinical study, 90 long-echo-time single voxel spectra

were obtained from 52 patients and classified during follow-up (30/28/32

normal/non-progressive tumor/tumor). On this data a large number of

evaluation strategies, including both standard resonance line quantifica-

tion and algorithms from pattern recognition and machine learning were

compared in a quantitative evaluation. Results from linear and nonlinear

feature extraction, including ICA, PCA, and wavelet transformations, but

also the data from resonance line quantification were combined systemat-

ically with different classifiers such as LDA, chemometric methods (PLS,

PCR), support vector machines, and ensemble methods. Classification

accuracy was assessed using a leave-one-out cross-validation scheme and

the area under the curve (AUC) of the receiver-operator-characteristic

(ROC).

A regularized linear regression on spectra with binned channels reached

91% classification accuracy compared to 83% from quantification. Inter-

preting the loadings of these regressions, we find that lipid and lactate

signals are too unreliable to be used in a simple machine rule. Choline

and NAA are the main source of relevant information.

Overall, we find that fully automated pattern recognition algorithms

perform as well as, or slightly better than, a manually controlled and

optimized resonance line quantification.

Keywords: Statistical Learning, Chemometrics, Preprocessing, Postprocessing,

Benchmark, Magnetic Resonance Spectroscopy, Human Brain Tumor
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1 Introduction

In vivo nuclear magnetic resonance spectroscopy (MRS) opens a window into

certain metabolic processes in living tissue. However, the biochemical function

of the metabolites attributed to the observed resonances is presently not fully

understood. So the detailed analysis of empirical data and the generation of

optimal rules is crucial for the success of MRS in medical diagnostics.

Two different approaches are discussed for the extraction of spectral informa-

tion: inverse modeling of the resonance lines can be used to infer the absolute or

relative concentrations of the biochemical agents (“quantification”) [21, 35, 14],

or the full spectrum is input to statistical decision methods, an approach often

termed “pattern recognition” in MRS literature [10, 8].

An early review on MRS data analysis stated in 1997 that “benchmarking1

is probably the single most important step towards implementing practical and

clinical information [of MRS analysis into computer algorithms]” [8]. In the

meantime, MRS-based diagnostic methods have been developed for a number

of clinical applications (e.g., in the diagnosis of brain tumors and lesions [13, 22]).

These methods are almost exclusively based on the quantification of resonance

lines, whereas pattern recognition methods [8, 10] do not seem to have found

routine use since the time of that review [31, 17, 32, 12].

The objective of this study is to provide such a benchmark in terms of a

systematic and quantitative comparison of both data analysis approaches for

the detection of recurrent tumor after radiotherapy.

In this diagnostic question, both radiation-induced tissue changes in a state

of stable disease and recurrent tumor may be observed at the same location and

both show contrast enhancement in standard CT and MRI [4, 25]. MRS and,

1Benchmarking is the process of assessing the performance of competing products, services
or practices against one another with the aim of setting standards and guidance choice. [8,
p.117]
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more recently, MR spectroscopic imaging (SI) have demonstrated their value in

this ambiguous situation [25, 16].

While the pre-therapeutic diagnostics of brain tumor have been studied ex-

tensively [9, 5], less attention has been devoted so far to the optimization of

decision rules for the analysis of MRS data in the post-therapeutic diagnostics.

New strategies of multimodal MR diagnostic [28] depend crucially on a reliable

and robust machine guided analysis of the spectral information, so the present

work also aims towards the development of similar techniques in the postoper-

ative diagnostic setting.

Pattern recognition is a long-term standard in the classification of spectra

of all kinds and its application to in vivo MR spectra has been discussed for

a while [1, 17, 32]. Conceptually it consists of a preprocessing step, including

feature extraction and feature selection, mainly for the purpose of dimensionality

reduction (discussed in [8, 11]), and a subsequent classification step (see fig. 1).

Although the importance of preprocessing is widely recognized, only few studies

focus on that aspect [15, 5, 27].

While previous studies have used statistical decision methods such as linear

discriminant analysis [32], logistic regression [4], decision trees [18] and nonlin-

ear support vector machines [5], primarily in conjunction with quantification, a

comprehensive and quantitative benchmark of optimal combinations of prepro-

cessing strategies and classification methods is not available to the best of our

knowledge. We will discuss appropriate methods in order to find the best such

combination on the given data set.

In the following, we will shortly discuss differences between pattern recog-

nition methods and a conventional quantification (section 2), compare the two

approaches quantitatively on our data set (section 3) and present and discuss
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our results (sections 4 and 5).

2 Concepts of Spectral Analysis

2.1 Quantification

A spectral pattern can be understood and modeled as superposition of indi-

vidual resonance lines. This description is very general and useful both in an

explanatory, purely descriptive setting, and in a supervised learning context

(calibration, classification). Especially for the latter, methods of inverse model-

ing are needed to infer the parameters of the single resonance lines [35, 21, 24].

These methods often rely on prior knowledge about the individual resonance

lines, such as the expected position, width, or shape. Basis functions are either

determined empirically [14] (e.g., measured or “learned” for single metabolites,

as in “LCmodel”[24]), or are parametric models deduced from the physics of MR

(e.g., assuming Lorentzian, Gaussian, Voigt line shape functions, as realized in

“AMARES” [36]).

From a data analyst’s point of view, an important advantage of this approach

is the low dimensionality of the resulting data representation – corresponding to

the number of metabolites or resonance lines rather than the number of spectral

channels – which allows the use of simple decision rules and a straightforward

interpretation of the extracted features. This biochemical interpretability and

the possibility to check the results for plausibility halfway between the spectral

pattern and the diagnosis explains the high confidence in this approach.

Unfortunately, in the presence of noise or artifacts, the quality of such a

quantification suffers from its high flexibility and the fact that the optimization

in the inverse modeling may converge to a wrong solution [1]. As a consequence,

a fully unsupervised fitting of resonance lines may result in misleading output
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in practice. In the presence of noise, results can only be trusted after visual

inspection and reassurance that the fitting procedure has worked successfully

[37, 30].

2.2 Pattern recognition

From a methodological point of view [6], any resonance line quantification fol-

lowed by a decision rule operating on the resulting parameters (fig. 1) can be

seen as “pattern recognition”.

However, literature on MRS data analysis generally subsumes only nonpara-

metric approaches under this term [10], a convention that we shall adopt for the

remainder of the paper. A large variety of algorithms originally developed in

the context of signal processing, chemometric or machine learning (e.g., [5, 28])

fall into this class. Their common feature is that they assess the physiological

state of the tissue directly from the spectral pattern and that they bypass the

intermediate step of resonance line quantification.

Availability of a representative training sample comprising the states of dis-

ease of diagnostic interest (e.g. tumor discriminated vs. normal tissue, neo-

plastic lesion vs. non-neoplastic lesion) is a prerequisite for pattern recognition.

Also, as the statistical evaluation now has to deal with hundreds of channels

instead of a small number of resonance line parameters (see [8, 11] for a discus-

sion), dimensionality reduction prior to classification becomes a major concern

(fig. 1). This conceptual separation between primary feature extraction and sub-

sequent classification is not possible for all pattern recognition algorithms [14],

which hampers insight into the decision process of these methods and evokes

the main criticism concerning this approach.

Therefore, pattern recognition often appears as a “black-box” method with

no biochemical interpretability. In section 4, we will illustrate how the diag-
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nostic rule at least of a linear classifiers can be compared against biochemical

knowledge.

In contrast to resonance quantification, pattern recognition methods do not

require an optimization step in their application. As shown in section 4, this

might result in procedures that are less susceptible to noise and artifacts. Pat-

tern recognition methods therefore have a high potential to operate reliably and

fully automatically even on low quality spectra [32].

3 Methods

3.1 Data

3.1.1 Patients/Study design

Our data set comprised single-voxel 1H MR spectra of 58 lesions from 52 pa-

tients after initial treatment by radiotherapy, examined at the German Can-

cer Research Center (dkfz), Heidelberg [25]. The lesions were classified during

follow-up on the basis of magnetic resonance imaging (MRI) or positron emis-

sion tomography (PET) examinations. Recurrent tumor was diagnosed in the

case of an increase of the hyperintense area on T2-weighted MR images by more

than 25% in size, or appearance of a new contrast-enhancing area with subse-

quent enlargement on MRI and (in patients with PET examinations) signifi-

cant tracer (18Fluoro-2-deoxy-D-glucose) uptake. MR follow-up examinations

started 6 weeks after radiotherapy and were repeated every 3 to 6 months. The

mean length of follow-up for patients with stable disease was 15.3 months.

For 30 lesions, a recurrent tumor was confirmed, whereas 28 were diagnosed

with non-progressive tumor, comprising both radiation injury and stable dis-

ease (fig. 2). For the reference group of normal physiological state (i.e. normal

tissue), 32 spectra were acquired from the contralateral unaffected regions of
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these patients. Primary tumors were in the majority astrocytoma of grade 1-4,

but the study also included patients with meningioma and metastases (also see

[25] for details on the study).

– – – Figure 1 about here – – –

– – – Figure 2 about here – – –

3.1.2 Data acquisition

MRI and single-voxel 1H MRS examinations were performed using a 1.5-T

whole-body scanner (Magnetom Vision; Siemens, Erlangen, Germany) with

commercially available pulse sequences and the standard head coil. Voxel sizes

varied from 1.5 × 1.5 × 1.5 cm3 to 2 × 2 × 3 cm3, with a majority of the voxels

sized 2 × 2 × 2 cm3. All lesions were larger than the selected voxels. Normal

brain tissue, cerebrospinal fluid and edema were avoided, but (central) areas of

the lesions could comprise necrotic tissue.

The MR spectra were obtained with a double spin-echo sequence with one-

pulse water-signal suppression and long echo time (1500/135/200-300 [TR / TE

/ number of excitations], spectral width 1 kHz, 1024 data points).

3.2 Statistical analysis

The search for the best decision rule was performed on the basis of several dif-

ferent representations of the spectral information (see fig. 1).

3.2.1 Feature extraction by resonance line quantification

In the original study, a commercial program (Luise, Siemens, available at the

tomograph) was used for the quantification of the three major resonance lines
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in the spectral region under study (cholines (Cho, chemical shift δ = 3.22 ppm),

creatines (Cr, δ = 3.01 ppm), N-acetyl-aspartate (NAA, δ = 2.01 ppm)). It

included apodization, Fourier transformation, phase correction, and baseline

flattening by fitting and subtracting a spline function. Results from this software

were readjusted by the operator in the case of dissatisfactory line fits. To assess

the performance of an automated quantification without a final operator control,

we used jMRUI 2.0 [23] with soft constraints allowing +/− 0.03 ppm frequency

shift and a line width of 6.25 (range: 0 - 31.25) Hz.

As input for the following classification, we studied different representations

of this data: values of the metabolite peaks as obtained from the integration

(neither normalized with respect to a water reference nor to a metabolite value,

table 1: “NAA Cr Cho” and “NAA Cr Cho auto” as obtained from MRUI),

normalized by creatine (“NAA/Cr Cho/Cr”) and a normalization proposed in

[25] (“Cho/Cr Cho/NAA”). These data sets were optionally augmented with

a categorical indication of lipid/lactate occurrence (lipid: true/false, lactate:

true/false).

3.2.2 Feature extraction by nonparametric transformations

Prior to the application of any pattern recognition method to the spectrum, the

residual water signal was removed using the HLSVD methods implemented in

MRUI. Input for further processing was either the absolute Fourier transformed

signal (magnitude spectrum), or the real phased part of the Fourier transform

after a manual adjustment of the phase. In either case, the spectrum was

normalized to the integrated amplitudes of the spectral region between and

including the Cho and NAA peaks (3.4 to 2.0 ppm). Lipid and lactate resonances

were excluded from the normalization to keep the pattern of the Cho, Cr and

NAA region as constant as possible within the data set.

Two different kinds of transformations were applied to the spectra:
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• transformations that are independent of the specific set of spectra, such

as different wavelet transformations, the integration of the spectrum over

isolated spectral regions around peaks, or the summation over a predefined

number of neighboring channels (table 1, rows 9-16)

• transformations that were deduced from the pooled data set, for instance

the principal and the independent component analysis (PCA, ICA, table

4).

Wavelets decompose a signal into more or less localized short and long range

components and are frequently used in the denoising and compression of spectral

data (for applications on MRS, e.g., see [33]). As spectra generally represent

highly correlated signals, wavelets have the potential to express the relevant vari-

ation of a spectrum in a low number of wavelet coefficients. Besides the standard

dyadic wavelets (of Daubechies-4 type), we used wavelet packages and contin-

uous wavelets, which contain all possible combinations of low- and high-pass

filtering or possible shifts, respectively. Binning, the integration over neighbor-

ing channels, amounts to a smoothing and subsampling of the spectral vector.

It can be advantageous both in the presence of noise and small shifts of the

resonance lines.

PCA extracts features from the data set that optimally represent the corre-

lated variation in the data. In situations where this variation is due to strong

interclass differences rather than noise or independent artifacts, PCA leads to

a set of meaningful variables. ICA assumes that a signal is the superposition of

several independent processes. These latent processes, or sources, are recovered

in search of a transformation that, in our chosen algorithm, maximizes non-

linear correlation of the sources within the data set. For example: on a data

set of spectra that show independently varying intensities of three resonance

lines, ICA is supposed to extract these three peaks as latent sources of variation
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within the data set.

Some of these transformations increase the number of features (P ) drasti-

cally. Thus, when P exceeded the number of spectra (N) by far (e.g. wavelet

packages: P = 4096 >> N = 58), a mild univariate selection of the N most in-

formative features was performed, namely according to the correlation between

feature value and class label (table 1, rows 10,11). For a comparison of the fea-

ture representations, we included spectral vectors without any transformation

into the evaluation of the classifiers. They either comprised solely the Cho, Cr

and NAA spectral regions (table 1, rows 5-6, P = 141), or were extended to

lower frequencies including lipids and lactate (table 1, row 7, P = 256; basis for

all feature transformations in rows 9-16) or to both lower and higher frequencies

(table 1, row 8, P = 356). All feature transformations described above were

generally performed on the medium range, comprising resonance lines from Cho

to Lip. For a quantitative comparison of a pattern recognition on magnitude

(table 1, rows 6-8) and real phased spectra, we also included the latter in our

benchmark (table 1, row 5)

3.2.3 Classification

We evaluated twelve different classification or regression methods both on the

features from resonance line quantification and the other preprocessing methods

(table 1). For the regression methods, a threshold on the response variable was

learned to obtain a binary result from the predicted values. Due to the lack of

reasonable assumptions on the clinical frequency of the two classes, balanced

weights and cost functions were chosen for training and evaluation.

When applied to data sets such as the presented, standard methods (LDA, k-

nearest-neighbors (k-NN), regression) tend to result in overtrained and unstable

classifiers. Therefore, regularized multivariate linear regression methods were

also evaluated: While ridge, lars and lasso regression are often motivated from
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statistical learning theory [11], partial least squares (PLS) and principal com-

ponent regression (PCR) are traditional chemometrical methods [11]. Support

vector machines (SVM) with linear and nonlinear (RBF) kernel and random-

Forest [3] decision tree ensembles are based on machine learning, the latter two

being nonlinear learning algorithms.

All classifiers were evaluated on a reasonable range of parameters [20]. The

classification error was assessed by leave-one-out cross-validation (table 1, figure

3). For the regression methods, the area under curve of the receiver operator

characteristic (ROC-AuC) was additionally used to assess the quality of class

separation (table 2). Lower and upper quartiles of the classification results were

determined under the assumption of a binomial distribution (table 1, figure 3).

Robust summaries of these distributions [19] were used to test for significant

differences between the various processing strategies (fig. 3).

4 Results

In the following, benchmark results (table 1) on optimal feature extraction and

classification will be summarized, followed by an analysis of the biological im-

plications of the optimal decision rule.

– – – tables about here – – –

4.1 Feature extraction

Following the scheme of fig.1, feature extraction comprises two major approaches.

Resonance line quantification

Visual checking and manual readjustment leads to an improved classification

performance (compare rows 1 and 4 in table 1). Normalization as proposed in
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[25] (table 1, row 3) performs better than normalization with creatine intensity

(table 1, row 2). Overall, the performance of a classification based on unnormal-

ized quantification values is equivalent to results after the best normalization

strategy (table 1: compare row 1 vs. 2 and 3). Additional use of categorical

information concerning the occurrence of lipid or lactate resonances in the spec-

trum did not result in a notable change of the classifier performance (results

not shown).

Pattern recognition

A pattern recognition based on magnitude spectra was more successful than

one based on the real part of manually rephased spectra (table 1: compare rows

5 and 6). Compared to the pattern of magnitude spectra (figure 1), spectra

phased to the real part show a higher variance of the spectral pattern. We

cannot observe significant performance differences when using spectral regions

of different widths (table 1, row 6-8; figure 3, number 1-3). While a classification

based on coefficients from dyadic wavelets or wavelet packages performed as well

as one on raw data (table 1, rows 9-11 vs. rows 6-8; fig. 3), a continuous wavelet

significantly decreased the classifier performance.

Allowing for a multivariate selection of features, principal component anal-

ysis (PCA) was applied as part of principal component regression (PCR) with

a constraint on the allowed dimensionality (similar to PLS). Even without this

constraint and in conjunction with other classifiers, PCA proved to be beneficial

when applied to a subset of the feature representations (table 4).

Independent component analysis (ICA) was applied in all principal compo-

nent subspaces of up to twelve dimensions. When classifying on the basis of the

scores of any of these ICA models, we could not observe an advantage compared

with a direct classification based on the respective PCA scores (table 4).
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Integrating the spectrum over consecutive bins (“binning”) improved the

average classification result of subsequent algorithms maximally (table 1, rows

13-16).

A restriction of the binning to the peak regions of Cho, Cr and NAA signif-

icantly decreased the performance on magnitude spectra (table 1, row 12).

Classification results of approximately 85–90% (table 1, last three rows, fig.

3) for most of the classifiers on any of the bin widths from five to fifteen channels

easily surpassed performances from raw spectral vectors (≈ 80%–85%, table 1,

rows 6–8) or the best results based on quantified resonance lines (≈ 75%–80%,

table 1, rows 1–3).

4.2 Classification

All methods perform nearly equally well on the low-dimensional representation

obtained from resonance line quantification. Here, PCR performs best (up to

83% classification accuracy, table 1, rows 1-3), although this difference is not

significant.

The performance of standard methods such as k-NN and linear discriminant

analysis (table 1, columns 7-8) on the differently preprocessed data sets is similar

to the performance of all other classifiers, but generally tends to belong to the

weaker part of this group. Tree ensembles (table 1, column 11) and RBF-kernel

SVMs (table 1, columns 9-10) show good performance on binned parameter sets,

although they never performed better than linear methods (table 1, columns 9-

10), e.g. the linear kernel SVM.

Comparing standard multivariate linear regression (table 1, last column)

and the related LDA with their constrained variants (table 1, columns 1-6)

emphasizes the importance of regularization when N is small compared to the

number of features.
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In a comparison between algorithms deducing non-sparse features from the

full spectrum (such as ridge, PLS, PCR – table 1, columns 1-3) on the one hand,

and selective feature extractors (e.g. forward selection, lasso, lars – columns 4–6)

on the other hand, the dimensionality of the regression model is of importance

(see also table 4). A comparison in terms of the classification accuracy – the

optimization criterion for all methods – of all preprocessing algorithms suggest

the conclusion that forward selection, lars, and lasso offer a slight advantage

in classification performance (table 1, row 4–6 vs. 1–3). However, the more

informative measure of the ROC-AuC contradicts this observation (table 2). In

summary, the exploitation of non-sparse, spectrum-wide features as performed

by ridge regression, PLS and PCR appears more favorable than the “channel

picking” by the selective algorithms. On the basis of the available data it is

not possible to single out one of PCR, PLS or ridge regression as the best

performing technique. These closely related [11] techniques all perform very

well in the presence of high noise levels.

Feature extraction and classification

Overall, the classification problem is adequately addressed by linear methods.

A smoothing and downsampling approach as realized in binning is the optimal

feature representation of the given data. Classifiers tend to perform best under

a (non-sparse) regularization.

In the comparison of pattern recognition and quantification, a conservative

summary of the results is that pattern recognition methods perform at least as

well as a manually supervised quantification (fig. 3, table 3). A less conserva-

tive assessment of our results ascribes a 5-10% higher accuracy to the pattern

recognition methods.

An overall upper limit in the attainable classification accuracy for the distinction

of tumor vs. non-progressive tumor (i.e., radiation injury and stable disease) af-
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ter radiotherapy based on single-voxel 1H MR spectra at 1.5 T is approximately

90%.

– – – table 3 about here – – –

– – – figure 4 about here – – –

– – – figure 5 about here – – –

4.3 Evaluation of the decision rules

In chemometrics, a careful inspection of the coefficients – the regression weights

or “loadings” – of the applied linear regression methods is an established stan-

dard. On the given data set (regularized) linear regression methods performs

best. Differently from non-linear classifiers, the decision rule of these models can

be understood and an analysis concerning the importance of the five metabolites

visible in the spectrum is possible (figs. 4, 5).

A comparison of the coefficient vector (fig. 4, box 3) with the average spec-

trum of the tumor group and the non-progressive tumor group (both in fig. 4,

box 2) offers insight in the relation between learned decision rule and the bio-

logical signature if the tissue in the MR spectrum: The loadings are equivalent

to a template pattern of the group means. A strong positive correlation with

this pattern is given in the case of an (average) tumor spectrum (fig. 5, box 2),

a strong negative correlation for an (average) non-progressive tumor spectrum.

This observation corresponds to a well-known rule from signal processing: The

optimal filter that can be used to detect a known signal corrupted by uncor-

related noise is the known signal itself - the “matched filter”. Similarly, the

optimal classifier detects spectra of recurrent tumor by a comparison or corre-

lation of their pattern with the template pattern of a “typical” tumor spectrum.
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Although very common, a direct biological interpretation of the loadings

should be made with care. Loadings only represent channel “weights” for a

decision about inter-group differences. More informative is the study of the

channel-wise product of the mean tumor signal (as in fig. 5, box 2) with the

loadings (loadings in fig. 5, box 3; product in box 4). It reveals the significance

of the respective channels, as the outcome of the regression on an average tumor

signal – the score – is the sum over this vector. Therefore, large positive en-

tries along this graph indicate a high diagnostic relevance of the corresponding

spectral regions in tumor detection. Similarly, a robust summary of the typical

tumor pattern may be used: the median tumor signal of our data set is equiva-

lent to the mean tumor pattern, but does not show high entries in the Lip/Lac

region, as an increase of these resonance lines can only be observed for a subset

of the tumor spectra.

In a channel-wise multiplication of the median signal with the regression

weights, the sign of the Lip/Lac region is negative. This reduces the score of

the tumor pattern from the Cho, Cr, and NAA spectral region alone, weaken-

ing the diagnosis of tumor for an otherwise unambigious tumor spectrum. It

explains why the inclusion of lipid/lactate information is not useful for the clas-

sifiers discussed here.

In general, the lipid/lactate information is only marginally useful in the

differentiation between recurrent tumor and non-tumorous lesions. Sufficient

information for the diagnostic problem is, according to our data, already con-

tained in the Cho, Cr, and NAA resonances (see fig. 4): the loadings of ridge

regression/PLS/forward selection do not show high values in the spectral region

of lipid/lactate2.

2While this observation holds for a classification using solely MR spectra, we cannot ex-
clude that the lipid/lactate region does hold information for a medical expert with access to
supplementary information.
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The amplitude of the creatine resonance is of comparatively minor interest.

As with NAA, its relative decrease indicates the occurrence of tumor (figs. 4, 5).

Studying the loadings on the full vector, a decrease of creatine and an increase

in choline intensity marks the difference between the tumor and non-progressive

tumor group. This finding is supported by a number of publications, mainly on

tumor grading [25, 22, 34, 9, 2]. Nevertheless, the best classifiers on the basis

of the “binning” type of preprocessing do not rely on this creatine intensity

change (figs. 4, 5). The bad performance of the creatine normalization after

resonance line quantification (table 1, row 2; fig. 3, column 13) underlines the

low importance of this metabolite for the given classification purpose. When

using intensity values normalized by creatine, its variance obviously decreases

the reliability of the classifier (table 1, row 1).3

Effectively, only the variation of the choline and NAA resonances is the

substantial information the optimal classifiers rely on.

4.4 Other binary decisions

Table 4 summarizes classification performances on binary decisions other than

between recurrent tumor and non-progressive tumor. Values for pattern recog-

nition are the averages of PLS, PCR and ridge regression after binning; for

quantification, the best result within the four feature representations (as in ta-

ble 1, rows 1-4) was chosen. So, values indicated in this table – in particular for

quantification – are at the risk to be overly optimistic, but they might serve as

an indicator for an upper limit in the given classification tasks.

Both pattern recognition and quantification perform equally well – with a

slight advantage for pattern recognition methods. Normal and tumor spectra

are separable with virtually no error. The subgroups of non-progressive tumor,

3The low information content does not counterbalance the associated dimensionality in-
crease in the state-of-disease modeling and introduces a new source of noise in the analysis of
resonance line integrals.
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namely stable disease and radiation injury, are indistinguishable by all methods.

5 Discussion

As an overall result of the present study, we find that methods from pattern

recognition and statistical learning can be applied successfully in the discrim-

ination between recurrent brain tumor and a non-progressive state of disease

after radiation therapy. These fully automated methods perform as well as

semi-automatic procedures involving a manually supervised quantification step;

and on our data they surpass results of a quantification without human control

and interaction.

Focusing on technical details, we find a superiority of magnitude spectra

when classifying the full spectral vector. The real part of phased complex spec-

tra has a smaller linewidth, but also a greater variability of the spectral pattern

which reduces the interpretability and decreases the performance of a pattern

recognition [32]. A normalization of the spectrum to unit area in the spectral

region of Cho, Cr, and NAA is sufficient to reach and possibly surpass classifica-

tion performances from quantification. An external standard for normalization

(i.e. a water reference) was not required.

The strong correlation of the spectral channels provides the basis for the

best preprocessing of our noisy in vivo data: smoothing and subsampling and

thus regularizing by the application of binning. Binning both reduces the di-

mensionality and allows for small shifts within the spectral pattern. It trades

spectral resolution for increased signal-to-noise.

Other preprocessing methods, such as ICA transformations and wavelet rep-

resentations could not prove their usefulness, which is in line with previous ob-

servations [27]. Transforms using smoother wavelets have not been investigated

here, and may be better adapted to the given data. In spite of the argumenta-
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tion put forward in [5], we observe an increase in performance when applying a

dimension reduction prior to a classification by SVMs.

We found non-sparse regularized linear regression methods, such as ridge

regression, PLS or PCR, to be optimal. Nonlinear SVMs or ensemble methods

were not required. We recommend these linear methods when a discrimination

between linearly separable groups is sought in binary settings. As a consequence

of the simplicity of these linear regression models, their decision rules can be

visualized directly and we have demonstrated how to compare these loadings

with established clinical knowledge.

Overall, at the noise level that is typical for in vivo MRS at 1.5 Tesla, regu-

larized linear regression methods taking the entire spectrum as input perform at

least as well as, and possibly even better than, classification algorithms relying

on manually corrected resonance line quantifications.

As a separation between normal state and tumor spectra is possible without

error (table 2), the extension of this binary classification problem to a three-

class-classifier, i.e. normal – non-progressive – tumor, for example in the au-

tomated classification of whole spectroscopic images is straightforward [11, 6]

as long as there are no mixed voxels. Since both the classifier for healthy vs.

tumorous tissue and non-progressive vs. progressive tumor rely primarily on

the Cho/NAA intensity ratio, a mixture of the former4 is difficult to distinguish

from a non-progressive tumor alone.

As a consequence, a severe limitation of current fully automated approaches

is that they must be limited to a given anatomical region by a medical expert.

Future algorithms may take into account prior spatial information from pre-

therapeutic diagnostics, the radiation therapy plans, or may exploit information

from other imaging modalities.

At present, an approximate classification accuracy of 90% between progres-

4MR spectra are superpositions [29, 26] of all tissues types in the voxel.
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sive and non-progressive tumor after radiotherapy can be reached by means of

single-voxel MRS, and the exploitation of complementary information beyond

MR spectra will be required to approach the desired 100%. As the joint in-

terpretation of different sources of information is the strength of automated

methods, we see the potential of a highly automated multi-modal imaging –

combining MRI and MRSI – in the detection and localization of recurrent brain

tumor [27]. High-resolution SI [7] can help to increase the sensitivity for small

tumors and to reduce problems with mixed voxels. Here, (semi-) manual anal-

ysis of an entire data set will become increasingly more time-consuming and

we expect automatic classification tools to become an indispensable high-level

“preprocessing” for medical experts.
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Figure 1: Flowchart of the different approaches in the extraction of diagnostic
information from magnetic resonance spectra. Both quantification and model-
free processing of the raw data can be seen as feature extraction prior to a
classification. The grey ellipsoid indicates the approach of spectral analysis,
which is termed “pattern recognition”. The “technical preparation” comprises
operations such as water peak removal and Fourier transformation of the FID,
which are implicit parts of the quantification (in the time-domain). Numbers
refer to sections of this paper.
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Cho Cr NAA

Figure 2: Characteristic patterns of magnitude spectra (central black lines)
and their variation (inner and outer grey lines) in the region of the Cho, Cr
and NAA resonances. From top to bottom: progressive tumor, healthy tissue,
radiation injury, stable disease. Lines indicate the 25% and 75% quartiles (inner
grey lines) and median (black) of the marginal empirical distribution in each
spectral channel, outermost grey lines and points indicate outliers.
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Figure 3: Cross-validated classification accuracy for progressive vs. non-
progressive tumor as a result of varying spectral information extraction. The
accuracy of the three top performing algorithms is indicated: ridge regression,
PLS and PCR (left/middle/right bar for each method, box indicating median
and quartiles, whiskers marking 10%/90% quantiles of the assumed binomial
distribution). For the presented data, an estimation based on [19] comes to the
conclusion that a significant difference of the median is given at p < 0.05 for
differences > 2.5% accuracy, at p < 0.005 for differences > 4%.
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Figure 4: Interpretation of the linear classifiers. Box 1: Mean of the tumor
(grey line) and non-progressive tumor group (dark line), and the overall mean
of the data set (dashed line). Box 2: Similar to box 1, with the overall mean
removed. Box 3: Coefficients of the ridge regression (84% accuracy) without
binning. Box 4: Channelwise product of the mean tumor signal (as in box 2)
with the coefficients from box 3. Box 5: Channel-wise product of the median
tumor signal with the coefficients from box 3. See section 4.3 for details.
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Figure 5: Regression coefficients after different preprocessing. Box 1: ridge
coefficients (bin 5). Box 2: PLS coefficients (bin 15). Box 3: coefficients from
forward selection (bin 15). Boxes 4 and 5: PCR first and second component.–
The accuracy of the respective classification is given in percent. While the sole
use of the first PCA component (accounting for lipid/lactate variation) does not
allow for a classification (50% accuracy = error of random classification), the
additional use of the Cho/NAA information improves the result significantly.
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ridge PLS PCR forw lasso lars

Preprocessing 1 2 3 4 5 6

1 NAA Cr Cho 79 (77, 82) 81 (78, 83) 81 (78, 83) 78 (76, 81) 81 (78, 83) 81 (78, 83)
2 NAA/Cr Cho/Cr 76 (73, 79) 76 (73, 79) 76 (73, 79) <70 <70 <70
3 Cho/Cr Cr/NAA 81 (78, 83) 77 (74, 80) 83 (80, 86) <70 78 (76, 81) 78 (76, 81)
4 NAA Cr Cho auto 72 (69, 76) 76 (73, 79) 83 (80, 86) <70 <70 <70
5 small real 78 (76, 81) 71 (68, 75) 76 (73, 79) <70 <70 <70
6 small abs 83 (80, 86) 81 (78, 83) 88 (86, 90) 83 (80, 86) 84 (81, 87) 84 (81, 87)
7 medium abs 84 (81, 87) 83 (80, 86) 84 (81, 87) 83 (80, 86) 84 (81, 87) 84 (81, 87)
8 wide abs 84 (81, 87) 79 (77, 82) 88 (86, 90) 83 (80, 86) 84 (81, 87) 84 (81, 87)
9 wavelet 84 (81, 87) 83 (80, 86) 83 (80, 86) 74 (71, 77) <70 <70
10 contw <70 <70 <70 <70 83 (80, 86) 79 (77, 82)
11 wpack 84 (81, 87) 83 (80, 86) 84 (81, 87) 83 (80, 86) 83 (80, 86) 81 (78, 83)
12 pbins 78 (76, 81) 81 (78, 83) 81 (78, 83) 81 (78, 83) 81 (78, 83) 81 (78, 83)
13 bin3 79 (77, 82) 83 (80, 86) 86 (83, 89) 81 (78, 83) 81 (78, 83) 81 (78, 83)
14 bin5 88 (86, 90) 84 (81, 87) 86 (83, 89) 88 (86, 90) 84 (81, 87) 84 (81, 87)
15 bin10 86 (83, 89) 84 (81, 87) 91 (89, 93) 88 (86, 90) 88 (86, 90) 88 (86, 90)
16 bin15 86 (83, 89) 84 (81, 87) 88 (86, 90) 90 (88, 92) 88 (86, 90) 88 (86, 90)

k-NN LDA SVM RBF SVM linear RForest regr

Preprocessing 7 8 9 10 11 12

1 NAA Cr Cho <70 78 (76, 81) 79 (77, 82) 83 (80, 86) 76 (73, 79) 79 (77, 82)
2 NAA/Cr Cho/Cr <70 78 (76, 81) 79 (77, 82) 79 (77, 82) 72 (69, 76) 76 (73, 79)
3 Cho/Cr Cho/NAA <70 74 (71, 77) 74 (71, 77) 74 (71, 77) 71 (68, 74) 81 (78, 83)
4 NAA Cr Cho auto <70 <70 <70 <70 <70 <70
5 small real 78 (76, 81) <70 74 (71, 77) 74 (71, 77) < 70 <70
6 small abs 84 (81, 87) 72 (69, 76) 81 (78, 83) 76 (73, 79) 90 (88, 92) < 70
7 medium abs 79 (77, 82) 78 (76, 81) 78 (76, 81) 74 (71, 77) 88 (86, 90) < 70
8 wide abs 83 (80, 86) <70 76 (73, 79) <70 88 (86, 90) < 70
9 wavelet 81 (78, 83) 83 (80, 86) 76 (73, 79) 76 (73, 79) 78 (76, 81) < 70
10 contw 81 (78, 83) 79 (77, 82) 79 (77, 82) 80 (78 82) 79 (77, 82) 81 (78, 83)
11 wpack 79 (77, 82) 79 (77, 82) 79 (77, 82) 81 (70 83) 80 (78 82) < 70
12 pbins 72 (69, 76) 78 (76, 81) 79 (77, 82) 79 (77, 82) 79 (77, 82) 78 (76, 81)
13 bin3 76 (73, 79) <70 84 (81, 87) 76 (73, 79) 83 (80, 86) < 70
14 bin5 76 (73, 79) <70 88 (86, 90) 86 (83, 89) 86 (83, 89) < 70
15 bin10 81 (78, 83) 76 (73, 79) 88 (86, 90) 88 (86, 88) 87 (84, 90) 74 (71, 77)
16 bin15 84 (81, 87) 79 (77, 82) 88 (86, 90) 90 (88, 92) 87 (84, 90) 78 (76, 81)

Table 1: Cross-validated classification accuracy (in %) for the discrimination
between progressive and non-progressive tumor (comprising radiation injury
and stable disease, excluding normal tissue). Numbers in parentheses are the
quartiles obtained from leave-one-out cross-validation under the assumption of a
binomial distribution. Rows and columns correspond to different preprocessing
methods and classifiers discussed in the text.
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ridge PLS PCR forw lasso lars reg

small 89 87 89 87 87 87 62
medium 90 90 90 87 87 87 67

wide 90 91 90 87 87 87 56
wavelet 89 89 89 88 87 85 67
contw 87 87 87 85 86 87 81
wpack 89 89 89 88 87 85 62
pbins 80 82 82 81 81 81 79
bin3 89 90 89 88 88 88 54
bin5 93 91 91 89 89 89 67

bin10 93 93 92 92 92 92 84
bin15 92 91 91 92 92 92 86

Table 2: Area under curve of the receiver operator characteristic (ROC - AuC),
as evaluated for the regression-based classifiers under study in the discrimination
of progressive tumor vs. non-progressive tumor.

group tumor SD RI nPT group size
(# patients)

normal 100 (100, 100) 93 (91, 96) 87 (84, 91) 88 (85, 90) 32
98 (97, 100) 89 (85, 91) 90 (87, 93) 84 (81, 87)

tumor 83 (80, 87) 87 (83, 90) 83 (80, 87) 30
88 (84, 91) 90 (86, 93) 88 (84, 91)

SD 50 (42, 57) – 15
55 (50, 60)

RI – 13

Table 3: Accuracy for binary classification tasks from the data set of this study.
Accuracy is assessed from the average performance of the three best classi-
fiers (PLS, PCR, ridge after binning – fig. 3, compare with “tumor vs. non-
progressive tumor” here). Values are given on the basis of both data analysis
methodologies: upper rows – resonance line quantification, lower rows – pattern
recognition. SD – stable disease, RI – radiation injury, nPT - non-progressive
tumor. All numbers result from cross-validation, values in parentheses represent
quartiles (table 1).
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medium medium medium bin 15 bin 15 bin 15
w/o PCA ICA w/o PCA ICA

ridge 84% 84% 81% 86% 86% 86%
forw 82% (6) 88% (3) 79% (7) 88% (6) 88% (2) 84% (2)
lasso 84% (6) 88% (3) 81% (7) 84% (5) 86% (2) 84% (9)
PCR 84% (3) 84% (3) 81% (7) 88% (2) 88% (2) 86% (9)
lars 84% (6) 88% (3) 81% (7) 88% (5) 86% (2) 84% (9)
PLS 83% (1) NA 81% (1) 84% (1) NA 86% (1)

Table 4: Merit of principal component / independent component analysis
(PCA/ICA) and binning. Values in percent indicate the cross-validated classi-
fication accuracy, the numbers of nonzero regression coefficients for the optimal
model are given in brackets. From left to right: medium range spectrum: with-
out transformation, with PCA, with ICA; the same spectral region binned with
bin width 15: without transformation, with PCA, with ICA.
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