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Abstract

Exemplar learning is a powerful paradigm for discovering visual similarities in
an unsupervised manner. In this context, however, the recent breakthrough in
deep learning could not yet unfold its full potential. With only a single positive
sample, a great imbalance between one positive and many negatives, and unreliable
relationships between most samples, training of Convolutional Neural networks is
impaired. Given weak estimates of local distance we propose a single optimization
problem to extract batches of samples with mutually consistent relations. Conflict-
ing relations are distributed over different batches and similar samples are grouped
into compact cliques. Learning exemplar similarities is framed as a sequence of
clique categorization tasks. The CNN then consolidates transitivity relations within
and between cliques and learns a single representation for all samples without
the need for labels. The proposed unsupervised approach has shown competitive
performance on detailed posture analysis and object classification.

1 Introduction

Visual similarity learning is the foundation for numerous computer vision subtasks ranging from
low-level image processing to high-level object recognition or posture analysis. A common paradigm
following the influential work of [14] has been category-level recognition, where categories and the
similarities of all their instances to other classes are jointly modeled. However, large intra-class
variability has recently spurred exemplar methods [22, 18], which split this problem into simpler
sub-tasks. Therefore, separate exemplar classifiers are trained by learning the similarities of individual
exemplars against a large set of negatives. The exemplar paradigm has been successfully employed
in diverse areas such as segmentation [18], grouping [17], instance retrieval [7, 26], and object
recognition [22, 27, 10, 9]. Learning similarities is also of particular importance for video parsing
[24], posture analysis [15], and understanding of complex actions [31, 2, 1].

Among the many approaches for similarity learning, supervised techniques have been particularly
popular in the vision community, leading to the formulation as a ranking [34], regression [11], and
classification [28] task. With the recent advances of convolutional neural networks (CNN), two-stream
architectures [36] and ranking losses [32] have shown great improvements. However, to achieve their
performance gain, CNN architectures require millions of samples of supervised training data or at
least the fine-tuning [6] on large datasets such as PASCAL VOC. Although the amount of accessible
image data is increasing at an enormous rate, supervised labeling of similarities is very costly. In
addition, not only similarities between images are important, but especially between objects and their
parts. Annotating the fine-grained similarities between all these entities is hopelessly complex, in
particular for the large datasets typically used for training CNNs.
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Figure 1: Pipeline of the proposed CliqueCNN approach.

Unsupervised deep learning of similarities that does not requiring any labels for pre-training or
fine-tuning is, therefore, of great interest to the vision community. This way we can utilize large
image datasets without being limited by the need for costly manual annotations. However, CNNs for
exemplar-based learning have been rare [8] due to limitations resulting from the widely used softmax
loss. The learning task suffers from only a single positive instance, it is highly unbalanced with many
more negatives, and the relationships between samples are unknown, cf. Sec. 2. Consequentially, the
stochastic gradient updates get vitiated and have a bias towards negatives, thus forfeiting the benefits
of deep learning.

Outline of the proposed approach: We overcome these limitations by reformulating similarity
learning as an exemplar grouping and classification problem using CNNs. Typically at the beginning
only a few, local estimates of (dis-)similarity are easily available, i.e., pairs of samples that are highly
similar (near duplicates) or that are very distant. Most of the similarities are, however, unknown or
mutually contradicting, so that transitivity does not hold. Therefore, we initially can only gather
small, compact cliques of mutually similar samples around an exemplar, but for most exemplars we
know neither if they are similar nor dissimilar. To nevertheless define balanced classification tasks
suited for CNN training, we formulate an optimization problem that builds training batches for the
CNN by selecting groups of compact cliques, so that all cliques in a batch are mutually distant. Thus
for all samples of a batch (dis-)similarity is defined—they either belong to the same compact clique
or are far away and belong to different cliques. However, pairs of samples with no reliable similarities
end up in different batches so they do not yield false training signal for SGD. Classifying if a sample
belongs to a clique serves as a pretext task for learning exemplar similarity. Training the network
then implicitly reconciles the transitivity relations between samples in different batches. Thus, the
learned CNN representations impute similarities that were initially unavailable and generalize them
to unseen data.

In the experimental evaluation the proposed approach significantly improves over state-of-the-art
approaches for posture analysis and retrieval by learning a general feature representation for human
pose. The outline of our approach is presented in Fig. 1.

1.1 Exemplar Based Methods for Similarity Learning

The Exemplar Support Vector Machine (Exemplar-SVM) has been one of the driving methods for
exemplar based learning [22]. Each Exemplar-SVM classifier is defined by a single positive instance
and a large set of negatives. To improve performance, Exemplar-SVMs require several round of hard
negative mining, increasing greatly the computational cost of this approach. To circumvent this high
computational cost [17] proposes to train Linear Discriminant Analysis (LDA) over Histogram of
Gradient (HOG) features [17]. LDA whitened HOG features with the common covariance matrix
estimated for all the exemplars removes correlations between the HOG features, which tend to amplify
the background of the image.

Recently, several CNN approaches have been proposed for supervised similarity learning using either
pairs [36], or triplets [32] of images. However, supervised formulations for learning similarities
require that the supervisory information scales quadratically for pairs of images, or cubically for
triplets. This results in very large training times.
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Figure 2: (a) Average AUC for posture retrieval in the Olympic Sports dataset. Similarities learnt by
(b) 1-sample CNN, (c) NN-CNN, and (d) CliqueCNN. The plots show a magnified crop of the full
similarity matrix. Note the more detailed fine structure in (d).

Literature on exemplar based learning by CNNs is very scarce. In [8] Dosovitskiy et al. tackle the
problem of unsupervised feature learning. A patch-based categorization problem is designed by
randomly extracting patches for each image in the training set and defining each of the patches (with
synthetic augmentations) as a surrogate class. Hence, this approach does not model the similarity
relationships between exemplars and its nearest neighbours and fails to encode their transitivity
relationships, resulting in poor performances (see Sect. 3.1).

Furthermore, recent works by Wang et al. [33] and Doersh et al. [6] showed that temporal information
in videos and spatial context information in images can be utilized as a convenient supervisory
signal for learning feature representation with CNNs. However, the computational cost of the
training algorithm is enormous since the approach in [6] needs to tackle all possible pair-wise image
relationships requiring training set that scales quadratically with the number of samples. On the
contrary, our approach leverages the relationship information between compact cliques, defining
a multi-class classification problem. As each training batch contains mutually distinct cliques the
computational cost of the training algorithm is greatly decreased.

2 Approach

We will now discuss how we can employ a CNN for learning similarities between all pairs of a large
number of exemplars. Exemplar learning in CNNs has been a relatively unexplored approach for
multiple reasons. First and foremost, deep learning requires large amounts of training data, thus
conflicting with having only a single positive exemplar in a setup that we now abbreviate as 1-sample
CNN. Such a 1-sample CNN faces several issues. (i) The within-class variance of an individual
exemplar cannot be modeled. (ii) The ratio of an exemplar versus the rest of negative samples is
highly imbalanced, so that the softmax loss over SGD batches overfits against the negatives. (iii) An
SGD batch for training a CNN on multiple exemplars can contain arbitrarily similar samples with
different label (the different exemplars may be similar or dissimilar), resulting in label inconsistencies.
The proposed method overcomes these issues as follows. In Sect. 2.2 we discuss why simply merging
an exemplar with its nearest neighbors and data augmentation (similar in spirit to the Clustered
Exemplar-SVM [30]) is not sufficient to address (i). Sect. 3.1 compares this NN-CNN approach
against other methods. Sect. 2.3 deals with (ii) and (iii) by generating batches of cliques that maximize
the intra-clique similarity while minimizing inter-clique similarity.

To show the effectiveness of the proposed method we give empirical proof by training CNNs in both
1-sample CNN and NN-CNN manners. Fig. 2(a) shows the average ROC curve for posture retrieval
in the Olympic Sports dataset [23] (refer to Sec. 3.1 for further details) for 1-sample CNN, NN-CNN
and the proposed method, which clearly outperforms both exemplar based strategies. In addition,
Fig. 2(b-d) show an excerpt of the similarity matrix learned for each method. It becomes evident
that the proposed approach captures more detailed similarity structures, e.g., the diagonal structures
correspond to repetitions of the same gait cycle within a long jump.

2.1 Initialization

Since deep learning benefits from large amounts of data and requires more than a single exemplar
to avoid biased gradients, we now reframe exemplar-based learning of similarities so that it can
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Query Ours Alexnet [20] HOG-LDA [17]

Figure 3: Averaging of the 50 nearest neighbours for a given query frame using similarities obtained
by our approach, Alexnet[20] and HOG-LDA [17].

be handled by a CNN. Given a single exemplar di we thus strive for related samples to enable a
CNN training that then further improves the similarities between samples. To obtain this initial
set of few, mutually similar samples for an exemplar, we now briefly discuss the reliability of
standard feature distances such as whitening HOG features using LDA [17]. HOG-LDA is a
computationally effective foundation for estimating similarities sij between large numbers of samples,
sij = s(di,dj) = φ(di)

>φ(dj). Here φ(di) is the initial HOG-LDA representation of the exemplar
and S is the resulting kernel.

Most of these initial similarities are unreliable (cf. Fig. 5(b)) and, thus, the majority of samples
cannot be properly ranked w.r.t. their similarity to an exemplar di. However, highly similar samples
and those that are far away can be reliably identified as they stand out from the similarity distribution.
Subsequently we utilize these few reliable relationships to build groups of compact cliques.

2.2 Compact Cliques

Simply assigning the same label to all the nearest and another label to all the furthest neighbors of
an exemplar is inappropriate. The samples in these groups may be close to di (or distant for the
negative group) but not to each other due to lacking transitivity. Moreover, mere augmentation of
the exemplar with synthetic data does not add transitivity relations to other samples. Therefore, to
learn within-class similarities we need to restrict the model to compact cliques of samples so that all
samples in a clique are also mutually close to another and deserve the same label.

To build candidate cliques we apply complete-linkage clustering [5] starting at each di to merge
the sample with its local neighborhood, so that all merged samples are mutually similar. Thus,
cliques are compact, differ in size, and may be mutually overlapping. To reduce redundancy, highly
overlapping cliques are subsequently merged by clustering cliques using farthest-neighbor clustering.
This agglomerative grouping is terminated if intra-clique similarity of a cluster is less than half that
of its constituents. Let K be the resulting number of clustered cliques and N the number of samples
di. Then C ∈ {0, 1}K×N is the resulting assignment matrix of samples to cliques.

2.3 Selecting Batches of Mutually Consistent Cliques

We now have a set of compact cliques that comprise all training data. Thus, one may consider to train
a CNN to assign all samples of a clique with the same label. However, since only the highest/lowest
similarities are reliable, samples in different cliques are not necessarily dissimilar. Forcing them into
different classes can consequently entail incorrect similarities. Therefore, we now seek batches of
mutually distant cliques, so that all samples in a batch can be labeled consistently because they are
either similar (same compact clique) or dissimilar (different, distant clique). Samples with unreliable
similarity then end up in different batches and we train a CNN successively on these batches.

We now formulate an optimization problem that produces a set of consistent batches of cliques. Let
X ∈ {0, 1}B×K be an indicator matrix that assigns K cliques to B batches (the rows xb of X are the
cliques in batch b) and S′ ∈ RK×K be the similarity between cliques. We enforce cliques in the same
batch to be dissimilar by minimizing tr (XS′X>), which is regularized for the diagonal elements of
the matrix S′ selected for each batch (see Eq. (1)). Moreover, each batch should maximize sample
coverage, i.e., the number of distinct samples in all cliques of a batch ‖xbC‖pp should be maximal.
Finally, the number of distinct points covered by all batches, ‖1XC‖pp, should be maximal, so that
the different (potentially overlapping) batches together comprise as much samples as possible. We
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Figure 4: Visual example of a resulting batch of cliques for long jump category of Olympic Sports
dataset. Each clique contains at least 20 samples and is represented as their average.

select p = 1/16 so that our penalty function roughly approximate the non-linear step function. The
objective of the optimization problem then becomes

min
X∈{0,1}B×K

tr (XS′X>)− tr (Xdiag (S′)X>)− λ1
B∑

b=1

‖xbC‖pp−λ2‖1XC‖pp (1)

s.t. X1>K = r1>B (2)

where r is the desired number of cliques in one batch for CNN training. The number of batches, B,
can be set arbitrarily high to allow for as many rounds of SGD training as desired. If it is too low,
this can be easily spotted as only limited coverage of training data can be achieved in the last term
of Eq. (1). Since X is discrete indicator matrix, the optimization problem (1) is not easier than the
Quadratic Assignment Problem [4] which is known to be NP -hard [29]. To overcome this issue we
relax the binary constraints and force instead the continuous solution to the boundaries of the feasible
range by maximizing the additional term λ3‖X− 0.5‖2F using the Frobenius norm.

We condition S′ to be positive semi-definite by thresholding its eigenvectors and projecting onto the
resulting base. Since p < 1, the objective function in Eq. (2) can be redefined as a difference of
convex functions u(X)− v(X), where

u(X) = tr (XS′X>)− λ1
B∑

b=1

‖xbC‖pp − λ2‖1XC‖pp (3)

v(X) = tr(Xdiag (S′)X>) + λ3‖X− 0.5‖2F (4)

which can be solved using the CCCP algorithm [35], where in each iteration the following convex
optimization problem is solved,

argmin
X∈[0,1]B×K

u(X)− vec (X)
>
vec (∇v(Xt)), (5)

s.t. X1>K = r1>B (6)

where ∇v(Xt) = 2X � (1 diag (S′)) + 2X − 1 and � denotes the Hadamard product. We solve
this constrained optimization problem by means of the interior-point method [3]. The complexity
of each CCCP iteration is dominated by the first term of Eq. (3) since it is a sum of B quadratic
programs. The complexity of solving Eq. (3) is then O(BK3), which is insignificant compared to
CNN training. Fig. 4 shows a visual example of a selected batch of cliques.

2.4 CNN Training

We successively train a CNN on the different batches xb obtained using Eq. (1). In each batch,
classifying samples according to the clique they are in then serves as a pretext task for learning
sample similarities. One of the key properties of CNNs is the training using SGD and backpropagation
[21]. The backpropagated gradient is estimated only over a subset (batch) of training samples, so it
depends only on the subset of cliques in xb. Following this observation, the clique categorization
problem is effectively decoupled into a set of smaller sub-tasks—the individual batches of cliques.
During training, we randomly pick a batch b in each iteration and compute the stochastic gradient,

5



(a)
Frame ranking

0 1000 2000 3000 4000 5000 6000 7000

Si
m

ila
rit

y 
sc

or
e

20

40

60

80

100

120

140

160

180

200
Query exemplar Frames sorted by exemplar similarity score 

(b)

Figure 5: (a) Cumulative distribu-
tion of the spectrum of the sim-
ilarity matrices obtained by our
method and the HOG-LDA ini-
tialization. (b) Sorted similari-
ties with respect to one exemplar,
where only similarities at the ends
of the distribution can be trusted.

using the softmax loss L(W),

L(W) ≈ 1

M

∑
j∈xb

fW(dj) + λr(W) (7)

Vt+1 = µVt − α∇L(Wt), Wt+1 = Wt +Vt+1 , (8)

where M is the SGD batch size, f is the loss on sample dj , r is a regularizer with weight λ,
Wt denotes the CNN weights at iteration t, and Vt denotes the weight update of the previous
iteration. Parameters α and µ denote the learning rate and momentum, respectively. We then compute
similarities between exemplars by simply measuring correlation on the learned feature representation
extracted from the CNN (see Sect. 3.1 for details).

2.5 Similarity Imputation

By alternating between the different batches, which contain cliques with mutually inconsistent
similarities, the CNN learns a single representation for samples from all batches. In effect, this
consolidates similarities between cliques in different batches. It generalizes from a subset of initial
cliques to new, previously unreliable relations between samples in different batches by utilizing
transitivity relationships implied by the cliques.

After a training round over all batches we impute the similarities using the representation learned
by the CNN. The resulting similarities are more reliable and enable the grouping algorithm from
Sect. 2.2 to find larger cliques of mutually related samples. As there are fewer unreliable similarities,
more samples can be comprised in a batch and overall less batches already cover the same fraction of
data as before. Consequently, we alternately train the CNN and recompute cliques and batches using
the similarities inferred in the previous iteration of CNN training. This alternating imputation of
similarities and update of the classifier follows the idea of multiple-instance learning and has shown
to converge quickly in less than four iterations.

To evaluate the improvement of the similarities Fig. 5 analyzes the eigenvalue spectrum of S on
the Olympic Sports dataset, see Sect. 3.1. The plot shows the normalized cumulative sum of the
eigenvalues as the function of the number of eigenvectors. Compared to the initialization, transitivity
relations are learned and the approach can generalize from an exemplar to more related samples.
Therefore, the similarity matrix becomes more structured (cf. Fig. 2) and random noisy relations
disappear. As a consequence it can be represented using very few basis vectors. In a further
experiment we evaluate the number of reliable similarities and dissimilarities within and between
cliques per batch. Recall that samples can only be part of the same batch, if their similarity is
reliable. So the goal of similarity learning is to remove transitivity conflicts and reconcile relations
between samples to yield larger batches. We now observe that after the iterative update of similarities,
the average number of similarities and dissimilarities in a batch has increased by a factor of 2.34
compared to the batches at initialization.

3 Experimental Evaluation

We provide a quantitative and qualitative analysis of our exemplar-based approach for unsupervised
similarity learning. For evaluation, three different settings are considered: posture analysis on
Olympic Sports [23], pose estimation on Leeds Sports [19], and object classification on PASCAL
VOC 2007 [12].
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HOG-LDA [17] Ex-SVM [22] Ex-CNN [8] Alexnet [20] 1-s CNN NN-CNN Doersch et. al [6] CliqueCNN
0.58 0.67 0.56 0.65 0.62 0.65 0.58 0.79

Table 1: Avg. AUC for each method on Olympic Sports dataset.

3.1 Olympic Sports Dataset: Posture Analysis

The Olympic Sports dataset [23] is a video compilation of different sports competitions. To evaluate
fine-scale pose similarity, for each sports category we had independent annotators manually label
20 positive (similar) and negative (dissimilar) samples for around 1200 exemplars. Note that these
annotations are solely used for testing, since we follow an unsupervised approach.

We compare the proposed method with the Exemplar-CNN [8], the two-stream approach of Doersch
et. al [6], 1-sample CNN and NN-CNN models (in a very similar spirit to [30]), Alexnet [20],
Exemplar-SVMs [22], and HOG-LDA [17]. Due to its performance in object and person detection,
we use the approach of [13] to compute person bounding boxes. (i) The evaluation should investigate
the benefit of the unsupervised gathering of batches of cliques for deep learning of exemplars using
standard CNN architectures. Therefore we incarnate our approach by adopting the widely used model
of Krizhevsky et al. [20]. Batches for training the network are obtained by solving the optimization
problem in Eq. (1) with B = 100, K = 100, and r = 20 and fine-tuning the model for 105 iterations.
Thereafter we compute similarities using features extracted from layer fc7 in the caffe implementation
of [20]. (ii) Exemplar-CNN is trained using the best performing parameters reported in [8] and the
64c5-128c5-256c5-512f architecture. Then we use the output of fc4 and compute 4-quadrant max
pooling. (iii) Exemplar-SVM was trained on the exemplar frames using the HOG descriptor. The
samples for hard negative mining come from all categories except the one that an exemplar is from.
We performed cross-validation to find an optimal number of negative mining rounds (less than three).
The class weights of the linear SVM were set as C1 = 0.5 and C2 = 0.01. (iv) LDA whitened HOG
was computed as specified in [17]. (v) The 1-sample CNN was trained by defining a separate class for
each exemplar sample plus a negative category containing all other samples. (vi) In a similar fashion,
the NN-CNN was trained using the exemplar plus 10 nearest neighbours obtained using the whitened
HOG similarities. As implementation for both CNNs we again used the model of [20] fine-tuned
for 105 iterations. Each image in the training set is augmented with 10 transformed versions by
performing random translation, scaling, rotation and color transformation, to improve invariance with
respect to these.

Tab. 1 reports the average AuC for each method over all categories of the Olympic Sports dataset.
Our approach obtains a performance improvement of at least 10% w.r.t. the other methods. In
particular, the experiments show that the 1-sample CNN fails to model the positive distribution,
due to the high imbalance between positives and negatives and the resulting biased gradient. In
comparison, additional nearest neighbours to the exemplar (NN-CNN) yield a better model of within-
class variability of the exemplar leading to a 3% performance increase over the 1-sample CNN.
However NN-CNN also sees a large set of negatives, which are partially similar and dissimilar. Due
to this unstructuredness of the negative set, the approach fails to thoroughly capture the fine-grained
similarity structure over the negative samples. To circumvent this issue we compute sets of mutually
distant compact cliques resulting in a relative performance increase of 12% over NN-CNN.

Furthermore, Fig. 2 presents the similarity structures, which the different approaches extract when
analyzing human postures. Fig. 3 further highlights the similarities and the relations between
neighbors. For each method the top 50 nearest neighbours for a randomly chosen exemplar frame in
the Olympic Sports dataset are blended. We can see how the neighbors obtained by our approach
depict a sharper average posture, since they result from compact cliques of mutually similar samples.
Therefore they retain more details and are more similar to the original than in case of the other
methods.

3.2 Leeds Sports Dataset: Pose Estimation

The Leeds Sports Dataset [19] is the most widely used benchmark for pose estimation. For training
we employ 1000 images from the dataset combined with 4000 images from the extended version of
this dataset, where each image is annotated with 14 joint locations. We use the visual similarities
learned by our approach to find frames similar in posture to a query frame. Since our training is
unsupervised, joint labels are not available. At test time we therefore estimate the pose of a query
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Method Torso Upper legs Lower legs Upper arms Lower arms Head Total
CliqueCNN 80.1 50.1 45.7 27.2 12.6 45.5 43.5

HOG-LDA[17] 73.7 41.8 39.2 23.2 10.3 42.2 38.4
Alexnet[20] 76.9 47.8 41.8 26.7 11.2 42.4 41.1

Ground Truth 93.7 78.8 74.9 58.7 36.4 72.4 69.2
Pose Machines [25] 93.1 83.6 76.8 68.1 42.2 85.4 72.0

Table 2: PCP measure for each method on Leeds Sports dataset.

(a) (b) (c) (d)

Figure 6: Pose prediction results. (a) and (c) are test images with the superimposed ground truth
skeleton depicted in red and the predicted skeleton in green. (b) and (d) are corresponding nearest
neighbours, which were used to transfer pose.

person by identifying the nearest neighbor from the training set. To compare against the supervised
methods, the pose of the nearest neighbor is then compared against ground-truth.

Now we evaluate our visual similarity learning and the resulting identification of nearest postures.
For comparison, similar postures are also retrieved using HOG-LDA [17] and Alexnet [20]. In
addition, we also report an upper bound on the performance that can be achieved by the nearest
neighbor using ground-truth similarities. Therefore, the nearest training pose for a query is identified
by minimizing the average distance between their ground-truth pose annotation. This is the best one
can do by finding the most similar frame, when not provided with a supervised parametric model (the
performance gap to 100% shows the difference between training and test poses). For completeness,
we compare with a fully supervised state-of-the-art approach for pose estimation [25]. We use the
same experimental settings described in Sect. 3.1. Tab. 2 reports the Percentage of Correct Parts
(PCP) for the different methods. The prediction for a part is considered correct when its endpoints
are within 50% part length of the corresponding ground truth endpoints. Our approach significantly
improves the visual similarities learned using Alexnet and HOG-LDA. It is note-worthy that even
though our approach for estimating the pose is fully unsupervised it attains a competitive performance
when compared to the upper-bound of supervised ground truth similarities.

In addition, Fig. 6 presents success (a) and failure (c) cases of our method. In Fig.6(a) we can see
that the pose is correctly transferred from the nearest neighbor (b) from the training set, resulting in a
PCP score of 0.6 for that particular image. Moreover, Fig.6(c), (d) show that the representation learnt
by our method is invariant to front-back flips (matching a person facing away from the camera to one
facing the camera). Since our approach learns pose similarity in an unsupervised manner, it becomes
invariant to changes in appearance as long as the shape is similar, thus explaining this confusion.
Adding additional training data or directly incorporating face detection-based features could resolve
this.

3.3 PASCAL VOC 2007: Object Classification

The previous sections have analyzed the learning of pose similarities. Now we evaluate the learning
of similarities over object categories. Therefore, we classify object bounding boxes of the PASCAL
VOC 2007 dataset [12]. To initialize our model we now use the visual similarities of Wang et al. [33]
without applying any fine tuning on PASCAL and also compare against this approach. Thus, neither
ImageNet nor Pascal VOC labels are utilized. For comparison we evaluate against HOG-LDA [17],
[33], and R-CNN [16]. For our method and HOG-LDA we use the same experimental settings as
described in Sect. 3.1, initializing our method and network with the similarities obtained by [33].
For all methods, the k nearest neighbors are computed using similarities (Pearson correlation) based
on fc6. In Tab. 3 we show the classification accuracies for all approaches for k = 5. Our approach
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improves upon the initial similarities of the unsupervised approach of [33] to yield a performance
gain of 3% without requiring any supervision information or fine-tuning on PASCAL.

HOG-LDA Wang et. al [33] Wang et. al [33] + CliqueCNN RCNN
0.1180 0.4501 0.4812 0.6825

Table 3: Classification results for PASCAL VOC 2007

4 Conclusion

We have proposed an approach for unsupervised learning of similarities between large numbers
of exemplars using CNNs. CNN training is made applicable in this context by addressing crucial
problems resulting from the single positive exemplar setup, the imbalance between exemplar and
negatives, and inconsistent labels within SGD batches. Optimization of a single cost function yields
SGD batches of compact, mutually dissimilar cliques of samples. Learning exemplar similarities is
then posed as a categorization task on individual batches. In the experimental evaluation the approach
has shown competitive performance compared to the state-of-the-art, providing significantly finer
similarity structure that is particularly crucial for detailed posture analysis.
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Appendix

A ROCs for Olympic Sports

In this annex we show ROC curves for each individual category of Olympic Sports in Fig. 7,
demonstrating that the improvements obtained by our approach are consistent over all classes. In
particular, the experiments show that the 1-sample CNN fails to model the positive distribution,
due to the high imbalance between positives and negatives and the resulting biased gradient. In
comparison, additional nearest neighbours to the exemplar (NN-CNN) yield a better model of within-
class variability of the exemplar leading to a 3% performance increase over the 1-sample CNN.
However NN-CNN also sees a large set of negatives, which are partially similar and dissimilar. Due
to this unstructuredness of the negative set, the approach fails to thoroughly capture the fine-grained
similarity structure over the negative samples. To circumvent this issue, CliqueCNN computes sets of
mutually distant compact cliques, resulting in a relative performance increase of 12% over NN-CNN.

B Qualitative Results

In this section we present qualitative retrieval results for Olympic Sports in Fig. 8, Leeds Sports in
Fig. 9 and VOC2007 datasets in Fig. 10.
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Figure 7: ROC curves for Olympic Sports dataset where AUC for each method is reported between
parenthesis on the legend of each figure. (a) Basketball layup. (b) Bowling. (c) Clean and jerk. (d)
Discus throw. (e) Diving platform 10m. (f) Diving springboard 3m. (g) Hammer throw. (h) High
jump. (i) Javelin throw. (j) Long jump. (k) Pole vault. (l) Shot put. (m) Snatch. (n) Tennis serve. (o)
Triple jump. (p) Vault.
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Query NNs

Figure 8: Nearest neighbours retrieved by CliqueCNN for representative query images of the Olympic
Sports dataset.
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Query NNs

Figure 9: Nearest neighbours retrieved by CliqueCNN for representative query images of the Leeds
Sports dataset.
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Query NNs

Figure 10: Nearest neighbours retrieved by CliqueCNN for representative query images of the
VOC2007 dataset.
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