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Abstract

We study jump-penalized estimators based on least absolute deviations which are often
referred to as Potts estimators. They are estimators for a parsimonious piecewise constant
representation of noisy data having a noise distribution which has heavier tails or which
leads to many severe outliers. We consider real-valued data as well as circle-valued data
which appear, for instance, as time series of angles or phase signals. We propose efficient
algorithms that compute Potts estimators for real-valued scalar as well as for circle-valued
data. The real-valued version improves upon the state-of-the-art solver w.r.t. to computa-
tional time. In particular for quantized data, the worst case complexity is improved. The
circle-valued version is the first efficient algorithm of this kind. As an illustration, we
apply our method to estimate the steps in the rotation of the bacterial flagella motor based
on real biological data, and to the estimation of wind directions.

Keywords: Circle-valued data, jump penalization, least absolute deviation, piecewise constant sig-
nal, Potts estimator, step detection

1 Introduction

Signals or time-series with underlying piecewise constant groundtruth appear in various bi-
ological and medical applications; for example, the cross-hybridization of DNA [Snijders
et al. (2001); Drobyshev et al. (2003); Hupé et al. (2004)], the reconstruction of brain stim-
uli [Winkler et al. (2005)], single-molecule fluorescence resonance energy transfer [Joo et al.
(2008)], cellular ion channel functionalities [Hotz et al. (2013)], and photo-emission spec-
troscopy [Frick et al. (2014a)]. A classical engineering example based on piecewise constant
functions is crack detection in fracture mechanics. For further applications, we refer to Little
and Jones (2011a,b) and Frick et al. (2014a), and the references therein. Circle-valued time-
series with underlying piecewise constant model appear for example in the rotations of the
bacterial flagellar motor; see Sowa et al. (2005); Sowa and Berry (2008); Mora et al. (2009).
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For such data, jump-penalized estimators are powerful tools. A classical instance is the
least squares Potts estimator. It measures the complexity of the signal in terms of the number
of jumps and penalizes the sums of the squared deviations from data. While the least squares
approach is optimally matched to the Gaussian noise model, estimators based on least absolute
deviations are more robust to noise with heavier tailed distributions such as Laplacian noise,
and they perform better in the presence of outliers. The least absolute values Potts estimator is
given by

x̂ = arg min
x∈XN

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn). (Pγ)

The first term ‖∇x‖0 = |{n : xn+1 , xn}| measures the complexity of x in terms of the number
of jumps while the second term measures fidelity to data y ∈ XN , where d(x, y) is a metric on
the space X and w is a vector of positive weights. Here, we consider the spaces X = R with the
standard distance, and X = S1 = T with the arc length distance. The regularization parameter
γ > 0 controls the balance between data deviation and jump penalty.

For scalar data (X = R with the standard distance), the least absolute values Potts estimator
(Pγ) takes the familiar form

x̂ = arg min
x∈RN

γ ‖∇x‖0 + ‖x − y‖1,w, (1)

which we refer to as L1-Potts estimator. Here the L1 norm is formed with respect to the weight
vector w. Due to their appearence in context of any cyclic data such as phase data or periodic
data, we also consider circle-valued data, i.e., the data space X = S1 = T with d being the arc
length distance. This results in

x̂ = arg min
x∈TN

γ ‖∇x‖0 +
∑N

n=1
wn arclength(xn, yn). (2)

A Potts estimate is a candidate signal that minimizes the corresponding Potts functional; thus
the estimates enjoy an optimal tradeoff – optimal with respect to the functional – between data
fidelity and complexity measured in terms of the number of jumps. From a Bayesian perspec-
tive, Potts functionals are negative posterior loglikelihood functions with an improper prior.
Minimal points correspond to the respective maximum a posteriori estimates. These connec-
tions are rather of formal than of analytic nature when considering non-finite data spaces; we
refer to Winkler et al. (2005) for a detailed discussion.

Prior and related work. Potts estimators are named after Renfrey B. Potts who used the
prior, respectively, the regularizing term of the functional, in his work on statistical mechanics;
see Potts (1952). Related investigations can even be traced back to Ising (1925). Geman and
Geman (1984) were one of the first to utilize the Potts model with least squares data fidelity
(L2-Potts estimator) in the context of statistical image processing. In the work of Blake (1983)
and Blake and Zisserman (1987), the L2-Potts model appears as limit case of the nowadays
called Blake-Zisserman model. In image processing, the Potts model is also known as piece-
wise constant Mumford-Shah model after the seminal work of Mumford and Shah (1989).
Donoho (1999) considers related bivariate estimators which are called wedgelets. For a thor-
ough account on the history, we refer to Winkler et al. (2005) and the references therein.
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More recently, Boysen et al. (2007, 2009) have given convergence rates and have shown
consistency for the L2-Potts estimator. Wittich et al. (2008) have shown uniqueness of the L2-
Potts estimate for almost all input data and idempotence of the corresponding solution opera-
tor. In the context of inverse problems, convergence rates have been investigated by Frick et al.
(2014b), and iterative algorithms by Fornasier and Ward (2010) and Weinmann and Storath
(2015). It is well known that an L2-Potts estimate can be computed exactly using dynamic
programming; see Yao (1984); Mumford and Shah (1985, 1989); Auger and Lawrence (1989);
Chambolle (1995); Winkler and Liebscher (2002); Jackson et al. (2005). The current state-of-
the-art solver is the one of Friedrich et al. (2008) which has quadratic time and linear memory
complexity. Under the additional assumption that the number of jumps of the underlying sig-
nals grows linearly with the signal length, Killick et al. (2012) could improve this to a linear
time algorithm.

In contrast to the L2 scenario, significantly less is known on Potts estimators with L1 data
terms. One of the reasons is that the L1 norm is typically more intricate due to the non-
differentiability and the missing relation to the inner product. This stands in contrast to the
fact that the L1 Potts estimator has several advantages over the least squares variant: as already
mentioned, L1 data terms are more robust to noise with heavy tailed distributions and in the
presence of outliers. Friedrich et al. (2008) observed that they give in practice more robust
estimates on the change points (i.e., the jumps) for the considered gene expression data. Re-
markably, the L1-Potts estimator has a certain blind deconvolution property: it reconstructs
piecewise constant signals x from given blurred data y = κ ∗ x, whenever the unknown positive
symmetric kernel κ is sufficiently narrow supported; for details see Weinmann et al. (2015).
Such properties are not shared by the L2-Potts and L1-TV estimators. Concerning the com-
putation of minimizers, Friedrich et al. (2008) were the first to give an efficient algorithm for
computing an estimate of O(N2 log N) time and O(N2) memory complexity. The authors of the
present article improved this to O(N2) time and O(N) space complexity; see Weinmann et al.
(2015). Friedrich et al. (2008) also consider computing the Potts estimator for all parameters γ
simultaneously; they propose an O(N3) time and O(N2) space algorithm for real-valued data.
(We note that the present work deals with quantized and non-quantized data with values on the
real line or on the circle.)

Closely related estimators are the TV estimators which penalize the total variation ‖∇x‖1 =∑
n |xn+1 − xn| instead of the number of jumps. In particular, L1-TV estimators have been con-

sidered in, e.g., Fu et al. (2006); Dümbgen and Kovac (2009); Clason et al. (2009); Dong et al.
(2009); Chambolle and Pock (2011); Kolmogorov et al. (2015). The Potts prior is a stronger
prior in the sense that the underlying signal class of piecewise constant signals is smaller. How-
ever, whenever the signal under consideration belongs to this class, Potts estimators are more
robust to higher noise levels and enjoy better reconstruction properties. On the flipside, for
real-valued data, the computation of a Potts estimate is more challenging because the Potts
functional is, in contrast to the L1-TV functional, not convex.

The Potts estimators discussed above are related to the simultaneous change point esti-
mator (SMUCE) recently proposed by Frick et al. (2014a). In contrast to the discussed Potts
estimators, which measure the data fidelity in terms of the L1 or the L2 norm, SMUCE uses
a certain multiscale test statistics. The computational procedure is based on the aforemen-
tioned dynamic programming scheme proposed by Friedrich et al. (2008) for Potts estimators.
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A variant that controls the false discovery rate has been proposed by Li et al. (2014). Frick
et al. (2012) consider statistical multiresolution estimators with `∞ constraints. Xia and Qiu
(2015) study an information criterion for jump-penalized estimation. We refer to Little and
Jones (2011a,b) and the references therein for further related jump-penalized estimators and
algorithms for the reconstruction of piecewise constant real-valued signals.

Besides real-valued data, there is an emerging interest in estimation of circle-valued data.
Regression of circular data has been considered by Fisher and Lewis (1983) and by Downs
and Mardia (2002), and LASSO/TV type problems by Giaquinta et al. (1993); Cremers and
Strekalovskiy (2013); Lellmann et al. (2013); Weinmann et al. (2014); Bergmann et al. (2015);
Storath et al. (2016). This is motivated by their appearance as data spaces in various con-
texts including phase data, orientation data, as well as nonlinear color spaces. We refer to
Fisher (1995) and to Jammalamadaka and SenGupta (2001) for an overview on statistics of
circle-valued data. Statistical issues on Riemannian manifolds in general are the topic of Oller
and Corcuera (1995); Bhattacharya and Patrangenaru (2003, 2005); Pennec (2006); Fletcher
(2013). For manifold-valued data, and thus for circle-valued data in particular, an algorithm
for the Potts problem has been proposed by Weinmann et al. (2016). However, for circle-
valued data, it is not guaranteed that the algorithm converges to a global minimizer. Moreover,
the resulting algorithm is of iterative nature and a faster algorithm would be desirable.

Contributions. In this paper, we study least absolute values Potts estimators for real-valued
as well as for circle-valued data. To our knowledge, Potts estimators for circle-valued data have
not been studied yet. Our contributions are as follows: (i) We provide new algorithms which
yield global minimizers of the Potts problem for real-valued data (cf. Equation (1)) as well
as for circle-valued data (cf. Equation (2)) where the data can be quantized or non-quantized;
(ii) we propose a strategy to compute Potts estimates for all regularization parameters γ >

0 simultaneously with moderate extra effort, and (iii) we provide numerical experiments on
synthetic and real life data.

Concerning (i), the key ingredient is the reduction of the search space to a not a priori fixed
data dependent set VN . More precisely, for the case of circle-valued data, we show that we
can reduce the search space to VN where V contains the unique values of the data y and its
antipodal points. The reduction of the problem size allows us to employ the Viterbi-algorithm;
see Viterbi (1967); Bellman and Roth (1969); Blake and Zisserman (1987); Felzenszwalb
and Zabih (2011). By exploiting the special structure of the Potts penalty as described in
Felzenszwalb and Huttenlocher (2006), this leads to an algorithm of complexity O(KN) where
K ≤ 2N is the number of elements in the discrete set V. To our knowledge, this is the first
exact algorithm for the Potts problem with circle-valued data. For scalar real-valued data, we
proceed analogously to obtain a solver of complexity O(KN). We show that the algorithm has
complexity of linearithmic order in probability when the components of the data vector y are
independent, discrete random variables which are not too heavy tailed. We stress that the pro-
posed approach is fundamentally different from those of Friedrich et al. (2008) and Weinmann
et al. (2015). The latter ones employ a different dynamic programming scheme, and they do
not use a strategy to reduce the search space.

Concerning (ii), we consider the closely related problem of jump-constrained least absolute
values approximation, which we call J-jump sparsity problem. We propose an algorithm that
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solves the J-jump sparsity problem for all possible number of jumps in O(KNL), where L ≤
N − 1 denotes the number of jumps of the data. Based on this complete scanning, we are
able to determine all intervals for γ, where the solution does not change, and all corresponding
estimates. Again, our approach relies on a different discrete search space than the O(KN2)
algorithm of Friedrich et al. (2008) for solving for all model parameters γ simultaneously. In
particular, our method improves upon the computational complexity of Friedrich et al. (2008)
for quantized data.

Concerning (iii), we provide a series of numerical experiments on the proposed algorithm.
For real-valued (non-quantized) data, we observe that our approach is significantly faster than
the previously proposed solver of Weinmann et al. (2015). (We recall that the algorithm of
Weinmann et al. (2015) is an O(N2) time and O(N) space algorithm improving the O(N2 log N)
time and O(N2) space algorithm of Friedrich et al. (2008).) As a tradeoff, the memory con-
sumption is O(KN) as opposed to the linear memory complexity of Weinmann et al. (2015).
Concerning circle-valued data we observe that the proposed algorithm, which is the first one
proposed for this problem, yields reasonable runtimes. Further, we apply our method to real
data: we estimate the steps in the rotation of the bacterial flagella motor [Sowa et al. (2005)]
and time series of wind directions.

Outline of the paper. In Section 2, we propose efficient algorithms for computing Potts
estimates with scalar or circle-valued data. Section 3 deals with the closely related J-jump
sparsity problem. In Section 4, we compute solutions of the Potts problem for all parameter
simultaneously. Numerical experiments on synthetic data and on real data are conducted in
Section 5.

2 Efficient computation of the Potts estimator

We develop efficient solvers for the Potts problem (Pγ) for circle-valued and for real-valued
data. We first reduce the infinite search space to a finite set, and then utilize the Viterbi algo-
rithm with an acceleration proposed by Felzenszwalb and Huttenlocher (2006).

2.1 Dimensionality reduction for circle-valued and scalar data spaces

Our first step towards computing a global minimizer of the Potts functional (Pγ) with circle-
valued and real-valued data is the reduction of the search space to a finite set. In the following,
we use the notation Val(y) to denote the set of values of a tuple y ∈ XN , i.e.,

Val(y) = {v ∈ X : there is 1 ≤ n ≤ N s.t. yn = v}.

We recall that a (weighted) median µ of y ∈ XN is defined as minimizer of the functional z 7→∑N
n=1 wn d(z, yn); see e.g. Fletcher et al. (2009). For scalar data it is well known that the set of

values of y contains at least one median. More precisely, there is µ ∈ arg minz∈R
∑N

n=1 wn |z−yn|

such that µ ∈ Val(y). In the case of circle-valued data, a median is contained in the set of values
Val(y) or the set of antipodal points Val(−y):

Lemma 1. Let y ∈ TN . The set V = Val(y) ∪ Val(−y) contains a (weighted) median of y.
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Lemma 1 is most probably known. Since we did not find it in the literature, we provide a
short proof in Appendix A.

The key to a reduction of the search space is the following statement on solutions of the
Potts problem.

Theorem 2. Let γ > 0. For real-valued data y ∈ RN , we let V = Val(y); for circle-valued data
y ∈ TN , we let V = Val(y) ∪ Val(−y). Then the Potts problem (Pγ) has a solution x̂ fulfilling
x̂ ∈ VN .

The proof is given in Appendix A.
We next discuss how to determine of the reduced search space V when data y is given.

In many setups, we can a priori declare a set U that is only slightly larger than V or, in the
best case, equal to V. Then it is convenient to use this set U. For example, we can use U =

{0, . . . , 255} for an 8-bit signal. If there is no such set we have to determine V algorithmically.
A simple method to do so is based on sorting of y. Then, duplicate elements are adjacent and
can be easily removed. However, this procedure may exceed the complexity of the subsequent
step (see Section 2.2), because general purpose sorting algorithms are O(N log N). To avoid
sorting, we utilize the following simple procedure: We create an empty list V. Then we iterate
over the components of y, that is, for n = 1, . . . ,N. If yn is not in the list, we append it to V. In
case of circle-valued data, we additionally append the antipodal points. The procedure needs
at most K = |V | comparisons at each step, thus the procedure is O(KN).

2.2 A Viterbi-type algorithm for the reduced problem

Theorem 2 allows us to reduce the infinite search spaces RN and TN in (Pγ) to the finite set
VN , which is specified in that theorem. Thus, it remains to solve

arg min
x∈VN

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn). (3)

To this end, we use dynamic programming. Recall that the basic idea of dynamic programming
is to solve a complex problem by reducing it to smaller subproblems; see Bellman (1957). In
the following, we denote the cardinality of V by K. It is useful to equip the set V with indices,
i.e., V = {v1, . . . , vK}. (Note that any ordering is valid.)

We utilize a dynamic programming scheme developed by Viterbi (1967); see also Forney Jr
(1973). Related algorithms have been proposed by Bellman and Roth (1969) and Blake and
Zisserman (1987). Here, we review a special instance of the Viterbi algorithm proposed by
Felzenszwalb and Huttenlocher (2006); see also Felzenszwalb and Zabih (2011). Assume that
we aim at minimizing an energy functional of the form

E(x1, . . . , xN) = γ
∑N−1

n=1
h(xn, xn+1) +

∑N

n=1
wnd(xn, yn) (4)

where x1, . . . , xN can take values in a finite set V and where h is an energy functional on V2. The
Viterbi algorithm solves this problem in two steps: tabulation of energies and reconstruction
by backtracking. For the tabulation, the starting point is the table B1 ∈ RK given by

B1
k = w1d(vk, y1) for k = 1, . . . ,K.
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We successively compute for n = 2, . . . ,N the tables Bn ∈ RK which are given by

Bn
k = wnd(vk, yn) + min

l
{Bn−1

l + γ h(vk, vl)}, for k = 1, . . . ,K. (5)

The entry Bn
k represents the energy of a minimizer on data (y1, . . . , yn) whose endpoint is equal

to vk. For the backtracking step, it is convenient to introduce an auxiliary tuple l ∈ NN which
stores minimizing indices. We initialize the last entry of l by lN = arg mink BN

k . Then we
successively compute the entries of l for n = N − 1,N − 2, . . . , 1 by

ln = arg min
k

Bn
k + γ h(vk, vln+1). (6)

Eventually, we reconstruct a minimizer x̂ from the indices in l by x̂n = vln , for n = 1, . . . ,N.
The result x̂ is a global minimizer of the energy (4); see Felzenszwalb and Zabih (2011).

As proposed by Felzenszwalb and Huttenlocher (2006), the special structure of the Potts
prior can be exploited to streamline the computation. First note that the reduced Potts prob-
lem (3) corresponds to the functional defined by h(v,w) = 1 for v , w and h(v, v) = 0. This
allows to simplify the second term in (5) to

min
l
{Bn−1

l + γ h(vk, vl)} = min{γ + min
l

Bn−1
l ; Bn−1

k }.

It follows that the table Bn can be filled by the two-step procedure z = min
l

Bn−1
l ,

Bn
k = wnd(yn, vk) + min{γ + z; Bn−1

k }, for k = 1, . . . ,K.
(7)

Now z can be precomputed and reused for all table entries Bn
k for k = 1, ..,K. Since both lines

of (7) are O(K), the computation of the table Bn is O(K). Hence, this algorithm is O(KN).

2.3 Complete solver for the Potts problem

The computation of the global minimizer of the Potts problem (Pγ) is performed in two steps:
computation of the reduced search space V followed by the above variant of the Viterbi al-
gorithm. A pseudocode of the complete algorithm is given in Algorithm 1. We record the
following:

Theorem 3. Algorithm 1 computes a global minimizer of the Potts problem (Pγ) with scalar
or circle-valued data in O(KN).

The proof is given in the Appendix.
For the Potts problem with scalar data, a solver of complexity O(N2 log N) has been pro-

posed by Friedrich et al. (2008) and improved to O(N2) by Weinmann et al. (2015). These
methods use also the dynamic programming principle but with a fundamentally different tab-
ulation scheme. It is based on computing the median deviations on all O(N2) intervals. In
contrast, the tabulation in Algorithm 1 is based on the distances of single data points yn to all
the K median candidates. For the Potts problem with circle-valued data, no efficient solver has
been proposed yet to the best of our knowledge.
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Algorithm 1: Solver for the Potts problem (Pγ) with real-valued or circle-valued data
Input: y ∈ RN or y ∈ TN : data; γ > 0: model parameter; w ∈ (R+

0 )N : weights;
Output: Global minimizer x̂ of (Pγ);
begin

/* Search space reduction */

Determine reduced search space V (see Section 2.1);
/* Tabulation */

for k ← 1 to K do
B1

k ← w1d(vk, y1);
end
for n← 2 to N do

z← mink=1,...,K Bn−1
k ;

for k ← 1 to K do
Bn

k ← wnd(vk, yn) + min(z + γ, Bn−1
k );

end
end
/* Backtracking */

l← arg mink=1,...,K BN
k ;

x̂n ← vl;
for n← N − 1,N − 2, ..., 1 do

Bn
l ← Bn

l − γ;
l← arg mink=1,...,K Bn

k ;
x̂n ← vl;

end
return x̂;

end

2.4 Algorithmic complexity for quantized data.

In general, the number of elements of V, denoted by K, is less or equal to the number of data
points N for scalar data and less or equal to 2N for circle-valued data. Thus the worst case
complexity of Algorithm 1 is O(N2). In many situations K is significantly smaller than N. For
quantized data on the unit circle, the number of discrete values K is bounded. Thus we obtain
linear complexity in this case.

In the case of quantized data on the real line, the number of values might not always be
bounded. However, we can give a bound for the following typical situation. Let f be a time-
continuous piecewise constant function on the interval [0, 1] with finitely many jumps, denoted
by ‖∇ f ‖0. We further assume that f is a càdlàg function which means that the limits f (t+) and
f (t−) exist and f (t+) = f (t) for all t ∈ [0, 1]. Let ȳN be the (point or integral) sampling of f at
density 1/N; that is, ȳN

n = f
(

n
N+1

)
or ȳN

n = 1
N

∫ n
N

n−1
N

f (t) dt. Data at sampling density 1/N is given

by
yN

n = ȳN
n + ηN

n (8)

where ηN is an N-dimensional vector of independent random variables. Since

K = |Val(yN
n )| ≤ |Val(ȳN

n )| |Val(ηN
n )| ≤ C f |Val(ηN

n )|
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Circle-valued data Real-valued data

Non-quantized data O(N2) O(N2)

Quantized data O(N) O(N2) general case
Op(N log N) for noise with exp. decay (Prop. 4)
O(N) for bounded noise

Table 1: Complexity of the proposed solver for the least absolute values Potts problem (Algorithm 1)
for quantized and non-quantized, real-valued and circle-valued data. The last two rows for quantized
real-valued data refer to data of the form (8).

with the constant C f = 2(‖∇ f ‖0 + 1), the number of expected values is bounded by the number
of expected values of the noise η. If the supports of the distribution of the components of η are
uniformly bounded with respect to n,N, then K is bounded and we obtain linear complexity of
Algorithm 1. For unbounded supports we get a slightly higher algorithmic complexity.

Proposition 4. Let C > 0 and 0 < p < 1. If ηN is an N-dimensional vector of independent
random variables where each component follows an integer-valued probability distribution
satisfying the exponential decay condition P(ηN

n = k) ≤ Cp|k|, then |Val(ηN)| ∈ Op(log N).

The proof is given in the Appendix. Examples of distributions that satisfy the hypothesis of
Proposition 4 are the discrete Laplace distribution, the discrete Gaussian distribution, and the
geometric distribution. We summarize the complexity of Algorithm 1 for the discussed data in
Table 1.

Remark 1. The statement of Proposition 4 remains true when each of the probability distribu-
tions of the independent random variables ηN

n are discrete with a global minimum separation
distance, i.e., there is ε > 0 such that any pair of neighboring values a, b in the range of any
random variable ηN

n fulfill |a − b| > ε. In this case the decay condition of Proposition 4 reads
P(ηN

n = a) ≤ Cp|a| where a is in the range of the random variable ηN
n .

3 The J-jump sparsity problem

Next we consider the J-jump sparsity problem given by

argmin
‖∇x‖0≤J

∑N

n=1
wn d(xn, yn), (PJ)

where J ∈ N0. Its solution will be useful for solving the Potts problem (Pγ) for all parameters
simultaneously (see next section). Apart from this, (PJ) is an interesting problem in its own
right which has applications, for example, in minimum error quantization; see Bruce (1965).

3.1 Basic properties of the J-jump sparsity problem

In the following, we denote by L the number of jumps of the data y; that is, L = ‖∇y‖0.
For J ≥ L, the J-jump sparsity problem (PJ) has the trivial solution y. Thus, we can restrict
ourselves to the case of J not being larger than L.

9



Although the J-jump sparsity problem (PJ) and the Potts problem (Pγ) are closely related,
they are not fully equivalent in the sense that a minimizer of (PJ) may not appear as minimizer
of (Pγ), no matter of the value of γ. To see this, consider the scalar data y = (0, 1, 0) and as
data term the Euclidean distance with uniform weights. The possible solutions for J = 1 are
the one-jump solutions of the form (0, a, a), (a, a, 0), a ∈ [0, 1], and the zero-jump solution
(0, 0, 0). However, one-jump solutions cannot be minimizers of the Potts functional: their Potts
functional values are equal to γ + 1, but this is for all γ > 0 strictly higher than the functional
value of the zero jump solution which is equal to 1. An analogous example can be given for
circle-valued data.

The above example also shows that the J-jump sparsity problem can have solutions with
(J − 1) jumps. Next, we argue that a solution of the J-jump sparsity problem cannot have less
than (J − 1) jumps. Assume that a solution xJ has (J − 2) or fewer jumps. Then we find an
index n such that xJ

n , yn. Setting xJ
n equal to yn adds at most two jumps. Thus, we have still

at most J jumps. But the approximation error of that candidate is lower than that of xJ , which
contradicts the fact that xJ minimizes the J-jump sparsity problem.

3.2 An efficient solver based on dynamic programming

As with the Potts problem, the key to a fast solver is a reduction of the search space to the finite
set VN :

Theorem 5. Let J ∈ N0 and let V be as in Theorem 2. The J-jump sparsity problem (PJ) has
a solution x̂ that fulfills x̂ ∈ VN .

The proof is an obvious modification of the proof of Theorem 2.
The computational solution is also similar to the solver of the Potts problem. The main

difference is that we now require JN tables of length K instead of N tables of length K. A
table entry Bn, j

k (1 ≤ n ≤ N, 1 ≤ j ≤ J, 1 ≤ k ≤ K) stores the approximation energy of the
optimal j-jump solution x for data (y1, . . . , yn) with xn = vk. The first J tables B1, j are given
by B1, j

k = w1d(vk, y1), for j = 0, . . . , J. Using the dynamic programming principle, we fill the
tables Bn, j successively for n = 1, . . . ,N and for j = 0, . . . , J by

Bn, j
k = min

{
z; wnd(vk, yn) + Bn−1, j

k

}
where z = minl=1,...,K Bn−1, j−1

l .As z does not depend on k, it can be computed separately. Filling
the table Bn, j requires K steps; hence, the total complexity for the tabulation isO(NKJ). For the
backtracking step, we first determine the minimizer lN of the table BN,J , i.e., lN = arg mink BN,J

k .

(As for the Potts problem, the tuple l ∈ NN stores minimizing indices.) We further initialize the
number of remaining jumps by iN = J. For n = N − 1, . . . , 1, we decide – based on the tables –
whether it is advantageous to take a jump or to continue with the same value via

(ln−1, in−1) = argmin
(k, j)∈{(1,in−1),...,(K,in−1),(ln,in)}

Bn, j
k .

The procedure terminates if in = 0, and then we set l1 = . . . = ln. Having computed the
minimizing indices ln, we obtain a minimizer x̂ of the J-jump sparsity problem by x̂n = vln , for
n = 1, . . . ,N. The complexity of the backtracking step is O(KN).
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A minor modification of the backtracking step allows us to compute the minimizers for the
jump constrained problem for all parameters J′ ≤ J without having to build up new tables.
We just have to initialize the backtracking step with iN = J′ instead of iN = J. In particular, if
we want to compute minimizers for all possible number of jumps J = 0, . . . , L, we only need
compute the tabulation for J = L and perform L + 1 backtracking steps with the initializations
iN = 0, . . . , L. This amounts to the complexity O(KNL).

We eventually summarize the results of the above derivation:

Theorem 6. The above algorithm computes a global minimizer of (PJ) inO(KNJ).Computing
minimizers for all J = 0, . . . , L simultaneously is O(KNL).

4 Solving the Potts problem for all parameters simultaneously

We can solve the Potts problem (Pγ) for all parameters γ > 0 simultaneously with a moderate
effort. To that end, we exploit the following relation between the Potts and the J-jump sparsity
problems.

Lemma 7. Let γ > 0 and let x̂ be a solution of the Potts problem (Pγ). Then x̂ is also a solution
of the jump constrained problem (PJ) with parameter J = ‖∇x̂‖0.

The proof is given in Appendix A. The example in the first paragraph of Section 3 shows
that the opposite direction of Lemma 7 is not true in general. Now assume that we have
computed for each J = 0, . . . , L, a minimizer for the J-jump sparsity problem, which we
denote by xJ . (Recall that this can be done in O(KNL) by Theorem 6). Lemma 7 tells us that
the set {x0, . . . , xL} already contains a solution of (Pγ) for each γ > 0. This implies that we
obtain a solution x̂ of (Pγ) by scanning through the J-jump solutions; that is,

x̂ ∈ argmin
x∈{x0,...,xL}

γ‖∇x‖0 +
∑N

n=1
wn d(xn, yn).

It remains to identify the connection between γ and J. We denote the minimal Potts functional
value for some γ > 0 by φ(γ), and we rewrite it as

φ(γ) = min
x

Pγ(x) = min
x∈{x0,...,xL}

γ ‖∇x‖0 +
∑N

n=1
wn d(xn, yn) = min

J=0,...,L
γJ + εJ , (9)

where εJ =
∑N

n=1 wn d(xJ
n , yn) is the approximation error of a J-jump solution xJ . Of even

greater interest is the function that maps γ to the minimizing argument J :

Ĵ(γ) = argmin
J=0,...,L

γJ + εJ . (10)

With the help of Ĵ, we obtain a minimizer of (Pγ) by x̂ = xĴ(γ).

Let us now explain how to compute the mappings φ and Ĵ given by (9) and (10) efficiently.
Being the pointwise infimum of L + 1 affine linear functions, φ is concave and piecewise linear
(with at most L + 1 pieces). (It is the largest concave minorant of these affine linear functions.)
The graph of φ is a polygon which is determined by at most L points; see Figure 1. Let us

11
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Figure 1: The function φ(γ) (blue solid line) is the largest minorant of the affine functions γJ + εJ for
J = 0, . . . , L (red dashed lines).

denote the affine function γJ + εJ by gJ . We first compute the intersection of g0 and g1 and
store that point on a stack. We proceed inductively as follows. Assume that we have computed
the concave minorant, φJ , of the first J affine functions. Also assume that we have stored the
determining nodes on a stack S where at the top of the stack is the leftmost node. In the step
J +1 we compute the intersection of the line gJ+1 with φJ . Since the slope of gJ+1 is larger than
all slopes of φJ there is at most one point of intersection. We first delete the nodes of φJ that lie
above the line gJ; that is, we pop the stack until we encounter a point which is below the new
line. Then we compute the intersection of the line through the point we have popped last and
the point at top of the stack. We push that point to the stack. We proceed until no more lines
have to be added. The points in the stack then determine the graph of φ. (The slope to ∞ is
equal to 0 and the slope to 0 is given by the number of jumps of the data, ‖∇y‖0.) The mapping
Ĵ is determined by the slopes of φ.

We eventually summarize the results of this section:

Theorem 8. There is an O(KNL) algorithm that computes minimizers of (Pγ) for all parame-
ters γ > 0 simultaneously.

5 Numerical experiments

We present numerical results on synthetic data with known ground truth, and we show results
on real data. The experiments were conducted on a desktop computer (Intel Xeon E5, 3.5 GHz,
32 GB RAM). The proposed algorithms were implemented in Matlab.

5.1 Synthetic real-valued data

An extensive numerical studies on the denoising performance of the L1-Potts estimator has
been given in earlier works by Friedrich et al. (2008) and Weinmann et al. (2015). Therefore,

12
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Figure 2: Runtime of our algorithm for the Potts problem with real-valued data. The proposed method
is faster than the state-of-the-art solver of Weinmann et al. (2015). With a prior quantization, we are
able to process even very large data within a few seconds.

we here focus on comparison to the runtimes of the solver by Weinmann et al. (2015).1 (Recall
that this solver improved upon the first solver of Friedrich et al. (2008) both in time and memory
complexity.) As a basis for our experiment we use the signal previously employed in Figure 1
of Weinmann et al. (2015) as ground truth; it has eight jumps and a dynamic range of [0, 1]. We
corrupted it by Laplacian noise of standard deviation σ = 0.1. As a result, the final signal has
K = N different values. In Figure 2, we show the average runtime with respect to ten different
realizations of the noise. We observe that Algorithm 1 is about twice as fast as the state-
of-the-art solver for general non-quantized data. For quantized data, the proposed algorithm
becomes significantly faster as the length of the data increases. Thus, it might be reasonable
to quantize the data to a desired precision before applying the proposed solver when dealing
with very large data. We note that the runtimes of the algorithm of Weinmann et al. (2015) and
the proposed algorithm for nonquantized data are by construction virtually independent of the
number of jumps of the underlying signal.

In Figure 3, we compare the runtimes for different noise distributions where data is quan-
tized to three decimals. Uniform noise is bounded, so the runtime grows linearly in N. Lapla-
cian noise leads to linearithmic scaling as it satisfies the hypothesis of Proposition 4. Even for
Cauchy noise, the complexity grows significantly slower than quadratic, although it has infinite
variance and its probability density has very slow decay. In all cases, the computational time
is significantly lower than the one of the benchmark method of Weinmann et al. (2015) which
exhibits almost no dependence of the runtimes on the noise.

5.2 Synthetic circle-valued data

We illustrate the performance of the Potts estimator for denoising synthetic circle-valued sig-
nals (with known ground truth). To this end we create random jump-sparse signals as follows:
We create a compound Poisson distributed random vector s ∈ RN ; that is, sn = 0 with prob-
ability e−λ and sn is uniformly distributed in [−a, a] with probability 1 − e−λ; see Unser and
Tafti (2014). Here we use λ = 0.05 and a = 1/2. The (true) signal ȳ is given as the summation

1The reference implementation of the solver by Weinmann et al. (2015) is available at http://pottslab.de.
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Figure 3: Runtime of our algorithm for the Potts problem for data with different noise distributions. All
signals are quantized to three decimals. The runtimes are averages over 100 realizations. We observe
that the runtime grows linearly in N for uniform noise. Laplacian noise leads to linearithmic scaling as
suggested by Proposition 4. Even for Cauchy noise, the computational effort grows significantly slower
than quadratic.

process of the innovation s interpreted as angle; that is, ȳn = exp(i
∑n

j=1 s j). We add noise to
the phase by y = ȳ exp(iη), where η is a Laplacian distributed random vector with standard de-
viation σ = 0.4. In Figure 4 we report a realization of the random signal and its Potts estimate
for different model parameters γ. In Figure 5 we show the deviation of the estimates to the
ground truth with respect to the sum over the pointwise arc length distances and with respect to
the number of jumps in dependance of the model parameter γ. (Recall that the Potts estimate
for all model parameter γ can be computed with moderate effort by the algorithm described
in Section 4.) Figure 6 shows the results for a different noise distribution, namely a wrapped
Gaussian distribution with σ = 0.3.

Eventually we note that the runtimes for circle-valued data are of the same order of mag-
nitude as those of the real-valued case for boundedly quantized and unquantized data, respec-
tively.

5.3 Results on real-world data

Next we apply our method to real-world data. First, we look at the estimation of steps in the
rotation of the bacterial flagellar motor. The bacterial flagellar motor is a rotary molecular
machine that is embedded in the bacterial cell envelope [Sowa et al. (2005); Sowa and Berry
(2008)]. It propels many species of swimming bacteria. Sowa et al. (2005) observed steps in
the rotation of the flagellar motor over time; in average, they found approximately 26 steps
per revolution. The present data set is a time series of the angular position of the flagellar
motor. The data was acquired using back-focal plane interferometry (BFP). The measurement
uncertainty of the data acquisition results in a slightly blurred signal. In view of the built-in
deconvolution property of the L1-Potts functional (cf. Theorem 4.4 in Weinmann et al. (2015)),
we expect that a slight blur does not negatively affect the performance of the Potts estimator.
In Figure 7, we report the estimate for the model parameter γ = 1.

Our second real-life data set consists of wind directions at the station WPOW1 (West Point,
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Figure 4: (a) A circle-valued signal of length N = 500 in angular representation corrupted with wrapped
Laplacian noise with σ = 0.4. (b) – (f) Potts estimate visualized for various values of the model
parameter γ, plotted as red line. The ground truth is drawn in black. (See also Figure 5 for the errors in
dependance of the γ parameter.)
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Figure 5: The plots illustrate the total absolute deviation of the Potts estimate x̂ and to ground truth ȳ
(left) and the difference w.r.t. to the number of jumps in dependance of model parameter γ (right). The
graphs correspond to the signal in Figure 4.
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Figure 6: (a) A circle-valued signal of length N = 500 in angular representation corrupted with wrapped
Gaussian noise with σ = 0.3. (b) – (f) Potts estimate visualized for various values of the model param-
eter γ, plotted as red line. The ground truth is drawn in black.

WA) recorded every hour in the year 2013.2 The Potts estimate facilitates to identify the time
intervals of approximately constant wind direction. The data is given quantized to integer
angles in degrees, i.e., K = 360. In Figure 8, we report the result for the model parameter
γ = 10.

6 Conclusion

We have studied the Potts estimator based on least absolute deviations for real-valued data and
for circle-valued data. We have proposed exact solvers for the Potts problem with real-valued
and circle-valued data. Here, the key observation was that solutions take values in a finite

2Data available at http://www.ndbc.noaa.gov/historical_data.shtml.
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Figure 7: The blue points represent the angle of the bacterial flagellar motor over time. The red line is
the least absolute values Potts estimate. (Original data by courtesy of Sowa et al. (2005)).

set (also for non-quantized data) which allowed us to employ a Viterbi-type dynamic program
as proposed in Felzenszwalb and Huttenlocher (2006). Furthermore, we have obtained an
algorithm for solving the Potts problem for all parameters γ simultaneously which was based
on solving the related J-jump sparsity problem. The proposed algorithm for real-valued data
improves upon the state-of-the-art solver with respect to computational time. The circle-valued
variant is the first exact solver for the circle-valued Potts problem to our knowledge. We have
illustrated the practical utility for the estimation of two real-life data sets: estimation of steps
in the rotation of the bacterial flagellar motor and estimation of time series of wind directions.
An interesting topic of future research are strategies for choosing the model parameter.
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Figure 8: Wind directions at Station WPOW1 (West Point, WA) recorded every hour in the year 2013.
(The data is given quantized to K = 360 angles.) The red line is the least absolute values Potts estimate
for circle-valued data.
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A Proofs

Proof of Lemma 1. Let z ∈ T \V be arbitrary, and let us denote the median-defining functional
by f (v) =

∑N
n=1 wn d(v, yn). The diameter passing through z cuts the unit circle into two hemi-

spheres. We denote the counterclockwise hemisphere relative to z by S + and the other one by
S −. Let us denote the total weight of the elements in S + by W+, i.e. W+ =

∑
n:yn∈S + wn, and

analogously let W− =
∑

n:yn∈S − wn. Without loss of generality, we can assume that S − is not
“heavier” than S +, i.e., W− ≤ W+. Let z′ ∈ V be the nearest neighbor of z in V on S +. The
distance between each element in S + and z′ is by d(z′, z) smaller than its distance to z. Hence,
replacing z by z′, the functional value of f is decreased by

∑
n:yn∈S + wnd(z′, z) = d(z′, z)W+.

With an analogous argument for the other hemisphere, f is increased at the same time by
d(z′, z)W−. Thus, we have that

f (z′) = f (z) + d(z′, z)W− − d(z′, z)W+ = f (z) + d(z′, z)(W− −W+) ≤ f (z),

where the inequality follows from W− ≤ W+. So, for every z ∈ T \ V, there is z′ in V that has a
smaller or equal functional value as z. This implies that there is a median in V. �

Proof of Theorem 2. Let Q = {q1, ..., qt} ⊂ {1, ...,N − 1} be a set of t jump indices, and let XQ

be the set of x ∈ XN that jump at the index indicated by Q; that is, xn , xn+1 for n ∈ Q and
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xn = xn+1 otherwise. The minimizer of the Potts restricted to XQ may be expressed as

min
x∈XQ

Pγ(x) = γ|Q| + min
x∈XQ

∑N

n=1
wnd(xn, yn).

Since the elements of XQ are constant between two jumps we get that

min
x∈XQ

∑N

n=1
wnd(xn, yn) = min

µ∈X

∑q1

n=1
wnd(µ, yn) + . . . + min

µ∈X

∑N

n=qt+1
wnd(µ, yn).

Hence, x ∈ XQ minimizes minx∈XQ Pγ(x) if x equals a median between any two jumps. By
Lemma 1, a median is contained in the set V. Considering all potential sets of jump indices
(which are finitely-many) completes the proof. �

Proof of Theorem 3. It follows from Theorem 2 and its subsequent paragraph that the search
space reduction is O(KN). The utilized variant of the Viterbi algorithm solves the reduced
problem in O(KN), see Felzenszwalb and Huttenlocher (2006). Thus, the overall method is
O(KN). �

Proof of Proposition 4. We have that

P(|ηN
n | ≥ m) ≤ C

∑
| j|≥m

p| j| = C[(2
1

1 − p
− p) − (2

1 − pm

1 − p
− p)] ≤ C′pm

for a constant C′ > 0. Now let m0 be such that C′pm0 < 1. The cardinality of the unique values,
i.e., |Val(ηN)|, can be estimated by |Val(ηN)| ≤ 2 maxn |η

N
n | + 1, where |ηN

n | is the ordinary
absolute value of ηN

n . It follows for m ≥ m0 that

P(|Val(ηN)| < m) ≥ P(max
n
|ηN

n | < (m − 1)/2) =
∏N

n=1
P(|ηN

n | < (m − 1)/2)

≥
∏N

n=1
(1 −C′p(m−1)/2) = (1 −C′p(m−1)/2)N ≥ 1 −C′N p(m−1)/2.

Then, letting m = − 4
log p log N yields

P
(
|Val(ηN)| < −

4
log p

log N
)
≥ 1 −C′p−1/2N p

2 log N
− log p

= 1 −C′p−1/2N exp(
2 log N
− log p

log p) = 1 −C′p−1/2N−1.

Hence P
(
|Val(ηN)| ≥ C′′ log N

)
→ 0 as N → ∞, with C′′ = − 4

log p , which implies that
|Val(ηN)| ∈ Op(log N). �

Proof of Lemma 7. Since x̂ is a minimizer of the Potts functional, it is a minimizer of the
problem

min
x

∑N

n=1
wn d(xn, yn), s.t. ‖∇x‖0 = ‖∇x̂‖0. (11)

By the minimality of x̂ with respect to the Potts functional, we further get that
∑N

n=1 wn d(xn, yn)
>

∑N
n=1 wn d(x̂n, yn) for all x with ‖∇x‖0 < ‖∇x̂‖0. This means that all candidates with less than

or equally many jumps as x̂ do not lead to a smaller value of the target functional in (11).
Therefore, x̂ is a solution of (PJ) for the parameter J = ‖∇x̂‖0.

�

19



Proof of Theorem 8. It follows from Lemma 7 that the set of solutions of the Potts problem
(Pγ) is contained in the set of solutions of the jump constrained problem (PJ). The latter can
be computed for all number of jumps in O(KNL) by (6). For mapping the parameter value γ
to the smallest number of jumps of a corresponding Potts solution (Pγ), we need to compute
intersections of certain lines and graphs of concave functions as explained in the paragraph
before Theorem 8. Namely, in step J + 1 (0 ≤ J ≤ L) we compute the intersection of the
line gJ+1 with the concave piecewise affine function φJ . (Here, we use the notation as in the
paragraph before Theorem 8.) The costs for this can be bounded from above by O(L2), and, as
L ≤ N − 1, also by O(NL). Summing all up, we get the complexity O(KNL).

�
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