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Abstract. Cell detection and segmentation in microscopy images is
important for quantitative high-throughput experiments. We present a
learning-based method that is applicable to different modalities and cell
types, in particular to cells that appear almost transparent in the im-
ages. We first train a classifier to detect (partial) cell boundaries. The
resulting predictions are used to obtain superpixels and a weighted region
adjacency graph. Here, edge weights can be either positive (attractive) or
negative (repulsive). The graph partitioning problem is then solved using
correlation clustering segmentation. One variant we newly propose here
uses a length constraint that achieves state-of-art performance and im-
provements in some datasets. This constraint is approximated using non-
planar correlation clustering. We demonstrate very good performance in
various bright field and phase contrast microscopy experiments.

1 Introduction

With recent advances in microscope automation, long-term high-throughput
imaging results in a vast amount of data in biological experiments. Consequently,
the demand for computer aided microscopy image analysis is high. Cell detection
and segmentation are fundamental tasks for further cell-level quantifications. The
large diversity of cell lines and microscopy imaging techniques require the de-
velopment of algorithms for these tasks to perform robustly and equally well in
different scenarios. The technique described in this paper is applicable to images
that have crowded cell regions acquired from different modalities and cell shapes,
as long as they produce intensity changes at cell boundaries. Such patterns re-
sult from several microscopy imaging techniques, such as transillumination (e.g.
bright field, dark field, phase contrast) and fluorescence (e.g. through membrane
or cytoplasmic staining) images. Thus it is specifically suitable for images from
which cells are almost transparent (Fig. 1).

Correlation clustering, or multicut, as an image segmentation method has
attracted considerable interest in recent years [1,2,6,11]. It finds a partitioning
of a weighted region adjacency graph into an arbitrary number of segments
such that the set of edges that cohere different segments has minimum total
weights. Finding a minimum weight partition is NP-hard for general and planar
graphs [4]. Algorithms that can solve NP-hard correlation clustering problems
to (near) optimality on instances of practically relevant size are only recently
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Fig. 1: Example images of (left-right): Dataset-a, Bright field image of Diploid
yeast cells (1K×1K pix; cell size 40-100 pix). Dataset-b, Bright field image of
Fission cells [9] (1K×1K pix; cell size 30-140 pix). Dataset-c, Phase contrast
image of cervical cancer cells of the HeLa cell line [3] (400×400 pix; cell size
10-40 pix)

developed [1,11], and their potential for biomedical applications has not yet
been explored in depth. Adding cardinality or size constraints makes the problem
even harder. Thus, approximate optimization strategies that can give an exact or
close to exact solution in short turnaround times are desired. A mathematically
sound way to incorporate long-range repulsive interactions while keeping the
resulting model tractable has only been discovered very recently [2]. Our work
builds on ideas from [2,11] and explores their applicability in cell detection and
segmentation. In particular, we leverage this theoretical insight into practice in
terms of a length constraint formulation, a sound cue for biological problems.

2 Method

Our method first computes a cell boundary probability map from a trained
edge classifier, and then constructs superpixels and builds a weighted superpixel
adjacency graph. Segmentation is then reflected from partitioning this graph
using a correlation clustering procedure.

Extracting boundary evidence. In our case, we learn the boundary probabil-
ity from a trained classifier using ilastik [10]. It is an open-source toolkit which
relies on a family of generic image features and a robust nonlinear classifier, ran-
dom forest, to estimate each pixel’s probability of belonging to cell boundary.
This enables the flexibility of detecting edges from cells of interest (Fig. 2b). We
only label very few pixels (<1%) to reduce annotation effort.

Computing superpixels. The obtained boundary probability map is then used
to construct a set of initial regions as superpixels. While many computing strate-
gies could be applied, we used the watershed transform. A slightly smoothed
probability map helps avoiding tiny non-informative superpixels, while still keep-
ing boundaries with low probability separated from background superpixels. In
the test datasets, we relate the amount of smoothing with roughly average cell
length l, i.e. a Gaussian filter with filter size 0.3l and standard deviation 0.1l.
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Fig. 2: (a) Example image. (b) Cell boundary pixel probabilities (the brighter
the higher probability). The trained classifier gives low boundary probabilities
to out-of-focus cells (arrow). (c) Superpixels (randomly color-mapped) with an
overlay of the corresponding adjacency graph edges (white). (d) An illustration
of the length constraint for a superpixel p (light gray), where non-planar edges
(blue) indicate the superpixels (white) to be separated from p. They lie on the
circle (dashed-red) of radius d centered at superpixel p’s centroid.

Constructing a weighted region adjacency graph. A superpixel adjacency
graph G=(V,E) is built (Fig. 2c). Each graph edge e corresponds to an adja-
cent superpixel pair and is associated with a real valued potential θe. Negative
potentials forces superpixels to be in separate regions, while positive ones favor
to merge them. We first approximate the graph edge probability pe by the aver-
age boundary probability over the pixels separating the corresponding adjacent
superpixel pair. Then, the graph edge potential is given by

θe = log

(
1− F (pe + t)

F (pe + t)

)
,

where F (x)= max(min(x, 0.9999), 0.0001), and t is a bias term that adjusts the
transform from (non-negative) probabilities to negative/positive potentials. A
small bias favors a single region of all superpixels, whereas a large one leads to
regions of single superpixels.

Solving the graph partitioning problem. A partition is defined by a binary
indicator variable Xe for each edge e. Xe=1 if edge e is to be cut and Xe=0 oth-
erwise. A valid configuration [11] of labeling X∈{0, 1}E of edges gives a possible
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segmentation. The correlation clustering problem can be expressed as:

min
X∈C

θeXe,

where C is the set of all possible segmentations. If edges are only between adja-
cent superpixels and have unrestricted potential values, this results in a planar
graph. Given efficient search strategies it can be solved to optimality using an
integer linear programming solver using a cutting planes approach [1]; or ap-
proximated using dedicated solvers such as PlanarCC [11], which often reaches
the global optimum as well (see [5] for a benchmarking). We consider the latter
for the cell segmentation problem, which belongs to instances of large sizes (Ta-
ble 1). Also, given its closed contour property, the application of such models is
valuable because cell boundary information is often only partially available and
can be inconsistent.

Adding a length constraint. Restricting the size of segments is valid for cell
segmentation problems as a specific cell type has a known size prior. This is
particularly helpful in situations when cells are largely clustered together and
their separation boundaries are missing. Thus, a constraint that no cell has a
length (in its major axis) larger than a hyper-parameter d can be imposed.
We formulate this to a graph structure that is amenable to a highly efficient
approximate (and as it happens often exact) optimization: Semi-PlanarCC [2]. In
this model, not only edges between adjacent superpixels have potentials, but also
edges between distant non-adjacent superpixels have large negative potentials.
To do so, it is sufficient to state that for any two superpixels, if separated by
an approximated distance of d, then they must be in separate regions. For every
superpixel p, a circle of radius equal to d is drawn at the centroid of p. All
superpixels lying on that circle may not be in the same region as superpixel
p. An illustration is shown in Fig. 2d. The potentials between these superpixel
pairs are set to a large negative value, e.g. −|

∑
e θe|−0.001. This means, it is

preferable to cut all edges with positive potentials rather than missing cutting
on edges with negative long-range potentials.

Finally, after removing background segments, each connected component en-
closed by the cut edges is considered as an individual cell region. In our case,
we currently use two heuristic size filtering steps to remove background: at seg-
ments level, consider those larger than 6l2 as background, and at superpixel
level, consider segments containing superpixel(s) larger than 3l2 as background.

3 Experiments and Results

Our aim is to optimize both the detection and segmentation accuracy w.r.t. the
ground truth (GT) in each image provided in the form of centroids for every
cell and regions of a random subset of cells. Therefore, we evaluate the output
of detection based on: A region is considered a true positive (TP) detection if
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Table 1: Summary of experimetal parameters.

Dataset avg. cell length l # superpixels # planar edges # non-planar edges

a 60 1225±242 3456±701 18025±6791

b [9] 100 3727±2450 10530±7010 147420±160420

c [3] 30 1081±364 3035±1038 26618±12683
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Fig. 3: Precision-Recall plots of detection for the three datasets using various t
values. (Results for Dataset-c using CellDetect is reproduced from [3]. Also for
CellDetect, detection criteria was the same as in [3] due to the available output.)

the GT centroid is within this region; Regions that do not cover cell centroids
are considered false positives (FP); Missed GT centroids are counted as false
negatives (FN). The results are reported in terms of precision P=TP/(TP+FP),
recall R=TP/(TP+FN), and F-measure F=2×P×R/(P+R). Due to the high cell
density, we randomly selected 10−20% of cells from each image and manually
segmented them to provide the GT. The segmentation accuracy is then computed
from two area overlap measures between the TP detection regions Rtpd and the
GT region Rgt: M1=(Rtpd∩Rgt)/(Rtpd∪Rgt)×100, M2=(Rtpd∩Rgt)/Rgt×100.

Three datasets have been used to validate our method (Fig. 1). Dataset-a
(15 images with 1768 in-focus cells in total) contains bright field Diploid yeast
cells. It is required to detect in-focus cells while discriminating them from out-of-
focus cells. The detection task is challenging since the cell boundary edges can be
partially missing and often exhibit varying contrast patterns even in the same
cell. Other challenging issues include poor contrast, partial or changing halo,
overlap with out-of-focus cells, and imaging artifacts. Dataset-b (10 images with
2340 cells in total) is from bright field Fission yeast cells in [9], where cells are
elongated cylinder like and can be very densely packed as well as in the Dataset-a
but having different appearance. Dataset-c (11 images with 1073 cells in total)
is from CellDetect [3], which contains phase contrast images of cervical cancer
cell colonies of the HeLa cell line. It presents a high variability in cell shapes and
sizes. Table 1 summarizes the parameter details.

Detection results are shown in Fig. 3. The detection differences between Pla-
narCC and Semi-PlanarCC lie on two sides: Semi-PlanarCC splits either large
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Table 2: Results of segmentation in area overlap measures M1 and M2 on the TP
detected cells (mean±standard deviation). The highest number (100 indicating
the best) among the methods is indicated as bold.

Dataset Meas. PlanarCC Semi-PlanarCC CellX [8] CellStat [7]

a
M1 86.3±13.3 86.4±12.0 86.9±16.0 89.5±13.6
M2 97.0±1.6 96.8±3.1 94.8±14.2 91.4±13.9

b [9]
M1 74.4±21.8 74.1±21.3 32.8±23.8 49.3±24.2
M2 86.9±23.8 90.2±21.7 32.8±23.8 55.7±29.6

c [3]
M1 71.4±12.1 70.1±11.9 42.1±12.7 46.4±8.6
M2 93.9±13.3 94.4±11.4 42.2±12.7 60.6±14.0

groups of cells or cells from background that would be merged by PlanarCC; It
might also split exceptionally large cells or background into multiple segments
small enough to be rejected. This could be seen in Fig. 3 that Semi-PlarnarCC
has achieved higher recall values than PlanarCC for the same t value (i.e. seem-
ingly compressed curve horizontally shifted rightwards). This may suggest that
the former is less sensitive to the choice of t. And the lower precision values
for Dataset-a are due to the multiple fragmented background segments whose
sizes are similar to a cell. This is more likely to happen in microscopy images
of cell cultures of medium confluence. This could be alleviated through a post-
processing step using e.g. shape or texture features. Table 2 shows the area
overlap measures on segmentations from a random subset of TP detected cells,
both methods perform similarly in their best F measure cases (Fig. 3).

In Fig. 3 and Table 2, we also show detection and segmentation results of
three methods: CellDetect [3], CellX [8], CellStat [7]. PombeX [9] has also been
evaluated but the tool does not provide quantifiable output thus not reported.
For each method we have tried to optimize their parameters to achieve the best
possible results. Reported results for Dataset-c using CellDetect is reproduced
from [3]. Also for CellDetect, detection criteria was the same as in [3], since its
detection is represented as cell centroids. The overall comparison is favorable to
our method over other methods. CellStat is primarily designed for bright field
images of round cells, and it looks for contours with consistent profile pattern.
This may in part account for their poorer performance for elongated cells and
phase contrast images. Similarly, CellX also tries to match boundary profile pat-
tern on cells without extreme shapes. Due to the image appearance variations
within each dataset, we expect that these methods would perform better if pa-
rameters are tuned for each image individually rather than what we do here:
the same set of parameters for the whole dataset. A visual inspection of our
segmentation can be seen in Fig. 4 as red contours overlaid on example images.
It clearly shows that for Dataset-a, the out-of-focus cells (highly-contrasted and
blurred ones) are clustered with the background, i.e. they are excluded from the
segmentation.
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Fig. 4: (top) Example original image regions from Datasets a-c (left to right).
Overlaid lines (red) on the original images are: superpixel lines (middle top),
segmentation contours of these regions (middle bottom) and the entire example
image (bottom), with the regions indicated as white frames.

4 Discussion and Conclusions

The technique for cell detection and segmentation presented here is able to
achieve state-of-the-art performance across different scenarios. In general Plan-
arCC and Semi-PlanarCC perform similarly, but for overlapping cells with miss-
ing cell boundaries, the latter is more beneficial. The model does not have any
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specifications about closed region shape and size, which allows for various cell
types applications. It has demonstrated that it can also handle large number of
superpixels and graphs, which is the case of microscopic cell images. Our method
only requires a few sparse labels to train a cell boundary classifier for all images
in an experiment. Apart from setting cell length (and bias), further steps are
automatic and require no user interaction, thus well suited for high-throughput
studies. In addition, the flexibility of training edges from cells of interest allows
us to exclude edges from other structures. Deterministic post-processing steps
should be applied to further reject segments with implausible characteristics of
being a cell, according to e.g. image texture features, or cell morphology features.
Here we only focus on evaluating the performance of our technique.
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