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Abstract

We address the problem of depth estimation from light-
field images. Our main contribution is a new way to handle
occlusions which improves general accuracy and quality
of object borders. In contrast to all prior work we work
with a model which directly incorporates both depth and
occlusion, using a local optimization scheme based on the
PatchMatch algorithm. The key benefit of this joint approach
is that we utilize all available data, and not erroneously
discard valuable information in pre-processing steps. We
see the benefit of our approach not only at improved object
boundaries, but also at smooth surface reconstruction, where
we outperform even methods which focus on good surface
regularization. We have evaluated our method on a public
light-field dataset, where we achieve state-of-the-art results
in nine out of twelve error metrics, with a close tie for the
remaining three.

1. Introduction
Depth estimation from multiple images is a central task

in computer vision, with a long-standing history. Depending
on the application area, different types of depth sensors are
utilized, ranging from stereo cameras, over depth cameras, to
light field cameras. If depth accuracy is the most important
factor, compared to e.g. financial budget or portability, then
light field cameras are the best choice. This is true for various
application scenarios, such as special effects for movies.

Light-field imaging allows for highly accurate depth es-
timation, by sampling a scene from many viewpoints. The
oversampling increases depth accuracy and the large number
of viewpoints reduce the chance of encountering a sample
which is occluded in all other views. As for related tasks,
such as stereo and optical flow, proper occlusion handling
is essential for obtaining high-quality depth reconstructions.
An inaccurate occlusion model will immediately reduce the
reconstruction quality, since foreground and background
samples are confused within the data-term around object
boundaries. This is a well-known problem and virtually all
state-of-the-art methods for light-field depth estimation im-

(a) Center view (b) Ground truth disparity

(c) OURS (d) SPO-MO, Sheng et al. [8]

Figure 1: Improved reconstruction through our inline oc-
clusion handling approach, in comparison with Sheng et al.
[8, SPO-MO]. Note the considerably improved reconstruc-
tion of the partially occluded content within the box and on
the right side of the box. The improvement can also be mea-
sured quantitatively by the percentage of bad pixels (error
> 0.07 px), here 10.8 for ours and 15.5 for Sheng et al.

plement some form of occlusion handling. However, they
differ in the way how they perform this. Proper occlusion
handling is the main topic of this work.

One may think of three different paradigms to handle
occlusion, each with a different level of complexity. At
one end of the spectrum there would be approaches which
formulate an elaborate model for jointly estimating depth
and occlusions, ideally for all views jointly. This explicit
joint optimization has been formulated by Kolmogorov and
Zabih [5], however their approach is prohibitively slow with
existing solvers, even when restricting the problem to stereo
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and single pixel accuracy [10]. Hence, we are not aware of
any practical realization of such an approach for light-field
imaging. At the other end of the spectrum, there are all
the existing approaches to light-field depth estimation. In a
nutshell, they employ a pre-processing step to filter out all
potentially occluded pixels in each view. The way to achieve
this differs, however. After this pre-processing step one (or
sometimes multiple) cost volume(s) are derived (explicitly
or implicitly) from the image data. The cost volume(s) are
then used to derive the depth for e.g. the center view of
the camera. The hope is that the cost volume is free of
the influence of occlusion. Obviously, such a two stage
procedure is sub-optimal for various reasons. One major
problem is that wrongly discarded non-occluded pixels are
lost for the remaining computation steps.

The aim of this work is to find a way to handle occlusions
in a more integrated fashion than existing approaches, and
in this way to make the most use of the available data. At
the same time, we obviously need a computationally feasible
procedure which estimates depth in the presence of a model
which contains the complex interactions of occlusion. To
achieve this we borrow from PatchMatch [1], which can
optimize Markov Random Field models where spatial terms
of the objective function do not need to be pre-computed.
In our case these spatial terms involve the traditional data-
term, but subject to the occlusion information of neighboring
pixels. In effect, we continuously update the occlusion infor-
mation during the processing, which means that it is always
consistent with the estimated depth, and by virtue of this
synchronization the occlusion information is implicitly im-
proved during the processing. In PatchMatch the local errors
directly sum up to a global energy which is implicitly min-
imized, as there are no local interactions. However, while
we also perform only local evaluations and updates, because
of the interaction between depth model and occlusion, these
local updates do not give any guarantees with respect to the
global error. By using PatchMatch we are able to achieve our
goal of efficiently estimating a depth model where occlusion
information does not have to be pre-computed. By doing so,
we observe a substantial improvement in reconstruction qual-
ity, both qualitatively and quantitatively. Interestingly, our
improvements are not only located at object boundaries, but
also the quality of interior surface reconstruction improves.
This stems from the fact that we can make better use of the
available data than other methods, even those methods with
a strong focus on regularization.

In the following we summarize our main contributions:

• We present a new way to perform occlusion handling
for light-field depth estimation, by directly integrating
occlusions into the depth model. Compared to all prior
methods, this maximizes the use of the available data.

• Despite the complex occlusion model a PatchMatch [1]

based scheme based on local updates is able give good
estimates on this model, and in competitive processing
time.

• Although the method does not guarantee globally op-
timal solutions, we achieve state-of-the-art results in
nine out of twelve error metrics, for a publicly available
benchmark, with a close tie for the remaining three.

In addition, our approach can easily be extended with
additional depth cues or model constraints. This is demon-
strated by combining our approach with a normals-from-
specular approach [2], resulting in accurate depth recon-
structions for a glossy, untextured object.

2. Related Work
In the following we briefly introduce existing approaches,

focusing our description on the occlusion handling.
Where the methods are also included in the quantitative

evaluation, the abbreviation is noted in square brackets. Ab-
breviations are identical to the ones submitted by the respec-
tive authors to the 4D Lightfield Benchmark [3, 4] and all
method results, including ours, can also be compared on the
benchmark website [3].

Neri et al. [7, RM3DE] perform multi-resolution block
matching, adapting the window size with some local gradient
measure, and performing matching independently for differ-
ent viewpoint directions from the center view. Occlusions
are handled by using only the best match from the directional
EPIs for the final median filter based post-processing.

Lin et al. [6] build a focal stack from the light-field data,
and exploit the symmetry around the true depth in the stack
to provide depth estimates, which are then optimized in a
cost volume. A heuristic is employed to generate a separate
occlusion map which is used to switch to an alternate cost
for occluded pixels prior to the cost volume optimization.

Strecke et al. [9, OFSY 330/DNR] extend on this idea
by improving the occlusion handling using four partial focal
stacks representing the four viewpoint directions of a cross
hair subset of the light field, and using only the minimal cost
from the horizontal and vertical direction, which should be
less affected by occlusions. The method is notable for the
explicit optimization of surface normals in addition to depth,
which improves the surface quality of the reconstruction.

Williem and Park [14] introduce two independent cost
functions. Angular entropy, which is a correspondence cost
based on the entropy of photo-consistency, and an adaptive
defocus cost, both of which show some robustness against
occlusion. Reconstruction is then based on cost-volume
filtering with graph cut. In a later work they improve this
method, [15, CAE] modifying both cost functions to further
improve the robustness against occlusion.

The Spinning Parallelogram Operator by Zhang et al.
[16, SPO] scans the depth volume with a histogram com-



parison operation, which compares the areas left and right
of the EPI line, defined by the respective disparity. This
histogram comparison is relatively robust to at least single
occlusions, hence no extra occlusion handling is performed
in the guided filter based cost volume processing of the local
cost estimates. Sheng et al. [8, SPO-MO] expand on this
approach and add explicit occlusion handling by regarding
multi-orientation EPIs and selecting a single unoccluded
one for the calculation of the cost volume, according to an
occlusion heuristic.

All of these methods make use of some form of cost
volume optimization [6, 9, 14, 15, 16, 8], if not using a sim-
ple filter based approach [7]. Occlusion handling is always
separated from the cost volume optimization and comes in
several variants: By using cost functions robust against oc-
clusions [14, 15, 16], by using the minimal cost from several
EPI directions [7, 9] or by switching between separate cost
functions for occluded/unoccluded samples [6].

The works focusing on cost functions robust to occlusions
show an interesting pattern. While the original publications
only use the proposed robust cost functions [14, 16]. Later
works mainly focus on the occlusion handling either by
further improving robustness against occlusion or by adding
explicit occlusion handling [9, 8]. It seems that even though
cost functions exist which show some robustness against
occlusion, these cost functions do not return optimal results.

On the other hand, methods that handle occlusions by
selecting the minimal cost from several, possibly partial
EPIs, discard a lot of samples from the input light field. This
reduces the number of samples over which the data cost can
be calculated and hence reduces accuracy.

Common to all methods is the fact that the used occlu-
sion information is independent of the final optimized depth
estimate. The additional scene knowledge available after
optimizing the depth model is not reflected by the used
cost function, which is limited to the initial occlusion esti-
mates. Our proposed method addresses this point by using
the current model to calculate the occlusions inline, during
the processing, and therefore improves the utilization of the
available light-field data.

Note that there are other methods which optimize the
occlusions, like the works by Wanner and Goldlücke [13, 12]
where they filter local depth estimates with a model enforcing
global consistency with respect to occlusion. However, the
accuracy of this approach is limited by the fact that only local
estimates are used as priors in a regularization approach, and
no updates on the cost are performed for updates in the
occlusion model.

3. Method
Given the fact that the depth model which we try to recon-

struct implicitly contains the occlusion information required
for proper occlusion handling, we formulate a cost function
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Figure 2: Epipolar Plane Images (EPIs) are extracted
from a linear 3D subset of the 4D light field, by extracting
all rows (for a horizontal subset) and stacking them together,
shown at the bottom. For the vertical stack the same is done
with columns. Because the apparent motion of scene points
between the different viewpoints depends on the depth of
the point within the scene, the orientation of features in the
EPI encodes the depth of the respective points. Note that
the EPI shown here is pre-shifted so a disparity of 0 is not
at infinity but rather within the scene, hence disparities may
also be negative.

in a way that makes direct use of the occlusion information
encoded within the model. This makes occlusion a first class
citizen of the model.

This cost could in principle be optimized with some
global optimization method. However, as the resultant opti-
mization problem is highly ill-posed, this approach would
probably be extremely slow (compare [5, 10]). Therefore we
base our approach on PatchMatch [1] to perform only local
optimization, and introduce extra constraints into the cost
term to avert suboptimal solutions arising from this fast but
globally suboptimal optimization.

Apart from the implications of the occlusion handling, our
approach is formulated as a standard minimization problem
with a cost based on a regularization term and a data term,
where both are influenced by the occlusion handling.

3.1. Model and Data

The model we are using is the disparity map of the central
view. To simplify occlusion handling we confine the data to



the subset of viewpoints shifted only horizontally or only ver-
tically from the central viewpoint (cross-hair configuration).
The volume of the horizontal 3D subset can be sliced row-
wise to obtain a set of epipolar plane images (EPIs, compare
fig. 2), which represent the full information content of the
subset. The central row of an EPI corresponds to a row of
the center view, which directly maps to the same row in the
disparity map. The same applies to columns in the vertical
3D subset. A single sample from the disparity map corre-
sponds to a 2D line in the respective EPIs, where the slope of
the line represents the disparity and hence encodes the depth,
compare fig. 3. The cost function Ei(d) for a single sample
i of our model (a pixel of the center view disparity map
D), based on the data term ξi(d) and the regularization term
ζi(d) is formulated as the cost associated with a disparity d,
where the disparity mapD is held constant for the evaluation
of the sample:

Ei(d) = ρ · ζi(d) + ξi(d), (1)

where ρ is a regularization weight.

3.2. Occlusion Handling

Compared to the methods in section 2, we obtain occlu-
sion information from our depth model, and not via some
heuristic external to the optimization. This simplifies our
occlusion metric to a simple threshold θd. We consider a
disparity sample d in the disparity map to be potentially
occluded by any other sample di if di − d > θd.

The actual decision whether a sample is occluded or not
is performed during the evaluation of the cost terms, which
means that updates to the model performed during an itera-
tion of the optimization directly affect the costs of all future
evaluations, which speeds up the propagation of locally good
solutions, compare PatchMatch [1].

3.3. Data Term

Because we only consider either horizontal or vertical
camera movement, relative to the central view, only samples
from the same row (or column, respectively), can occlude
any given sample in an EPI, compare fig. 2 and fig. 3. In
the following we will always assume that we are looking
at horizontal EPIs, but all statements apply to vertical EPIs
via a corresponding 90◦ rotation of EPI, view and disparity
map.

To evaluate the data error for some disparity d at location
i in the disparity map, we sample along the corresponding
line Γd,i(s), see fig. 3, by evaluating Γd,i for all rows s of the
EPI. A sample Γd,i(s) = x corresponds to a pixel position
at the image coordinate (x, iy) of view s. While iy is an
integer, x is a fraction, hence the actual pixel value Cs(x, iy)
is derived by interpolation in the horizontal direction. To
actually calculate the data error we generate all intersections
between Γd,i and all other lines Γd,j of the EPI which fulfill

Γd,i
Di
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ΓDj3 ,j3
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Figure 3: Occlusion handling in an EPI: The lines Γ are
defined by the respective disparities Dj in the center view,
represented by a cross (×), while the EPI samples on Γd,i
are shown as star (S). From the intersections Φl (white dots),
the one closest to the center view is obtained with Γd,j3 ,
hence all samples behind this point minus a safety distance
if one pixel are disabled (grayed out).

the occlusion condition in section 3.2. Note that lines from
samples to the left of i can only intersect above the center
view, while samples to the right can intersect below. Given
these left/right intersections as Φl and Φr, respectively, the
occlusion term nocc(s,Φl,Φr) is set to zero or one.

The occlusion area is extended by one pixel from the inter-
section point, to avoid mixing of foreground and background
when deriving the actual color sample Cs(x, iy) from the
input view s via linear interpolation. Given the occlusion
terms the data error is simply the variance of all visible sam-
ples. We extend the previous definitions by the subscripts
h and v to denote the horizontal and vertical EPI variants
respectively (following terms with respect to a fixed sample
i and a fixed disparity d):

ξ′i(d) =

∑
s(µ − C(Γh, s))

2 · nocch(s,Φh,lΦh,r) +∑
t(µ− C(Γv, t))

2 · noccv(t,Φv,lΦv,r)∑
s nocch(s,Φh,lΦh,r)+∑
t noccv(t,Φv,lΦv,r)

,

(2)

where µ is the mean of all unoccluded samples for (i, d).
To avoid failures due to the local nature of our approach,

we also threshold the data term on the number of unoccluded
samples, and set the error to infinity if less than θo samples
are unoccluded, because otherwise, moving individual sam-
ples (incorrectly) towards the background can reduce the
variance in flat areas, by reducing the number of unoccluded
samples.

Even with this occlusion constraint there is a second case
where the local solution can substantially deviate from the
correct depth. This can be observed on purely horizontal or
vertical structures in the scene. For such structures the data
error is zero for one direction, hence, if e.g. for a vertical



structure, the vertical component of the data term is zero,
then if a large connected block of the vertical structure is
moved into the background, the remaining horizontal com-
ponent also becomes zero because we observe only a single
sample in that direction. We protect against this by checking,
for each candidate, whether the chosen disparity leads to a
single pixel wide background structure, as measured by θd
over a range of 10 pixels. If such a case is detected the error
is set to infinity.

3.4. Smoothness Term

For a disparity sample d at location i in the disparity map,
the smoothness error is defined by:

ζi(d) = (d− Ωi(d))2 (3)

Where Ω is a smoothing filter based on the bilateral filter.
This filter smooths the disparity map using a weighted mean,
with weights derived from the color and disparity difference
against a central sample. The filter uses hard thresholds θd
and θc to determine which samples are allowed to influence
the smoothing, which gives well defined borders without
disparity bleeding. Given the color values of the center view
as C, and the current disparity map as D, the smoothing
filter Ω is given by:

Ωi(d) =

∑
j λi,j(d) ·Dj∑
j λi,j(d)

, (4)

where j indexes a 7× 7 window around i.
The relative weight λi,j(d) of the disparity map sample

Dj is calculated depending on the color difference ∆i,j =
α|Ci − Cj | and the disparity difference δj(d) = β|d−Dj |
between the sample j and the central sample i, with α and
β as parameters which steer the relative weighting of color
and disparity differences. The weights are calculated as

λi,j(d) = max{εd,
√

∆2
i,j + ∆i,j · δj(d)}−1, (5)

if ∆i,j ≤ θd and δj ≤ θc, and

λi,j(d) = max{εc,
√

∆2
i,j + δ2

j (d)}−1, (6)

if ∆i,j

β > θd and δj ≤ θc. Otherwise λi,j(d) is set to zero.
The thresholds θd and θc set the maximum difference for
disparity based weighting (if ∆i,j

β ≤ θd and δj ≤ θc) or

color based weighting (if ∆i,j

β > θd and δj ≤ θc).
The ε are used to provide damping against zero differ-

ences, and εc also provides some adaption to noise in the
input images, using εc = εd + θe ·E′i(d0), where E′i is iden-
tical to Ei, aside from changing εc to εc = εd. Hence E′i(d0)
is the initial error at this iteration, using the initial disparity
d0. This increases the minimal blurring of the smoothing
filter, when no good candidates where found in the previous
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Figure 4: Switching behavior of the smoothness term.
The two grids represent the identical neighborhood around
a central disparity sample d, indicated by the brightness of
the cells. Depending on the value of a candidate di, the
weights, given as numbers within the cells, change accord-
ing to eqs. (5) and (6), which by design leads to a distribution
which generates a smoothing of those samples most similar
to the central candidate in both color and disparity.

iteration - which after a few iterations is mostly due to noise
in the input images.

The crucial part is the usage of the current disparity candi-
date d within the filter, which lets the smoothing filter adapt
to the value of the candidate. The current disparity at i from
the model, Di is not used during the evaluation. This means
that the smoothness term can switch, for example at an ob-
ject border, from averaging over the foreground to averaging
over the background, depending on the evaluated disparity
candidate, as shown in fig. 4.

The thresholds encourage the smoothing according to the
model (i.e. disparity map) by making the disparity difference
the dominating weight term for small disparity differences
(∆i,j

β ≤ θd). The color differences play a secondary role
and encourage smoothing along similar colors. At the same
time the hard thresholds mean that the weight is quickly set
to zero if the differences in color and/or disparity become
too large, ensuring that only those samples are taken into
account for which it is likely that they belong to the same
object, both from the color and the disparity similarities.

The simple smoothness term as described above limits the
estimation accuracy in two ways. Firstly, the method tends
to over-smooth at object edges when both sides of the object
are visible, because the edge of the object will be averaged
with the neighbors from both sides. Secondly, planes with
a steep inclination tend to show staircase artifacts, as the
thresholding in the filter encourages areas to be piecewise
planar.

We extend the filter to preserve normals and planes sepa-
rately. In the smoothing filter, consistent normals between
the central sample i and some other sample j are detected by
comparing the local gradients inD. If the gradient difference
is below θg, then Dj is corrected by this normal when it is
used in eq. (4).

For planar surfaces we add an metric which detects purely



planar surfaces, by taking four samples around the central
sample, located at the corners of a square with a size of
11× 11, and fitting a plane through these four corners. If the
residual from the fit is below θf and the distance between
the plane and disparity candidate are below θd, we evaluate
the plane at i and use this result instead of Ω.

Both of these metrics are applied with a damping factor,
where the correction with normal and plane is weighted with
the original smoothing filter with a weight of 0.5 to prevent
overshooting.

3.5. Local Optimization

Both the data term and the smoothness term are formu-
lated with a strong focus on correct occlusion handling with
hard thresholds in disparity and color differences. While this
encourages well defined borders in the model, it makes the
problem harder to optimize, owing both to the sudden onset
of the influence of samples, and to the complex interaction
between samples due to occlusion. Pre-calculating the error
terms for a number of discrete disparity labels and building
a cost volume is also not possible, as both terms deliber-
ately depend on the current state of the model. Therefore
we base our method on PatchMatch [1]. The method iterates
the disparity map and, at each sample, calculates the local
error Ei for the current disparity d0, as well as for several
disparity candidates. If any of the candidates has a lower
error over the previous solution, the model is immediately
updated, which allows propagation of locally good solution.

We use four predictors to provide the disparity candidates
which are evaluated with the local error term.

Propagation: Depending on the iteration number, the
solver iterates over the disparity map either left-to-right and
top-to-bottom, or the reverse. The disparities of all neigh-
bors (either direct or over the corner) which were already
processed in the current iteration are used as candidates for
evaluation. As the model is always directly updated when
a lower error is found, an improved estimate at one sample
will directly be used in the data and smoothness term of
the next sample, within the same iteration. Hence, as the
improved disparity at a sample is provided as a candidate to
the solver for the next sample, good solutions can quickly
spread over the whole disparity map.

Random improvement: At each iteration, candidates di
are generated by sampling u from a uniform distribution
between −1 and 1 as:

di = d0 + τ sign(u)u2 (7)

where τ is the parameter which steers the max range of the
refinement. The quadratic term ensures that smaller changes
are sampled with a much higher frequency than larger ones.

The following two predictors are only activated if the error
of the current model is above an activation threshold θa.

Random neighbor: For some scenes a feasible candidate
might be not directly adjacent but further away, e.g. when
a surface is partly occluded by some detailed foreground
object, like a smooth background behind the branches of
some plant. For this reason we also use distant neighbors,
by sampling uniformly within a range of ±15 px.

Random Guess: Finally we also sample randomly from
the valid disparity range.

3.6. Initialization

Both data and smoothness term require a model which is
at least approximately correct, as they rely on the model to
determine occlusion. As initialization we use a simple depth
estimation method, based on RANSAC line fits in the EPI.
The fitted line features are the zero crossings of the second
order derivative in the horizontal direction. This method
only detects foreground objects and produces a sparse depth
estimate consisting of object borders and strong features. To
retrieve an initialization of the disparity map, these sparse
estimates are projected into the disparity map and missing
samples are linearly interpolated from the sparse set. The
initialization is very fast, quite smooth, fills flat areas from
samples of the object borders and tends to produce fore-
ground biased estimates.

4. Experimental Results
We have tested our method on several light-field datasets,

including real and synthetic data. In the following we de-
scribe the results in more detail and demonstrate the im-
proved occlusion handling, see figs. 1, 5 and 7, but also the
excellent surface regularization, see figs. 5, 7 and 8, owing
in part to the improved utilization of data from the input
light field, as we discard less information due overzealous
occlusion handling, as well as to the improved detection of
object borders. More results of our method are available on
the website of the 4D Lightfield Benchmark [3]. All results
presented here use 20 iterations and, apart from fig. 5 use
the parameters shown table 1.

4.1. Qualitative Results

In fig. 5 we show our results on the truck scene from the
(new) Stanford Light Field Archive [11]. For comparison we
also show the result of Strecke et al. [9] (OFSY). While the
results leave room for improvement, the detail reconstruc-
tion shows the effectiveness of the occlusion handling. At
the same time the regularization is also improved, which is
otherwise a strength of OFSY (compare fig. 7). We have
also combined our method with a normals-from-specular



(a) center view (b) OURS (c) OFSY 330/DNR, Strecke et al. [9]

Figure 5: Disparity estimates on the truck dataset [11], which is challenging due to the large amount of noise, therefore (b)
was computed with a version of the dataset scaled down to half size in the spatial domain. Note that although our method uses
half size images, the reconstruction is much more detailed, see for example the rope at the top left, or the structure below the
driver cab. Smoothing is also improved, although some artifacts remain, like the rough ground before and behind the truck, or
the “fireflies” around some object edges. The hole at the back of the cargo area is wrong with both methods because there is a
specular reflection visible from several viewpoints.

(a) Center view of a specular
object

(b) Our approach with color
constancy

(c) Our approach combined
with normals-from-specular
from Gutsche et al. [2]

(d) Ground truth disparity

Figure 6: Disparity estimates when integrating normals-from-specular [2] within our optimization, tested on a synthetic
dataset, where we know the exact location of the light source. In (b) the assumption of color constancy does not allow reliable
depth estimates in the presence of specular reflections. In (c) specularity is exploited to obtain surface normals.

θd 0.05K θg 0.025K θf 0.01K
θc 3 θo 0.25V θa 0.01
α 0.15 β 20 εd 0.5
ρ 0.0375I τ 0.2K θe 400

Table 1: List of parameters used for all results but fig. 5,
where V is the total number of views, K the disparity range
of the scene and I the current iteration number.

method [2] to enable depth estimation in the presence of
glossy reflections, shown in fig. 6. For this we exploit our
local optimization approach by exchanging the data term
with the fit error of [2] in glossy regions. We still employ
the same smoothing term, just augmented with the normals
returned by the normals-from-specular solver. The result

still shows some artifacts, but also highlights the gains in
exploiting reflectance information from the light field for
depth reconstruction.

4.2. Quantitative Results

The quantitative evaluation is based on the public 4D
Lightfield Benchmark by Honauer et al. [3]. The bench-
mark does not report a single score, but instead calculates 12
different error metrics, which consider a range of different
failure cases, using well known global metrics like BadPix
and MSE, but also surface quality metrics, and more spe-
cific errors metrics, like fine thinning/fattening. For details
please see their paper [3] and the benchmark survey [4]. The
benchmark is performed by generating disparity maps for
12 scenes, 8 of which have publicly available ground truth
disparity, while for 4 scenes the ground truth is kept secret.
Algorithm results are uploaded to a web-service and all re-
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Figure 7: Mean errors over all twelve benchmark scenes,
evaluated with the twelve error metrics of the 4D Light-
field Benchmark [3] and visualized on a radar chart. The
legend gives the number of viewpoints and the (approxi-
mate) runtime. All metrics are expressed as an average error
over twelve datasets. Lower values are better, and located
closer to the center. As we can see our method (OBER-
cross+ANP) is located closest to the center on average, and
manages an improvement over the previous state of the art
on most metrics, without exposing a specific weakness. The
main challengers which surpass our method in some met-
ric (CAE and OFSY) manage so only by accepting subpar
performance on other metrics.

sults, including ours, are available on the benchmark website
[3] – our method is abbreviated OBER-cross+ANP.

We report our results in comparison to the state of the
art, as represented by the top five published methods, when
sorted by the average BadPix0 .07 score, as of 2017/11/11 .
The averaged errors over all 12 scenes are shown in fig. 7.
Note that our method takes the lead for 9 of the 12 error
metrics, and is close behind for the remaining 3.

This is even more remarkable if we consider that several
of the error metrics are often traded in against each other, as
is the case for bumpiness versus discontinuities and for fine
fattening versus fine thinning, which have a strong tendency
to revert the order of the methods between the respective
error metrics.
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Figure 8: Trade-off between smoothing and object bor-
der preservation, comparing the Discontinuities metric
with the Bumpiness Planes metric [3]. Results are averages
over all 12 benchmark scenes. Note how the good smooth-
ness score for OFSY reflects the focus on the regularization,
while the other methods are optimized towards correct ob-
ject borders. Our method leads both metrics, making the
trade-off obsolete.

Indeed by plotting the Discontinuities metric, which
gives the errors around depth discontinuities, and one of the
smoothness metrics, like Bumpiness Planes, we can directly
evaluate the trade-off between smoothing and preservation of
object boundaries, see fig. 8. As we can see all tested meth-
ods fall into one extreme, favoring either border handling of
smoothing, however our method manages not only to find
a favorable trade-off, but instead completely dominates the
other methods on both of these metrics.

5. Conclusion

In this work we have presented a new method of depth
estimation from light-field images. We inline the occlusion
handling into the depth estimation. This represents an im-
provement over previous methods, which separate occlusion
handling and optimization. In addition to the improved data
terms we show an efficient method for depth estimation with
this type of model, based on PatchMatch. The drawback is
that this does not give any guarantees with respect to the
global energy. Still, by integrating the occlusion handling
we demonstrate a performance increase over the state of the
art for object borders as well as for smooth surface recon-
struction at a very competitive runtime.
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