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a b s t r a c t

With the introduction of spectral-domain optical coherence tomography (OCT), resulting in a significant
increase in acquisition speed, the fast and accurate segmentation of 3-D OCT scans has become evermore
important. This paper presents a novel probabilistic approach, that models the appearance of retinal lay-
ers as well as the global shape variations of layer boundaries. Given an OCT scan, the full posterior distri-
bution over segmentations is approximately inferred using a variational method enabling efficient
probabilistic inference in terms of computationally tractable model components: Segmenting a full 3-
D volume takes around a minute. Accurate segmentations demonstrate the benefit of using global shape
regularization: We segmented 35 fovea-centered 3-D volumes with an average unsigned error of
2:46� 0:22 lm as well as 80 normal and 66 glaucomatous 2-D circular scans with errors of
2:92� 0:5 lm and 4:09� 0:98 lm respectively. Furthermore, we utilized the inferred posterior distribu-
tion to rate the quality of the segmentation, point out potentially erroneous regions and discriminate nor-
mal from pathological scans. No pre- or postprocessing was required and we used the same set of
parameters for all data sets, underlining the robustness and out-of-the-box nature of our approach.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Optical coherence tomography (OCT) is an in vivo imaging tech-
nique, measuring the delay and magnitude of backscattered light.
Providing micrometer resolution and millimeter penetration depth
into retinal tissue (Drexler and Fujimoto, 2008), OCT is well suited
for ophthalmic imaging. Since no other method can perform non-
invasive imaging with such a resolution, OCT has become a stan-
dard in clinical ophthalmology (Schuman et al., 2004). Several
studies showed the applicability for the diagnosis of pathologies
such as glaucoma or age-related macular degeneration (Bowd
et al., 2001; Zysk et al., 2007). The recent introduction (de Boer
et al., 2003; Wojtkowski et al., 2002) of spectral-domain OCT dra-
matically increased the imaging speed and enabled the acquisition
of 3-D volumes containing hundreds of B-scans. Since manual seg-
mentation of retinal layers is tedious and time-consuming, auto-
mated segmentation becomes evermore important given the
growing amount of gathered data. Furthermore, a probabilistic
model that enables to infer uncertainties of estimates, provides
essential information for practitioners, in addition to the segmen-
tation result.

Various approaches for the task of retina segmentation in OCT
images were published. All have in common that they generate
appearance terms based either on intensity or gradient informa-
tion. On top of that regularization is applied, which makes predic-
tions more robust to speckle noise or shadowing caused by blood
vessels. In order to provide a systematic overview over this vast
field of approaches, we choose to distinguish them by the method
used for regularization.

One major class is composed of rule-based heuristic techniques
(Ahlers et al., 2008; Fernández et al., 2005; Ishikawa et al., 2005;
Mayer et al., 2010), which for example apply outlier detection
along with linear interpolation to account for erroneous segmenta-
tions. Other approaches (Baroni et al., 2007; Yang et al., 2010) use
dynamic programming for single Markov chains per boundary and
constrain the maximal vertical distance between neighboring
boundary positions. Vermeer et al. (2011) classify pixels using sup-
port vector machines and regularize the output using level-set
techniques. None of these approaches incorporates shape prior
information.
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Active contour approaches include gradient respectively inten-
sity-based methods (Mishra et al., 2009; Yazdanpanah et al., 2009,
2011). Yazdanpanah et al. (2009, 2011) augment the classical
active contour functional by a simple circular shape prior. All three
approaches were only tested on OCT-scans that exclude the foveal
region, thus contain mainly flat boundaries with rather simple
shapes.

A series of more advanced approaches (Antony et al., 2010;
Dufour et al., 2013; Garvin et al., 2009; Song et al., 2013) construct
a geometric graph to simultaneously segment all boundaries in a 3-
D OCT volume. Unlike previously presented approaches, they take
into account the interaction of neighboring boundaries to mutually
restrict their relative positions. This shape prior information is
encoded into the graph as hard constraints (Antony et al., 2010;
Garvin et al., 2009) or, as recently introduced by Song et al.
(2013) and subsequently extended by Dufour et al. (2013), as prob-
abilistic soft constraints. However, due to computational limita-
tions, only local shape information is included and boundaries
are segmented in stages.

Finally, Kajić et al. (2010) apply the popular active appearance
models that match statistical models for appearance and shape,
to a given OCT scan. Although non-local shape modeling is in the
scope of their approach, they only use landmarks, i.e. sparsely sam-
pled boundary positions instead of the full shape model. Further-
more, only a maximum likelihood point estimate is inferred,
instead of a distribution over shapes.

1.1. Contribution

We present a novel probabilistic approach for the OCT retina
segmentation problem. Our probabilistic graphical model com-
bines appearance models with a global shape prior, that comprises
local as well as long-range interactions between boundaries. The
discrete part of the model features a highly parallelizable col-
umn-wise discrete segmentation, that nevertheless takes into
account all other image columns. In order to infer the posterior
probability of this model, we utilize variational inference, a deter-
ministic approximation framework.

To our knowledge this is the only work, where a full global
shape prior is employed for the task of OCT retina segmentation.
Moreover, we are not aware of any other segmentation approach
that infers a full probability distribution. Our approach offers
excellent segmentation performance, outperforming approaches
relying on local or no shape regularization, as well as pathology
detection and an assessment of segmentation quality. Fig. 1 illus-
trates the segmented boundaries, but additional boundaries like
the external limiting membrane (ELM) could easily be incorpo-
rated if ground truth is available.

This work evolved out of preliminary ideas presented in a pre-
vious conference paper (Rathke et al., 2011).

1.2. Organization

The next section will introduce our probabilistic graphical
model. Section 3 evaluates the posterior distribution via variational
inference, and we solve the corresponding optimization problem in
Section 4 in terms of efficiently solvable convex subproblems. Sec-
tion 5 and 6 present the data sets we used for evaluation and the
corresponding results. We conclude in Section 7 with a discussion
and possible directions for future work.
2. Graphical model

This section presents our probabilistic graphical model,
statistically modeling an OCT scan y and its segmentations b and
c respectively. We introduce c, the discretized version of the con-
tinuous boundary vector b, to make mathematically explicit the
connection between the discrete pixel domain of y and the contin-
uous boundary domain of b. Our ansatz is given by

pðy; c; bÞ ¼ pðyjcÞpðcjbÞpðbÞ; ð1Þ

where the factors are
pðyjcÞ
 appearance, data likelihood term,

pðcjbÞ
 Markov Random Field regularizer, determined by the

shape prior and

pðbÞ
 global shape prior.
In what follows we will detail each component, thereby com-
pleting the definition of our graphical model. Fig. 2 illustrates our
graphical model in terms of the connectivity of the individual
model layers.

2.1. Notation

The following notation is used throughout the paper:
N;M
 OCT scan dimensions (rows, columns);

Nb
 number of segmented boundaries; Nb ¼ 9 in

this paper;

i; j; k
 corresponding indices:
i ¼ 1; . . . ;N; j ¼ 1; . . . ;M; k ¼ 1; . . . ;Nb;

bk;j 2 R
 real-valued location of boundary k in column j;

ck;j 2 f1; . . . ;Ng
 integer-valued boundary variables

analogous to b, but specifying row-positions
on the pixel grid;
xi;j 2 X
 class variables indicating membership to

layer or transition classes;
yi;j
 observed data; here patches around pixel ði; jÞ

projected onto a low-dimensional manifold
DN
 standard (N � 1)-simplex:

8h 2 DN :
PN

i¼1hi ¼ 1
The symbol � denotes the set of all elements of the respective
index, for example bk;� 2 RM is the location vector for boundary k.
By bnj we denote the set b n b�;j, with similar notations used for l
and R. See Fig. 3 for an illustration of most of the notation intro-
duced here.

2.2. Appearance models

We utilize Gaussian distributions to model the appearance of
retinal layers as well as boundaries. Given a segmentation hypoth-
esis c, we can assign class labels xi;j 2 X to each pixel, their range
being given by

X ¼ fX l;X tg; X l ¼ fl1; . . . ; l10g; X t ¼ ft1; . . . ; t9g;

which represent classes of observations corresponding to tissue lay-
ers l1; . . . ; l10 and transitions t1; . . . ; t9 separating them. To obtain a
valid mapping c # x, we require c to satisfy the ordering constraint,

1 6 c1;j < c2;j < � � � b < cNb ;j 6 N; 8j ¼ 1; . . . ;M; ð2Þ

and point out that the real-valued counterpart b may violate this
constraint.

Since OCT scans display a high variability in brightness and con-
trast within and between scans, each patch is first normalized by
subtracting its mean. We then project each patch yi;j onto a low-
dimensional manifold. Applying the technique of Principle Compo-



Fig. 1. Overview of retinal layers segmented by our approach and their corresponding anatomical names. The used abbreviations correspond to nerve fibre layer (NFL),
ganglion cell layer and inner plexiform layer (GCL + IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer and inner segment (ONL + IS), connecting
cilia (CC), outer segment (OS), retinal pigment epithelium (RPE).

Fig. 2. Illustration of our graphical model for M ¼ 4;N ¼ 7 and Nb ¼ 2. The
connectivity from b to c is only displayed for node c2;3. Similarly, connectivity for
c to y via x is only displayed for nodes in the third image column and additionally
illustrated by the boundary colors of the y-nodes.

Fig. 3. Illustration of important variables used throughout the paper. Note the
difference between real valued position bk;j of boundary k in column j and its
discretized equivalent ck;j .

2 For circular scans, a wave-like distortion pattern is observed due to the conic
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nent Analysis (PCA), we draw patches randomly from the OCT
scans in the training set, estimate their empirical covariance
matrix and calculate its eigenvalues and eigenvectors. The projec-
tion can then be carried out using the first qpca eigenvectors sorted
by their eigenvalues.

We define the probability of the projected patch yi;j
1 around

pixel ði; jÞ belonging to class xi;j as

pðyi;jjxi;jðcÞÞ ¼ N ðyi;j;lxi;j
;Rxi;j

Þ: ð3Þ

The class-specific moments lx;Rx 8x 2 X are learned offline using
patches from the respective class. Regularized estimates for Rx are
1 For ease of notation, we will make no difference between the patch yi;j and its
low-dimensional projection.
obtained by utilizing the graphical lasso approach (Friedman
et al., 2008), which augments the classical maximum likelihood
estimate for R with an ‘1-norm on the precision matrix K ¼ R�1.
This leads to sparse estimates for K, where the degree of sparsity
is governed by a parameter aglasso, c.f. Section 5.3.

We define the appearance of a scan y to factorize over pixels ði; jÞ.
Finally, we introduce switches bt 2 f0;1g and bl 2 f0;1g, that turn
on/off all terms belonging to any transition class tk or layer class
lk, which yields the final appearance model

pðyjcÞ ¼
YM
j¼1

Y
i:xi;j2X l

pðyi;jjxi;jðcÞÞb
l Y
i:xi;j2X t

pðyi;jjxi;jðcÞÞb
t

: ð4Þ

As we point out in the section about inference, our model can handle
discriminative terms as well. We can convert generative terms (3)
into discriminative ones by renormalizing

pðxi;jðcÞjyi;jÞ ¼
pðyi;jjxi;jðcÞÞpðxi;jðcÞÞP

xi;j2Xpðyi;jjxi;jðcÞÞpðxi;jðcÞÞ
; ð5Þ

where we use a uniform prior pðxi;jðcÞÞ. The factorization of pðcjyÞ is
the same as in (4).

2.3. Shape prior

As a model of the typical shape variation of layers due to both
biological variability as well as to the image formation process,
we adopt a joint Gaussian distribution.2 We denote the continuous
height values of all boundaries k for image columns j by the
NbM-dimensional vector b ¼ ðbk;jÞk¼1;...;Nb ;j¼1;...;M . Hence,

pðbÞ ¼ N ðb;l;RÞ ð6Þ

where parameters l and R are learned offline from labeled training
data. We regularize the estimation of R by Probabilistic Principal
Component Analysis (PPCA) (Tipping and Bishop, 1999). PPCA
assumes that the high-dimensional observation b was generated
from a low-dimensional latent source s 2 Rq via

b ¼Wsþ lþ �;

where s � Nð0; IÞ and � � Nð0;r2IÞ is isotropic Gaussian noise.3

The moments of pðbÞ are given by E½b� ¼ l and
V½b� ¼WWT þ r2I ¼ R. Likewise, R�1 can be decomposed into W
and r2I too. Making use of these decompositions, one can reduce
complexity of most operations related to R or R�1 as well as memory
scanning geometry and the spherical shape of the retina, which we capture
statistically rather than modeling it explicitly.

3 PPCA can be considered as a generalization of classical Principle Component
Analysis (PCA), which assumes the deterministic relation b ¼Wsþ l.



Fig. 4. Samples generated by the shape prior distribution pðbÞ trained on volumes (left) and circular scans (right). Only one half of the volume is shown.
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requirements, since only W andr2 have to be stored. The parameters
for pðbÞ can be estimated via maximum log-likelihood. W is com-
posed of the (weighted) qppca eigenvectors with largest eigenvalues,
computed from the empirical covariance matrix. For more details,
we refer to Tipping and Bishop (1999).

Fig. 4 shows samples drawn from pðbÞ, modeling fovea-centered
3-D volumes (left) and circular scans (right). Additionally, as Sup-
plementary material we provide a video that visualizes the rele-
vance of each component of W exemplary for the 3-D setup, like
translation, rotation, thickness of layers or position and form of
the fovea.

2.4. Shape-induced regularizers

The third component of our model consists of a prior for dis-
crete boundary assignments c, regularizing the data likelihood
terms pðyjcÞ. We define pðcjbÞ as column-wise acyclic graphs

pðcjbÞ ¼
YM
j¼1

pðc�;jjbÞ; pðc�;jjbÞ ¼ pðc1;jjbÞ
YNb

k¼2

pðck;jjck�1;j; bÞ; ð7Þ

i.e. the communication of the model between image columns j is
governed by the shape prior pðbÞ.

In order to define the conditional marginals in (7), we need a cou-
ple of prerequisites. With b�;nj denoting the subset of variables b
after removing variables b�;j of column j, and with pðb�;jjb�;njÞ denot-
ing the corresponding conditional Gaussian distribution computed
from the shape prior pðbÞ, then the marginal distributions are spec-
ified in terms of b by

pðc1;j ¼njbÞ¼ Pr n�1
2
6 b1;j6nþ1

2

� �
;

pðck;j¼njck�1;j¼m;bÞ¼ Pr n�1
2
6 bk;j 6nþ1

2
m�1

2
6 bk�1;j6mþ1

2

����� �
;

ð8Þ

where the probabilities on the right-hand side are computed using
the conditional marginal densities pðb1;jjb�;njÞ and pðbk;jjb�;njÞ
pðbk;jjbk�1;jÞ respectively, for all configurations of c conforming to
(2).4 The marginal pðbk;jjb�;njÞ provides a way to introduce global shape
knowledge into our column-wise graphical models pðcjbÞ.
4 This computation is straightforward for Gaussian distributions (6), see
Section 3.2.
2.5. 2-D vs. 3-D

Our description so far considered OCT scans y of dimensionality
two. Nevertheless, our approach is equally applicable to 3-D volumes.
We use the very same notation, since adding additional B-Scans will
only increase the number of image columns M. Similarly, the connec-
tivity of the graphical model pðy; c; bÞ can be transferred one-to-one.

The shape prior pðbÞwhich is fully connected since R�1 is dense,
can be extended to an arbitrary dimension. We exploit the fact that
both, R and R�1, have an explicit low-rank decomposition (see Sec-
tion 2.3), such that memory consumption is not an issue and com-
plexity of operations is reduced as well. For the shape
regularization term pðcjbÞ, each node ck;j is connected to nodes bnj
of all columns except the current one, which now additionally
includes columns of all other B-scans. Finally, the data likelihood
pðyjcÞ continues to fully factorize over pixels ði; jÞ. Each pixel ði; jÞ
remains connected to at most two nodes ck;j from the same column
j, determining it’s label xi;j. Furthermore, we use separate sets of
appearance models for each B-scan in the volume to capture pos-
sible variations.

3. Variational inference

Based on the model presented in the previous section and given
observed data y, we wish to infer the posterior

pðb; cjyÞ ¼ pðyjcÞpðcjbÞpðbÞ
pðyÞ : ð9Þ

One major issue is that calculating the marginal likelihood pðyÞ
would require integrating pðy; c; bÞ over b and c. This turns out to
be intractable, since we lack a closed form solution and the problem
at hand is high-dimensional. We cope with this problem by apply-
ing an established variational method: approximating the posterior
by a tractable distribution qðb; cÞ by minimizing the Kullback–Lei-
bler (KL) distance KLðqkpÞ with respect to q (cf., e.g., Attias
(2000)). We point out that unlike in related work (e.g. McGrory
et al. (2009)) where the subproblem of inferring the discrete deci-
sion variables has to be approximated as well, our model has been
designed such that by choosing q properly all subproblems are trac-
table and can be solved efficiently.

We choose a factorized approximating distribution

qðb; cÞ ¼ qbðbÞqcðcÞ: ð10Þ



Fig. 5. Distribution of labels of xi;j , determined by the position of boundaries ck;j , for
Nb ¼ 3. Each label depends at most on two boundaries.
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This merely decouples the continuous shape prior and the discrete
order-preserving segmentation component of the overall model,
but otherwise represents both components exactly. The Kullback–
Leibler distance between q and p is given by

KL qðb; cÞkpðb; cjyÞð Þ ¼
Z

b

X
c

qðb; cÞ log
qðb; cÞ

pðb; cjyÞdb

¼ �
Z

b

X
c

qðb; cÞ log pðyjcÞpðcjbÞpðbÞð Þð

� log pðyÞ � log qðb; cÞÞdb: ð11Þ

Dropping the constant term log pðyÞ, we may obtain our objective
function.

Alternatively, we can use the marginal likelihood log pðyÞ to
introduce discriminative appearance terms into the model, using
log pðyjcÞ

pðyÞ ¼ log pðyjcÞpðcÞ
pðyÞ � log pðcÞ ¼ log pðcjyÞ � log pðcÞ. Since pðbÞ

already contains prior knowledge about the shape of boundary
positions, we assume an uninformative prior for c. Dropping thus
pðcÞ and taking into account the factorization of q, we obtain the
objective function

Jðqb; qcÞ ¼ �
Z

b

X
c

qbðbÞqcðcÞ log pðcjyÞpðcjbÞpðbÞð Þdb

� Hqb
ðbÞ � Hqc

ðcÞ; ð12Þ

where HpðxÞ denotes the entropy of the distribution p. It turned out
that discriminative appearance terms yielded the best performance.
A discussion of this issue will be given in Section 5.2.

3.1. Definitions of qc and qb

For qcðcÞ, we adopt the same factorization as for pðcjbÞ, that is

qcðcÞ ¼
YM
j¼1

qc;1;jðc1;jÞ
YNb

k¼2

qc;k^k�1;jðck;j; ck�1;jÞ
qc;k�1;jðck�1;jÞ

ð13Þ

where qc;k;j 2 DN are discrete probability distributions. Similarly, by
qc;k^k�1;j 2 DN2 we denote discrete probability distributions over
pairs of variables ck�1;j; ck;j.5 For qcðcÞ to be a valid distribution, addi-
tional marginalization constraints have to be satisfied:X
ck�1;j

qcðck;j; ck�1;jÞ ¼ qcðck;jÞ;
X
ck;j

qcðck;j; ck�1;jÞ ¼ qcðck�1;jÞ; ð14Þ

for all k ¼ 2; . . . ;Nb and j ¼ 1; . . . ;M. Note that we ignore the set of
valid configurations (2) here, because this has already been taken
into account when defining pðcjbÞ. As for qc and pðcjbÞ, we let qb

adopt the same factorization as pðbÞ, thus

qbðbÞ ¼ N ðb; �l; �RÞ: ð15Þ

In what follows, we make the expectations with respect to qc

and qb explicit. This will provide us with a closed-form expression
of the objective function Jðqb; qcÞ.

3.2. First summand log pðcjyÞ of Jðqb; qcÞ

The term pðcjyÞ does not depend on b, so qb integrates out.
Moreover, both pðcjyÞ and qc factorize over columns. Hence we
can rewrite the first summand of (12) as

�
Z

b

X
c

qbðbÞqcðcÞ logpðcjyÞ¼�
XM

j¼1

X
c�;j

qcðc�;jÞ
XN

i¼1

logpðxi;jðc�;jÞjyi;jÞ
 !

;

5 To enhance readability, we will subsequently omit indices k; j of qc , if they are
determined by the input variable(s) ck;j .
where the second sum ranges over all combinations of boundary
assignments for c�;j. We can further simplify this equation by noting
that each label xi;j depends at most on two ck;j, as illustrated in Fig. 5.
This allows us to split the inner sum into kþ 1 sums, each summing
over pixels with labels lk and tk or lNbþ1 respectively, and sum out all
ck;j independent of these labels.

For each pair ðlk; tkÞ of labels we define matrices Wk;j, whose
entries equal the sum over pixel yi;j with xi;j 2 ftk; lkg

ðWk;jÞm;n ¼
Xn�1

i¼mþ1

bl log pðxi;j ¼ lkjyi;jÞ þ bt log pðxn;j ¼ tkjyn;jÞ

for k ¼ 2; . . . ;Nb; j ¼ 1; . . . ;M and 1 6 m < n 6 N. Entries for n 6 m
are not defined and set to negative infinity. Accordingly, we intro-
duce vectors ðw1;jÞn and ðwNb ;j

Þ
n
, representing sums over pixels with

labels l1; t1 and lNbþ1 depending on c1;j and cNb ;j respectively. We now
can writeX
ck�1;j

X
ck;j

qcðck;j; ck�1;jÞðWk;jÞck�1;j ;ck;j
¼ hqc;k^k�1;j;Wk;ji

where hA;Bi denotes the trace of AB and determines the form of
qc;k^k�1;j. Finally, we write the first summand of (12) in vector form:

�
XM

j¼1

ðqc;1;jÞ
Tw1;j þ

XNb

k¼2

hqc;k^k�1;j;Wk;ji þ qT
c;Nb ;j

wNb ;j

 !
: ð16Þ
3.3. Second summand log pðcjbÞ of Jðqb; qcÞ

The second term pðcjbÞ depends on qc and qb, so we have to take
care of both expected distributions. We start out this section by
making explicit the expectation with respect to qb. As a prerequi-
site, we define the two marginal distributions of pðbÞ introduced
in (8). Using the simplifying notation pðbjjbnjÞ ¼ pðb�;jjb�;njÞ, by the
standard rule for conditional Gaussian distributions (Rasmussen
and Williams, 2006, p. 200) we obtain

pðbjjbnjÞ ¼ N ðbj;ljjnj;RjjnjÞ

ljjnj ¼ lj � RjjnjKj;njðbnj � lnjÞ; Rjjnj ¼ ðKjjÞ�1
;

ð17Þ

the marginal distribution of the Nb boundary positions in column j,
conditioned on the NbðM � 1Þ remaining boundary positions bnj. The
resulting in a 1-dimensional Gaussian distribution densities for
bk;jjbnj are obtained by marginalizing over (17), with mean ðljjnjÞk
and variance ðRjjnjÞk;k.

Similarly, we define pðbk;jjbk�1;jÞ the density of boundary posi-
tion bk;j given the position of the neighboring boundary k� 1 in
column j. Its mean lkjk�1;j and variance r2

kjk�1;j are calculated in
the same fashion as in (17). We now can express the probabilities
pðc1;jjbÞ and pðck;jjck�1;j; bÞ introduced in (8) in terms of integrals

pðck;j ¼ njck�1;j ¼ m; bÞ

¼
Z nþ1

2

n�1
2

Z mþ1
2

m�1
2

Nðs; ðljjnjÞk; ðRjjnjÞk;kÞN ðs; lkjk�1;j;r
2
kjk�1;jÞds dm:

and accordingly for pðc1;j ¼ njbÞ.6 These terms depend on bnj through
ðljjnjÞk, hence on qb too. It suffice to adopt the most crude numerical
6 Note that the dependency on m is contained in lkjk�1;j as bk�1;j .
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integration formula (integrand = step function) in order to make this

dependency explicit:
R aþ1=2

a�1=2 f ðxÞdx � f ðaÞ.
Applying the logarithm to pðcjbÞ, we obtain a representation

that is convenient for
R

b . . . qbdb. We defined qb as a Gaussian dis-
tribution (15), therefore the moments of bnj with respect to qb

are given by

Eqb
½bnj� ¼ �lnj and Vqb

½bnj� ¼ �Rnj;nj þ �lnj �lT
nj: ð18Þ

As a result, we established all necessary prerequisites to write the
terms Eqb

½log pðc1;jjbÞ� and Eqb
½log pðck;jjck�1;j; bÞ� in an explicit form,

that is suitable for an optimization with respect to �l and �R. Details
are provided in Appendix A.

We now address the expectation with respect to qc . Similar
arguments as for pðcjbÞ hold for pðcjyÞ too: We can split the sum
over c�;j into parts depending (at most) on two neighboring bound-
aries ck�1;j and ck;j. We define matrices Xk;j as

ðXk;jÞm;n ¼ Eqb
½log pðck;j ¼ njck�1;j ¼ m; bÞ�;

for k ¼ 2; . . . ;Nb; j ¼ 1; . . . ;M and 1 6 m < n 6 N, and vectors ðx1;jÞn
for terms Eqb

½log pðc1;j ¼ njbÞ� accordingly. Finally, we can write the
expectation of the second term in vectorized form as

�
XM

j¼1

ðqc;1;jÞ
Tx1;j þ

XNb

k¼2

hqc;k^k�1;j;Xk;ji
 !

: ð19Þ

Fig. 6 shows a transition matrix Xk;j (c) and it’s two components
Eqb
½log pðbk;jjbk�1;jÞ� (a) and Eqb

log pðbk;jjbnjÞ
� �

(b). Since the sum-
product algorithm used to find the optimal qc (see Section 4.1)
requires expðXk;jÞ, our plots show the exponential version too, in
order to illustrate the inherent sparsity. We see how Xk;j is build
by combining prior information about the relative distance
between bk;j and bk�1;j (a) with the distribution of bk;j conditioned
on information from all other columns via Eqb

½bnj� ¼ �lnj (b).

3.4. Third summand log pðbÞ of Jðqb; qcÞ

Concerning the third summand, qc sums out. Rewriting the
Gaussian using the trace and making the expectation explicit, we
obtain

�
Z

b
qbðbÞ log pðbÞdb ¼ C þ 1

2
hK; �Rþ �l�lT � 2�llT þ llTi ð20Þ

i.e. a function depending on the parameters �l and �R of qb.

3.5. Entropy terms of Jðqb; qcÞ

Finally, we make explicit the negative entropy of qb and qc

�Hqb
ðbÞ ¼

Z
b

qbðbÞ log qbðbÞdb ¼ C � 1
2

log j�Rj; ð21Þ
Fig. 6. Illustration of a transition matrix expðXk;jÞ (c) and the local (a) and global (b) shap
during the optimization of qc (see Section 4.1), in order to illustrate the inherent sparsi
�Hqc
ðcÞ ¼

XM

j¼1

XNb

k¼1

X
ck;j

qcðck;jÞ log qcðck;jÞ

0@
þ
XNb

k¼2

X
ck�1;j ;ck;j

qcðck;j; ck�1;jÞ log
qcðck;j; ck�1;jÞ

qcðck�1;jÞqcðck;jÞ

1A: ð22Þ

The first summand of Hqc
is comprises singleton entropies whereas

the second one comprises the mutual information (Cover and
Thomas, 2006, p. 19) between the random variables ck;j and ck�1;j.

3.6. Explicit formulation of the objective function Jðqb; qcÞ

Combining all terms, we can reformulate (12) into a functional
that can be optimized with respect to qc and the parameters �l and
�R of qb

min
qc ;�l;�R

�
XM

j¼1

ðqc;1;jÞ
Th1;j þ

XNb

k¼2

hqc;k^k�1;j;Hk;ji þ ðqc;Nb ;j
ÞThNb ;j

 !

þ 1
2
hK; �Rþ �l�lT � 2�llTi � 1

2
log j�Rj � Hqc

ðcÞ þ C ð23Þ

s:t: qc;k;j 2 DN k ¼ 1; . . . ;Nb; j ¼ 1; . . . ;M and ð14Þ

where we combined the terms of (16) and (19) into hk;j and Hk;j.
Note that the necessary constraint �R 2 Sþþ is implicitly given by
the logarithmic barrier term log j�Rj ¼

P
i log �ki, where �ki is the i-th

eigenvalue of �R, hence it has not to be enforced explicitly.

4. Optimization

We alternatingly optimize the objective function (23) with
respect to qc and the parameters of qb. Optimization of qc corre-
sponds to inference of chain graphs and can be accomplished by
the sum-product algorithm (Bishop, 2006, p. 402), whereas the
optimization of qb can be done in closed form. Both subproblems
are convex, thus by alternatingly optimizing with respect to qb

and qc , the functional Jðqb; qcÞ, being bounded from below over
the feasible set of variables, is guaranteed to converge to some
minimum.

4.1. Optimization of qc

Fixing all terms in (23) that depend on parameters of qb, we
obtain an optimization problem that can be split into column-wise
convex subproblems, since each is composed solely of linear terms
and the negative entropy of a chain graph, subject to simplex con-
straints. Making the constraints explicit using Lagrange multipli-
ers, and derivating with respect to all qc;k;j, we obtain a set of
update equations which can be shown to correspond to sum-prod-
uct updates (Wainwright and Jordan, 2008, p. 83). Thus iteratively
e information it is composed of. The plots show the exponential version that is used
ty that we utilize to speed up the calculation of qc .
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optimizing qc for each column j is guaranteed to converge to some
fix point qopt

c , which corresponds to the global optimum.

4.2. Optimization of qb

Considering in (23) only terms depending on �R, we obtain the
optimization problem

min
�R
� 1

2
log j�Rj þ 1

2
hK þ eP ; �Ri ð24Þ

which has the closed-form solution: �Ropt ¼ ðK þ ePÞ�1
. The newly

introduced matrix eP contains the dependencies on �R of terms x1;j

and Xk;j. Being independent of qc , we only have to calculate it once.
Furthermore, since it is composed out of linear combinations of sub-
matrices of K, it can be expressed implicitly in terms of W and r2I.
Details are provided in Appendix B.

For �l, we obtain

min
�l

1
2
hK þ eP ; �lð�l� 2lÞTi þ ~pT �l ð25Þ

and �lopt ¼ l� ~pT �Ropt. Again details for ~p, concerning the dependen-
cies of x1;j and Xk;j, are given in B. To minimize (25), we use conju-
gate gradient descent which enables us to calculate �lopt using
ðK þ ePÞ instead of ðK þ ePÞ�1

.

4.3. Initialization

We start the optimization of (23) by initializing the distribu-
tion qc . This is done by setting distributions pðbk;jjbnjÞ to a uniform
distribution, since we yet lack the distribution qb. Afterwards, we
can initialize qb via (24) and (25). Subsequently, we iterate both
optimizations alternatingly until Jðqb; qcÞ converges.

5. Experiments

5.1. Data acquisition

Circular B-scans measured around the optic nerve head were
acquired from 80 healthy as well as from 66 glaucomatous subjects
using a Spectralis HRA + OCT device (Heidelberg Engineering, Ger-
many). Each scan had a diameter of 12�, corresponding to approx-
imately 3.4 mm, and consisted of M ¼ 768 A-scans of depth
resolution 3.87 lm/pixel (N ¼ 496 pixels), see Fig. 7(a). Ground
truth for the crucial boundary separating NFL and GCL as well as
Fig. 7. SLO fundus images that exemplarily depict (a) the trajectory and radius of a 2-D ci
volume consisting of 61 B-Scans centered at the fovea. Different colors illustrate the parti
figure legend, the reader is referred to the web version of this article.)
a grading for the pathological scans was provided by a medical
expert: pre-perimetric glaucoma (PPG), meaning the eye is exhibit-
ing structural symptoms of the disease but the visual field and
sight are not impaired yet, as well as early, moderate and advanced
primary open-angle glaucoma (PGE, PGM and PGA). Ground truth
for the remaining eight boundaries was produced by the first
author. To measure interobserver variability, a second set of labels
for the healthy B-scans was obtained by the second author.

The second data set consisted of fovea-centered 3-D volumes,
acquired from 35 healthy subjects using the same device as above.
Each volume was composed of 61 B-Scans of dimension 500	 496,
covering an area of approximately 5:7	 7:3 mm. Ground truth was
obtained as follows: Each volume was divided in 17 regions, and a
B-scan randomly drawn from each region was labeled with the
previously introduced nine boundaries. Fig. 7(b) depicts the loca-
tion of all 61 B-Scans and their partition into regions indicated
by color.
5.2. Generative vs. discriminative, transition vs. boundary appearance
terms

Following (11), we described the introduction of discriminative
appearance models as an alternative to generative ones. Further-
more, we introduced switches bl and bt in (4) to enable or disable
layer and boundary appearance terms, respectively. This section
explains why we settled for discriminative boundary terms.

Using the set of healthy circular scans, we tested the model
with generative layer as well as boundary terms, i.e. bt ¼ bl ¼ 1.
This configuration turned out to be sensitive to distortions of the
texture caused for example by blood vessels. The result were ini-
tializations above the actual retina, since the model misinterpreted
the shaded area as parts of the choroid, as illustrated in Fig. 8(a).
We then disabled the layer appearance terms, i.e. set bl ¼ 0. This
solved the previous issue, but spuriously led to some columns
being initialized below the retina, due to very high probabilities
for some boundary classes caused by relatively small class model
variances, i.e. narrow and steep normal distributions. For patches
close to the mean, the probabilities for those classes happened to
be up to 100 times larger than for other classes. This caused false
positive class responses in the choroid to displace the whole ini-
tialization for these columns, as displayed in Fig. 8(b).

Switching to discriminative probabilities solved this issue as
well, since the local normalization limits all probabilities to 1
and gives each appearance class the same influence. Thus
rcular scan centered around the optical nerve head and (b) the area covered by a 3-D
tioning into 17 different regions. (For interpretation of the references to color in this



Fig. 8. (a)–(c) Close-up view of initialization results for different configurations of appearance terms. Switches bl and bt include or exclude layer and transition appearance
terms.
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false-positives did not possess the probability mass any more to
displace the whole column segmentation, see Fig. 8(c). Notice that
the layer terms, although switched off by setting bl ¼ 0, are utilized
indirectly, since they contribute to the normalization of terms
pðxi;jðcÞjyi;jÞ, see (5). Thus strong layer appearance terms can rule
out certain parts of the OCT scan for segmentation.

5.3. Model parameters

Table 1 summarizes the model parameters and how they were
set. For the appearance model we set aglasso to 0.01, which resulted
in sparse covariance matrices Rxi;j

that speed up computations sig-
nificantly. A patch-size of 15	 15 and the projection onto the first
qpca ¼ 20 eigenvectors resulted in smooth segmentation bound-
aries. Similar, we used qppca ¼ 20 eigenvectors to build the shape
prior model, after examining the eigenvalue spectrum.

An important parameter during the inference is the variance of
pðbk;jjbnjÞ: it balances the influence of appearance and shape. Artifi-
cially increasing this parameter results in broader normal distribu-
tions (cf. Fig. 6 (b)), that allows qc to take into account more
observations around the mean of pðbk;jjbnjÞ. At the same time the
influence of the appearance terms on qb is reduced, which results
in a smoother mean �l. Thus increasing the variance loosens the
coupling between qc and qb and vice versa. A 10-fold increased var-
iance turned out to provide a good balance between local appear-
ance terms and shape regularization as well as between run-time
and prediction accuracy.

We used the very same set of parameter values for all our
experiments and performed no fine tuning separately for each data
set. Hence it is plausible to assume that these values perform well
on a broad range of data sets.

5.4. Error measures and test framework

For each boundary we computed the unsigned distance Ek
unsgn in

lm between estimates ĉk;j ¼ Eqc
½ck;j� and manual segmentations ~ck;j

(ground truth) as

Ek
unsgn ¼ M�1

XM

j¼1

jĉk;j � ~ck;jj; Eunsgn ¼ N�1
b

XNb

k¼1

Ek
unsgn:
Table 1
Set of model parameter values used throughout all experiments.

Parameters Appearance Shape Inference

aglasso qpca Patch-size qppca Variance of pðbk;jjbnjÞ

Value 0.01 20 15 	 15 20 10
For volumes we additionally have to average over regions. For each
data set, we provide the mean error Eunsgn and it’s standard devia-
tion (SD) rEunsgn .

Results were obtained via cross-validation: After splitting each
data set into a number of subsets, each subset in turn is used as a
test set, while the remaining subsets are used for training. This pro-
vides an estimate of the ability to segment new (unseen) test scans.
We used 10-fold cross-validation for the set of non-pathological
circular scans and leave-one-out cross-validation for the volumes,
to maximize the number of training examples in each split. For the
set of glaucomatous scans, we used a single model trained on all
healthy scans.

5.5. Implementation and running time

We implemented our approach in MATLAB. The main bottle-
neck, the sum-product algorithm used to find an optimal solution
for qcðcÞ, was implemented in C and incorporated into MATLAB via
the Mex-interface. To further decrease running time, we exploited
the inherent sparsity of the transition matrices Xk;j, as illustrated in
Fig. 7. Also, wherever possible we transferred expensive matrix–
vector multiplications to the GPU, using a wrapper for MATLAB
called GPUmat (Messmer et al., 2008). Segmenting all 61 B-Scans
of a 3-D volume took 60 s, with memory requirements of about
2 GB, measured on a Core i7-2600K 3.40 GHz.

6. Results

6.1. Circular sans

Average boundary-wise results are summarized in Table 2. In
general, boundaries 1 and 6–9 turned out to be easier to segment
than boundaries 2–5. For boundary 1 this stems from easily detect-
able textures, whereas boundaries 6–9 with their regular shape
profit disproportionately from regularization by the shape prior.
Boundaries 2–5 on the other hand pose a harder challenge with
their high variability of texture and shape. The upper row in
Fig. 9 shows an example close to the average segmentation perfor-
mance with Eunsgn ¼ 2:97 lm.

For the pathological scans segmentation performance was com-
parable to the healthy scans, but decreased with the progression of
the disease. This happened for two reasons: Since glaucoma is
known to cause a thinning of the nerve fiber layer (NFL)
(Schuman et al., 1995; Bowd et al., 2001), the shape prior trained
on healthy scans may encounter difficulties adapting to very
abnormal glaucomatous shapes. Furthermore, we observed a
reduced scan quality for glaucomatous scans, also reported by



Table 2
Results in lm� SD (3:87 lm b¼ 1 px) for 2-D circular scans (separately for healthy eyes as well as the different degrees of glaucoma, pre-perimetric, early, moderate and
advanced) and 3-D scans of healthy subjects. Numbers within brackets denote the respective data set size.

k 2-D Healthy 2-D Glaucoma 3-D Healthy

All (80) PPG (22) PGE (22) PGM (13) PGA (9) All (35)

1 2:06� 0:57 2:60� 0:85 3:76� 1:42 4:51� 1:18 6:53� 2:76 1:36� 0:18
2 4:68� 1:13 6:66� 2:41 5:65� 1:66 6:74� 1:64 9:95� 4:74 3:32� 0:37
3 3:67� 0:84 4:57� 1:18 5:37� 1:33 5:49� 1:00 8:80� 3:03 3:17� 0:44
4 3:31� 0:78 4:43� 1:09 5:78� 1:48 5:44� 1:19 8:30� 2:21 3:23� 0:56
5 3:30� 0:75 4:34� 1:63 4:40� 1:14 4:15� 0:68 5:05� 0:92 3:27� 0:66
6 2:10� 0:76 2:67� 1:37 2:76� 0:97 2:88� 1:62 2:99� 1:92 1:61� 0:23
7 2:34� 1:05 2:59� 1:11 2:95� 1:27 2:21� 0:68 2:42� 0:44 1:86� 0:32
8 2:81� 1:42 2:82� 1:00 3:40� 1:22 2:94� 1:40 4:19� 1:97 2:27� 0:40
9 2:01� 1:14 2:06� 0:65 1:63� 0:48 1:64� 0:25 2:36� 1:18 2:07� 0:48

Ø 2:92� 0:53 3:64� 0:68 3:97� 0:73 4:00� 0:53 5:62� 1:25 2:46� 0:22

Fig. 9. Top: Segmentation (Eunsgn ¼ 2:97 lm) of a non-pathological circular scan. Bottom: Segmentation (Eunsgn ¼ 5:09 lm) of an advanced glaucomatous scan.

Table 3
Interobserver variability as well as prediction performance of our segmentation
approach compared to ground truth of observer 1 and 2 for the set of 80 healthy
circular scans (lm� SD (3:87 lm b¼1 px)). The algorithm was trained on the averaged
ground truth.

Obs.1 vs. Obs.2 Algo. vs. Obs.1 Algo. vs. Obs.2 Algo. vs. Avg. Obs.

1 2:86� 0:46 2:35� 0:62 3:69� 0:76 2:74� 0:66
2 7:57� 1:06 5:51� 1:30 6:15� 1:35 4:56� 1:00
3 4:62� 1:13 3:74� 0:91 4:26� 0:85 3:25� 0:74
4 3:63� 0:65 3:31� 0:75 3:35� 0:74 2:74� 0:73
5 3:39� 0:66 3:31� 0:75 3:36� 0:75 2:83� 0:70
6 1:87� 0:59 2:09� 0:73 2:05� 0:73 1:82� 0:71
7 2:36� 1:14 2:33� 0:99 2:55� 1:03 2:08� 0:92
8 3:54� 1:78 3:23� 1:44 2:51� 1:33 2:21� 1:15
9 1:37� 0:51 1:94� 1:03 2:17� 1:02 1:91� 1:01

Ø 3:47� 0:37 3:09� 0:50 3:34� 0:52 2:68� 0:50
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others (Ishikawa et al., 2005; Stein et al., 2006; Mayer et al., 2010),
which in turn reduced the quality of the data terms. For advanced
primary open-angle glaucoma, the NFL can even vanish at some
locations. The appearance model for this layer, trained on healthy
data, is not able to detect these extreme anomalies, which resulted
in a comparatively low performance for some scans. We discuss
possible modifications to overcome this problem in Section 7.

The bottom panels in Fig. 9 show an example of a PGA-type scan
and its segmentation. The scan exhibits the discussed reduced scan
quality. Furthermore, the segmentation proves that the shape
model can generalize well to pathological shapes as well as scan
artifacts.

6.1.1. Interobserver variability
A second set of labels was created for the healthy circular B-

scan data set by the second author. For training and testing we uti-
lized the same set-up as described earlier (10-fold cross-validation,
parameters as in Table 1), but used the average of both labelings
for training. In Table 3 we compare the predicted segmentations
with the two labelings individually and with their average. Fur-
thermore, we report the average absolute distance between both
observers, the interobserver variability.

We see, that the resulting prediction errors are well within the
range of the interobserver variability. The performance using the
averaged labels improves compared to the case when using only
one set of labels, c.f. first column of Table 2. This suggests an
increased robustness of the averaged ground truth towards scan
artifacts, ambiguous image regions and labeling bias.

6.1.2. Qualitative evaluation
A key property of our model is the inference of full probability

distributions over segmentations qc and qb, instead of only modes
thereof. This allows us to rate the quality of the prediction as a
whole as well as indicate regions with low certainty, or classify a
scan as normal or potentially pathological. To this end, we evalu-
ated the different terms of the objective function (12). Fig. 10
reports average function values of four terms (b–e) and compares



Fig. 10. Compares different terms of the objective function (b–e) with the unsigned error (a) for healthy as well as glaucomatous scans (PPG, PGE, PGM and PGA). While
‘‘Shape’’ is very discriminative for the glaucomatous scans, ‘‘Mutual’’ and ‘‘Data’’ correlate well with the unsigned error.

Table 4
Comparison of sensitivities for NFL-based features, measuring average thickness in
different parts of the scan, and our global shape based feature. Bold numbers indicate
the highest detection rate for the respective specificity and glaucoma class.

Specificity 70% 90% AUC

type PPG PGE PGM PPG PGE PGM PPG PGE PGM

Average 68.2 90.9 100.0 36.4 86.4 100.0 0.72 0.93 1.00
Superior 63.6 81.8 92.3 45.5 77.3 76.9 0.78 0.84 0.90
Inferior 45.5 72.7 92.3 13.6 31.8 53.8 0.69 0.77 0.89
Temporal 63.6 95.5 100.0 54.5 90.9 100.0 0.74 0.95 0.99
Nasal 36.4 63.6 92.3 18.2 45.5 61.5 0.51 0.74 0.89
Shape 77.3 95.5 100.0 63.6 95.5 100.0 0.84 0.95 1.00
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them to the unsigned error (a). Singleton entropy (b) and mutual
information (c) are the two summands of the negative entropy
of qc , given in (22). The data (d) and shape (e) terms represent
the first two summands of (12), introduced in Section 3.2 and 3.3.

The shape term, which measures how much the data-driven
distribution qc differs from the shape-driven expectation
Eqb
½log pðcjbÞ�, is highly discriminative between healthy and patho-

logical scans. The mutual information on the other hand exhibits a
good correlation with the unsigned error. It measures the depen-
dence between variables ck;j and ck�1;j. Imaging two variables ck;j

and ck�1;j each having a single strong peak in qc;k;j and qc;k�1;j. Their
joint probability qc;k^k�1;j will show almost no dependency. On the
other hand, if we have several possibilities for each variable caused
e.g. by poor data terms, then their dependency increases and
thereby the mutual information. We will use these two terms in
the forthcoming evaluation.
6.1.2.1. Classification. A state-of-the-art method for the clinical diag-
nosis of glaucoma is based upon NFL thickness, averaged for exam-
ple over the whole scan or one of its four quadrants (Bowd et al.,
2001; Leung et al., 2005; Chang et al., 2009; Leite et al., 2011.)
Estimates of the NFL thickness for all circular scans were obtained
using the software of the Spectralis OCT device, version 5.6. We com-
pared this established method against the second summand of the
objective function (12), as discussed above. Using the same setup
as in Bowd et al. (2001), we report sensitivities for specificities of
70% and 90%, as well as the area under the curve (AUC) of the receiver
operating characteristic (ROC),7 see Table 4. In all cases, our shape-
based discriminator performs at least as good as the best thickness-
based one. Especially for pre-perimetric scans, which feature only
subtle structural changes, our approach improves diagnostic accura-
cies significantly. For this most interesting group, Fig. 11(a) provides
ROC curves of the two overall best performing NFL measures and
our shape measure.
6.1.2.2. Global quality. We obtained a global quality measure, by
combining the mutual information and the shape term. Given the
values for all scans, we re-weighted both terms into the ranges
[0,1] and took their sum. Thereby we could establish a quality
index that had a very good correlation of 0.82 with the unsigned
segmentation error. See Fig. 11(b) for a plot of all quality index/
error pairs and a linear fit thereof. The estimate of this fit and
the true segmentation error differs on average by only 0.51 lm.
7 The AUC can be interpreted as the probability, that a random pathological scan
gets assigned a higher score than a random healthy scan.
This shows that the model is able to additionally deliver the quality
of its segmentation.

6.1.2.3. Local quality. Finally, we determined a way to distinguish
locally between regions of high and low model confidence. This
could for example point out regions where a manual (or potentially
automatic) correction is necessary. To this end we examined the
local correlation (i.e. on a column-wise level) of the mutual infor-
mation terms with the unsigned error. We calculated its mean
for instances with segmentation errors smaller than 0.5 and bigger
than 2 pixels. This yielded three ranges of confidence in the quality
of the segmentation. For each image we fine-tuned these ranges by
dividing by maxðQuality IndexðCurrent ImageÞ;1Þ.

Fig. 12(a) shows a PGA-type scan with annotated segmentation,
whose error is 6.83 lm. The advanced thinning of the NFL and the
partly blurred appearance caused the segmentation to fail in some
parts of the scan. Close-ups (b) and (c) show that the model cor-
rectly identified those erroneously segmented regions. The average
errors of the three categories are 4:67;5:43 and 18.36 lm respec-
tively. Fig. 13(a), on the other hand, shows a scan from a healthy
eye with a segmentation error of 2.83 lm, that is accompanied
by a throughout positive quality rating.

We examined the accuracy of the local quality index numeri-
cally for all scans. Fig. 13(b) reports the average unsigned error
for normal (H) and glaucomatous scans (P–A) as well as all three
grades of certainty, and compares it to the average segmentation
error for each data set, given as black lines. As for the global quality
index, also locally the model reflects very well the distinction
between correct and erroneous regions. Fig. 13(c) shows the ratio
between the three quality ratings.

6.2. Volumetric scans

In contrast to 2-D scans, the labeling of OCT volumes is very
time consuming, hence our data set only consisted of 35 samples.
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Fig. 12. (a) An advanced primary open-angle glaucoma scan and the segmentation thereof (Eunsgn ¼ 6:81 lm), augmented by the local quality estimates of the model, with red
representing the most uncertain class. (b) and (c) Close-ups of the three areas, the model is (correctly) most insecure about. White dotted lines represent ground truth.
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Fig. 13. (a) A healthy scan (Eunsgn ¼ 3:05 lm) accompanied by a very high model certainty. (b) Average segmentation error for healthy as well as glaucomatous scans for each
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Thus we were left with less data points to train a shape model of
much higher dimension. Consequently, we observed a reduced
ability of pðbÞ respectively qbðbÞ to generalize well to unseen scans.
We tackled this problem by reducing the dimensionality of pðbÞ
and by interpolating it for intermediate columns, which fixed the
problem only to some extent.
We further pursued this idea and suppressed the connectivity
between different B-scans, which corresponds to a block-diagonal
covariance matrix R, where each block is obtained separately using
PPCA. This significantly reduced the amount of parameters that
had to be determined, and improved accuracy significantly. The
last column in Table 2 reports results for all boundaries.



Fig. 14. Four segmented B-Scans from regions 2, 6, 9 and 11 of the same volume (Eunsgn ¼ 2:53 lm).
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The average segmentation error of 2.46 lm is significantly
smaller than for circular scans, as well as the standard deviation
of 0.22 lm. Reasons are smoother boundary shapes and less severe
texture artifacts caused by e.g. blood vessels. Representative for
the average segmentation performance, Fig. 14 shows B-scans of
the same volume from four different regions, with an error of
2.53 lm averaged over the all scans in the volume.
7. Discussion and conclusion

A novel probabilistic approach for the segmentation of retina
layers in OCT scans was presented. It incorporates global shape
information, which distinguishes it from most other approaches
relying solely on local shape information. To obtain an approxi-
mate of the full posterior distribution pðc; bjyÞ, we employed varia-
tional methods, which entail efficiently solvable optimization
problems. We demonstrated the applicability of our approach for
a variety of different OCT scans as well as the benefit of inferring
full probability distributions over segmentations rather than seg-
mentations as point estimates.

Especially for 3-D OCT volumes, our segmentation performance
was significantly better than recently reported results from
approaches that use no shape information (Vermeer et al., 2011;
Yang et al., 2010), local hard-constrained shape information
(Garvin et al., 2009), local probabilistic shape information
(Dufour et al., 2013; Song et al., 2013) or sparse global shape infor-
mation (Kajić et al., 2010). Taking into account, for better compara-
bility, only publications that used data sets obtained from the same
OCT device as in this publication, the following trend evolves:

� While no shape information lead to only mediocre results:
6.20 lm and 5.28 lm for healthy and moderate glaucomatous
data respectively (Vermeer et al., 2011),
� adding local shape information via hard constraints yielded
improved segmentation performance: 3:54� 0:56 lm as evalu-
ated by Dufour et al. (2013) but comparable to the model pro-
posed by Garvin et al. (2009).
� Additionally using probabilistic local constraints, Dufour et al.

(2013) recently again boosted performance to 3:03� 0:54 lm.
� Finally, by adding global shape information, we could in turn

improve the segmentation performance to 2:46� 0:22 lm.

Although this clearly seems to support the use of global shape
information for regularization, keep in mind that a concluding
comparison can only be carried out using the same data set. Nev-
ertheless, we believe that these results highlight the usefulness
of global shape regularization for the segmentation of retinal layers
in OCT images. Reported time requirements vary greatly, and our
running time of 60 s is slower than the 18 s and 15 s reported by
Dufour et al. (2013) and Yang et al. (2010), but faster than the
remaining approaches cited above.

We also evaluated the performance for healthy and pathological
2-D circular scans and, in both cases, obtained good results. The
only exception was the group of most advanced glaucomatous
scans, which was caused mainly by the appearance models. Being
trained on healthy data, the Gaussian distribution that models the
NFL is not able to recognize instances with near-zero layer thick-
ness. Therefore, a useful extension could be to define a mixture
of Gaussians for each appearance class, adding patches centered
below or above pixel ði; jÞ, which model its surrounding but not
the layer/boundary itself. Additionally, given more pathological
examples especially for PGM and PGA, one could learn a patholog-
ical shape prior and let the model choose the more probable shape
prior given the initialization. Future work will try to improve per-
formance for these extreme cases and also test the approach on
other pathologies like age-related macular degeneration, if training
data gets available.
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Finally, we investigated different ways to utilize the inferred
distributions qc and qb. Experiments showed, that the model is
quite sensitive to abnormal shapes and thus can act as a detector
of glaucoma, with a higher sensitivity than established methods
solely based on NFL thickness. This could relate to recent findings,
that glaucoma causes a thinning of all inner retinal layers: NFL,
GCL, IPL and (to a lesser extent) INL (Tan et al., 2008). To confirm
these promising results, further studies with more patients
enrolled will be needed. Another benefit of our approach is the
ability to estimate the quality of the segmentation, altogether for
the whole scan or for each boundary position separately. In the
context of screening large patient databases, the former could be
a valuable tool to minimize the effort of the physician in reassess-
ing the results. The latter could facilitate a automatic or manual
post-processing, targeted specifically at regions with a high error
probability. A thorough investigation of these regions could reveal
a suitable approach, and will be part of our future work.

To facilitate further research in the area of OCT segmentation
and related areas, we publish our source code together with docu-
mentation on our project page: http://graphmod.iwr.uni-heidel-
berg.de/Project-Details.132.0.html.
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Appendix A. Calculating k;j and x1;j

In Section 3.3 we outlined the steps necessary to make explicit
the expectation w.r.t qb for the terms of log pðbjcÞ, represented by
ðx1;jÞn and ðXk;jÞm;n. This section will derive both terms, starting
with ðx1;jÞn:

ðx1;jÞn ¼ Eqb
½log pðb1;j ¼ njbnjÞ�

¼
Z

b
qbðbÞ logN b1;j ¼ n; ðljjnjÞ1; ðRjjnjÞ1;1

� �
db

¼ C � 1
2ðEjjnjÞ1;1

n2 � 2nðEqb
½ljjnjÞ1� þ Eqb

ðljjnjÞ1
� �2
	 
� �

:

Using the definition of (17) for ðljjnjÞ1, abbreviating the k-th row of
RjjnjKj;nj with Aj

k and moving all terms independent of �l to C

ðx1;jÞn¼C� 1
2ðEjjnjÞ1;1

	 2ðn�l1;jÞA
j
1Eqb
½bnj�þAj

1ðEqb
½bnjbT

nj��2lnjEqb
½bnj�ÞðAj

1Þ
T� �
;

and finally replacing the expectations with the respective moments
given in (18) yields

¼ C � 1
2ðEjjnjÞ1;1

2ðn� l1;jÞA
j
1 �lnj þ Aj

1ð�Rnj;nj þ �lnj �lT
nj � 2lnj �l

T
njÞðA

j
1Þ

T� �
:

ðA:1Þ

The terms ðXk;jÞm;n ¼ Eqb
½log pðck;j ¼ njck�1;j ¼ m; bÞ� are the prod-

uct of two Gaussians and therefore again Gaussian, modulo nor-
malization. A lengthy derivation, using the formula for the
product of two Gaussians, yields the same equation as above, with
indices 1 replaced by k and a different constant C.
Appendix B. Optimization of qbðbÞ

We showed in Section 4.2, that the optimization of the objective
function (23) w.r.t. to the parameters of qb can be done in closed
form. This section will detail terms ~p and eP introduced there, which
capture the dependencies of Xk;j and x1;j on the parameters of qb.

B.1. Derivation of eP
Only considering terms in (A.1) depending on �R, we obtain

ðx1;jÞnð�RÞ ¼ �
1

2ðEjjnjÞk;k
Aj

k
�Rnj;njðAj

kÞ
T

and similar for ðXk;jÞm;nð�RÞ. Here Aj
k again represents the k-th row of

RjjnjKj;nj. Since Aj
k is of dimension 1	 NbM � Nb we introduce an

expanded version ~Aj
k 2 RNbM padded with zero entries, such that

~Aj
kRð~A

j
kÞ

T
¼ Aj

kRnj;njðA
j
kÞ

T
. Note that ðXk;jÞm;nð�RÞ and ðx1;jÞnð�RÞ are

independent of m and n and thus have identical entries for all

ðm; nÞ, and therefore Eq½x� ¼ x. Using bT Bb ¼ hbbT
;Bi, we obtain for

(19)
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B.2. Derivation of ~p

Again, we begin by singling out terms of (A.1), depending on �l

ðx1;jÞnð�lÞ¼�
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and accordingly for ðXk;jÞm;nð�lÞ. The first term is dependent on n and
thereby on qc , whereas the remaining terms are again independent

on n and qc sums out. Using ~Aj
1 as introduced above, we plug x1;jð�lÞ

and Xk;jð�lÞ into (19)
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where eP was defined in the previous section.
Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.media.2014.
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