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Abstract. Prototypical data clustering is known to su↵er from poor
initializations. Recently, a semidefinite relaxation has been proposed to
overcome this issue and to enable the use of convex programming instead
of ad-hoc procedures. Unfortunately, this relaxation does not extend to
the more involved case where clusters are defined by parametric models,
and where the computation of means has to be replaced by parametric
regression. In this paper, we provide a novel convex relaxation approach
to this more involved problem class that is relevant to many scenarios of
unsupervised data analysis. Our approach applies, in particular, to data
sets where assumptions of model recovery through sparse regularization,
like the independent subspace model, do not hold. Our mathematical
analysis enables to distinguish scenarios where the relaxation is tight
enough and scenarios where the approach breaks down.

1 Introduction

Given data (measurement, pattern, observation, ...) vectors b
i

2 Rd, i 2 [n] :=
{1, 2, . . . , n}, the basic clustering problem amounts to jointly minimize the ob-
jective function

min
u,x

X

i2[n]

X

j2[k]

u
ij

kx
j

� b
i

k2 (1)

with respect to prototypes x
j

2 Rd, j 2 [k], and assignment variables u
ij

2
{0, 1}, i 2 [n]. The well-known k-means algorithm shows that, if either set of
variables is fixed, then solving for the other set of variables is trivial. However,
the task to jointly solve for both assignment variables and prototypes is inherently
combinatorial. Accordingly, there exist a broad range of heuristic algorithms (k-
means, mean-shift, etc.) that locally solve this chicken-and-egg problem in an
EM-like alternating fashion and hence strongly depend on proper initializations.
To overcome this shortcoming, combinatorial optimization techniques (e.g. [10])
have been applied, but they do not scale up to large data sets. Alternatively,
semidefinite convex relaxations [11] have been suggested along with extensions
to ensemble clustering [14], using the same relaxation.
In this paper, we adopt the latter focus on convex relaxation but study the more
involved problem

min
u,x

X

i2[n]

X

j2[k]

u
ij

kA
i

x
j

� b
i

k2 (2)
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with given data (A
i

, b
i

) 2 Rl⇥d ⇥ Rl, i 2 [n], unknown model parameters x
j

2
Rd, j 2 [k], and unknown assignments u

ij

2 {0, 1} of datum i to model j, to
be determined by minimizing the objective (2). In comparison with (1), this
approach extends the representation of data by points (prototypes, centroids) to
a�ne subspaces, which is significant for many applications.

Regarding the fitting of such “union of subspaces” models to data, significant
progress has been recently made by assuming the dimensions of these spaces
to be low relative to the ambient space [3]. This enables to establish recovery
guarantees based on sparsity priors and basic convex programming techniques
[6] that are more convenient and robust than alternatives like, e.g., algebraic
techniques [9]. In this paper, however, we do not rely on such low-rank assump-

tions. A simple such problem, illustrated by Figure 1, concerns the clustering of
one-dimensional linear subspaces in R2, which clearly violates the “independent
subspaces” assumption of [6, Section 4].

Fig. 1. Left: An unsupervised subspace
clustering problem where recovery guar-
antees by sparse regularization fail. Right:
Our approach jointly partitions the data
and estimates the model parameter by
solving a single convex optimization prob-
lem (relaxation) followed by spectral
clustering.

Another and equally important line of research concerns pairwise, graph-based

clustering [8], where locally converging methods like mean-field annealing have
been developed and also extended to piecewise regression problems [13]. To re-
duce the susceptibility to local initializations, spectral relaxation is commonly
applied [17, 4]. However, while Euclidean embeddings [1] of pairwise data pro-
vide a connection to central clustering, working out the implications for our novel
mathematical approach to solve problem (2) is beyond the scope of this paper.

Contribution, Organization. We sketch in Section 2 the semidefinite relax-
ation of the basic problem (1) and elucidate why this relaxation is specific to (1)
and does not generalize to problem (2). As a consequence, we present in Section
3 our novel mathematical approach to the relaxation of the joint optimization
problem (2). In Section 4, some properties of the approach are derived together
with limitations that are inherent to any non-tight relaxation of a combinatorial
problem. The approach is illustrated by few academical examples in Section 5.
We point out that working out applications is beyond the scope of our theoreti-
cal work that has been motivated by the class of unsupervised learning problems
(2).
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2 Prototypical Clustering by Convex Programming

2.1 Problem, Convex Relaxation

Collecting the assignment variables into a matrix U , the basic clustering problem
(1) reads

min
u,x

X

i2[n]

X

j2[k]

u
ij

kx
j

� b
i

k2 s. t. Ue = e, U 2 {0, 1}n⇥k, (3)

where e = (1, 1, . . . , 1)>. The derivation of a convex relaxation is based on the
simple observation that, for any subset S ✓ [n] of data vectors {b

i

}
i2S

, one has

1

|S|
X

i2S

b
i

2 argmin
x

X

i2S

kx� b
i

k2. (4)

Thus, given a fixed assignment {u
ij

}, one can express every x
j

in terms of the
respective u

ij

variables by setting

x
j

(U) =

P
i2[n] uij

b
iP

i2[n] uij

. (5)

Collecting all data vectors b
i

2 Rd, i 2 [n], as columns of a matrix B 2 Rd⇥n,
insertion of (5) into (3) yields after an elementary rearrangement

min
U

hB>B, I � U(U>U)�1U>i s. t. Ue = e, U 2 {0, 1}n⇥k. (6)

Substituting Z = U(U>U)�1U> gives the equivalent [11] problem

min
Z

hB>B, I � Zi s. t. Ze = e, hZ, Ii = k, Z2 = Z, Z 2 Sn \ Rn⇥n

+ (7)

where Sn denotes the linear space of symmetric n⇥ n matrices.
Even though (7) looks much simpler than its original formulation (3), it is still
intractable and nonconvex due to the constraint Z2 = Z. However, this can be
relaxed to Z 2 Sn

+ (semidefinite matrix cone) which yields a tractable semidefi-

nite program (SDP). In this context, B>B plays the role of a similiarity measure
which is the only data-dependent information for the algorithm.

2.2 Why This Approach Does Not Generalize

A key property of (7) is dealing with the inherent symmetries of (3), which is
necessary for any convex relaxation. To see why this is an issue, consider the
convexified set U

n,k

= {U 2 [0, 1]n⇥k |Ue = e}. For any U 2 U
n,k

and for any
⇡ 2 S

k

(S
k

: symmetric group on [k]), let U
⇡

be the result of permuting the
columns of U according to ⇡. Then U

⇡

2 U
n,k

and, by convexity,
P

⇡2Sk
U
⇡

=
1
k

J 2 U
n,k

where J = ee> is the matrix of all ones. It follows for any symmetric
convex function f (f(U) = f(U

⇡

) for all ⇡ 2 S
k

) that 1
k

J is an optimal but
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useless solution, because every point can be assigned to every cluster at the
same cost.

The two key properties of (7) are that the objective is asymmetric and that the
feasible set can be easily convexified. Intuitively, the symmetry variant question
of (3), “which points belong to which cluster”, is reduced to a weighted version
of the symmetry invariant question, “which points belong to the same cluster”,
since u

rj

u
sj

in Z
rs

=
P

j2[k](urj

u
sj

)(
P

i2[n] uij

)�1 denotes whether r and s are
in cluster j at the same time. This also allows to extract the clusters at the end.

Now consider generalizations of problem (1) of the form

min
u,x

X

i2[n]

X

j2[k]

u
ij

kf(x
j

, A
i

)� b
i

k2 s. t. Ue = e, U 2 {0, 1}n⇥k (8)

for some di↵erentiable function f and data (A
i

, b
i

), i 2 [n]. If one wants to
generalize the approach of Section 2.1 accordingly, then the prototypes have to
be eliminated and the objective has to be reduced to an asymmetric convex
function in the remaining variables. Assume cluster j is indexed by S ✓ [n], that
is the assignment variables are fixed and the constraints obsolete. Then, taking
derivatives gives the optimality condition

0 =
X

i2S

⌦
r

x

f(x,A
i

)
��
x=xj

, f(x
j

, A
i

)� b
i

↵
. (9)

Depending on f , (9) is arbitrarily hard to solve for x
j

in closed form. The simplest
generalization takes the form (2), that is f(x

j

, A
i

) = A
i

x
j

. Then (9) becomes

x
j

(U) =
⇣ X

i2[n]

u
ij

A>
i

A
i

⌘†⇣ X

i2[n]

u
ij

A>
i

b
i

⌘
. (10)

Unfortunately, taking the pseudo-inverse (. . . )† of a linearly parametrized matrix
is highly nonlinear. In particular, even if we could assume that the matricesP

i2S

A>
i

A
i

admit an ordinary matrix inverse, then x
j

(U) in (10) would be a
multivariate rational function in U whose coe�cients strongly depend on the
specific given data. Without further assumptions, there is neither an easy way
to see the range of possible values for the coe�cients of U after substituting x

j

by
(10) nor an easy way to estimate the approximation quality of the corresponding
convex hull. These facts motivate our approach presented in the subsequent
section.

3 Joint Approach to Clustering and Regression

3.1 Problem, Problem Reformulation

In this section, we consider problem (2) in the form

min
u,x

X

i2[n]

X

j2[k]

u
ij

kA
i

x
j

� b
i

k2 (11a)

s.t. Ue = e, U 2 {0, 1}n⇥k, {x
j

}
j2[k] ✓ P (11b)
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where P ✓ Rd is a polytope, {A
i

} ✓ Rl⇥d and {b
i

} ✓ Rl. This is equal to (2) if
we know a polytope P containing the optimal solution. We will assume this for
now, showing examples where we can construct P in closed form in Section 5.

Problem Reformulation. Since P is a polytope, P = conv({v
s

}
s2[m]) for

the columns v
s

of some matrix V 2 Rd⇥m. By Caratheodory’s theorem [12,
Thm. 2.29], we can thus assume that there is a �j 2 Rm

+ where h�j , ei = 1 and
| supp(�j)|  d+ 1 such that x

j

= V �j .
Using this substitution and applying that 1 = h�j , ei, one easily checks that

kA
i

x
j

� b
i

k2 =
X

r,s2[m]

�j

r

�j

s

(v>
r

A>
i

A
i

v
s

� (b>
i

A
i

)(v
r

+ v
s

) + kb
i

k2). (12)

Setting W
i

, i 2 [n], with (W
i

)
rs

:= (v>
r

A>
i

A
i

v
s

� (b>
i

A
i

)(v
r

+ v
s

) + kb
i

k2)
rs

and
⇤j := �

j

�>
j

, yields kA
i

x
j

� b
i

k2 = h⇤j ,W
i

i := tr(⇤jW
i

) and the reformulation

min
u,⇤

X

i2[n]

X

j2[k]

u
ij

h⇤j ,W
i

i (13a)

s.t. Ue = e, U 2 {0, 1}n⇥k,

h�j , ei = 1, �j � 0, k�jk0  d+ 1, ⇤j = �j�j

>
. (13b)

The constraints (13b) can be equivalently expressed in terms of ⇤j by demanding

h⇤j , Ji = 1, rank(⇤j) = 1, ⇤j 2 CPm, k diag(⇤j)k0  d+ 1 (14)

where CPm := {M 2 Sm : M =
P

µ
i

µ>
i

, µ
i

2 Rm

+} is the cone of completely
positive matrices [2].

3.2 Convex Relaxation

In order to get a convex relaxation we have to convexify both the objective and
the feasible set. We even go one step further and linearize the objective.

Linearizing the Objective. Setting ⇤
i

(U) :=
P

j2[k] uij

⇤j , we get

X

i2[n]

h
X

j2[k]

u
ij

⇤j ,W
i

i =
X

i2[n]

h⇤
i

(U),W
i

i, (15)

where the variables U model ⇤
i

(U) 2 {⇤j}
j2[k], which is invariant under per-

mutations of (⇤1, . . . ,⇤k). This implies that relaxing the condition ⇤
i

(U) 2
{⇤j}

j2[k] without introducing symmetry is a good first step to get a tractable
relaxation with a linear objective.
To proceed, we derive some properties of {⇤j}

j2[k]. Consider the sets

Nm

⌫,d

: = {⇤ 2 CPm : h⇤, Ji = ⌫, rank(⇤) 2 [⌫], k diag(⇤)k0  ⌫(d+ 1)}
= ⌫ · Nm

1,d

(16)
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where ⌫ · Nm

1,d denotes the Minkowski-sum of ⌫ copies of Nm

1,d. In particular, we
have X

j2S

⇤j 2 Nm

|S|,d for all S ✓ [k]. (17)

It follows that for every feasible, integral assignment U , we have

⇤
i

(U) 2 Nm

1,d, ⇤⇤ :=
X

j2[k]

⇤j 2 Nm

k,d

and ⇤⇤ � ⇤
i

(U) 2 Nm

k�1,d. (18)

Thus, replacing ⇤
i

(U) by a variable ⇤
i

defines an asymmetric linear objective
function for the relaxation

min
⇤

X

i2[n]

h⇤
i

,W
i

i s.t. ⇤⇤ 2 Nm

k,d

, ⇤
i

2 Nm

1,d, ⇤⇤ � ⇤
i

2 Nm

k�1,d. (19)

The only relaxation made so far concerns condition ⇤⇤�⇤
i

2 Nm

k�1,d that cannot
strictly enforce the set {⇤

i

}
i2[n] to only have k distinct members. While some

problem structure is lost, this is necessary to remove the symmetry.

Relaxing the feasible region. Optimizing over the set Nm

⌫,d

is intractable. The
rank-constraint as well as the bounded support make the problem non-convex
and very hard in practice. Furthermore, even though CPm is a convex cone,
separation over CPm is NP-hard [5], so this is intractable as well.
Since we are interested in a tractable convex relaxation, we apply standard
relaxations for these conditions. To this end, define the sets

Mm

⌫,d

:= {⇤ 2 Sm

+ \ Rm⇥m

+ : h⇤, Ji = ⌫, tr(⇤) � ⌫

d+ 1
} = ⌫ · Mm

1,d, (20a)

K := Sm

+ \ Rm⇥m

+ . (20b)

Theorem 1. Mm

⌫,d

is convex, tractable and Nm

⌫,d

✓Mm

⌫,d

.

Proof. CPm ✓ K follows from the definition. Furthermore, Nm

⌫,d

✓ Mm

⌫,d

is
implied by Nm

1,d ✓Mm

1,d, so consider ⌫ = 1. For ⇤ 2 Nm

1,d, by definition, there

exists � such that ⇤ = ��>, � � 0, h�, ei = 1 and k�k0  d + 1. We have
tr(⇤) = k�k22 and one can verify that under these constraints a minimizer of
this term is given by any vector �⇤ where k�⇤k0 = d + 1 and �⇤

i

= 1
d+1 for all

i 2 supp(�⇤). This gives the desired lowerbound on tr(⇤). ut

As a direct corollary, we get the tractable, convex relaxation of our problem

min
⇤

X

i2[n]

h⇤
i

,W
i

i s.t. ⇤⇤ 2Mm

k,d

, ⇤
i

2Mm

1,d, ⇤
⇤ � ⇤

i

2Mm

k�1,d. (21)

Again, this relaxation loses some structure of the problem but is necessary to
achieve tractability.
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3.3 Extension to Disjunctive Programming

In (11), we required the prototypical model parameters to be contained in a
polytope: {x

j

}
j2[k] ✓ P . We can generalize P to a finite union of (not necessarily

disjoint) polytopes P =
S

t2T

P
t

with some additional work. Let V
t

be the matrix
which has the vertices of P

t

as columns. Then x 2 P is equivalent to x =P
t2T

V
t

�
t

for a vector �> = (�>
1 , . . . ,�

>
|T |) such that

h�, ei = 1, � � 0, k�k0  d+ 1, {(�
r

= 0) _ (�
s

= 0)}
r,s2T

(22)

where _ denotes the logical or. Adding {(�
r

= 0)_ (�
s

= 0)}
r,s2T

to (13b) then
results in a disjunctive program [7].

Now observe that (�
r

= 0) _ (�
s

= 0) implies �
r

�>
s

= 0 for any r, s 2 T , so
the matrix ⇤ = ��> = (�

r

�>
s

)
r,s2T

is block diagonal. Since ⇤ � 0, this can be
encoded by a 0/1-matrix ⌦ as a single linear constraint h⇤,⌦i = 0, where J�⌦
shares the block structure of ⇤.
Using the rank condition one can show that adding {(�

r

= 0) _ (�
s

= 0)}
r,s2T

to (13b) is equivalent to adding h⇤j ,⌦i = 0 to (14). Following Section 3.2 we
can relax this constraint for (21) to h⇤⇤,⌦i = 0, which implies h⇤

i

,⌦i = 0 for
all i 2 [n]. Hence, we showed

Proposition 1. Let ⌦ 2 {0, 1}m⇥m

be symmetric and tr(⌦) = 0. Then adding

h⇤⇤,⌦i = 0 to (21) entails that the solution x
j

of (11) can be written as a convex

combination of {v
i

}
i2Sj where [m] ◆ S

j

+ {r, s} for all !
rs

= 1. In particular,

if J � ⌦ is block diagonal, then h⇤⇤,⌦i = 0 implies that P =
S

t2T

P
t

, where

each P
t

is the convex hull of columns V
t

indexed by a diagonal block.

Note that, while the relaxation in ⇤ is convex, the recovery of � from ⇤ will in
general not preserve convexity. Depending on how we recover �, the relaxation
does not necessarily model a convex space in the x variables, which makes this ap-
proach viable. Now observe, however, that for the objective function, convex com-
binations of rank-1 matrices are in general “bad” since, by linearity and for any
convex combination ⇤ =

P
i2S

µ
i

�
i

�>
i

, we have hW,⇤i =
P

i2S

µ
i

hW,�
i

�>
i

i �
min

i2S

hW,�
i

�>
i

i. Setting !
rs

= 1 cuts o↵ rank-1 matrices ⇤ corresponding to �
with �

r

,�
s

> 0. As a consequence, optimization will favor rank-1 matrices with
either �

r

= 0 or �
s

= 0 instead of approximating the cut o↵ matrix, which shows
that Prop. 1 extends problem (11) and its relaxation in a reasonable way.

3.4 Algorithm

While the computation of (21) is straight forward using any SDP-solver, round-
ing the solution afterwards requires some care. The easiest way is to use spec-
tral clustering. To this end, define a similarity matrix H by setting H

rs

=
1� h⇤

r

,⇤
s

i/(k⇤
r

k2 · k⇤s

k2), which yields a value in [0, 1] corresponding to the
angle between ⇤

r

and ⇤
s

in Rm⇥m.
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Algorithm 1.1: k-Cluster Relaxation

Data: {(A
i

, b
i

)}
i2[n] ✓ Rl⇥d ⇥ Rl, V 2 Rd⇥m, k 2 N,⌦ 2 {0, 1}m⇥m

Result: assignments U and centroids {x
j

}
j2[k]

compute W
i

 (v>
r

A>
i

A
i

v
s

� (b>
i

A
i

)(v
r

+ v
s

) + kb
i

k2)
rs

for i 2 [n];1

solve (21) subject to h⇤⇤,⌦i = 0 for {⇤
i

}
i2[n];2

compute similiarity matrix H  (1� h⇤
r

,⇤
s

i/(k⇤
r

k2 · k⇤s

k2))rs;3

compute the assignment U by spectral clustering using H;4

compute centroids {x
j

}
j2[k] using U ;5

return (U, {x
j

}
j2[k]);6

4 Analysis

Inspecting the relaxed problem formulation (21) reveals the following: The ob-
jective function is separable in terms of the variables ⇤

i

, and the right-most
constraint that has to be satisfied simultaneously for all ⇤

i

, i 2 [n], fuses this lo-
cal information. In this section we derive conditions that characterize when this
latter condition is su�ciently weak so that the relaxation must fail. Conversely,
the more these conditions are not satisfied, the more likely the relaxation will
return a useful result. Our theoretical findings will be illustrated in Section 5.

Specifically, we derive values of (k,m, d) so that we can choose ⇤⇤ 2Mm

k,d

such
that ⇤⇤ � ⇤

i

2 Mm

k�1,d will be satisfied for all choices of ⇤
i

2 Mm

1,d. Our
corresponding main result is stated below as Theorem 2.
Condition ⇤⇤ � ⇤

i

2Mm

k�1,d is equivalent to

tr(⇤⇤)� tr(⇤
i

) � k � 1

d+ 1
, ⇤⇤ � ⇤

i

2 K. (23)

Note that since tr(⇤
i

)  h⇤
i

, Ji = 1 is sharp, we infer that tr(⇤⇤) � d+k

d+1 is
necessary for the first condition to hold.
As for the second condition, let AK B denote the inclusion B � A 2 K. Then
we need an upper bound of Mm

1,d with respect to the partial order K, given by
the following Lemma.

Lemma 1 (K-Upper Bound of Mm

1,d). I + 1
4J is a K-upper bound for

Mm

1,d.

Our main result is

Theorem 2 (Decoupling Condition). There is a matrix ⇤⇤ 2 Mm

k,d

such

that (⇤⇤ � ⇤) 2 Mm

k�1,d for all ⇤ 2 Mm

1,d if there are ↵,� 2 R such that

k = � ·m2 + ↵ ·m, � � 1
4 and

↵ � max{1, �
d
(m� (d+ 1)) +

1

m
}. (24)

In particular, for fixed m, d there is a minimal value k⇤(m, d) 2 N that satisfies

these conditions, and the conditions can be satisfied for all k � k⇤(m, d).
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Proof. We fix m, d and derive conditions on k. By symmetry of Mm

k,d

we can

assume that ⇤⇤ = ↵I + �J where � � 1
4 and ↵ � 1 by Lemma 1. It follows that

k = h⇤⇤, Ji = � ·m2 + ↵ ·m and tr(⇤⇤) = (↵+ �)m.
Together with tr(⇤⇤) � d+k

d+1 from (23), we have (↵+�)m = tr(⇤⇤) � d+k

d+1 > k

d+1 ,

where we can substitute k = � ·m2+↵·m and rewrite it as ↵ � �

d

(m�(d+1))+ 1
m

.
Since m, d is fixed, the inequalities bound ↵,� and thus k from below. Therefore
a minimal value k⇤(m, d) 2 N that satisfies these conditions exists. ut

5 Experiments

All examples have been carried out in Matlab using the SDPT3 [15, 16] package.
Euclidean Clustering. By choosing A

i

= I we recover (3), where (4) tells
us to use P ◆ conv({b

i

}
i2[n]). Using any simplex containing all the points is a

coarsest approximation, but yields in general bad results.
Fig. 2 is tied to Thm. 2 - while k is fixed, k⇤(m, d) and the quality increase from
top to bottom as a consequence of additional polytopes separating the local
solutions: When ⇤r, ⇤s are optimal centroids, then (21) has hJ,⇤r ^ ⇤si excess
weight to shift around in ⇤⇤, where ^ denotes the componentwise minimum.
Refining P , ⇤r^⇤s decreases, thus improving the quality. Given that the optimal
solution is already covered, adding disjoint polytopes does not negatively impact
the quality of the output, as can be seen in the bottom row of Fig. 2.
Hyperplane Clustering. By choosing b

i

= 0 for all i 2 [n] and choosing
A

i

= a
i

as row vectors, problem (2) translates into finding normal vectors x
j

of
k hyperplanes such that every data point a

i

lies on exactly one hyperplane. To
exclude the degenerated solution 0 we need an appropriate P for (11).
Without loss of generality we can assume that the x

j

are unit vectors belonging
to the “upper” half-sphere Sd�1\H, where H = {x 2 Rd |x1 � 0}. The coarsest
polytope approximation P is then given by the union of the facets of C

d

in H,
where C

d

is the cross polytope C
d

= conv{±e
l

| l 2 [d]} of dimension d. This
yields V =

�
0 1 0
�I 0 I

�
and !(el,�el) = 1 for all 1 6= l 2 [d].

Ideally, P corresponds to a disjoint union of polytopes each including one ⇤j .
Figure 3 shows that one may need to use separate copies of the same vertices.

6 Conclusion

We introduced a novel mathematical model to deal with the a�ne subspace
clustering problem. Our analysis shows why it works reasonably well. Experiment
show that it is attractive to use the algorithm with an oversegmentation of the
set of feasible solutions, with the focus on separating local solutions. This cannot
be achieved using sparsity regularization. Prior knowledge can be used to speed
up the algorithm, but is not necessary. Automatically balancing this trade o↵
based on the data in an e�cient way is a subject for future work.

Acknowledgement:Authors gratefully acknowledge support by the DFG, grant
GRK 1653.
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Fig. 2. Euclidean Clustering on data spread around three points in 2d, k=3. Left:

Partial cover of [�1, 1]2 given by V and corresponding block structure of ⇤⇤ given by
⌦. Middle: Orange data points and blue centroids extracted from ⇤i. Right: Clustered
data points and blue centroids given by our algorithm. Top: Naive cover by a single
square where ⌦ = 0. Bottom: Optimal choice of P and oversegmentation yield the
same result.

Fig. 3. Hyperplane Clustering on three Lines in 2d, k=3. Left: Polytope approximation
of S1 \ H given by V and corresponding block structure of ⇤⇤ given by ⌦. Middle:

Orange data points and grey centroids extracted from ⇤i. Right: Clustered data points
and grey centroids given by our algorithm. Top: Coarsest approximation given by the
facets of C2 in H. Bottom: Oversegmentation where separate copies of the same vertices
needed to be used to get the proper result.
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