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Abstract—We introduce a multiple instance learning algorithm
based on randomized decision trees. Our model extends an
existing algorithm by Blockeel et al. [2] in several ways: 1) We
learn a random forest instead of a single tree. 2) We construct
the trees by splits based on non-linear boundaries on multiple
features at a time. 3) We learn an optimal way of combining
the decisions of multiple trees under the multiple instance
constraints (i.e. positive bags have at least one positive instance,
negative bags have only negative instances). Experiments on the
typical benchmark data sets show that this model’s prediction
performance is clearly better than earlier tree based methods,
and is comparable to the global state-of-the-art.

I. INTRODUCTION

Dramatic improvements in instrumentation, and online data
collection on an unprecedented scale, result in a tremendous
increase in the number of observations. In contrast, the rate
with which a human expert can annotate such observations for
the purpose of supervised machine learning remains limited.
It is hence attractive to trade human effort for computational
expense, by learning from weak supervision. In brief, learning
highly descriptive models from weak supervision appears as a
key challenge in next generation data analysis.

Multiple instance learning (MIL) [8] is a supervised learn-
ing technique that relies on very weak supervision. As opposed
to standard supervised learning settings where a ground-truth
label is available for each instance, in the MIL setting, each
group of instances, called bags, are assigned a label, and the
labels of individual instances are latent. A positive bag label
indicates that there exists at least one instance in that bag with
positive label. In a bag with a negative label, all instances are
known to have a negative label.

More formally, in the MIL setting, data can be described as
a collection of bags B® b € {1,..., N}. Each bag B® consists
of a number of instances x? € B® i € {1,...,N°}. A bag B®
has a positive label Y* = 1 if 3z? € B® with y? = 1. This
is called the positive identifiability constraint [13]. A bag B®
has a negative label Y* = 0 if y? = 0 Va? € B’. This is
called the negative exclusion constraint [13]. An instance of
a positive bag is called a wirtness if its unobserved ground-
truth label is positive, and non-witness otherwise. The main
challenge in MIL is to identify witnesses and non-witnesses
within positive bags, and learn a decision boundary that obeys
these latent class assignments.

In this paper, we introduce a decision tree based solution
to MIL. Our model inherits the desirable properties of decision

trees such as small computational footprint, ease of implemen-
tation, and high interpretability. In particular, we extend the
work of Blockeel et al. on multi-instance decision trees [2] in
several aspects. First, we learn multiple randomized decision
trees [3]. Secondly, we employ a non-linear split criterion on
multiple features at a time, in place of the commonplace axis-
orthogonal approach. Thirdly, we increase the robustness of our
model against noise by regularizing instance weights. Lastly
and importantly, we introduce a means to learn the optimal
combination of the decision outputs of all trees in the forest.
In a lesion study, we analyze the contribution of each of
these extensions to overall performance. The combined model
clearly outperforms existing decision tree based methods [12],

[2].

II. RELATED WORK

MIL models differ from each other in the heuristic they
employ on how to identify positive instances in the positive
bags. In [8], Dietterich et al. rely on the heuristic that the
positive instances reside in a single axis parallel rectangle
(APR). Another seminal method is diverse density modeling
[14], [24] which assumes that positive instances come from
a Gaussian distribution. The learning task consists of which
representative instance to select from each bag for a better fit
to a Gaussian.

There also exist extensions of the k-nearest neighbor idea
to the MIL setting, such as [22]. It is also possible to apply
boosting to MIL, as in Viola et al. [20]. In addition, some
deterministic annealing type approaches have been proposed
[10], [12] that try to uncover the instance labels in several
training iterations.

A large group of existing MIL methods are extensions of
kernelized classifiers [1], [10], [6]. These models are based on
extensions of the support vector machine (SVM) optimization
problem with the positive identifiability and negative exclusion
constraints. MI-SVM [1] adds one constraint per one instance
in a positive bag that has the largest discriminant value. mi-
SVM [1] treats the instance labels in positive bags as latent
variables to be learned from data. An alternative kernel-based
MIL approach is GPMIL [11], which extends Gaussian process
classification to the MIL setting by modifying the sigmoid
likelihood from instance level to bag level.

Another alternative approach is decision tree based MIL.
Blockeel et al. [2] adapted decision trees to the MIL problem
by introducing a priority queue into the tree construction



process. Leistner et al. [12] propose a deterministic annealing
procedure for uncovering the hidden instance labels in several
forest training iterations. In this paper, we introduce another
MIL algorithm on this track, which is an extended version of
of the work of Blockeel et al. [2].

Recent examplary applications of MIL include diabetic
retinopathy screening [17], cancer detection from tissue images
[23], and content-based object detection and tracking [19].

III. DECISION TREES

Let D = {(x1,9),(22,92) -+, (zN,yn)} be a data
set of N instances where x; = [z;1, %2, -+ ,x;p] are D-
dimensional vectors of observed instances and y; are associated
labels. Suppose that M (y,) is a scalar measure based on the
labels of an instance set s, denoted by y,. A decision tree is
built by the following steps:

e  For each observed value x;; of each feature j, group
the instances into two groups according to the split
rule f; > x;; where f; is a threshold for feature
j. Calculate a goodness measure for the split 6;; =

MYy se,) + MYys <a,,)-

e  Create a node for the feature}' which gives the highest
6;5, and two child nodes, and assign all instances with
fj > x;; to one node, and the rest to the other node.

e For each child node, repeat this process on their
assigned set of instances recursively until all nodes
have instances belonging to a single class.

Let f. denote the proportion of instances in y, that belong to
class c. Two widely used examples of goodness measures are

Gini Impurity: c
IG =1- Z ffv
c=1

and Information Gain:

c
Ig ==Y flogfe.
c=1

Gini impurity is widely used by the CART (Classification
And Regression Tree) algorithm [4], and the information gain
is more often preferred with the C4.5 algorithm [18]. The
outlined axis-orthogonal splitting procedure can be replaced
by more complex splitting tests over multiple features at a
time, see for example [15].

IV. RANDOM FORESTS

Decision tree learning has several desirable properties such
as being computationally very fast, and being very inter-
pretable. However, the main drawback of this algorithm is the
suboptimal prediction performance it provides. One reason for
the low accuracy of decision trees is that features are handled
one-by-one in the decision process, hence complex correlations
between features are not captured sufficiently. Another reason
is that the goodness measures are calculated over the entire
set of available instances, which makes the algorithm prone to
overfitting.

Breiman shows that a simple extension to the decision tree
algorithm, called the random forest, indeed brings a significant

improvement in prediction performance, while keeping the
other good properties of decision trees [3]. The random forest
takes a decision tree as a weak classifier, and performs ensem-
ble learning together with a bagging procedure. In particular,
the algorithm learns multiple decision trees on randomly
chosen features based on randomly chosen sets of training
instances. The decision for a newly seen instance is made by
combining the outcomes of the learned trees in the forest.

V. MULTI-INSTANCE TREE LEARNING

As a basis for our method we rely on the multi-instance
tree learning (MITI) algorithm presented in [2]. This greedy
decision tree algorithm initially assumes that each instance in
a positive bag has a positive label. Importantly, the algorithm
from [2] does not follow the depth first recursive partitioning
scheme outlined in Section III. Instead, the authors propose a
priority queue based node expansion. The algorithm maintains
a priority queue of split nodes, and iteratively takes the node
with the highest priority from the queue. The node that was
taken from the queue is split according to the goodness
measure, and the resulting two child nodes are inserted into
the priority queue. The algorithm uses the number of positive
instances in a node as the priority for the queue.

Furthermore, the authors assign to each instance x? a
weight w?. At the beginning this weight is set to ﬁ, the
inverse of the size of the bag b to which instance ¢ belongs.
This ensures that the weights of all the instances in a bag sum
up to 1 - otherwise large bags would cause a bias. The instance
weight is used throughout the entire tree construction process
and is also considered during the evaluation of the goodness
of a split. Thus, a weighted Gini-impurity measure for a set S
of instances x? is

2 2 2

>t -

xi’ES

G(S) =

xPeS+ xbes—

where S+ denotes the subset of instances in S with positive
labels, and S— denotes the ones with negative labels.

In addition the authors propose to change the assigned
weight of the instances once a purely positive leaf has been
discovered. In this case the other instances of the bags that are
covered by the leaf will be discounted by setting their weight to
0. More formally, once a positive leaf II;, has been found dur-
ing tree construction we set w? = 0,x} € B,i # j, x} € II;.
The intuition here is that once a positive bag is explained by
one or more positive instances in a purely positive leaf node,
the decision tree does not need to find another positive instance
to explain the positive label of the associated bag, thus the
weight w? of the other instances of the bags that are covered
by the leaf node can be set to 0. This essentially excludes
these instances from the further tree growing process, since
these presumed negative instances have no influence on the
weighted Gini impurity during split evaluation.

The overall process amounts to building a decision tree
in a special order, where the largest positive subset in the
decision tree is expanded first. This prioritization induces the
tree learner to focus on finding pure positive subsets. In other
words, it enforces the rule that it is legal for non-witness
positive instances to end up in negative nodes, but it is not
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Fig. 1: Overview of the different decision tree split types. The
standard axis-orthogonal split type (left) is less discriminative
then the oblique hyperplane split (right) and the ellipsoid split
(middle). The ellipsoid split is defined by the contour line of
a normal distribution fitted to the positive instances.

desirable for negative instances to end up in positive nodes.
Thus trying to first find pure positive subsets best expresses the
multiple instance constraint. In [2] the authors show that the
resulting tree growing procedure outperforms other decision
tree based algorithms in MIL problems.

In the following sections we extend the MITI algorithm in
several ways and show that this approach yields an algorithm
that outperforms the existing decision tree based MIL algo-
rithms, and gives results similar to other existing algorithms.
Our extensions to MITI are:

e learning a random forest instead of a single determin-
istic decision tree,

e using a regularization and a weight redistribution to
increase robustness to noise (as detailed in V-A),

e using a non-linear splitting method on pairs of fea-
tures, instead of line search in individual features (as
detailed in V-B),

e learning how to combine the decision outputs of the
trees in the forest from data, subject to a multiple
instance constraint (as detailed in V-D).

A. Tree regularization and weight redistribution

As opposed to [2] who grow a decision tree until impurity,
we use a minimum leaf node size as the stopping criterion
for the decision tree growing process. This early stopping
acts as a regularizer, since it allows leaf nodes to contain
positive and negative instances and the positive instances in
such impure leaves are assumed to be false positives. In this
case we redistribute the weights of the positive instances in an
impure leaf node to the other instances of the corresponding
bag which are not yet assigned to a leaf node. More formally,
for an impure leaf node 11 that is below a size threshold we set
w? = w? + IBlwaﬁ-’ € B", Y =1,i # j,x} € Il where |B?|
is the size of bag B’. Thus, these remaining positive instances
of a bag B® contribute more strongly to the further decision
tree building process and the reweighted positive instances are
more likely to end up in a positive leaf node.

B. Inside/outside split concepts

In typical multiple instance learning tasks, positive in-
stances are often distributed around few cluster centers while
the negative class is distributed more evenly. This fact is
exploited in many multiple instance learning algorithms, such

as [14], [24], [6]. The orthogonal axis splits used in traditional
decision trees, such as in [2], appear as a bottleneck in model
performance since they assume an axis-orthogonal boundary
between classes.

As a solution to this problem, we strenghten the modeling
power of our decision trees with a more complex split scheme.
Instead of the line-search based splits on single features used in
[2], we employ two types of split criteria on multiple features
at a time (see Figure 1):

e Ellipsoid splits
e  Hyperplane splits

These complex split criteria are inspired from the oblique
random forest idea studied in [16], and the Gaussian density
estimation forests in [7]. In the case of ellipsoid splits, we pick
a random subset of the feature dimensions and calculate the
weighted mean and weighted sample covariance matrix of the
positive samples that are assigned to that split node N:

wix?b
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where X is the set of positive instances, x? is the instance
i of bag b, and x%_ is the kth feature of the same instance.
We then sort the instances with respect to their Mahalanobis
distance

A=/ ) TS )

and search for the optimal split threshold A > 7 with respect
to the Gini impurity of the induced partitioning into a left and
right subset.

In the case of hyperplane splits, we choose a random subset
of the feature dimensions and assign a random weight to
each dimension, afterwards we search for the optimal linear
intercept with respect to the Gini impurity. This split type
allows to discriminate better on correlated features than the
axis orthogonal split type used in [2].

C. Forest vote bias correction

Our model learns multiple decision trees, each on a random
subset of training instances and features. Each of these trees
have their own decision output for a newly seen instance.
Hence, a mechanism is required to combine these decisions
to obtain the final outcome for that instance.

In the traditional random forest formulation, this issue is
solved simply by majority voting. In the case of multiple
instance decision trees this can have detrimental effects: since
each tree deactivates all positive instances of a positive bag
when it discovered a positive witness for that bag the decision
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Fig. 2: The classifier response f (mf) = ul'r for the instances is calculated as the scalar product between leaf weights = and
the indicator vector w; for instance x?. The indicator vector has 1 entries for the leaf nodes in which that instance x? ends up
when predicting the instance with the individual trees ¢;. The leaf node weights r are then optimized in a post processing step
subject to positive identifiability and negative exclusion constraints.

boundary is biased in favor of the negative instances since
instances of the negative bags are never deactivated.

Another undesirable situation occurs when the true positive
instances are arranged in several distinct clusters. Due to the
deactivation mechanism, each tree can only identify a single
positive cluster per positive bag. The other clusters have a
certain probability of being misclassified by a single tree.
Once again, true positive samples may not receive sufficiently
many positive votes to reach the majority vote threshold.
Consequently, a simple majority vote combination of the
individual trees will lead to a strong negative bias of the forest.

We propose to counter the negative class bias of the forest
in a simple way by optimizing a threshold with regard to the
MI-constraint. We count the number of positive tree votes for
each instance, and the instance that receives the most positive
votes from each bag is recorded. For these most positive
instances the vote count threshold that best separates the
positive from the negative bags is determined by a line search
with respect to the induced bag accuracy. We experimentally
show that countering the negative bias of the forest is crucial
for good performance (see section VI).

D. Forest response optimization

Threshold optimization counters the class imbalance bias
(which arises from deactivation of positive training samples)
by lowering the number of positive votes an instance must
receive in order to be assigned to the positive class. This
strategy does not alter the votes themselves, but only their
interpretation. Alternatively (or in addition), we can improve
voting performance by optimizing the response of all leaf
nodes. This optimization is only beneficial if it is conducted
Jjointly over all trees in the ensemble, because the standard
leaf response (the majority label of the instances assigned to
each leaf) is clearly optimal as long as each tree is considered
in isolation. Since we want to retain the property that the
ensemble response is computed as a linear combination of tree
responses, this leads us to a constrained linear optimization
problem similar to the ones discussed in [9], [15]. These works
introduce a sparsity constraint in order to prune as many nodes
as possible without degrading performance. In contrast, we
attempt to optimize leaf responses under the multiple instance
constraints.

To define the linear system, we introduce the indicator
vector u; of an instance ¢. It is a binary vector whose length
equals the total number of leaf nodes in the forest, and whose
elements represent the membership of ¢ to the different leaves.
That is, an element of u; takes a value of 1 precisely when the
instance ¢ is assigned to the corresponding leaf. For example,
the indicator vector for the ensemble in Figure 2 has length
8. When the feature vector x? is propagated down each tree,
the leaves (1,5), (2,4), and (3,2) marked in blue are reached,
and the three corresponding entries in the indicator vector are
set to 1. In addition, we define the leaf response vector by
r = [r11,712, -+ ,77L] (Where 7y is the response of leaf tl).
Then, the total response of the ensemble can be written as the
scalar product

To optimize the weights r, we take the indicator vectors of all
training examples and stack them next to each other into the
indicator matrix U. The training response is thus f = UTr.
Note that all instances are assigned to all trees during global
optimization, irrespective of whether they where out-of-bag or
de-activated in the tree construction phase. We now seek the
vector r* that minimizes the training loss under the multiple
instance constraints. That is, f; should take the value —1 for
all instances from negative bags, and 1 for the witness of each
positive bag, whereas the response for non-witness members of
positive bags is ignored. Under our linear model, the witness is
defined as the positive bag member that receives the maximum
response. This leads to the following formal definition of the
loss
Ll;a (Xb,Yb) _ (maxxgexb [fl()xf)} 721)2 aYZ = 17
x?eXb(f(Xi)+l) aY =0.

This loss is combined with a quadratic regularizer to obtain
the global optimization problem

r* = argming r7r + Z LY.(X°, Y.
beB

While this is a non-convex optimization problem (the argu-
ments of the square functions in the loss can have arbitrary
sign), we found in practice that good local optima can be found
using gradient descent by initializing the leaf weights r with
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The resulting optimization algorithm is efficient and takes only
a small fraction of the total training time.

VI. EXPERIMENTS

We evaluated the generalization performance of our algo-
rithm on the following five public MIL benchmarking data sets:
MUSK 1, MUSK?2, Elephant, Tiger, and Fox. In MUSK 1 and
MUSK 2, the task is to find a configuration of a molecule
that binds its target. Each molecule is formulated as a bag,
and its each configuration an instance. The MUSK1 data set
consists of 476 instances of 166 dimensions grouped in 47
positive and 45 negative bags. The MUSK 2 data sets has
6598 instances of 166 dimensions, and 39 positive and 63
negative bags. In Elephant, Fox, and Tiger data sets, the task
is image classification, the animal in the scene determining the
image class. Each image is considered a bag and each patch of
an image is treated as an instance. All three data sets consist
of 230-dimensional feature vectors grouped into 100 positive
and 100 negative bags. The Elephant, Fox, and Tiger data sets
include 1391, 1320, and 1220 instances, respectively.

The randomized decision tree parameter mtry which deter-
mines how many different splits are tested in each split node
during tree construction was set to the standard square root of
number of feature dimensions proposed by Breiman [3]. The
number of dimensions for the hyperplane splits was set to 5
and the number of dimensions for the Gaussian ellipsoid split
was set to 2. These choices ensure that both split types have
the same number of free parameters (a 2D Gaussian has 3
free covariance matrix entries and 2 free mean vector entries).
Additionally, we set the minimum leaf node size regularization
parameter to the number of free parameters in the split nodes,
i.e. 5. All performance scores reported below are obtained by
averaging 5 runs of 10-fold cross-validation.

A. Influence of proposed extensions

As seen in Table I, all extensions except constraining the
minimum leaf node size contribute to prediction accuracy, and
the highest performance is achieved when all the extensions
are employed together. Most pronounced is the influence of
combining multiple decision trees into a forest, which is
indicated by the low accuracy of the single tree model. The
difference of our single tree accuracy in comparison to the
MITI method can be explained by the randomized training
procedure that we employ to ensure uncorrelated trees. To
investigate the influence of the forest reponse optimization,
we replaced this part of our model with the simpler forest vote
bias correction step on the instance predictions of the forest.
We found that the response optimization is an essential part of
the proposed model, as can be seen in Table 1. Deactivating
also the forest vote bias correction from Section V-C leads
to predictions at the chance level. Less pronounced but still
positive is the contribution of the Ellipsoid split that we
propose. The leaf node regularization via a minimum leaf node
size and a redistribution of the positive weights does not have
a visible positive effect. The Musk?2 data set benefits from this
extension while the effect on the Musk1 data set is detrimental.

B. Discussion

Table II shows the accuracy of the models in comparison.
The top-most group contains decision tree based algorithms in-
cluding our proposed model (MIOForest). MIOForest performs
better than all the three models, except that it is marginally
worse than MITI [2] in MUSK 2. When classification ac-
curacies are averaged over five data sets, MIOForest clearly
improves the state-of-the-art in decision tree based multiple
instance learning by 3%.

Among the kernel-based MIL algorithms in the second
group, MIOForest ranks second after GPMIL [11] by 1%.
It is noteworthy that GPMIL is a computationally expensive
algorithm that involves inversion of an N x N kernel matrix,
N being the number of training instances, and tuning of kernel
hyperparameters.

The third group from the top consists of two variants of a
special type of kernel function that calculates the dissimilarity
between two bags. Due to the fact that each bag is represented
as a single instance during classification, these algorithms
are very fast. In addition their accuracy is very competitive.
However, the problem of these algorithms is that they are able
to make predictions only at the bag level, as opposed to all
the other algorithms in comparison, including MIOForest. mi-
Graph is on average marginally better than MIOForest.

The methods in the last group include methods depending
on various other approaches. MILES [6] and SIL-SVM [5]
basically solve the MIL problem using single-instance learn-
ing, and EM-DD [24] uses a diverse density based approach
combined with expectation maximization. MIOForest is clearly
better than all algorithms in this group.

To summarize, MIOForest ranks third among all models
in comparison only marginally (< 1%) behind mi-Graph
and GPMIL. Note that MIOForest gives the globally best
performance for the Fox data set.

VII. CONCLUSION

We have extended the multi instance tree learning algo-
rithm proposed in [2] with a regularization and weight redis-
tribution scheme, inside/outside split concepts, randomization
and a leaf node response optimization. We have shown that
our method exhibits superior performance to other decision
tree based algorithms on a number of benchmark data sets,
and that its accuracy is only slightly worse than the global
state-of-the-art.

There exist several interesting future extensions of the
model we propose. For instance, exploring additional ways
to control the witness/non-witness co-occurrences in positive
bags is a promising strategy for future work. In addition,
the idea of treating the instance from the bags as non i.i.d.
samples as in [25] is another attractive direction of research
that might be incorporated in the response optimization stage.
Furthermore the instance-to-bag principle presented in [21]
could be beneficial also for the decision tree based approach
used here.
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