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The reconstruction of three-dimensional sparse volume functions
from few tomographic projections constitutes a challenging prob-
lem in image reconstruction and turns out to be a particular prob-
lem instance of compressive sensing. The tomographic measure-
ment matrix encodes the incidence relation of the imaging process,
and therefore is not subject to design up to small perturbations of
non-zero entries. We present an average case analysis of the re-
covery properties and a corresponding tail bound to establish weak
thresholds in excellent agreement with numerical experiments. Our
results improve the state-of-the-art of tomographic imaging in ex-
perimental fluid dynamics.
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1. Introduction

Research on compressive sensing [8,3] focuses on properties of underdetermined linear systems

Ax = b, A ∈R
m×n, m � n, (1.1)
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Fig. 1. Compressive sensing in experimental fluid dynamics: A multi-camera setup gathers few projections from a sparse volume
function. This scenario is described by a very large and highly underdetermined sparse linear system (1.1) having the additional
properties (1.2). The sparsity parameter k reflects the seeding density of a given fluid with particles. Less sparse scenarios
increase the spatial resolution of subsequent studies of turbulent motions, but compromise accuracy of the reconstruction.
Research is concerned with working out and mathematically substantiating the best compromise.

that ensure the accurate recovery of sparse solutions x from observed measurements b. Strong asser-
tions are based on random ensembles of measurement matrices A and measure concentration in high
dimensions that allow proving good recovery properties with high probability [9,4].

A common obstacle in various application fields is the limited number of options for designing a
measurement matrix so as to exhibit desirable mathematical properties. Accordingly, recent research
has also been concerned with more restricted scenarios, spurred by their relevancy to applications
(cf. Section 2.3).

Consequently, we consider a representative scenario, motivated by TomoPIV (Tomographic Particle
Image Velocimetry) [12], an application in experimental fluid dynamics (Fig. 1). A suitable mathematical
abstraction of this setup gives rise to a huge and severely underdetermined linear system (1.1) that
has additional properties: a very sparse nonnegative measurement matrix A with constant small support
of all column vectors, and a nonnegative sparse solution vector x:

A � 0, x � 0, supp(A•, j)= ��m, ∀ j = 1, . . . ,n. (1.2)

Our objective is the usual one: relating accurate recovery of x from given measurements b to the
sparsity k = supp(x) of the solution x and to the dimensions m,n of the measurement matrix A. The
sparsity parameter k has an immediate physical interpretation (Fig. 1). Engineers require high values
of k, but are well aware that too high values lead to spurious solutions. The current practice is based
on a rule of thumb leading to conservative low values of k.

In this paper, we are concerned with working out a better compromise along with a mathe-
matical underpinning. The techniques employed are general and only specific to the class of linear
systems (1.1), (1.2), rather than to a particular application domain.

We regard the measurement matrix A as given. Concerning the design of A, we can only resort
to small random perturbations of the non-zero entries of A, thus preserving the sparse structure
that encodes the underlying incidence relation of the sensor. Additionally, we exploit the fact that
solution vectors x can be regarded as samples from a uniform distribution over k-sparse vectors,
which represents with sufficient accuracy the underlying physical situation.

Under these assumptions, we focus on an average case analysis of conditions under which unique
recovery of x can be expected with high probability. A corresponding tail bound implies a weak thresh-
old effect and criterion for adequately choosing the value of the sparsity parameter k. Our results are
in excellent agreement with numerical experiments and improve the state-of-the-art by a factor of
three.

Contribution and organization. Although our approach will be developed for a specific imaging set-up,
the techniques that we apply are more general. They should be applicable not only to alternative
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Fig. 2. Left: 2D imaging geometry with d2 cells and 2d projection rays (here: d = 6). The incidence relation is given by
the measurement matrix A = A2

d (cf. Eq. (2.2)) which is the adjacency of a bipartite graph with constant left degree � = 2.
Right: 3D imaging geometry with d3 cells and 3d2 rays (here: d = 7). The incidence relation given by the measurement matrix
A = A3

d is the adjacency of a bipartite graph with constant left degree �= 3.

imaging geometries but also to abstract sensors characterized by sparse expanders and nonnegativity,
irrespective of any application context. This enables to exhibit mathematically stronger reconstruction
performance under weaker conditions, that may be nonetheless relevant to real application scenarios,
as in our case additionally demonstrated by detailed numerical experiments. In Section 2, we detail
the mathematical abstraction of the imaging process and discuss directly related work. In Section 3,
we examine recent results of compressive sensing based on sparse expanders. This sets the stage for
an average case analysis conducted in Section 5 and corresponding weak recovery properties that
are in sharp contrast to poor strong recovery properties presented in Section 4. We conclude with a
discussion of quantitative results and their agreement with numerical experiments in Section 6.

Notation. |X | denotes the cardinality of a finite set X and [n] = {1,2, . . . ,n} for n ∈N. We will denote
by ‖x‖0 = |{i: xi �= 0}| and R

n
k = {x ∈ R

n: ‖x‖0 � k} the set of k-sparse vectors. The corresponding
sets of nonnegative vectors are denoted by R

n+ and R
n
k,+ , respectively. The support of a vector x ∈R

n ,

supp(x)⊆ [n], is the set of indices of non-vanishing components of x. With I+(x)= {i: xi > 0}, I0(x)=
{i: xi = 0} and I−(x)= {i: xi < 0}, we have supp(x)= I+(x)∪ I−(x) and ‖x‖0 = | supp(x)|.

For a finite set S , the set N (S) denotes the union of all neighbors of elements of S where the
corresponding relation (graph) will be clear from the context.

1= (1, . . . ,1)
 denotes the one-vector of appropriate dimension.
A•,i denotes the i-th column vector of a matrix A. For given index sets I, J , matrix AI J denotes the

submatrix of A with rows and columns indexed by I and J , respectively. Ic, J c denote the respective
complement sets. Similarly, bI denotes a subvector of b.

E[·] denotes the expectation operation applied to a random variable and Pr(B) the probability to
observe an event B .

2. Preliminaries

2.1. Imaging set-up and representation

We refer to Fig. 2 for an illustration of the mathematical abstraction of the scenario depicted by
Fig. 1. In order to handle in parallel the 2D and 3D cases, we will use the variable

D ∈ {2,3}. (2.1)

We measure the problem size in terms of d ∈N and consider n := dD cells in a square (D = 2) or
cube (D = 3) and m := DdD−1 rays, compare Fig. 2, left and right. It will be useful to denote the set
of cells by C = [n] and the set of rays by R = [m]. The incidence relation between cells and rays is
given by an m × n measurement matrix AD

d
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(
AD

d

)
i j =

{
1, if i-th ray intersects j-th cell,

0, otherwise,
(2.2)

for all i ∈ [m], j ∈ [n]. Thus, cells and rays correspond to columns and rows of AD
d .

The incidence relation encoded by AD
d gives rise to the equivalent representation in terms of a bi-

partite graph G = (C, R; E) with left and right vertices C and R , and edges cr ∈ E iff (AD
d )rc = 1. Fig. 2

illustrates that G has constant left degree �= D . It will be convenient to use a separate symbol �.
For a fixed vertex i, any adjacent vertex j ∼ i is called neighbor of i. For any nonnegative mea-

surement matrix A and the corresponding graph, the set

N (S)= {i ∈ [m]: i ∼ j, j ∈ S
}= {i ∈ [m]: Aij > 0, j ∈ S

}
contains all neighbors of S . The same notation applies to neighbors of subsets S ⊂ [m] of right nodes.

With slight abuse, we call the matrix AD
d that encodes the adjacency r ∼ c of vertices r ∈ R and

c ∈ C adjacency matrix of the induced bipartite graph G , deviating from the usual definition of the
adjacency matrix of a graph that encodes the adjacency of all nodes vi ∼ v j , V = C ∪ R . Moreover, in
this sense, we will call any nonnegative matrix adjacency matrix, based on its non-zero entries.

Let A be the nonnegative adjacency matrix of a bipartite graph with constant left degree �. The
perturbed matrix Ã is computed by uniformly perturbing the non-zero entries Aij > 0 to obtain
Ãi j ∈ [Aij − ε, Aij + ε], and by normalizing subsequently all column vectors of Ã. In practice, such
perturbation can be implemented by discretizing the image by radial basis functions and choose their
locations on an irregular grid, see [16].

The following class of graphs plays a key role in the present context and in the field of compressed
sensing in general.

Definition 2.1. A (ν, δ)-unbalanced expander is a bipartite simple graph G = (L, R; E) with constant
left degree � such that for any X ⊂ L with |X |� ν , the set of neighbors N (X) ⊂ R of X has at least
size |N (X)|� δ�|X |.
2.2. Deviation bound

We will apply the following inequalities for bounding the deviation of a random variable from
its expected value based on martingales, that is on sequences of random variables (Xi) defined on a
finite probability space (Ω,F ,μ) satisfying

E[Xi+1|Fi] = Xi, for all i � 1, (2.3)

where Fi denotes an increasing sequence of σ -fields in F with Xi being Fi -measurable.
This setting applies to random variables associated to measurements that are statistically dependent

due to the intersection of projection rays (cf. Fig. 2).

Theorem 2.1 (Azuma’s inequality). (See [1,6].) Let (Xi)i=0,1,2,... be a sequence of random variables satisfying
(2.3) such that for each i,

|Xi − Xi−1|� ci . (2.4)

Then, for all j � 0 and any τ > 0,

Pr
(|X j − X0|� τ

)
� 2 exp

(
− τ 2

2
∑ j

i=1 c2
i

)
. (2.5)

The second inequality stated below will be applied to the following setting. Let X = (X1, . . . , Xm)

be family of – possibly dependent – random variables taking values in X = {0,1}m . Suppose xi ∈ {0,1}
for each i = 1, . . . , r − 1, and let B denote the event

B: Xi = xi for i = 1, . . . , r − 1. (2.6)
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For a given function f (X) define

g(x)= E
[

f (X)|B, Xr = x
]−E

[
f (X)|B] (2.7)

and the related quantities

dev(x1, . . . , xr−1)= max
{∣∣g(0)

∣∣, ∣∣g(1)
∣∣}, (2.8a)

ran(x1, . . . , xr−1)= max
x,y∈{0,1}

∣∣g(x)− g(y)
∣∣, (2.8b)

and with x = (x1, . . . , xm) and index sets Ir ⊆ [m], |Ir | = r � m,

maxdev = max
x∈X ,Ir

dev(x1, . . . , xr−1),

R2(x)=
m∑

r=1

(
ran(x1, . . . , xr−1)

)2
,

r̂2 = max
x∈X R2(x). (2.9)

Theorem 2.2. (See [15, Thm. 3.9].) Let f denote a bounded real-valued function defined on X . Let μ denote
the mean of f (X). Suppose that, for any given values taken by X1, . . . , Xr−1 , the random variable Xr takes two
values, and the smaller corresponding probability is at most p � 1

2 . Then for any τ � 0,

Pr
(∣∣ f (X)−μ

∣∣� τ
)
� 2 exp

(
− τ 2

2pr̂2(1 + τmaxdev
3pr̂2 )

)
. (2.10)

2.3. Related work

Although it was shown [3] that random measurement matrices are optimal for Compressive Sens-
ing, in the sense that they require a minimal number of samples to recover efficiently a k-sparse
vector, recent trends [2,22] tend to replace random dense matrices by adjacency matrices of “high
quality” expander graphs. Explicit constructions of such expanders exist, but are quite involved.
However, random m × n binary matrices with nonreplicative columns, having �n� ones, perform
numerically extremely well, even if � is small, as shown in [2]. Ref. [13] shows that perturbing
the elements of adjacency matrices of expander graphs with low expansion improves performance.
These findings complement our prior work in [16], where we observed that by slightly perturbing the
entries of a tomographic projection matrix its reconstruction performance can be improved signifi-
cantly.

We wish to inspect bounds on the required sparsity that guarantee exact reconstruction of most
sparse signals and corresponding critical parameter values similar to weak thresholds in [10,11]. The
authors have computed sharp reconstruction thresholds for Gaussian measurements, such that for
given a signal length n and numbers of measurements m, the maximal sparsity value k which guar-
antees perfect reconstruction can be determined precisely.

For a matrix A ∈R
m×n , Donoho and Tanner define the undersampling ratio δ = m

n ∈ (0,1) and the
sparsity as a fraction of m, k = ρm, for ρ ∈ (0,1). The so called strong phase transition ρS (δ) indicates
the necessary undersampling ratio δ to recover all k-sparse solutions, while the weak phase transition
ρW (δ) indicates when x∗ with ‖x∗‖0 � ρW (δ) ·m can be recovered with overwhelming probability by
linear programming.

Relevant for TomoPIV is the setting as δ → 0 and n →∞, that is severe undersampling, since the
number of measurements is of order O (104) and discretization of the volume can be made accord-
ingly fine. For Gaussian ensembles a strong asymptotic threshold ρS(δ) ≈ (2e log(1/δ))−1 and weak
asymptotic threshold ρW (δ)≈ (2 log(1/δ))−1 holds, see e.g. [10]. In this highly undersampled regime,
the asymptotic thresholds are the same for nonnegative and unsigned signals. Exact sparse recovery of
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nonnegative vectors has been also studied in a series of recent papers [13,20], while [17,18] addition-
ally assumes that all non-zero elements are equal to each other. As expected, additional information,
improves the recoverable sparsity thresholds.

2.3.1. Strong recovery
The maximal sparsity k depending on m and n, such that all sparse signals are unique and coincide

with the unique positive solution of Ax = b, is investigated in [10,11] from the perspective of convex
geometry by studying the face lattice of the convex polytope conv{A•,1, . . . , A•,n,0}. It is related to
the nullspace property for nonnegative signals in what follows.

Theorem 2.3. (See [10,13,20,16].) Let A ∈ R
m×n be an arbitrary matrix. Then the following statements are

equivalent:

(a) Every k-sparse nonnegative vector x∗ is the unique positive solution of Ax = Ax∗ .
(b) The convex polytope defined as the convex hull of the columns in A and the zero vector, i.e. conv{A•,1, . . . ,

A•,n,0} is outwardly k-neighborly.
(c) Every non-zero null space vector has at least k + 1 negative (and positive) entries.

2.3.2. Weak recovery
Thm. 2 in [10] shows the equivalence between (k, ε)-weakly (outwardly) neighborliness and weak

recovery, i.e. uniqueness of all except a fraction ε of k-sparse nonnegative vectors. Weak neighbor-
liness is the same thing as saying that A�n−1

0 has at least (1 − ε)-times as many (k − 1)-faces as

the simplex �n−1
0 . A different form of weak recovery is to determine the probability that a random

k-sparse nonnegative vector is unique by probabilistic nullspace analysis. These concepts are related
to each other in the next theorem for an arbitrary sparse vector with exactly k nonnegative entries.

Theorem 2.4. Let A ∈R
m×n be an arbitrary matrix. Then the following statements are equivalent:

(a) The k-sparse nonnegative vector x∗ supported on S, |S| = k, is the unique positive solution of Ax = Ax∗ .
(b) Every non-zero null space vector cannot have all its negative components in S.
(c) A SR

k+ is a k-face of ARn+ , i.e. there exists a hyperplane separating the cone generated by the linearly
independent columns {A•, j} j∈ S from the cone generated by the columns of the off-support {A•, j} j∈ Sc .

Proof. Statement (a) holds if and only if there is no v �= 0 such that Av = 0 and v Sc � 0, compare for
e.g. [14, Thm. 1]. Thus (a) ⇔ (b). By [11, Lem. 5.1], (a) ⇔ (c) holds as well. �

If in addition all k non-zero entries are equal to each other, then a stronger characterization holds.

Theorem 2.5. (See [14, Prop. 2].) Let A ∈ R
m×n be an arbitrary matrix. Then the following statements are

equivalent:

(a) The k-sparse binary vector x∗ ∈ {0,1}n supported on S, |S| = k, is the unique solution of Ax = Ax∗ with
x ∈ [0,1]n.

(b) Every non-zero null space vector cannot have all its negative components in S and the positive ones in Sc .
(c) There exists a vector r such that Diag(z∗)A
r > 0, with z∗ := 1− 2x∗ .
(d) 0 ∈ R

m is not contained in the convex hull of the columns of A Diag(z∗), i.e. 0 /∈ conv{z∗1 A•,1, . . . ,
z∗n A•,n,0}, with z∗ := 1− 2x∗ .

Proof. Uniqueness of x∗ in {x: Ax = Ax∗, x ∈ [0,1]n} holds, for e.g. by [14, Thm. 1], if there is no
v �= 0 such that Av = 0, v Sc � 0 and v S � 0, which shows equivalence to (b). With D := Diag(1−2x∗)
and D D = I , (b) can be rewritten as follows: there is no v �= 0 such that AD D v = 0, D v � 0, D v �= 0.
With u := D v , the above condition becomes:
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Fig. 3. The probability Pr(n,m) given by (2.12) that n points in general position in R
m can be linearly separated [21]. This holds

with probability Pr(n,m)= 1 for n/m � 1, and with Pr(n,m)→ 1 if m →∞ and 1 � n/m < 2.

ADu = 0, u � 0, u �= 0, has no solution,

which by Gordon’s theorem of alternative gives the equivalent certificate (c):

∃r such that D A
r > 0. (2.11)

In other words, a small k-subset of the columns of A, are “flipped” by multiplication with −1, and
these modified columns together with all remaining ones can be separated from the origin, which
shows equivalence to (d), i.e. 0 is not contained in the convex hull of these points. �

Note that statement (d) is related to the necessary condition for uniqueness in [20, Thm. 1]. We
further comment on Theorem 2.5 (c) from a probabilistic viewpoint. Condition (c) says that all points
defined by the columns of A Diag(1− 2x∗) are located in a single half space defined by a hyperplane
through the origin with normal r. Conditions under which this is likely to hold were studied by
Wendel [21]. This problem is also directly related to the basic pattern recognition problem concerning
the linear classification1 of any dichotomy of a finite point set [5].

Assuming n points in R
m to be in general position, that is any subset of m vectors is linearly

independent, and that the distribution from which the given point set is regarded as an i.i.d. sample
set is symmetric with respect to the origin, then condition (2.11) holds with probability

Pr(n,m)= 1

2n−1

m−1∑
i=0

(
n − 1

i

)
. (2.12)

As Fig. 3 illustrates, Pr(n,m)= 1 if n/m � 1, due to the well-known fact that any dichotomy of m + 1
points in R

m can be separated by a hyperplane [19,7]. For increasing dimension m →∞, this also
holds almost surely if n/m < 2, which can be easily deduced by applying a binomial tail bound. Ac-
cordingly, assuming that the measurement matrix A conforms to the assumptions, the authors of [14]
conclude that an existing binary solution to (1.1) is unique with probability (2.12) for underdetermined
systems with ratio m/n > 1/2.

We adopt this viewpoint in Section 5.4 and develop a criterion for unique recovery with high
probability using the given measurement matrix (2.2), based on a probabilistic average case analysis
of condition (5.39) (Section 5.4). This criterion currently characterizes best the design of tomographic
scenarios (Fig. 2), with recovery performance guaranteed with high probability. We conclude this
section by mentioning that exact nonasymptotic recovery results for a k-sparse nonnegative vector

1 In this context, “linear” means affine decision functions.
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are obtained in [11, Thm. 1.10] by exploiting Wendel’s theorem. Donoho and Tanner show that the
probability of uniqueness of a k-sparse nonnegative vector equals Pr(n−m,n−k), provided A satisfies
certain conditions which do not hold in our considered application.

3. Expanders, perturbation, and recovery via reduced systems

Both Sections 3.1 and 3.2 collect recent results of recovery properties based on expanders associ-
ated with sparse measurement matrices, possibly after a random perturbation of the non-zero matrix
entries. In Section 3.3 we show that the support of a sparse nonnegative vector can always be recov-
ered by solving an appropriate reduced system. Section 3.4 applies these results to our specific setting
in a form suitable for a probabilistic analysis of recovery performance presented in Section 5.

3.1. Expanders and recovery

The following theorem is a slight variation of Theorem 4 in [20] tailored to our specific setting.

Theorem 3.1. Let A be the adjacency matrix of a (ν, δ)-unbalanced expander and 1 � δ >
√

5−1
2 . Then for any

k-sparse nonnegative vector x∗ with k � ν
(1+δ)

, the solution set {x: Ax = Ax∗, x � 0} is a singleton.

Proof. We will show that every non-zero null space vector has at least ν
(1+δ)

+1 negative and positive
entries. Then Theorem 2.3 will provide the desired assertion.

Suppose without loss of generality that there is a vector v ∈ ker(A) \ {0} with

s := ∣∣I−(v)
∣∣� ν

(1 + δ)
. (3.1)

Then

�
∣∣I−(v)

∣∣� ∣∣N (I−(v)
)∣∣� δ�s, (3.2)

where the second inequality follows by assumption due to the expansion property.
Denoting by S the support of v , S = I−(v)∪ I+(v), we have

N
(

I−(v)
)=N

(
I+(v)

)=N (S), (3.3)

since otherwise Av �= 0 because A is nonnegative.
From �|I+(v)|� |N (I+(v))|, (3.3) and (3.2), we obtain∣∣I+(v)

∣∣� δs.

Thus,

|S| = ∣∣I−(v)
∣∣+ ∣∣I+(v)

∣∣� (1 + δ)s.

Let S̃ ⊆ S such that | S̃| = �(δ + 1)s�. Since ν � �(δ + 1)s� due to (3.1) and ν ∈ N, | S̃| � ν holds.
Now ∣∣N ( S̃)

∣∣� δ�| S̃|� δ�(δ + 1)s > s� (3.4)

provided δ(1 + δ) > 1 ⇔ δ > (
√

5 − 1)/2. Summarizing, we get s� < |N ( S̃)| � |N (S)| = |N (I−(v))|
� s�, hence a contradiction. �

The assertion of Theorem 3.1 solely relies on the expansion property of the measurement matrix A.
Theorem 3.5 below will be based on it and in turn the results of Section 5.2.
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3.2. Perturbed expanders and recovery

We describe next an alternative route based on the complete (Kruskal) rank r0 = r0(A) of a mea-
surement matrix A. This is the maximal integer r0 such that every subset of r0 columns of A is
linearly independent.

While this number is combinatorially difficult to compute in practice, both the number and the
corresponding recovery performance can be enhanced by relating it to a particular expansion prop-
erty of the bipartite graph associated to a perturbed measurement matrix Ã. The latter can be easily
computed in practice while preserving its sparsity, i.e. the constant left degree �.

Theorem 3.2. (See [16, Thm. 6.2], [13, Thm. 4.1].) Let A be a nonnegative matrix with � non-zero entries in
each column and complete rank r0 = r0(A). Then |I−(v)|� r0/� for all nullspace vectors v ∈ ker(A).

Remark 3.1. In view of Theorem 2.3 (c), Theorem 3.2 says that all k-sparse nonnegative vectors x can
be uniquely recovered if k � �r0/�− 1�.

The following lemma asserts that by a perturbation of the measurement matrix the complete rank,
and hence the recovery property, may be enhanced provided all subsets of columns, up to a related
cardinality, entail an expansion that is less however than the one required by Theorem 3.1.

Lemma 3.3. (See [13, Lem. 4.2].) Let A be a nonnegative matrix with � non-zero entries in each column.
Suppose that for any submatrix formed by r̃0 columns of A it holds that |N (X)|� |X |, for each subset X ⊂ C
of columns of cardinality |C | � r̃0 . Then there exists a perturbed matrix Ã that has the same structure as A
such that its complete rank satisfies r0( Ã) � r̃0 .

3.3. Reduced systems

Due to the nonnegativity and sparsity of both A and x the data vector b will be sparse and non-
negative as well. As a consequence zero measurements and redundant columns in A can be removed
from the original system. In this section we formalize this procedure and check equivalence to the
unreduced system.

Recall from Section 2.1 that we regard a given measurement matrix A also as adjacency matrix of
a bipartite graph G = (C, R; E).

Definition 3.1. The reduced system corresponding to a given nonnegative vector b,

Aredx = bred, Ared ∈R
mred×nred+ , (3.5)

results from A,b by choosing the subsets of rows and columns

Rb := supp(b), Cb := C \N (Rc
b

)=N
(

Rc
b

)c
(3.6)

with

mred := |Rb|, nred := |Cb|. (3.7)

We further define

S+ := {x: Ax = b, x � 0} (3.8)

and

S+
red := {x: ARb Cb x = bRb , x � 0}. (3.9)

The following proposition asserts that solving the reduced system (3.5) will always recover the sup-
port of the solution to the original system Ax = b.
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Proposition 3.4. Let A ∈ R
m×n and b ∈ R

m have nonnegative entries only, and let S+ and S+
red be defined

by (3.8) and (3.9), respectively. Then

S+ = {x ∈R
n: x(Cb)c = 0 and xCb ∈ S+

red

}
. (3.10)

Proof. Let S := {x ∈ R
n: x(Cb)c = 0 and xCb ∈ S+

red}. We first show S ⊆ S+ . Let x ∈ S . From this x � 0
follows directly. Thus, we just have to show

∑n
j=1 aij x j = bi , ∀i ∈ [n]. Indeed, for

i ∈ Rb:
n∑

j=1

aijx j =
∑
j∈Cb

ai jx j︸︷︷︸
=bi

+
∑

j∈(Cb)c

ai j x j︸︷︷︸
=0

= bi,

whereas for

i ∈ (Rb)
c:

n∑
j=1

aijx j =
∑
j∈Cb

ai j︸︷︷︸
=0

x j +
∑

j∈(Cb)c

ai j x j︸︷︷︸
=0

= 0 = bi .

Now let x ∈ S+ and consider any i ∈ (Rb)
c . By definition (Cb)

c =N (Rc
b) and thus aij > 0 for every

i ∈ (Rb)
c and j ∈N (Rc

b). Then

0 = bi =
n∑

j=1

aijx j =
∑
j∈Cb

ai j︸︷︷︸
=0

x j +
∑

j∈(Cb)c

ai j︸︷︷︸
>0

x j (3.11)

holds. Since x � 0, we obtain from (3.11) that x j = 0, ∀ j ∈ (Cb)
c . To show that ARb Cb xCb = bRb , consider

i ∈ Rb:
∑
j∈Cb

ai jx j =
∑
j∈Cb

ai jx j +
∑

j∈(Cb)c

ai j x j︸︷︷︸
=0

=
n∑

j=1

aijx j = bi .

Hence, x(Cb)c = 0 and xCb ∈ S+
red . Thus x ∈ S . �

3.4. Recovery via reduced systems

In view of the previous section, the reconstruction of a random k-sparse vector x supported on X
will be based on a reduced linear system restricted to the rows N (X) and the columns N (N (X)c)c .
Dimensions of reduced systems will be the same for most random sets X = supp(x), with |X | = k,
contained in C . Consequently, in view of a probabilistic average case analysis conducted in Section 5,
it suffices to measure the expansion with respect to these sets.

Taking Proposition 3.4 into account, the following theorem tailors Theorem 3.1 to our specific
setting.

Theorem 3.5. Let X be a random subset X ⊂ C of left nodes, with Rb = N (X) and Cb := N (Rc
b)

c . If any
Y ⊂ Cb satisfies

∣∣N (Y )
∣∣� δ�|Y | with δ =

√
5 − 1

2
, (3.12)

then the solution set {x: Aredx = Aredx∗, x � 0} is a singleton for any |Cb |
(1+δ)

-sparse nonnegative vector x∗ .

Now if X ⊂ Cb fulfills |X |� |Cb |
(1+δ)

then we obtain recovery of x supported on X .
The next theorem follows from Proposition 3.4 and Lemma 3.3 and simply states that recovery is

guaranteed via full rank overdetermined perturbed reduced systems.
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Theorem 3.6. Let X be a random subset X ⊂ C of left nodes, with Rb = N (X) and Cb := N (Rc
b)

c . If any
Y ⊂ Cb satisfies∣∣N (Y )

∣∣� |Y |, (3.13)

then there exists a perturbation Ãred of Ared such that for any |Cb|-sparse nonnegative vector x∗ , the solution
set {x: Ãredx = Ãredx∗, x � 0} is a singleton.

Since X ⊂ Cb this result also implies recovery of x supported on X . The consequences of Theo-
rems 3.5 and 3.6 are investigated in Section 5 by working out critical values of the sparsity parame-
ter k for which the respective conditions are satisfied with high probability.

4. Strong equivalence

In [16] we tested the properties of the discrete tomography matrix in focus against various condi-
tions, like the null space property, the restricted isometry property, etc., and predicted an extremely
poor worst case performance of such a measurement system. In the 3D case we showed that the
strong threshold on sparsity, that is the maximal sparsity level k0 for which recovery of all k-sparse
(positive) vectors, k � k0, is guaranteed, is a constant, not depending on the undersampling ratio d.

4.1. Unperturbed systems

Given an indexing of cells and rays, we can rewrite the projection matrix AD
d ∈ R

DdD−1×dD
from

(2.2) in closed form as

AD
d :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(
Id ⊗ 1T

d

1T
d ⊗ Id

)
, if D = 2,

⎛
⎜⎝ 1


d ⊗ Id ⊗ Id

Id ⊗ 1

d ⊗ Id

Id ⊗ Id ⊗ 1

d

⎞
⎟⎠ , if D = 3.

(4.1)

Since for these matrices a sparse nullspace basis can be computed, we can derive the maximal sparsity
via the nullspace property, as shown next.

Proposition 4.1. (See [16, Prop. 2.2, Prop. 3.2].) Let D ∈ {2,3}, d ∈ N, d � 3 and AD
d from (4.1). Define B D

d ∈
R

dD×(d−1)D
as

B D
d :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
−1T

d−1

Id−1

)
⊗
(
−1T

d−1

Id−1

)
, if D = 2,

(
−1


d−1

Id−1

)
⊗
(
−1


d−1

Id−1

)
⊗
(
−1


d−1

Id−1

)
, if D = 3.

(4.2)

Then the following statements hold:

(a) AD
d B D

d = 0.
(b) Every column in B D

d has exactly 2D non-zero (2D−1 positive, 2D−1 negative) elements.
(c) B D

d is a full rank matrix and rank(B D
d )= (d − 1)D .

(d) ker(AD
d )= span{B D

d }, i.e. the columns of B D
d provide a basis for the null space of AD

d .
(e) rank(AD

d )= dD − (d − 1)D .
(f)

∑n
i=1 vi = 0 holds for all v ∈ ker(AD

d ).
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Fig. 4. Two different nonunique 4-sparse “particle” distributions in a 3 × 3 × 3 volume. Both configurations (represented by
black and white dots) yield identical projections in all three directions. Such nonunique configurations correspond to positive
or negative entries in an 8-sparse nullspace vector of A3

d , compare to Proposition 4.1.

(g) The Kruskal rank of AD
d is 2D − 1, i.e.

min
v∈ker(AD

d )

v �=0

‖v‖0 = 2D .

(h) Every non-zero nullspace vector has at least 2D−1 negative entries, i.e.

min
v∈ker(AD

d )

v �=0

∣∣I−(v)
∣∣= 2D−1.

Thus, (g) and (h) imply

Corollary 4.2. For all d ∈ N, d � 3, every (2D−1 − 1)-sparse vector x∗ is the unique sparsest solution of
AD

d x = AD
d x∗ . Moreover, for every (2D−1 − 1)-sparse positive vector x∗ {x: AD

d x = AD
d x∗} is a singleton.

This bound is tight, since we can construct two 2D−1-sparse solutions x1 and x2 such that
AD

d x1 = AD
d x2, compare Fig. 4 for the 3D case. However, when D = 3, not every 8-column combi-

nation, or more, in A3
d is linearly dependent. In fact, only a limited number of k-column combinations

can be dependent without violating rank(A3
d)= 3d2 − 3d + 1. It turns out that this number is tiny for

smaller k when compared to
(n

k

)
. As k increases the probability of linear dependency of k arbitrary

columns in A3
d also grows and equals 1 only when k > rank(A3

d). Likewise, not every 4-sparse binary
vector is nonunique. Due to the simple geometry of the problem it is not difficult to count the “bad”
4-sparse configurations in 3D. Since they are always located in 4 out of 8 corners of a cuboid in the
d3 cube, compare Fig. 4 left, and there are only two possibilities to choose them, the probability that
a 4-sparse binary vector is unique, equals

1 − 2
(d

2

)3

(d3

4

) = 1 − 6(d − 1)2

(d2 + d + 1)(d3 − 2)(d3 − 3)
= 1 −O

(
d−6) d→∞−−−→ 1.

4.2. Perturbed systems

The weak performance of AD
d rests upon its small Kruskal rank. In order to increase the maximal

number k of columns such that all k (or less) column combinations are linearly independent we
perturb the non-zero entries of the original matrix AD

d . Fig. 5, right, indicates that if we could estimate
the Kruskal rank r̃0 of the perturbed system we could apply Theorem 3.2 and obtain a lower bound on
the sparsity yielding strong recovery for all �r̃0/�− 1�-sparse vectors. However, determining r̃0 for the
perturbed matrix seems impossible. We believe however that it increases with d, in contrast to the
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Fig. 5. Left: The 3D projection matrix A3
5 and, middle, a sparse basis which spans its nullspace. Right: If we allow a small

perturbation of the non-zero entries of AD
d , all corresponding nullspace vectors of the perturbed matrix will be less sparse and

lie in a dD−1(d − D)-dimensional subspace, compared to (d − 1)D in the unperturbed case.

constant 2D − 1 in the case of unperturbed systems. Luckily, it turns out in Section 5.2 that the weak
recovery threshold for unperturbed systems will give a lower bound on the strong recovery threshold
for perturbed matrices, since reduced systems will be strictly overdetermined and guaranteed of full
rank.

5. Weak recovery

In this section, we consider the recovery properties of the 3D setup depicted in Fig. 2 and establish
conditions for weak recovery, that is conditions for unique recovery that holds on average with high
probability. We clearly point out that our conditions do not guarantee unique recovery in each concrete
problem instance.

Remark 5.1. In what follows, the phrase with high probability refers to values of the sparsity pa-
rameter k for which random supports | supp(b)| concentrate around the crucial expected value NR ,
according to Proposition 5.2, and for which the number of corresponding non-redundant cells |Cb|
concentrate around the expected value NC , according to Proposition 5.8, thus yielding a desired
threshold effect.

We first inspect in Section 5.1 the effect of sparsity on the expected dimensions of a reduced sys-
tem of linear equations. Moreover, a corresponding tail bound implies a threshold effect for these
dimensions. Subsequently, we establish the conditions for weak recovery based on Theorems 3.5
and 3.6, and on the expected quantities involved in the corresponding conditions.

In particular, we establish such uniqueness conditions for reduced underdetermined systems of
dimension m/n > (

√
5 − 1)/2 ≈ 0.618. Our results are in excellent agreement with numerical experi-

ments discussed in Section 6.

5.1. Expected dimensions of reduced systems

We compute the expected values of the reduced system dimension (3.7).

5.1.1. Expected number of non-zero measurements
We consider the uniform random assignment of k particles to the n = |C | cells c ∈ C . A single cell

may be occupied by more than a single particle. This corresponds to the physical situation that real
particles are very small relative to the discretization depicted by Fig. 2. The imaging optics enlarges
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the appearance of particles, and the action of physical projection rays is adequately represented by
linear superposition.

This scenario gives rise to a random vector x ∈ R
n
k,+ with support | supp(x)| � k. It generates a

vector

b = AD
d x ∈R

m+ (5.1)

of measurements. We are interested in the expected size of the support of b,

NR := E
[∣∣supp(b)

∣∣], N0
R :=m − NR , (5.2)

that equals the number of projection rays r ∈ R with non-vanishing measurements br �= 0. We denote
the event br = 0 by the binary random variable2 Xr = 1, i.e. Xr = 0 corresponds to the event br > 0
that at least a single particle meets ray r.

The probability that a single c is met by ray r is

qd := d

|C | =
d

n
= 1

dD−1
. (5.3)

For k particles, the probability that 0 � i � k particles meet projection ray r is

Pr(br = i)=
(

k

i

)
qi

d pk−i
d , pd := 1 − qd. (5.4)

Consequently, we have

Pr[Xr = 1] = E[Xr] = pk
d, (5.5a)

Pr[Xr = 0] =
k∑

i=1

(
k

i

)
qi

d pk−i
d = 1 − pk

d. (5.5b)

Lemma 5.1. The expected number of non-zero measurements defined by (5.2) is

NR = NR(k)= |R|(1 − pk
d

)= DdD−1
(

1 −
(

1 − 1

dD−1

)k)
, (5.6a)

N0
R = N0

R(k)= |R| − NR = |R|pk
d = DdD−1

(
1 − 1

dD−1

)k

. (5.6b)

Proof. Due to the linearity of expectation, summing over all rays gives

NR = E

[∑
r∈R

(1 − Xr)

]
= |R|(1 − pk

d

)
. �

Remark 5.2. Note that NR specifies the expected value of mred in (3.7) induced by random k-sparse
vectors x ∈R

n
k,+ . See Fig. 6 for an illustration.

2 We economize notation here by re-using the symbol X , a random indicator vector indexed by rays (right nodes) r ∈ R . Due
to the context, there should be no danger of confusion with X = supp(x) denoting random subsets of left nodes used in other
sections.
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Fig. 6. The expected number NR of non-zero measurements (5.5). For highly sparse scenarios (small k), the expected support
(5.2) of the measurement vector | supp(b)| ≈ 3k. For large values of k, this rate decreases due to the multiple incidence of cells
and projection rays.

Bounding the deviation of N0
R . We are interested in how sharply the random number X =∑

r∈R Xr

of zero measurements peaks around its expected value N0
R = E[X] given by (5.6). We derive next a

corresponding tail bound by regarding a sequence of k randomly located cells and by bounding the
difference of subsequent conditional expected values of the random variable X . Theorem 2.1 then
provides a bound for the deviation |X −E[X]|.

Let the set of rays R represent the elementary events corresponding to the observations Xr = 1 or
Xr = 0 for each ray r ∈ R , i.e. ray r corresponds to a zero measurement or not.

Let Fi ⊂ 2R , i = 0,1,2, . . . , denote the σ -field generated by the collection of subsets of R that
correspond to all possible events after having observed i randomly selected cells. We set F0 = {∅, R}.
Because observing cell i + 1 just further partitions the current state based on the previously observed
i cells by possibly removing some ray (or rays) from the set of zero measurements, we have a nested
sequence (filtration) F0 ⊆F1 ⊆ · · · ⊆Fk of the set 2R of all subsets of R .

Based on this, for a fixed value of the sparsity parameter k, we define the sequence of random
variables

Yi = E[X |Fi], i = 0,1, . . . ,k, (5.7)

where Yi , i = 0,1, . . . ,k − 1, are the random variables specifying the expected number of zero mea-
surements after having observed k randomly selected cells, conditioned on the subset of events Fi
determined by the observation of i randomly selected cells. Consequently, Y0 = E[X] = N0

R due to
the absence of any information, and Yk = X is just the observed number of zero measurements. The
sequence (Yi)i=0,...,k is a martingale by construction satisfying E[Yi+1|Fi] = Yi , that is condition (2.3).

Proposition 5.2. Let N0
R = E[X] be the expected number of zero measurements for a given sparsity parame-

ter k, given by (5.6). Then, for any τ > 0,

Pr
(∣∣X − N0

R

∣∣� τ
)
� 2 exp

(
− 1 − p2

d

(1 − p2k
d )

τ 2

2D2

)

↗ 2 exp

(
− τ 2

2D2k

)
if d →∞. (5.8)

This result shows that for large problem sizes d occurring in applications, concentration of obser-
vations of N0

R primarily depends on the sparsity parameter k. As a consequence, the bound enables
suitable choices of k = k(d) of the sparsity parameter depending on the problem size.
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For example, typical values

k =
{

0.05d in 2D,

0.05d2 in 3D,
(5.9)

chosen by engineers3 in applications according to a rule of thumb, result in

Pr
(∣∣X − N0

R

∣∣� τ
)
�
{

2 exp(− 5
2d τ 2) in 2D,

2 exp(− 10
9d2 τ 2) in 3D.

(5.10)

For the 3D case (5.9), the probability to observe deviations from N0
R larger than 1% drops below 0.01

for problem sizes d � 77, which is common in practice.
Thus, the bound (5.8) is strong enough to indicate not only that (5.9) is a particular sensible choice,

but also leads to more proper choices of k for applications, which still give highly concentrated values
of observations of N0

R . This is the essential prerequisite for threshold effects of unique recovery from
sparse measurements.

Proof of Proposition 5.2. Let R0
i−1 ⊂ R denote the subset of rays with zero measurements after the

random selection of i − 1 < k cells. For the remaining k − (i − 1) trials, the probability that not any
cell incident with some ray r ∈ R0

i−1 will be selected, is

pk−(i−1)

d = E[Xr |Fi−1], (5.11)

with pd given by (5.4). Consequently, by linearity, the expectation Yi−1 of zero measurements given
|R0

i−1| zero measurements after the selection of i − 1 cells, is

Yi−1 = E[X |Fi−1] =
∑

r∈R0
i−1

pk−(i−1)

d . (5.12)

Now suppose we observe the random selection of the i-th cell. We distinguish two possible cases.

(1) Cell i is not incident with any ray r ∈ R0
i−1. Then the number of zero measurements remains the

same, and

Yi =
∑

r∈R0
i−1

pk−i
d . (5.13)

Furthermore,

Yi − Yi−1 =
∑

r∈R0
i−1

(
pk−i

d − pk−(i−1)

d

)= ∣∣R0
i−1

∣∣pk−i
d (1 − pd)

�
(|R| − 1

)
pk−i

d qd. (5.14)

(2) Cell i is incident with 1, . . . , D rays contained in R0
i−1. Let R0

i denote the set R0
i−1 after removing

these rays. Then

Yi =
∑
r∈R0

i

pk−i
d .

Furthermore, since R0
i ⊂ R0

i−1 and |R0
i−1 \ R0

i |� D ,

3 Personal communication.
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Yi−1 − Yi =
∑

r∈R0
i−1\R0

i

pk−(i−1)

d −
∑
r∈R0

i

(
pk−i

d − pk−(i−1)

d

)

� Dpk−i+1
d −

∑
r∈R0

i

pk−i
d (1 − pd)� Dpk−i+1

d . (5.15)

And similar to (5.14),

Yi−1 − Yi �−
∑
r∈R0

i

(
pk−i

d − pk−(i−1)

d

)
�−∣∣R0

i

∣∣pk−i
d (1 − pd)

�−|R|pk−i
d qd. (5.16)

Comparing the bounds (5.14), (5.15) and (5.16), we have with |R|qd = D ,

|Yi − Yi−1|� max
{|R|pk−i

d qd, Dpk−i+1
d

}= max
{

Dpk−i
d , D(1 − qd)pk−i

d

}
= Dpk−i

d . (5.17)

Thus, in view of (2.4) and the bound that follows, we compute

k∑
i=1

(
Dp(k−i)

d

)2 = D2 1 − p2k
d

1 − p2
d

.

Inserting pd from (5.4) and expanding in terms of d−1 at 0, we obtain

1 − p2k
d

1 − p2
d

=
{

k + (k − k2)d−1 +O(d−2), in 2D

k + (k − k2)d−2 +O(d−4), in 3D
d→∞−−−→ k.

Applying Theorem 2.1 completes the proof. �
5.1.2. Expected number of cells

In the previous section, we computed the expected number of measurements NR = E[| supp(b)|]
induced by a random unknown k-sparse vector x (Lemma 5.1) along with a tail bound for N0

R =
|R| − NR (Proposition 5.2).

In the present section, we determine the expected number of cells corresponding to NR , denoted
by NC . We confine ourselves to the practically more relevant 3D case.

As in the previous section, X ∈ {0,1}|R| denotes a random vector indicating subsets of projection
rays. Xr = 1, r ∈ R , corresponds to a zero observation along ray r. For a subset of rays Rb ⊂ R , we say
that the corresponding subset of cells Cb in (3.6) supports Rb .

Proposition 5.3. For a given value of the sparsity parameter k, the expected size of subsets of cells that support
random subsets Rb ⊂ R of observed non-zero measurements, is

NC = NC (k)= d3
(

1 − 3

(
1 − 1

d2

)k

+ 3

(
1 − 2d − 1

d3

)k

−
(

1 − 3d − 2

d3

)k)
. (5.18)

Proof. We partition the set of rays R = R1 ∪ R2 ∪ R3 according to the three projection images (Fig. 2)
and associate with the cells C the corresponding set of triples of projection rays

R1,2,3 =
{

(r1, r2, r3):
3⋂

i=1

ri �= ∅, ri ∈ Ri, i = 1,2,3

}
,

with each triple intersecting in a single cell. Thus, we have |R1,2,3| = |C | = d3, and each cell ci jk at the
intersection of (ri, r j, rk) belongs to the set Cb supporting Rb if (ri ∪ r j ∪ rk)⊂ Rb . In terms of random
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Fig. 7. The expected number NC = E[|Cb |] of cells supporting observed measurement vectors b, given by (5.18). Starting with
rate NC ∝ k for very small values of k, it quickly increases and exceeds NR (Fig. 6), thus leading to underdetermined reduced
systems (3.5).

variables Xr indicating zero measurements by Xr = 1, this means that ci jk ∈ Cb if Xri = Xr j = Xrk = 0.
Thus,

NC = E

[ ∑
R1,2,3

(1 − Xr1)(1 − Xr2)(1 − Xr3)

]

=
∑

R1,2,3

(
1 − (E[Xr1 ] +E[Xr2 ] +E[Xr3 ]

)+ ∑
1�i< j�3

E[Xri Xr j ] −E[Xr1 Xr2 Xr3 ]
)

.

This expression takes into account the intersection of projection rays ri, r j (inclusion–exclusion prin-
ciple) in order not to overcount the number of supporting cells.

We have E[Xri ] = pk
d = (1 − d−2)k by (5.5) and (5.4). The event Xri Xr j = 1 means that both rays

correspond to zero measurements, which happens with probability(
1 − |ri ∪ r j|

|C |
)k

=
(

1 − 2d − 1

d3

)k

.

We have three pairs of sets of rays from R = R1 ∪ R2 ∪ R3, and each of the d2 rays ri ∈ Ri intersects
with d rays r j ∈ R j . Finally, three intersecting rays correspond to zero measurements with probability(

1 − |r1 ∪ r2 ∪ r3|
|C |

)k

=
(

1 − 3d − 2

d3

)k

,

for each of the d3 cells c ∈ C . �
Remark 5.3. Note that NC specifies the expected value of nred in (3.7) induced by random k-sparse
vectors x ∈R

n
k,+ . See Fig. 7 for an illustration.

Bounding the deviation of NC . We wish to bound the deviation of the random number of cells support-
ing a random subset of observed non-zero measurements, from its expected value NC given by (5.18).
To this end, we set with X = (X1, . . . , Xr, . . . , Xm), r ∈ R , |R| =m,

f (X)=
∑

R

(1 − Xr1)(1 − Xr2)(1 − Xr3) (5.19)

1,2,3
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such that μ := E[ f (X)] = NC . The objective is to apply Theorem 2.2, based on the relevant quanti-
ties (2.7), (2.8) and (2.9). See Proposition 5.8 below.

The set B (2.6) takes in our setting the specific form of a subset B ⊆ R of |B| = r − 1 rays, par-
titioned B = B1 ∪ B2 ∪ B3 according to the three projection directions R = R1 ∪ R2 ∪ R3. Recall that
R1,2,3 denotes the set of all triplets of rays (r1, r2, r3), each corresponding to a cell ci jl , i, j, l ∈ [d], in
which they intersect. We denote4 the characteristic function of a set B by

1B(r)=
{

1, r ∈ B,

0, r /∈ B.
(5.20)

We identify B with the event that r − 1 random variables X1 = x1, . . . , Xr−1 = xr−1 have been
observed, with xi ∈ {0,1}, i ∈ [r − 1] indicating non-zero measurements (xi = 0) and a zero mea-
surements (xi = 1), respectively.

We will use the shorthands for mutually intersecting rays r, r′, r′′ ,

p0 := 1 − p1,

p1 := E[Xr] = pk
d =

(
1 − 1

d2

)k

,

p2 := E[Xr Xr′ ] =
(

1 − 2d − 1

d3

)k

,

p3 := E[Xr Xr′ Xr′′ ] =
(

1 − 3d − 2

d3

)k

. (5.21)

Note that

p1 > p2 > p3. (5.22)

Furthermore, summation over R1,2,3 is carried out by using double indices for rays as follows.

(r1, r2, r3)↔ ci jl ⇔ r1 ↔ jl, r2 ↔ il, r3 ↔ i j, i, j, l ∈ [d]. (5.23)

This just identifies each ray with one of the d2 pixels in the corresponding projection image.

Lemma 5.4. Consider an arbitrary event B of the form (2.6) and assume r = jrlr ∈ R1 . Then g(x) (2.7) is given
by

g(xr)= E
[

f (X)|Xr = xr, B
]−E

[
f (X)|B]

= E

[ ∑
R1,2,3

1{r}(r1)(Xr1 − xr1)
(
1B2(r2)(Xr2 − xr2)+ 1R2(r2)(1 − Xr2)

)

× (1B3(r3)(Xr3 − xr3)+ 1R3(r3)(1 − Xr3)
)]

, (5.24)

and the expression (2.8b) evaluates to

ran(x1, . . . , xr−1)=
∣∣g(0)− g(1)

∣∣
=
∑
i∈[d]

[
1B2(ilr)1B3(i jr)

(
xilr xi jr − (xilr + xijr )p1 + p2

)
− 1B2(ilr)

(
xilr − (1 + xilr )p1 + p2

)− 1B3(i jr)
(
xijr − (1 + xijr )p1 + p2

)
+ 1 − 2p1 + p2

]
. (5.25)

4 We economize notation here by re-using the symbol r indexing rays r ∈ R . Due to the context, there should be no danger
of confusion with r = |B| + 1.
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Proof. See Appendix A. �
Remark 5.4. The assumption r ∈ R1 in Lemma 5.4 is not essential due to the symmetry of the imaging
set-up. Assuming r ∈ R2 instead, for instance, results in expressions (5.24), (5.25) with all quantities
related to direction R2 replaced by those related to direction R1.

We further analyze expression (5.25).

Lemma 5.5. Expression (5.25) has the form

ran(x1, . . . , xr−1)=
∑
i∈[d]

si (5.26)

with si = 0 except for the cases:

(i) both rays ilr, i jr are not contained in B, in which case

si = ε2(d,k) := 1 − 2p1 + p2; (5.27)

(ii) either ray r′ = ilr or r′′ = i jr is contained in B and corresponds to a non-zero measurement, i.e. either
xr′ = 0 or xr′′ = 0, in which case

si = ε1(d,k) := 1 − p1; (5.28)

(iii) both rays ilr, i jr are contained in B and correspond to non-zero measurements, in which case

si = 1. (5.29)

Proof. See Appendix A. �
We next consider an upper bound for r̂2 defined by (2.9).

Lemma 5.6. For a given sparsity parameter k, assume

3k � sd2, s � 1, (5.30)

and set

nd = max{i ∈N: i · d � 3k}. (5.31)

Then

r̂2 � 3p2
0d4 + (1 − p2

0

)
ndd2 (5.32)

with p0 given by (5.21).

Proof. See Appendix A. �
Remark 5.5. Assumption (5.30) is not restrictive from the viewpoint of applications. For example, the
representative 3D case (5.9) discussed above yields s = 0.15.

We consider the last quantity needed to apply Theorem 2.2.

Lemma 5.7. For the expression maxdev defined by (2.9), it holds that

maxdev = p1d = pk
dd. (5.33)
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Fig. 8. The ratio mred
nred

(k) = NR (k)
NC (k)

of the expected dimensions of the reduced system, given by (5.6) and (5.18), is strictly mono-
tonically decreasing with the sparsity parameter k.

Proof. See Appendix A. �
We finally state the desired result of this section.

Proposition 5.8. Let NC = E[|Cb|] be the expected number of cells supporting the non-zero measurements
Rb ⊂ R for a given sparsity parameter k, given by (5.18). Then, for any τ > 0,

Pr
(∣∣|Cb| − NC

∣∣� τ
)
� 2 exp

(
− τ 2

2p0r̂2(1 + τ p1d
3p0 r̂2 )

)
, (5.34)

with r̂2 given by (5.32) and p0, p1 given by (5.21).

Proof. Based on the preceding lemmata, apply Theorem 2.2 with p = p0 being the smaller probability
of (5.5). �

We inspect the bound (5.34) for large problem sizes d →∞ that occur in 3D applications. We then
have

p0 ≈ kd−2, r̂2 ≈ 3k2 + 3kd

(
1 − k2

d4

)
, p1 ≈ 1 − kd−2. (5.35)

Setting k = s · d2, s < 1 (cf. (5.9)), we obtain for the denominator of (5.34) approximately 6k(k2 +
(1 − s2)kd)/d2 + 2/3(1 − s)dτ , which enables control via the sparsity parameter k and grows slower
with τ than the numerator of (5.34). Note that we do not claim this bound to be tight. We merely
point out that concentration happens in principle.

As a result, Proposition (5.8) complements Proposition (5.2) concerning the concentration of the
expected reduced system dimensions (3.7) on their expected values. This substantiates the validity
“with high probability” of the results derived in this paper based on these expected values.

5.1.3. Average dimensions ratio of reduced systems
For small value of k, that is for highly sparse scenarios, the expected value NR(k)≈ 3k grows faster

than NC (k) ≈ k. Consequently, the expected reduced system due to Definition 3.5 will be overdeter-
mined. This holds up to a critical value k � kcrit because for increasing values of k it is more likely that
several particles are incident with some projection ray, making NC increasing faster than NR . Below
this value reduced systems are underdetermined. Moreover, the average dimensions ratio NR(k)/NC (k)

of the reduced system decreases with k – see Fig. 8.
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Fig. 9. Critical upper bound sparsity values k = k(d) that guarantee unique recovery of k-sparse vectors x on average with
high probability. From bottom to top: kδ (5.36b) for unperturbed matrices A, kcrit (5.37) resulting in overdetermined reduced
systems, kmax (5.39) for underdetermined perturbed matrices A, and fully random measurement matrices.

5.2. Unperturbed systems

We consider the recovery properties of the 3D setup depicted in Fig. 2, based on Theorem 3.5 and
on the expected quantities involved in the corresponding condition (3.12), as worked out in Section 3.3.
Concerning the interpretation of the following claims, we refer to Remark 5.1.

Proposition 5.9. The unperturbed system Ax = b, with measurement matrix A given by (2.2), admits unique
recovery of k-sparse nonnegative vectors x with high probability, if

k � NC (kδ)

1 + δ
= NR(kδ)

�
, δ =

√
5 − 1

2
, (5.36a)

where kδ solves

NR(kδ)= �δNC (kδ) (5.36b)

and NR(k), NC (k) are given by (5.6) and (5.18).

Proof. Recall, that δ(1+δ)= 1 holds. The assertion now follows from replacing the quantities forming
condition (3.12) by their expected values, due to Remarks 5.2 and 5.3, and taking into account that
NR(k) � 3δNC (k) for k � kδ and kδ solving (5.36b), due to the monotonicity of the average ratio
NR(k)/NC (k) – compare Section 5.1.3. �
Remark 5.6. Eq. (5.36b) shows that unique recovery of a k-sparse, k � nred

(1+δ)
, nonnegative vector can

be expected using the unperturbed measurement matrix provided the reduced system (3.5) is by a
factor mred � 1.854nred overdetermined. See Fig. 9 for an illustration. Moreover, for small values of k,
each particle generates on average � non-zero measurements, and kδ ≈ NR (kδ )

�
.

5.3. Overdetermined perturbed systems

Analogously to the previous section, we evaluate the average recovery performance using per-
turbed systems based on Theorem 3.6.

Proposition 5.10. The perturbed system Ãx = b̃, admits unique recovery of k-sparse nonnegative vectors x
with high probability, if k satisfies condition k � kcrit , where kcrit solves

NR(kcrit)= NC (kcrit) (5.37)

and NR(kcrit), NC (kcrit) are given by (5.6) and (5.18).
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Proof. Immediate from the monotonicity of the average ratio NR(k)/NC (k) and Theorem 3.6, replacing
the quantities forming condition (3.13) by their expected values, and taking into account �= 3 for the
measurement matrix (2.2) and the case D = 3. �
Remark 5.7. In view of this assertion and Remark 5.6, it is remarkable that a significant gain of
recovery performance can be obtained by a simple device: structure-preserving perturbation of the
measurement matrix. See Fig. 9 for an illustration.

5.4. Underdetermined perturbed systems

Unlike Propositions 5.9 and 5.10, we specifically consider here less sparse scenarios that result in
underdetermined reduced systems (3.5).

Proposition 5.11. Let Ã be a perturbation of A from (2.2) satisfying the assumptions of Lemma 3.3 with
complete rank r0( Ã)=: r̃0 = NR(k̃max), where k̃max solves

NR(k̃max)= δNC (k̃max), δ =
√

5 − 1

2
, (5.38)

with NR(k), NC (k) given by (5.6) and (5.18). Then a k-sparse nonnegative vector x can be uniquely recovered
via Ã with high probability, if

k � kmax :=
⌈

NR(k̃max)

�
− 1

⌉
. (5.39)

Proof. By assumption and Lemma 3.3, Theorem 3.2 (see also Remark 3.1) implies (5.39), thereby
taking into account that �= 3 for the measurement matrix (2.2) and the case D = 3. �

Fig. 9 illustrates the value kmax (5.39) and compares it to the previous results.
Finally, we comment on the uniqueness condition established in [14] which corresponds to the

top k(d) curve in Fig. 9. This result does not apply to our setting. The reason is that a basic as-
sumption underlying the application of (2.12) does not hold. While after some perturbation the points
corresponding to the columns of Ã and the sparsity value |I−(x)| = k are in general position, the un-
derlying distribution lacks symmetry with respect to the origin. As a result, we cannot establish the
superior performance of “fully” random sensors considered in [14].

5.5. Two cameras are not enough

In the present section, we briefly discuss how the previously obtained bounds on sparsity apply in
the 2D scenario. To this end, we first compute the expected value of nonempty cells connected to Rb
measurements generated by a k-sparse nonnegative vector.

Proposition 5.12. In 2D, the expected size of subsets of cells that support random subsets Rb ⊂ R of observed
non-zero measurements, is

NC = NC (k)= d2
(

1 −
(

1 − 1

d

)k)2

, (5.40)

for a given sparsity parameter k,

Proof. We partition the set of rays R = R1 ∪ R2 according to the two projection images (Fig. 2), left,
and associate with the cells C the corresponding set of pairs of projection rays

R1,2 =
{

(r1, r2):
2⋂

ri �= ∅, ri ∈ Ri, i = 1,2

}
,

i=1
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with each pair intersecting in a single cell. Thus, we have |R1,2| = |C | = d2, and each cell ci j at
the intersection of (ri, r j) belongs to the set Cb supporting Rb if (ri ∪ r j) ⊂ Rb . In terms of random
variables Xr indicating zero measurements by Xr = 1, this means that ci j ∈ Cb if Xri = Xr j = 0. Thus,

NC = E

[∑
R1,2

(1 − Xr1)(1 − Xr2)

]

=
∑
R1,2

(
1 − (E[Xr1 ] +E[Xr2 ]

)+ ∑
1�i< j�2

E[Xri Xr j ]
)

,

taking the intersection of projection rays ri, r j into account. We obtained E[Xri ] = pk
d = (1 − 1

d )k

in (5.5) and (5.4). The event that both rays correspond to zero measurements Xri Xr j = 1 happens
with probability(

1 − |ri ∪ r j|
|C |

)k

=
(

1 − 2d − 1

d2

)k

=
(

1 − 1

d

)2k

. �
By Proposition 5.12 and Lemma 5.1 we can now compute the expected ratio of the dimensions

of the reduced system, further denoted by c. We solve the polynomial NR(k) = cNC (k) according to

(5.6a) and (5.40). Interesting are the values c ∈ {2δ,1, δ, 1
2 }, with δ =

√
5−1
2 . For example, if c = 2δ,

we obtain guaranteed recovery of all 1-sparse vectors, which also equals the strong threshold for the
2D case. If c = 1 we obtain that a k-sparse nonnegative vector x, with

k � kcrit =
log(d−2

d )

log(d−1
d )

≈ 2, (5.41)

induces on average reduced overdetermined systems. Thus two particles can always be reconstructed,
after perturbation. If c = 1

2 the critical sparsity value approximately equals 4 for arbitrary d. This is
the best achievable bound, which is obviously useless for applications. For k = 3 it can be shown that
the probability of correct recovery via the perturbed matrix A2

d is

1 − 2 · 4 · (d
2

)(d
3

)+ 4 · (d
3

)2

(d3

3

) = d2 + 6d − 10

3(d2 − 2)

d→∞−−−→ 1/3.

We mention that the value of NR and NC does not vary much with different 2 camera arrangements.
These highly pessimistic results may be explained by the fact that there is no expander with constant
left degree � less than 3.

6. Numerical experiments and discussion

In this section we empirically investigate bounds on the required sparsity that guarantee unique
nonnegative or binary k-sparse solutions and compare them to the analytically derived bounds on
sparsity from previous sections.

6.1. Reduced systems versus analytical sparsity thresholds

The workhorse of the previous theoretical average case performance analysis of the discrete tomog-
raphy matrix from (4.1) is the derivation of the expected number of non-zero rows NR(k) induced by
the k-sparse nonnegative vector along with the number NC (k) of “active” cells which cannot be empty.
This can be done also empirically, see Fig. 10, left, for the 2D case and right, for the 3D case. To gener-
ate the figures we varied k ∈ {1,2, . . . ,10} and d ∈ {500,501, . . . ,1500} in 2D and k ∈ {1,2, . . . ,2000}
and d ∈ {10,11, . . . ,100} in 3D, and generated for each point (k,d) 500 problem instances. The plots



JID:LAA AID:12263 /FLA [m1G; v 1.106; Prn:2/08/2013; 11:27] P.25 (1-31)

S. Petra, C. Schnörr / Linear Algebra and its Applications 441  (2014) 168–198192
Fig. 10. The contourplots of the average fraction of the reduced systems as a function of the resolution parameter d and the spar-
sity parameter k. Left: The plots for the 2D case shows that level lines of NR (k,d)/NC (k,d) are constant with varying d. Right:
In 3D the situation dramatically changes. Higher sparsity values are allowed for increasing values of d, as the derived threshold
curves show. Under the �-marked curve kδ (5.36b) reconstruction for unperturbed systems is guaranteed with high probability.
Under the �-marked curve kcrit (5.37) reduced systems are overdetermined. For points under the dotted  -marked curve kmax

(5.39) reconstruction is guaranteed for perturbed systems. And finally, problem instances under the ◦-marked curve kopt (6.1)
would be reconstructible if the reduced matrices would follow a symmetrical distribution with respect to the origin.

show NR(k,d)/NC (k,d) along with the curves: kδ (5.36b) for unperturbed matrices A, kcrit (5.37) re-
sulting in overdetermined reduced systems, kmax (5.39) for underdetermined perturbed matrices A,
and kopt which solves

NR(kopt)= 0.5NC (kopt). (6.1)

Throughout this section we set δ =
√

5−1
2 .

6.2. Empirical phase transitions

We further concentrate on the 3D case. In analogy to [10] we assess the so called phase tran-
sition ρ as a function of d, which is reciprocally proportional to the undersampling ratio m

n ∈ (0,1).

We consider d ∈ {10,11, . . . ,100}, the corresponding matrix A3
d ∈R

3d2×d3
from (4.1) and its perturbed

version Ã and the sparsity as a fraction of d2, k = ρd2, for ρ ∈ (0,1).
This phase transition ρ(d) indicates the necessary relative sparsity to recover a k-sparse solution

with overwhelming probability. More precisely, if ‖x‖0 � ρ(d) ·d2, then with overwhelming probability
a random k-sparse nonnegative (or binary) vector x∗ is the unique solution in S+ := {x: Ax = Ax∗,
x � 0} or S[0,1] := {x: Ax = Ax∗, x ∈ [0,1]n}, respectively. Uniqueness can be “verified” by minimizing
and maximizing the same objective f 
x over S+ or S[0,1] , respectively. If the minimizers coincide
for several random vectors f we claim uniqueness. As shown in Fig. 11 the threshold for a unique
nonnegative solution and a unique 0/1-bounded solution are quite close.

To generate the success and failure transition plots we generated A according to (4.1) and Ã by
slightly perturbing its entries and varying d ∈ {10,11, . . . ,100}. Ã has the same sparsity structure
as A, but with random entries drawn from the standard uniform distribution on the open interval
(0.9,1.1). We tried different perturbation levels, all leading to similar results. Thus we adopted this
interval for all presented results.

Then for ρ ∈ [0,1] a ρd2-sparse nonnegative or binary vector was generated to compute the right
hand side measurement vector and for each (d,ρ)-point 50 random problem instances were gener-
ated. A threshold effect is clearly visible in all figures (see Fig. 12) exhibiting parameter regions where
the probability of exact reconstruction is close to one and it is much stronger for the perturbed sys-
tems. The results are in excellent agreement with the derived analytical thresholds. We refer to the
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Fig. 11. Left: Recovery via the unperturbed matrix A3
d (dark gray �-marked curves), d ∈ {10,20,30} (from top to down) versus

the perturbed counterpart (light gray ◦-marked curves). The dash-dot line depicts the empirical probability (500 trials) that
reduced systems are overdetermined and of full rank. The solid line (dark gray: unperturbed, light gray: perturbed) shows
the probability that a k-sparse nonnegative vector is unique. The dashed curve shows the probability that a k-sparse binary
solution is the unique solution in [0,1]n . Additional information like binarity gives only a slight performance boost. The curve kδ

(5.36b) correctly predicts that 18 (d = 10), 48 (d = 20), and 85 (d = 30) particle are reconstructed with high probability via the
unperturbed systems and 66 (d = 10), 181 (d = 20), 328 (d = 30) particles, via the perturbed systems according to kmax (5.39).
However, 105 (d = 10), 241 (d = 20), 408 (d = 30), by k̃max from (5.38) are more accurate. Division by three doesn’t seem
necessary. Right: Empirical probability obtained from 10000 trials that k random columns of the unperturbed matrix (solid
black line) or of the perturbed matrix (dashed black line) are linearly independent.
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Fig. 12. Left: Success and failure empirical phase transitions ρ(d) for unperturbed and perturbed systems right. Top: Probability
that the reduced matrices are overdetermined and of full rank, along (right) with the estimated relative critical sparsity level
kcrit (�-marked curve) which induces overdetermined reduced matrices. Middle: Probability of uniqueness of a k = ρ(d) ·
d2-sparse nonnegative vector. Bottom: Probability of uniqueness in [0,1]n of a k = ρ(d) ·d2-sparse binary vector. The �-marked
curve depicts again kδ/d2 (5.36b), the �-marked curve kcrit/d2 (5.37), the dotted  -marked curve kmax/d2 (5.39), the solid
 -marked curve k̃max/d2 (5.39) and the ◦-marked curve kopt/d2 (6.1). In case of the perturbed matrix Ã exact recovery is

possible beyond overdetermined reduced matrices. Moreover, k̃max follows most accurately the empirical phase transition for
perturbed systems.
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Fig. 13. Relative critical upper bound sparsity values k(d)/d2 in the practical relevant domain d ∈ (500,1500) that guarantee
unique recovery of k-sparse nonnegative vectors x on average with high probability. From bottom to top: kδ/d2 (5.36b) for un-
perturbed matrices A (�-marked), kcrit/d2 (5.37) resulting in overdetermined reduced systems (�-marked line), kmax/d2 (5.39)
and k̃max/d2 (5.38) for square perturbed matrices A (dotted and solid  -marked lines), and ideal random measurement matri-
ces kopt/d2 (◦-marked line). The thin black line depicts the particle density used by engineers in practice, while the black spot
corresponds to the typical resolution parameter d = 1024. The results demonstrate that specific slight random perturbations of
the TomoPIV measurement matrix considerably boost the expected reconstruction performance by at least 150%.

figure captions for detailed explanations. Finally, we refer to the summary in Fig. 13 for the computed
sharp sparsity thresholds, which accurately follow the empirical thresholds on sparsity.

7. Conclusions

The main contribution of this work is the transfer of recent results in compressive sensing via
expander graphs with bad expansion properties to the discrete tomography problem. In particular, we
consider a sparse binary measurement matrix, which encodes the incidence relation between pro-
jection rays and image discretization cells, along with its slightly perturbed counterpart. While the
expected expansion of the underlying graph does not change with perturbation, the recovery per-
formance can be boosted significantly. We investigate the average performance in recovery of exact
sparse nonnegative signals by analyzing the properties of reduced systems obtained by eliminating
zero measurements and related redundant discretization cells. We compute sharp sparsity thresh-
olds, such that the maximal sparsity can be determined precisely for both perturbed and unperturbed
scenarios. Our theoretical analysis suggests that a similar procedure can be applied to different ge-
ometries.
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Appendix A

Proof of Lemma 5.4. Using the definition (5.19) of f , we get

E
[

f (X)|B]= E

[ ∑
R

∏
i∈[3]

(
1Bi (ri)(1 − xri )+ 1Ri\Bi (ri)(1 − Xri )

)]
. (A.1)
1,2,3
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Thus, we compute (2.7) by factoring out the contribution of ray r in the first factor so as to subtract
E[ f (X)|B].

g(xr)= E
[

f (X)|Xr = xr, B
]−E

[
f (X)|B]

= E

[ ∑
R1,2,3

(
1B1∪r(r1)(1 − xr1)+ 1R1\(B1∪r)(r1)(1 − Xr1)

)

×
∏

i∈2,3

(
1Bi (ri)(1 − xri )+ 1Ri\Bi (ri)(1 − Xri )

)]−E
[

f (X)|B]

= E

[ ∑
R1,2,3

(
1B1(r1)(1 − xr1)+ 1{r}(r1)

(
(1 − xr1)− (1 − Xr1)

)+ 1(R1\B1)∪r(r1)(1 − Xr1)
)

×
∏

i∈2,3

(
1Bi (ri)(1 − xri )+ 1Ri\Bi (ri)(1 − Xri )

)]−E
[

f (X)|B]

= E

[ ∑
R1,2,3

1{r}(r1)(Xr1 − xr1)
(
1B2(r2)(1 − xr2)+ 1R2\B2(r2)(1 − Xr2)

)

× (1B3(r3)(1 − xr3)+ 1R3\B3(r3)(1 − Xr3)
)]

= E

[ ∑
R1,2,3

1{r}(r1)(Xr1 − xr1)
(
1B2(r2)(Xr2 − xr2)+ 1R2(r2)(1 − Xr2)

)

× (1B3(r3)(Xr3 − xr3)+ 1R3(r3)(1 − Xr3)
)]

. (A.2)

To compute (2.8b), we use (5.24) and obtain

ran(x1, . . . , xr−1)

= ∣∣g(0)− g(1)
∣∣= g(0)− g(1)

= E

[ ∑
R1,2,3

1{r}(r1)
(
1B2(r2)(Xr2 − xr2)+ 1R2(r2)(1 − Xr2)

)

× (1B3(r3)(X3 − xr3)+ 1R3(r3)(1 − Xr3)
)]

= E

[∑
i∈[d]

(
1B2(ilr)(Xilr − xilr )+ (1 − Xilr )

)(
1B3(i jr)(Xijr − xijr )+ (1 − Xijr )

)]

=
∑
i∈[d]

[
1B2(ilr)1B3(i jr)

(
xilr xi jr − (xilr + xijr )p1 + p2

)− 1B2(ilr)
(
xilr − (1 + xilr )p1 + p2

)
− 1B3(i jr)

(
xijr − (1 + xijr )p1 + p2

)+ 1 − 2p1 + p2
]
. � (A.3)

Proof of Lemma 5.5. Observe that the term 1B2 (ilr) selects those rays ilr ∈ R2 that are contained in
B2 and intersect r = jrlr ∈ R1, and similar for 1B3 (i jr). Thus, given r = jrlr and two rays ilr, i jr , the
summand si of Eq. (5.25) takes the following values.

• 1B2 (ilr)= 0, 1B3 (i jr)= 0: si = 1 − 2p1 + p2.
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• 1B2 (ilr)= 1, 1B3 (i jr)= 0: si =
{

1 − p1, xilr = 0,

0, xilr = 1.

And similarly for 1B2 (ilr)= 0, 1B3 (i jr)= 1.

• 1B2 (ilr)= 1, 1B3 (i jr)= 1: si =
{

1, xilr = 0, xijr = 0,

0, otherwise.
. �

Proof of Lemma 5.6. We have ran(x1, . . . , xr−1) � d, ∀r, due to (5.26) and (5.29). Because R2 (2.9)
is given by the sum of squares of such terms, we look for a configuration of rays represented by
x = (x1, . . . , xm) ∈ {0,1}m such that a maximal number of these terms attain the upper bound d.

For a given sparsity parameter k, there cannot be more than 3k active rays with non-zero mea-
surements among the set R of all m = 3d2 = |R| projection rays. We thus look for a configuration of
these active rays such that for a maximal number of rays r, r ∈ [m], case (iii) of Lemma 5.5 applies,
for i ∈ [d], which implies ran(x1, . . . , xr−1)= d. Case (iii) means that ray r meets the maximal number
d of cells, each incident with two active rays in B = [r − 1] from the other two projection directions.

A short reflection of the imaging set-up reveals that d active rays from each two directions (i.e. 2d
active rays in total) are needed to obtain a first such event for some single ray r, and that each
d further active rays enable another such event for some ray r′ �= r. Thus, we consider a sequence
x1, . . . , xm that includes the upper bound (nd +1) ·d > 3k of active rays and correspondingly nd further
rays r ∈ [m] with ran(x1, . . . , xr−1)= d. For all remaining m − nd rays r, case (iii) cannot apply. So we
choose case (ii) (5.28) for these rays yielding a larger summand si = 1 − p1 > 1 − p1 − (p1 − p2),
i ∈ [d], than for case (i) (5.27).

Summing up yields the upper bound

r̂2 = max
x∈X

∑
r∈[m]

(
ran(x1, . . . , xr−1)

)2 � ndd2 + (3d2 − nd
)
(1 − p1)

2d2 (A.4)

which equals (5.32). �
Proof of Lemma 5.7. In view of (2.8a), we compute

∣∣g(0)
∣∣= g(0)= E

[ ∑
R1,2,3

1{r}(r1)Xr1

(
1B2(r2)(Xr2 − xr2)+ 1R2(r2)(1 − Xr2)

)

× (1B3(r3)(Xr3 − xr3)+ 1R3(r3)(1 − Xr3)
)]

= E

[∑
i∈[d]

X jrlr

(
1B2(ilr)(Xilr − xilr )+ (1 − Xilr )

)(
1B3(i jr)(Xijr − xijr )+ (1 − Xijr )

)]

=
∑
i∈[d]

[
1B2(ilr)1B3(i jr)

(
xilr xi jr p1 − (xilr + xijr )p2 + p3

)
− 1B2(ilr)

(
xilr p1 − (1 + xilr )p2 + p3

)− 1B3(i jr)
(
xijr p1 − (1 + xijr )p2 + p3

)
+ p1 − 2p2 + p3

]
(A.5)

and ∣∣g(1)
∣∣=−g(1)= ran(x1, . . . , xr−1)− g(0)

=
∑
i∈[d]

[
1B2(ilr)1B3(i jr)

(
xilr xi jr (1 − p1)− (xilr + xijr )(p1 − p2)+ p2 − p3

)
− 1B2(ilr)

(
xilr (1 − p1)− (1 + xilr )(p1 − p2)+ p2 − p3

)
− 1B3(i jr)

(
xijr (1 − p1)− (1 + xijr )(p1 − p2)+ p2 − p3

)
+ 1 − p1 − 2(p1 − p2)+ p2 − p3

]
. (A.6)
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Both expression have the form of (5.25). The coefficients only differ. Thus, the reasoning proving
Lemma 5.5 applies, for every r ∈ [m], and the corresponding case (iii) applied to the larger expression
|g(0)| yields the assertion. �
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