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Summary  
The effectiveness of database search algorithms such as Mascot, Sequest and ProteinPilot is limited 

by the quality of the input spectra: spurious peaks in MS/MS spectra can jeopardize the correct 

identification of peptides or reduce their score significantly. Consequently, efficient preprocessing of 

MS/MS spectra can increase the sensitivity of peptide identification at reduced file sizes and run time 

without compromising its specificity. We investigate the performance of 25 MS/MS preprocessing 

methods on various data sets and make software for improved preprocessing of mgf/dta-files freely 

available from http://hci.iwr.uni-heidelberg.de/mip/proteomics or 

http://www.childrenshospital.org/research/steenlab. 
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Mass spectrometry (MS)-based protein identification is one of the key elements for the 

understanding of biological systems. Currently applied protein identification methods compare 

experimental spectra to theoretical spectra created from sequence databases [1, 2]. Commonly used 

methods include various commercial implementations, in particular Mascot [3], (Sorcerer-) Sequest 

[4] and ProteinPilot [5]. 

Only relatively few publications have addressed the preprocessing of MS/MS spectra prior to their 

submission to a database search and three groups can be distinguished: i) spectral quality scoring, ii) 

precursor preprocessing and iii) MS/MS spectra preprocessing. 

i) Spectral quality scoring methods select high quality spectra for further processing, but do not 

change the selected spectra themselves [6]. Such spectral quality scoring is generally feature- or 

clustering based (e.g. [7, 8, 9, 10]). 

ii) Precursor preprocessing approaches focus on enhancing the MS1 information e. g. by identifying 

the precursor charge state [11, 12, 13, 14]. Gentzel et al. [11] also address the problems of 

centroiding, spectra joining and filtering as well as automatic calibration. Mascot Distiller, MS Cleaner 

[15] and DTASuperCharge [14] additionally offer the removal of multiply charged ions, deisotoping 

and background noise removal.  

iii) For the MS/MS spectra preprocessing, different problem-specific approaches have been 

developed to identify a subset of peaks in a given MS/MS spectrum that is worth submitting to 

further searches: Tailored filters for peaks were suggested for the OMSSA [16] and InSpect [17] 

packages, rudimentary preprocessing by intensity-based cut off thresholding for database searches is 

included in mzStar [18] and wiff2data [19]. Another approach is realized by MaxQuant [20] which 

selects the 6 most intensive peaks within 100 m/z intervals in its default setting besides identifying 

the charge state and correcting the monoisotopic masses of the precursors. 

MS/MS spectra normally show more ions than expected from the fragmentation processes [15], and 

thus do not have an optimal signal-to-noise ratio [6]. Preprocessing of MS/MS spectra themselves – 

with regard to the question which peaks are submitted to the search – can improve the signal-to-

noise ratio by removing peaks which most likely do not belong to the expected b- or y-fragment ion 

series. A removal of such peaks reduces the risk of false identification, possibly increases the score 

for correct identification and at the same time decreases run time and file sizes. Hence, peak 

elimination methods are an extreme case of peak intensity modification approaches [8] and can 

provide the benefit of increased identification quality at significantly reduced file sizes and run time. 

Many researchers recur to individually found heuristics such as submitting only a pre-specified 

number of the highest intensity peaks from the MS/MS spectrum to the database search (e. g. [21]) 

whereas other labs usually run searches without any preprocessing.  

This study describes the testing of various procedures for the MS/MS preprocessing and rigorous 

comparison of their performances with regard to the number of peptides identified on various 

datasets using Mascot, Sequest and ProteinPilot. This allows us to identify an optimized 

preprocessing procedure for each search engine. The goal of this study is to focus on the comparison 

of MS/MS preprocessing methods, but not to compare the performance of the search engines (see e. 

g. [22, 23] for such comparisons) or precursor preprocessing approaches. Since preprocessing 

methods result in different signal-to-noise characteristics and algorithms weight these characteristics 

in varying – and often unknown – ways, preprocessing can only be empirically and separately 
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optimized for each search algorithm. This study is directed towards the optimization of MS/MS 

preprocessing of low resolution data as they are generated by quadrupole or quadrupole ion trap 

instruments. The preprocessing of high resolution/high accuracy MS/MS data is significantly different 

as noise peaks can easily be determined based on accurate mass increments and charge state 

information.  Similarly, modification that give rise to characteristic fragmentation patterns such 

phosphopeptides and their distinctive neutral loss of phosphoric acid might benefit from a more 

problem-tailored preprocessing that can be derived from the proposed strategy. 

The unifying idea behind MS/MS preprocessing approaches is that in common collision-activated 

dissociation MS/MS spectra standard fragment ions like b- or y-fragment ions tend to have higher 

intensities than other fragment ions in their neighborhood or noise signals [16, 17]. Furthermore, 

within a certain window around a given high intensity peak, only a limited number of fragment ions 

can be present. This fact can be taken advantage of by disregarding further low intensity peaks. 

The MS/MS spectra preprocessing methods used in this study can be grouped into the following 

categories (also see Figure 1). 

‘Top X intensity’ approaches: The simplest MS/MS preprocessing method (e. g. [21]), ‘Top X 

intensity’, sorts all ions in a MS/MS scan by decreasing intensity and only keeps the first X ions. If 

there are less than X ions, all existing ions are selected (Figure 1a). 

‘Top X intensity in Y regions’ approaches: To alleviate the problem that high intensity peaks cluster 

in one part of the spectrum (e.g. around the precursor) dominate the preprocessing, we use a ‘Top X 

intensity in Y regions’ approach. There, the spectrum is first split into Y equal sized regions in the m/z 

domain (with a 2.5 m/z overlap) and for each of the resulting regions, a ‘Top X’ approach is applied. 

The resulting peak lists are merged and possible duplicates in the lists resulting from the overlaps are 

removed (Figure 1b). A parameterization of (X,Y) refers to ‘Top X intensities in Y regions’. 

‘Top X intensity in a window of ± Z’ approaches: These approaches [16, 17] sort all peaks by 

decreasing intensity. Starting with the highest intensity peak, a window of ± Z m/z to the left and 

right of that peak is computed. Among all peaks within this window, only the top X most intense 

peaks are retained for further analysis, whereas the peaks remaining within the window are excluded 

from further analysis.  This process is repeated until all peaks have either been selected or discarded 

(Figure 1c). The corresponding parameterization is given as (X,Z). Since the window is defined to the 

left and right of the peak, the resulting interval has twice the size of the window. InSpect [17] utilizes 

such an approach with a window of ± 25 m/z and a selection of the six most intensive peaks. 

Similarly, OMSSA [16] selects the one or two most intensive peaks within a window of ± 27 m/z (for a 

precursor of charge 2) or ± 14 m/z (for a precursor of charge 3). 

For all three approaches, sets of parameters X, (X,Y), (X,Z) were spread on a wide grid with values 

determined from literature [16, 17, 20, 21] and preliminary experiments on different datasets. We 

then sampled with a finer grid around maxima to pinpoint the exact position. 

Starting values for the parameterization were chosen to be 100, 150 and 200 for the ‘Top X’ 

approach, (50,3), (30,5), (25,6), (20,8) for  the ’Top X in Y regions’ approach and (4,40) , (4,50), (4,60), 

(6,30), (6,40), (6,50), (6,60), (8,40), (8,50), (8,60) for the ’Top X in window of ± Z’ approaches. We also 
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included a parameterization inspired by InSpect (6,25) and OMSSA (1,27 or 2,14 depending on the 

availability of precursor charge state information, but always denoted as Top 1 in window 27 in the 

following). For comparison of the additional effects of preprocessing, spectra without external 

preprocessing (‘no preprocessing’) were analyzed as well; in this case unadulterated .mgf or .dta files 

containing all peaks were submitted to the search engines and their internal filtering routines.  

 

DTASuperCharge v. 1.01, MaxQuant and Mascot Distiller were run in their respective default settings 

(for LTQ and LTQ-Orbitrap). All three approaches are based on both, precursor and MS/MS spectra 

preprocessing; the effects of these two steps cannot be easily separated. Thus, the results reported 

here for these two steps together can be regarded as an upper limit of their MS/MS spectra 

preprocessing performance alone. 

 

The data files used in this analysis were derived from samples analyzed in the Proteomics Center at 

Children's Hospital Boston. ‘Yeast’, ‘Mouse’ and ‘Human 1’ are unfractionated whole cell lysates 

derived from the respective organism. ‘Human 2’ corresponds to one fraction of a human body fluid 

proteome separated by SDS-PAGE into 17 fractions. The datasets contained 3521 (‘Yeast’), 8884 

(‘Mouse’), 8457 (‘Human 1’) and 7868 (‘Human 2’) spectra respectively. ‘Yeast’ and ‘Human 1’ were 

analyzed on an LTQ-Orbitrap (Thermo Scientific) equipped with a nanoflow HPLC system (Eksigent). 

For the analysis of ‘Mouse’ and ‘Human 2’ an LTQ equipped with a microscale capillary HPLC system 

was used (both Thermo Scientific). Data were acquired in data dependent acquisition mode with the 

6 most intensive signals being selected for fragmentation after each survey scan (more details are 

given in the supplementary material). 

The comparison for each search engine was carried out on the peptide level. Each preprocessing 

parameterization was searched against the respective combined forward-reverse database and the 

local false discovery rate (local FDR) was determined using the provided PSPEP-Software [24] (for 

ProteinPilot) or an in-house R implementation of PSPEP (for Mascot and Sequest), which is also freely 

available from http://hci.iwr.uni-heidelberg.de/mip/proteomics or 

http://www.childrenshospital.org/research/steenlab. For all analyses, a local FDR cut-off of 1% for 

peptides was applied. The results for a global FDR cut-off of 1‰, which result in a similarly restrictive 

number of identified peptides as a local FDR of 1%, are discussed in the supplementary materials. 

For the analysis, we define xij to be the number of local FDR controlled peptide hits of 

parameterization i on dataset j and n to be the overall number of datasets (in our case n=4). We used 

two measures to evaluate the results. The sum (S) of the number of the identified peptides is given 

by 

j

ijxS =i  

Large values indicate overall good performance. However, this measure is slightly biased towards 

methods which perform well on larger datasets with more identified peptides. 

Thus, we also used the mean proportion (MP) of the best result which is defined by taking the ratio 

of the number of peptides identified by an approach on a given dataset and the maximum number of 

hits identified by any approach on that dataset and averaging the ratio over all data sets: 
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A value close to 1 suggests competitive performance of a method across all datasets.  

Results for all search engines and datasets show that preprocessing has a sizeable effect on peptide 

identification. The consequences of the preprocessing at the spectral level are exemplified in Figure 

2: preprocessing can remove noise peaks without changing the relevant b- and y-fragment ions and 

thus improve peptide identification, but sometimes also sequence-revealing fragment ions are 

removed. Among the search engines, we notice improvements of 15-33% in the MP for the best 

tested preprocessing method in comparison to the original spectra with no preprocessing. Equally 

important is the fact, that inappropriate MS/MS preprocessing can have detrimental effects on the 

database searches resulting in fewer identified spectra. For instance, we observe that Mascot 

Distiller with standard settings reduces the MP by 12% relative to no preprocessing. This clearly 

indicates that preprocessing must be chosen with great care and adapted to the respective search 

algorithm. 

The effect of the individual preprocessing methods varied from data set to data set. However, the 

overall most favorable methods were always among the best performing methods for all four data 

sets.  

Mascot 

Detailed results for the number of identified peptides using Mascot and all preprocessing methods 

and parameterizations described earlier are given in Figure 3a and in the supplementary material 

(Table 1). ‘Top200’ as the best performing approach shows a 15% increase in the MP, whereas we 

observe a 12% decrease in the MP for Mascot Distiller which does MS1 and MS/MS preprocessing; 

both values are in comparison to the MP without preprocessing.  

Sequest 

For Sequest, results for all preprocessing methods and parameterizations are displayed in Figure 3b 

and in the supplementary material (Table 2). Not all preprocessing methods improved the number of 

identified peptides, this was particularly true for ‘Top X’ and ‘Top X in Y regions’ approaches for 

which the numbers of identified spectra decreased by up to 5 %. Best results were obtained for ‘Top 

6 in window ± 30’ with an increase of 16% in the mean proportion measure compared to spectra 

without preprocessing.  

ProteinPilot 

Figure 3c and the supplementary material (Table 3) display the results for Protein Pilot with regard to 

all preprocessing methods and parameterizations. With the single exception of the ‘Top 1 in window 

± 27‘ approach, all preprocessing methods result in a strong improvement in the number of 

identifications in comparison to the spectra without any preprocessing. In general, ‘Top X in Y region’ 

approaches and some of the ‘Top X in window ± Z’ approaches perform better than ‘Top X’ 

approaches, with the overall best results for ‘Top 6 in window ± 30’ with an increase 33% in the mean 

proportion measure compared to the original spectra without preprocessing. 
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Preprocessing the MS/MS data had two other advantages in addition to identifying more peptides: 

Firstly, the various preprocessing methods reduce the file size by 60-95% compared to the original 

MS/MS spectra (see supplementary material) without compromising the information content.  

Secondly, on our computer systems, we also observe significant decreases in the run times. For 

instance, for the ‘Human 2’ dataset and ‘Top 200’ we observe a 16% decrease in run time with 

ProteinPilot compared to the spectra without preprocessing and a 61% decrease in run time with 

Mascot.  Detailed run time comparisons strongly depend on the computer systems involved and are 

beyond the scope of this manuscript. The run time of our software tool itself is negligible with 0.25-

1s per megabyte of the original data on a standard PC. 

Our interpretation of the results for Mascot is that the preprocessing impacts the internal 

preselection within Mascot. Since Mascot iterates its scoring over increasingly larger sets of the most 

intense ions [3], the ‘Top 200’ sets an upper limit to the number of ions included in the iteration and 

thus reduces the risk of overfitting sequences to noise peaks in spectra which might lead to false 

positives. This also explains the reduction in search time since fewer iterations are possible. For 

Sequest, which internally selects the maximum intensity ions and then splits the spectrum into parts 

which are normalized individually [25], the window-based approach reduces the risk that high 

intensity peaks clustered together dominate the internal normalization. Same as for ProteinPilot, 

which does not preprocess ions internally if .mgf files are used as input and therefore benefit from 

most sensible preprocessing approaches, ‘Top 30 in Window ± 30’ shows best results. Building up on 

the motivation of the preprocessing of OMSSA [16], this can be interpreted as accepting at least two 

noise ions for each b- and y-ion in a MS/MS spectrum, which is restrictive enough to avoid overfitting 

without losing significant information, even when some noise ions show high intensity. 

Since the increase in the number of identified peptides is achieved on the spectral level, there is no 

bias towards specific proteins. Therefore, the number of identified proteins as well as their sequence 

coverage generally increase and additional identifications otherwise based on a single peptide hit are 

found. For instance, for the ‘Yeast’ dataset (3521 spectra) and a local FDR of 0.01 on the peptide level 

based on the Mascot results, we observe for ‘Top 200’ in comparison to spectra without 

preprocessing an increase from 141 to 165 identified proteins. Instead of 69, now 78 proteins are 

based on multiple identified peptides and the average number of spectra per protein increases 

slightly from 3.92 to 4.28. 

Equally important, the increase in the number of peptides identified comes at virtually no price. Since 

peptides from the forward and reverse database are equally affected by the removal of ions from the 

MS/MS spectrum, a local FDR-control allows preserving the specificity while benefitting from the 

increased sensitivity and reductions in run time. Furthermore, our preprocessing does not change the 

structure of the data and our software generates .mgf or .dta-files which can be directly read by 

Mascot, Sequest and ProteinPilot. Thus, existing workflows for peptide and protein identification 

only have to undergo minimal changes to incorporate the proposed preprocessing. 

The best performing approaches also showed good robustness across different datasets and charge 

states. They were among the best performing approaches in all datasets studied (see tables 1-3 in 

the supplementary materials) and we could not see any indication that the best performing 
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approaches favored specific charge states,  since the ratio of charge 2 and charge 3 peptides 

remained constant throughout the preprocessing steps (see supplementary material).  

Here, we focused solely on optimizing MS/MS preprocessing. However, there is high potential in 

combining all three preprocessing steps, i.e. quality scoring, precursor preprocessing and MS/MS 

preprocessing. Since these steps focus on complementary information resulting from different 

measurements, there is good reason to assume that they can be individually optimized such that 

their combined usage will strongly improve results. When combining the parent ion mass-to-charge 

and charge information as implemented in MaxQuant, Mascot Distiller or given by a state-of-the-art 

peak picking approach such as NITPICK [26] with optimized MS/MS preprocessing, we see significant 

improvement in the mean proportion measure in comparison to only using the precursor 

preprocessing on its own. For instance, the precursor preprocessing of MaxQuant was coupled to 

‘Top 200’, the MS/MS preprocessing method empirically found as the best in this study for Mascot, 

and resulted in a 34% increase in the mean proportion measure in comparison to no preprocessing, 

which corresponds to a 18% increase over using ‘Top 200’ alone. 

It should be noted that the results do not indicate a generally optimal preprocessing. Due to the 

different nature of the three search engines tested, a preprocessing method may increase the 

number of identified spectra for one search engine, but decrease the number for the case of another 

search engine. Hence, for each search engine, a separate comparison study is necessary. In this 

article, we focused on three commonly used peptide identification procedures (Mascot, Sequest, 

ProteinPilot) and identified the empirically best preprocessing for each of the three investigated 

search engines: ‘Top 200’ for Mascot and ‘Top 6 in Window ± 30’ for Sequest and ProteinPilot. These 

methods resulted in 15-33% increases in spectral identifications (at constant local FDR of 1%) with 

concomitant reduction in file sizes of up to 75% relative to the unprocessed files which in turn 

significantly reduced  search time, i.e., the increase in spectral identification comes at negligible cost. 
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fruitful discussions. We gratefully acknowledge financial support by the DFG under grant no. 
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Figure 1: Visualization of the three preprocessing categories: (a) displays a ‘Top 6’ approach, peaks 

are ordered by their intensities and only the six most intensive peaks are chosen.  (b) shows an 

example of a ‘Top 2 in 3 regions’ approach: the spectrum is first partitioned into three equal sized 

regions. In each region, the two most intensive peaks are selected. (c) shows a ‘Top 3 in a window ± 

Z’ approach. The most intensive peak is identified and among all peaks within a window of Z Da to 

the left and right the two most intensive peaks are chosen. This procedure is then repeated for the 

second most intensive peak and a corresponding window is defined. Within the window, again the 

three most intensive peaks are selected. The procedure stops when no more peaks are available. 

Even though all three approaches result in six peaks, they only agree on the four most intensive 

peaks and differ in the remaining peaks. ‘Top 6’ selects more peaks clustered closely together than 

the other two approaches. 
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Figure 2: Visualization of a spectrum and its respective theoretical b- and y-ions from the ‘Human 

1’dataset (a, b) before preprocessing, (c, d) after preprocessing with a ‘Top 6 in window ± 30’ 

approach, (e, f) after preprocessing with a ‘Top 6 in window ± 60’ approach as well as (g, h) after 

preprocessing with a ‘Top 100’ approach. Whereas the ‘Top 6 in window ± 30’ preprocessing reduces 

the number of fragment ions by a factor of 3 without removing a single b- or y-ion, the ‘Top 6 in 

window ± 60’ as well as the ‘Top 100’ approach are too aggressive and also remove some b- and y-

ions. The zooms in the 140-240 Da region on the right hand side show the abundance of noise in the 

spectrum without preprocessing (b) and the removal of signal carrying ions in the aggressive ‘Top 6 in 

window ± 60’ (f) and ‘Top 100’ (h) preprocessing, whereas the ‘Top 6 in window ± 30’ preprocessing 

(d) shows a reasonable balance of removing noise peaks while preserving the signal.  In consequence, 

the confidence score for ProteinPilot ranges from 0.84 (no preprocessing) to 0.92 (‘Top 6 in window ± 

60’) to 0.98 (‘Top 100’) to 0.99 (‘Top 6 in window ± 30’). 
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Figure 3: Comparison of preprocessing results on all datasets for a) Mascot, b) Sequest and c) 

ProteinPilot: For Mascot, a strong variation can be observed in both measures with regard to the 

different preprocessing methods. ‘Top 200’ shows the highest number of overall correctly identified 

peptides (S) as well as the highest mean proportion (MP) value with a 15% increase over no 

preprocessing. For Sequest, ‘Top 6 in a window of ± 30’ clearly outperforms any other preprocessing 

method in both measures. We observe an increase of 16% in comparison to no preprocessing. The 

worst results are obtained for DTASupercharge with a decrease of 30% in comparison to no 

preprocessing. For ProteinPilot, all preprocessing methods show improved peptide identification 

with the single exception of ‘Top 1 in a window of ± 27’ where we observe a 3% decrease in the 

number of identified peptides. Best results are obtained for ‘Top 6 in a window of ± 30’ with a 33% 

increase in the number of identified peptides. 
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Supplementary Material 

Experimental setup 
The two LTQ-Orbitrap samples were acquired with the following instrument settings: Full scan MS1 in 

the Orbitrap mass analyzer, 1 microscan, 50 msec maximum fill time at a target value of 1e6; MS2 

scan in the LTQ mass analyzer, 1 microscan, 150 msec maximum fill time at a target value of 1e4. 

The two LTQ samples used the following instrument settings: Full scan MS1 – 1 microscan, 75 msec 

maximum fill time at a target value of 4e4; MS2 – 1 microscan, 200 msec maximum fill time at a 

target value of 1e4. 

In the case of missing precursor charge state information resulting from the low-resolution MS1 scan, 

charge states were set to either 1, 2, 3, 4 (Mascot, ProteinPilot) or 2,3 and searched against the 

database, only the best fitting sequence resulting from these multiple searches was regarded for the 

further local-FDR computation and analysis. 

Since the goal of the study was not to compare search engines, but to identify the empirically optimal 

preprocessing, parameterization of the search engines was not standardized, but we rather referred 

to the standard settings we usually apply as described below. Since different databases were used for 

the varying search engines, results are only comparable for a specific search engine, but not across 

different search engines. 

Mascot 

Mascot [3] was run in version 2.2.04 with Carbamidomethyl (C) as fixed modification and 

Deamidated (NQ), Gln->pyro-Glu (N-term Q), Glu->pyro-Glu (N-term E) as well as Oxidation (M) as 

variable modifications. We only considered fully tryptic peptides with a maximum of one missed 

cleavage. Fragment ion tolerance was set at 0.8 Da and protein tolerance at 1.5 Da (LTQ) or 10 ppm 

(Orbitrap) respectively. For the human samples and the mouse sample the respective RefSeq 

database [2] (July 11th, 2008) were chosen, whereas the SGD project database [3] was used for the 

yeast dataset (May 7th, 2006). 

Sequest 

The Sequest-Sorcerer algorithm (SageN Research, CA) (Version: 3.5 RC2; 4.0.4.) [4] was used as a part 

of the Sorcerer IDA II platform. The searches were run with parent tolerance set to 1.5 Da for the LTQ 

samples and to 10 ppm for the Orbitrap samples;  fragment ion tolerance was set to 1 Da. 

Carbamidomethyl (C) was searched as fixed modification for searches of both the Orbitrap and the 

LTQ data. Deamidation(NQ), Oxidation(M) and Gln->pyro-Glu (N-term Q) were set as variable 

modifications for the Orbitrap data. One missed cleavage was allowed at maximum. The IPI 

databases version 3.09 [5] were used for the mouse and human samples whereas the SGD project 

database [3] (May 7th, 2006) was used for the yeast sample.  PeptideProphet [6] was used to rank 

the peptides according to their computed probability.  
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ProteinPilot 

Protein Pilot [5] version 2.0.1 (software revision number 65587) was run with its standard LTQ or 

Orbitrap settings with Iodoacetamide as a Cys. Alkylation, tryptic digestion and search effort set to 

‘thorough’. The IPI databases version 3.09 [5] were used for mouse and human samples whereas the 

UniProt Combined Panther (version 5) [8] with specification Saccharomyces cerevisiae was used for 

the yeast samples. 

Preprocessing Software 

The preprocessing software was developed in C++ and is available as a standalone application for 

windows and linux. It accepts a mgf file or a folder of dta-files as well as the choice of the 

parameterization (‘Top X’/’Top X in Y regions’/’Top X in window of ± Z’ as well as X, Y and Z 

respectively) as an input and outputs a new mgf file or folder of dtas with preprocessed peak lists 

according to the chosen parameterization. The software is freely available from http://hci.iwr.uni-

heidelberg.de/mip/proteomics or http://www.childrenshospital.org/research/steenlab. 

Measures 

Several measures were used to obtain an unbiased view on the performance of the various 

parameterizations on the four datasets, and to reduce the influence of other factors including the 

overall number of peptides in a given dataset. Therefore, we define xij to be the number of local-FDR 

controlled peptide hits of parameterization i on dataset j and n to be the overall number of datasets 

(in our case n=4). 

Mean Proportion 

The mean proportion (MP) of the best result is defined by taking the ratio of the number of peptides 

identified by an approach on a given dataset and the maximum number of hits identified by any 

approach on that dataset and averaging the ratio over all data sets: 

j kjk

ij

x

x

n max

1
=MPi

 

A value close to 1 therefore suggests competitive performance of a method across all datasets. 

Mean Relative Squared Error  

Similarly, the mean relative squared error (MRSE) is defined by computing the squared distance 

between the number of identified peptides of one approach and the maximum number of 

identifications for a given dataset. The squared distance is weighted by the squared maximum 

number of identifications to reduce the dependence on the overall number of identified peptides. 

j kjk

kjkij

x

xx

n
2

2

i
max

max1
=MRSE  

Large values indicate strong departure from the best method in at least one dataset. 
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Sum of all datasets 

The simplest (and most biased with regard to the number of peptides actually included in a dataset) 

measure is the sum (S) of the number of the identified peptides. 

j

ijxS =i  

Here, large values indicate overall good performance, but might be slightly biased towards methods 

which perform well on the datasets with overall more identifications. 

Local FDR and Global FDR 
Tang et al [24] point out that for proteomics, the local FDR reports how likely a specific protein or 
peptide is incorrect, rather than the overall error rate for the set of proteins or peptides it is a 
member of and that it is thus more meaningful than the global FDR. We performed additional 
experiments using a global FDR approach with similar restrictiveness to investigate whether results 
are dependent on the choice of postprocessing. Therefore, all results obtained from Sequest for all 
datasets and for all preprocessing methods were reanalyzed using a global FDR (1 ‰). Results for the 
sum (S) of identified peptides across all datasets are given in Figure 4. Overall, results for both 
approaches show a high similarity. The local FDR shows a higher variability and sharper drop offs to 
low numbers for poorly performing methods compared to the global FDR. In contrast, for the overall 
best performing methods (‘Top 6 in window ±30’, ‘Top 6 in window ±25’, ‘Top 4 in window ±25’ ) , 
local FDR and global FDR show identical ordering and highly similar numbers. These results indicate 
that the choice of local and global FDR does not influence the selection of the best performing 
methods if a similar level of restrictiveness is chosen. 
 

 

 

File Sizes 

The various prefiltering methods reduce the file size by 60-95% compared to the original MS/MS 

spectra as shown in Figure 5 - without compromising the information content. In contrast, 

appropriate prefiltering separates true signal from noise resulting in an increased number of 

identified peptides. 

 

Figure 5: Comparison of the file sizes of the preprocessing approaches for the ‘Yeast’ dataset: With 

the single exception of DTASupercharge, all preprocessing methods drastically reduce the file size in 

comparison to the original spectra without preprocessing. The smallest file sizes are achieved for ‘to 

1 in window of ± 27’ with a reduction of 94%; for the other approaches the reduction ranges 

between 75% and 90%. 

 

 

Figure 4: Sum (S) of identified peptides for Sequest using a local and a global FDR of similar 

restrictiveness. While for poorly performing preprocessing schemes, the local FDR shows a more 

extreme drop off, the two FDRs result in very similar numbers for well performing methods. This 

indicates that the selection of the optimal preprocessing does not depend on the choice of the 

local FDR as a postprocessing step. 
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Influence of the Charge State  

If the charge state were influential for the preprocessing, we would assume to see a different 
proportion of charge 2 to charge 3 spectra within a preprocessed dataset compared to the case of no 

preprocessing. Therefore, we computed the ratio 
ir  as  

   
ingpreprocess no with peptides 3 charge#

ingpreprocess no with peptides 2 charge#
   

i ingpreprocess with peptides 3 charge#

i ingpreprocess with peptides 2 charge#

ir  

 
where the number of peptides of a certain charge state was computed as all peptides of that charge 
having a score above the corresponding local FDR cut off. 

If the charge has no influence on the preprocessing i, ir should not be significantly different from 1 

since then the ratio coincides with the ratio obtained for no preprocessing and the charge 
distribution remains unchanged. Departures to smaller numbers indicate a preference of charge 3 

 

Figure 5: Comparison of the file sizes of the preprocessing approaches for the ‘Yeast’ dataset: 

With the single exception of DTASupercharge, all preprocessing methods drastically reduce the 

file size in comparison to the original spectra without preprocessing. The smallest file sizes are 

achieved for ‘top 1 in window of ± 27’ with a reduction of 94%; for the other approaches the 

reduction ranges between 75% and 90%. 
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ions through the preprocessing and larger numbers a preference of charge 2 ions. In these cases, we 
could conclude that the preprocessing is better suited to the corresponding more often observed 
charge state. 

For all preprocessing methods and for all datasets, we computed the 
ir values based on the Sequest 

identifications. Further, we computed the mean of the ratios and 95% confidence intervals across all 
for datasets for each preprocessing approach (using a log transformation to account for the 
asymmetric metric introduced by the ratio in the computation of the mean and standard deviation). 
Results are given in Figure 6. With the exception of MaxQuant on the ‘Human 1’ dataset, all values 
are close to 1. Still a large variation can be observed for the ratios of a single preprocessing between 
the different datasets often showing values below and above 1. With the single exception of ‘Top 6 in 
Window of ±50’, all methods have confidence intervals for the mean ratio which include 1. 
Therefore, it can be concluded from these findings that for these preprocessing methods no 
significant influence of the charge state on the preprocessing can be determined. 
 

 
 

Figure 6: Charge state ratios ir and their mean and confidence intervals for the preprocessing 

methods. With the exception of MaxQuant for the ‘Human 1’ dataset, all ratios for all preprocessing 

methods are in the vicinity of 1, but display a large variance across datasets even within a single 

method. Only ‘Top 6 in Window of ±50’ shows a statistical significant departure from 1 in its mean, 

whereas for all other methods, no dependence between the charge distribution and the 

preprocessing method can be concluded. 
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Mascot 
local FDR 1%   DataSet   Measure 

Preprocessing type   
‘Human 

1’ ‘Mouse’ ‘Yeast’  
‘Human 

2’   MP MRSE S 

 Instrument   
 LTQ-

Orbitrap LTQ  
LTQ-

Orbitrap  LTQ          

Number of spectra 
 

8457 7868 3521 8884 
    TopX                   

Top 100   1179 920 665 742   0.842 0.04869 3506 

Top 125   1159 896 709 824   0.871 0.04438 3588 

Top 150   1191 891 699 855   0.879 0.04022 3636 

Top 200   1173 910 706 891   0.895 0.04138 3680 

Top 250   1082 906 681 667   0.810 0.06748 3336 

              
   Top X in Y regions             
   Top 50 in 3 regions   1259 848 682 827   0.862 0.03616 3616 

Top 30 in 5 regions   1135 803 703 848   0.848 0.04999 3489 

Top 25 in 6 regions   1103 779 698 817   0.827 0.05652 3397 

Top 15 in 8 regions   1314 788 676 865   0.861 0.03402 3643 

              
   Top X in window ± Z             
   Top 1 in window ± 27   871 55 452 167   0.331 0.49716 1545 

Top 4 in window ± 40   951 667 553 528   0.645 0.13984 2699 

Top 4 in window ± 50   974 616 631 601   0.682 0.12115 2822 

Top 4 in window ± 60   934 578 501 528   0.600 0.16714 2541 

Top 6 in window ± 25   1150 781 589 837   0.800 0.05753 3357 

Top 6 in window ± 30   1179 791 561 815   0.791 0.05836 3346 

Top 6 in window ± 40   1100 780 581 832   0.789 0.06423 3293 

Top 6 in window ± 50   1175 721 570 601   0.754 0.06934 3209 

Top 6 in window ± 60   1027 665 521 711   0.694 0.10471 2924 

Top 8 in window ± 40   1182 772 576 829   0.795 0.05690 3359 

Top 8 in window ± 50   1244 764 549 770   0.775 0.05890 3327 

Top 8 in window ± 60   1342 722 528 756   0.764 0.05940 3348 

              
   MaxQuant   965 689 684 638 

 
0.729 0.10174 2976 

DTASupercharge   1153 819 555 824   0.795 0.05965 3351 

Mascot Distiller    1164 719 569 1977   0.692 0.18858 3428 

no Preprocessing   1164 783 553 834   0.789 0.06095 3334 

Table 1: Comparison of number of peptide hits for a local FDR of 0.01 using the Mascot 

search engine. Bold values indicate the column-wise best results. Overall, preprocessing can 

increase the number of identified peptides by up to 14% with the ‘top 150’ and ‘top 200’ 

approaches as the best performing methods. 
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Sequest 
local FDR 1%   DataSet   Measure 

Preprocessing type   
‘Human 

1’ ‘Mouse’ ‘Yeast’  
‘Human 

2’   MP MRSE S 

 Instrument   
 LTQ-

Orbitrap LTQ  
LTQ-

Orbitrap  LTQ          

Number of spectra 
 

8457 7868 3521 8884 
    Top X                   

Top 100   598 1571 910 960   0.830 0.04160 4039 

Top 125   730 1486 884 920   0.841 0.03047 4020 

Top 150   829 1426 815 1023   0.864 0.02366 4093 

Top 200   794 1439 872 1077   0.881 0.01571 4182 

                    

Top X in Y regions                   

Top 50 in 3 regions   630 1439 947 953   0.826 0.03663 3969 

Top 30 in 5 regions   541 1357 912 1053   0.799 0.05045 3863 

Top 25 in 6 regions   619 1502 862 1135   0.849 0.03121 4118 

Top 15 in 8 regions   628 1573 884 1187   0.879 0.02602 4272 

                    

Top X in window Z                   

top 1 in window ± 27   910 1228 840 428   0.694 0.10729 3406 

top 4 in window ± 25   1238 1470 863 770   0.902 0.01379 4341 

top 4 in window ± 30   1181 1557 850 715   0.885 0.01824 4303 

top 4 in window ± 40   884 1377 939 612   0.788 0.05123 3812 

top 4 in window ± 50   1085 1367 759 334   0.704 0.12452 3545 

top 4 in window ± 60   1182 1226 738 516   0.750 0.07924 3662 

top 6 in window ± 25   1242 1517 860 865   0.936 0.00986 4484 

top 6 in window ± 30   1208 1545 1058 814   0.966 0.00167 4625 

top 6 in window ± 40   1069 1475 857 683   0.842 0.02712 4084 

top 6 in window ± 50   1013 1437 918 603   0.816 0.03922 3971 

top 6 in window ± 60   1075 1442 898 753   0.868 0.01765 4168 

top 8 in window ± 25   1243 1555 715 615   0.836 0.04762 4341 

top 8 in window ± 30   1090 1557 849 672   0.864 0.02599 4128 

top 8 in window ± 40   1082 1475 892 583   0.824 0.03905 4236 

top 8 in window ± 50   1200 1456 953 694   0.891 0.01524 4303 

top 8 in window ± 60   962 1512 821 732   0.832 0.03244 4027 

 
                    

MaxQuant 
 

1109 1558 839 134 
 

0.700 0.19258 3640 

DTASupercharge   129 1269 971 1054   0.680 0.19790 3423 

no Preprocessing   517 1576 865 1175   0.840 0.04951 4133 

 

Table 2: Comparison of number of peptide hits for a local FDR of 0.01 using Sequest. Bold 

values indicate the column-wise best results. Overall, preprocessing increases the number of 

identified peptides by up to 16% with a ‘Top 6 in window of ± 30’ approach showing the  

empirically best results in all three measures.  
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ProteinPilot 
local FDR 1%   DataSet   Measure 

Preprocessing type   
‘Human 

1’ ‘Mouse’ ‘Yeast’  
‘Human 

2’   MP MRSE S 

Instrument    
 LTQ-

Orbitrap LTQ  
LTQ-

Orbitrap  LTQ          

Number of spectra 
 

8457 7868 3521 8884 
    TopX                   

Top 100   2468 1380 1091 1983   0.896 0.01102 6922 

Top 150   2476 1335 975 1868   0.853 0.02339 6654 

Top 200   2229 1156 979 1679   0.776 0.05115 6043 

                    

Top X in Y regions                   

Top 50 in 3 regions   2631 1466 1156 1886   0.927 0.00697 7139 

Top 30 in 5 regions   2717 1398 1201 2088   0.956 0.00374 7404 

Top 25 in 6 regions   2674 1393 1223 1982   0.944 0.00560 7272 

Top 15 in 8 regions   2708 1343 1198 1940   0.929 0.00873 7189 

                    

Top X in window Z                   

Top 1 in window ± 27   2041 1163 737 1597   0.706 0.09028 5538 

Top 4 in window ± 20   2503 1308 1151 2044   0.907 0.01065 7006 

Top 4 in window ± 25   2537 1466 1112 2063   0.929 0.00516 7178 

Top 4 in window ± 30   2473 1437 1050 2034   0.903 0.01017 6994 

Top 4 in window ± 40   2597 1474 990 2033   0.908 0.01184 7094 

Top 4 in window ± 50   2345 1491 1000 1940   0.879 0.01693 6776 

Top 4 in window ± 60   2170 1417 886 2024   0.837 0.03302 6497 

Top 6 in window ± 20   2591 1136 1174 1691   0.852 0.03324 6592 

Top 6 in window ± 25   2684 1360 1190 1893   0.922 0.00941 7127 

Top 6 in window ± 30   2695 1452 1212 2053   0.961 0.00250 7412 

Top 6 in window ± 40   2641 1343 1059 1949   0.895 0.01308 6992 

Top 6 in window ± 50   2610 1496 1138 2105   0.951 0.00258 7349 

Top 6 in window ± 60   2516 1574 1006 2068   0.923 0.01000 7164 

Top 8 in window ± 20   2543 1170 1040 1642   0.820 0.03870 6395 

Top 8 in window ± 25   2429 1186 1013 1644   0.807 0.04087 6272 

Top 8 in window ± 30   2487 1309 1167 1772   0.878 0.01847 6735 

Top 8 in window ± 40   2624 1374 1185 2000   0.930 0.00643 7183 

Top 8 in window ± 50   2553 1364 1064 2053   0.904 0.01055 7034 

Top 8 in window ± 60   2519 1464 1113 2189   0.942 0.00457 7285 

                    

MaxQuant 
 

2533 1483 975 2003 
 

0.897 0.01407 6994 

DTASupercharge   2196 1205 1115 1721   0.818 0.03631 6237 

no Preprocessing   2243 956 1059 1336   0.727 0.08861 5594 

Table 3: Comparison of number of peptide hits for a local FDR of 0.01 using 

ProteinPilot. Bold values indicate the column-wise best results. Overall, preprocessing 

increases the number of identified peptides by up to 33% with a ‘Top 6 in window of 

± 30’ approach. 
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