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ABSTRACT

Automated cell tracking methods are still error-prone. On
very large data sets, uncertainty measures are thus needed
to guide the expert to the most ambiguous events so these
can be corrected with minimal effort. We present two easy-
to-use methods to sample multiple proposal solutions from a
tracking-by-assignment graphical model and experimentally
evaluate the benefits of the uncertainty measures derived. Ex-
pert time for proof-reading is reduced greatly compared to
random selection of predicted events.

Index Terms— Cell tracking, uncertainty, machine learn-
ing, probabilistic graphical models

1. INTRODUCTION

Biomedical applications often require an accurate tracking of
proliferating cells [1]. Existing cell tracking methods [2, 3, 4,
5, 6] perform well on sparse cell populations with high signal-
to-noise ratio (SNR). However, they are far from achieving
gold-standard-accuracy on high-dimensional data with low
SNR. To analyze their data with highest reliability, biomedi-
cal specialists have to spend their precious time to proof-read
the predicted cell lineages and correct them where necessary.
When working with high-throughput setups, unguided proof-
reading quickly becomes prohibitive. In response, what is
needed is automatic guidance which presents the most am-
biguous frame-to-frame assignments to the user, omitting triv-
ial assignments.

Recently, numerous tracking-by-assignment methods
have been proposed for cell tracking [3, 4, 5]: These struc-
tured models typically consist of a data term (local features)
and an interaction term (e.g. lineage consistency constraints,
penalties for large displacements, etc.). While the latter term
is based on model assumptions, missing features, noisy sig-
nal, or poor image quality may corrupt the first term. When
estimating the maximum a-posteriori (MAP) solution to ob-
tain the most likely cell lineages, these cell tracking methods
ignore this signal uncertainty.

In this article, we take into account the uncertainty in the
measurements to derive ambiguity quantification measures in
order to guide the user to those predicted assignments which
are most uncertain. Both types of predicted events, cell migra-

Fig. 1. To derive proof-reading priorities, we propose to
perturb the unary potentials of a tracking-by-assignment cell
tracking model according to (i) a Gumbel distribution [7], or
(ii) a Gaussian distribution predicted from a Gaussian pro-
cess. Instances of the graphical model can then be gener-
ated by sampling locally from the distributions of the unary
potentials. Estimating the MAP solution of each individual
graphical model instance allows computing robustness mea-
sures for each individual predicted event and helps to guide
the biomedical specialist to the most ambiguous assignments.

tion (moves) and mitosis (divisions) are taken into considera-
tion independently. In order to sample multiple proposal so-
lutions from the tracking-by-assignment method, we present
two methods, the application of Perturb-and-MAP [7] and a
novel approach based on Gaussian process predictions for the
unary terms. Both alternatives allow sampling multiple in-
stances of the underlying graphical model on which, in turn,
individual MAP solutions are estimated, cf. Fig. 1. We find
that the variations in each assignment among these proposal
solutions is an efficient guidance measure for proof-reading.

Related Work Tracking-by-assignment models aim at
solving the cell tracking task with a structured model span-
ning pairs of frames [3] or a larger, possibly the entire, time
sequence [4, 5, 8]. These methods can be formulated as prob-
abilistic graphical models which describe a Gibbs distribution
defined by local potentials. To quantify uncertainty in such
graphical models, sampling from this distribution by Markov
chain Monte Carlo (MCMC) techniques would be the natural
first choice. However, due to signal-sensitive local potentials,
the Gibbs distribution may be “ragged” [9] and sampling will
be expensive. In contrast, recent developments in machine
learning turn to generating multiple instances of graphical



models and perform a MAP estimation on each of those in-
stances to obtain proposal solutions [7], similar to k-best data
association hypotheses [10]. We apply Perturb-and-MAP [7]
to cell tracking, i.e. all unary potentials are perturbed with the
same distribution, and we propose an alternative where the
perturbations are based on local uncertainties in the features.

In cell tracking, assignment ambiguities have only been
explored rarely. Rapoport et al. [11] find potential error types
and remove all lineages which are likely to contain such er-
rors to only show the most “trustworthy” lineages, i.e. aiming
for a high precision at the cost of low recall. The authors
in [12] exploit uncertainty in an active learning framework to
request the most uncertain assignment from the user in order
to improve the weights of the structured cell tracking method.

2. SAMPLING FROM TRACKING-BY-ASSIGNMENT
MODELS

First, we briefly recapitulate tracking-by-assignment models,
then review Perturb-and-MAP as “one shot approximate ran-
dom sampling” approaches [7] and finally propose a novel
related sampling method using Gaussian processes.

2.1. Tracking-by-Assignment Models

Tracking-by-assignment models typically decouple into two
subsequent stages, a detection/segmentation stage followed
by a tracking/assignment stage. The latter is often formulated
as an energy minimization problem [4, 5],

y∗ =argmin
y∈Y

E(y) = argmin
y∈Y

θ>φ(y) (1)

s.t. consistency constraints,

which minimizes real-valued costs (energy)E associated with
specific configurations y ∈ Y of the detections and cell-to-
cell transitions to find the optimal assignments/detections y∗.
In general, the energy function can be expressed in terms of
indicator functions φ(y) and model parameters θ (which con-
stitutes costs in unary and higher-order potentials). Linear
constraints forbid inconsistent solutions such as more than
one cell ancestor or more than two cell successors; these con-
straints can equivalently be added to the objective function.
Thus we drop them in our following notations.

In [5], we propose to choose multi-state random variables,
Y ∈ {0, ...,m}D, wherem is the maximal number of cells ex-
pected to appear in one detection (falsely merged cells)1 and
D is the number of random variables in the graphical model.

Energy minimization problems as in (1) can be casted as
maximum a-posteriori (MAP) estimation problems through
the maximization of the underlying Gibbs distribution,

P (y) =
1

Z
exp (−E(y)) =

1

Z
exp

(
−θ>φ(y)

)
, (2)

1For the ease of notation, we are here only referring to one variable
type Y , whereas in the original model in [5], a finer distinction is made.

where Z is the normalizing partition function.

2.2. Sampling through Perturb-and-MAP Random Fields

The key idea of Perturb-and-MAP [7] is to inject random
noise ε into the Gibbs distribution in Eq. (2), i.e.

Pε(y) =
1

Z
exp

(
−(θ + ε)>φ(y)

)
, (3)

and then repeatedly find the MAP estimates of the perturbed
objective. It has been shown [7] that if the perturbation vari-
ables ε are distributed according to a Gumbel distribution, the
distribution defined in Eq. (3) approximates the Gibbs distri-
bution in Eq. (2).

In practice, each cost of the (unary) potentials is perturbed
independently and identically according to a Gumbel distribu-
tion. The scale parameter for this single distribution needs to
be set manually. In the following, we propose to model each
data term with a distinct Gaussian distribution that reflects the
ambiguity of the local observations.

2.3. Sampling through Gaussian Processes

The model parameters θ introduced in Sec. 2.1 relate to the
energies defined by unary or higher-order potentials in the
graphical model. In many graphical models, the unary po-
tentials are based on predictions of classifiers fed with local
features. This is also true for the cell tracking method [5]
studied in this article: The unary costs are results of a cell
division classifier, a cell detection classifier, and a transition
classifier. We propose to utilize Gaussian process classifica-
tion2 for the generation of unary potentials since they provide
full predictive distributions for each query point.
In particular, let us denote the energy associated with some
variable Yi ∈ {0, ...,m} by θki , k ∈ {0, ...,m}. Note that θki
are the costs which were then perturbed in Sec. 2.2. Typically,
an unstructured classifier with parameters η is trained on a
training set of input/output pairs, D = {xi, yi}i=1,...,N =:
(X,y), and the (mean) prediction p(Yi = k|xi,X,y,η) from
local features xi determines these costs θki for variable Yi as

θki = −w log (p(Yi = k|xi,X,y,η)) , (4)

where w is a parameter of the graphical model. For a Gaus-
sian process classifier, reviewed in the next paragraph, θki
may either come from the mean of the predictive distribu-
tion in Eq. (6) specific for variable Yi, or drawing M sam-
ples in Eq. (6) yields θki,l, l ∈ {1, ...,M}. Drawing sam-
ples from the predictive distributions of each variable in the
graphical model yields a multitude of perturbations of the
graphical model as in Eq. (3) with ε approximated from the
underlying Gaussian processes. Their non-parametric nature

2Gaussian process regression may also be used directly for the genera-
tion of unary potentials. We refer the reader to [13] for an introduction to
Gaussian processes.



Fig. 2. One slice of the 3D+t Drosophila sequence: The more
opaque the red color the higher the classifier uncertainty that
the connected component contains exactly one cell.

avoids choosing a value for the perturbation variance, and the
unary potentials in the tracking-by-assignment model are per-
turbed according to the predicted second-order uncertainty in
the measured data, in other words the data term is perturbed
locally w.r.t. the predictive uncertainty from the Gaussian pro-
cess classifier. An example for the uncertainty of the cell de-
tection classifier on our Drosophila dataset is shown in Fig. 2.
Similarly to Sec. 2.2, these perturbed graphical models can
finally be solved independently and distributedly to approxi-
mate samples from the Gibbs distribution.

Gaussian Process Classification Gaussian processes
(GPs), denoted by GP(m(x), k(x,x′)), are stochastic pro-
cesses each realization of which defines a multi-variate joint
Gaussian distribution [13]. The mean function m(x) is typ-
ically assumed to be constant zero whereas the covariance
function k(x,x′) may be any Mercer kernel. GP classifi-
cation aims at finding a mapping from an input space to
a categorical output space given unstructured training data
D = (X,y) and it can be shown [13] that the latent predic-
tive distribution for query point x∗ is given as

f∗|x∗,X,y,η ∼ N (k>∗ K
−1y, k∗∗ − k>∗ K

−1k∗), (5)

where N (·, ·) denotes the Gaussian distribution, [K]ij =
k(xi,xj), [k∗]i = k(x∗,xi) with xi,xj ∈ X, k∗∗ =
k(x∗,x∗), and the parameters of k(·, ·) are the hyperpa-
rameters η of the GP. For binary classification with class
label y ∈ {0, 1}, the prediction for the latent f∗ in Eq. (5) is
“squashed” through a sigmoid function:

p(Y∗ = +1|x∗,X,y,η) = E (sigmoid (f∗|x∗,X,y,η))
≈ sigmoid (E(f∗|x∗,X,y,η)) . (6)

Applying the sigmoid function on multiple samples of f∗
rather than its expected value yields samples from the non-
Gaussian class-conditional distribution. In our experiments,
we choose the error function as the sigmoid function. To
train a GP classifier, the marginal likelihood of the model is
optimized. Approximations need to be made due to the non-
Gaussian likelihood function utilized in GP classification,
see [13] for more details.

Events presented 0 10 50 100 150 250 500
GP sampling (5x) 68.3 69.3 71.8 74.9 78.5 80.5 -
GP sampling (20x) 68.3 70.0 75.3 77.9 81.9 84.2 87.2
GP sampling (50x) 68.3 69.8 75.0 79.8 82.4 84.1 86.6
GP sampling (100x) 68.3 69.8 75.1 80.0 82.5 84.1 86.6
Perturb-and-MAP (5x) 68.3 69.3 72.7 - - - -
Perturb-and-MAP (20x) 68.3 69.1 73.4 76.4 80.8 - -
Perturb-and-MAP (50x) 68.3 69.1 73.4 76.6 79.7 - -
Perturb-and-MAP (100x) 68.3 69.3 73.3 76.6 79.1 - -

Table 1. Division accuracy after N events presented to
the user (and corrected if necessary); “-” indicates that the
method did not generate enough events with positive uncer-
tainty. The number “(tx)” is the number of samples drawn.

To extend the binary GP classifier to multiple classes,
uncorrelated latent functions are assumed, one per class.
The hyperparameters of these latent processes may either be
learned jointly using the softmax [14] or independently as a
set of binary classifiers in a one-vs.-all scheme. We use the
latter in our experiments.

3. UNCERTAINTY IN CELL TRACKING

The goal in cell tracking is to find full cell lineages which,
in turn, decompose over frame-to-frame events, assignments
either between two or three cell candidates, denoted as moves
or cell divisions, respectively. For manual proof-reading, we
want to guide the user to the most uncertain events, while as-
suming that ground truth is not available for the test dataset.
We propose to estimate the event uncertainty (also referred
to as event ambiguity) by analyzing the proposal solutions
drawn from the tracking-by-assignment model, as outlined in
the previous sections. Both events, moves and divisions are
modeled as random variables Y move

i and Y div
i in the graphical

model proposed in [5], whose realizations in the nth proposal
are denoted as ymove

i,n and ydiv
i,n; for brevity we omit the event

type. To reason about the reliability of a selected labeling y∗,
we introduce the labeling uncertainty measure as

U(Yi = yi,∗) = 1− 1

N

N∑
n=1

1[yi,n = yi,∗], (7)

which normalizes the number of votes amongst the solutions
of the perturbed models against labeling y∗. In other words,
the labeling uncertainty finds the most uncertain decisions,
i.e. the predictions in the selected proposal which are likely
to be wrong, compared to the labelings of the other propos-
als. Note that in order to guarantee a consistent solution, it is
not possible to round the approximated marginal distributions
for an “averaged” distribution. Instead, one proposal solution
(e.g. the MAP solution of the unperturbed model) needs to be
chosen to guarantee that no consistency constraint in Eq. (1)
is violated. In the GP based sampling approach, this unper-
turbed proposal solution corresponds to the mean predictions.



4. EXPERIMENTS AND RESULTS

We evaluate the usefulness of the proposed uncertainty mea-
sures on a challenging 3D+t sequence from a developing
Drosophila embryo taken from [5]. For this purpose, we
adapt the tracking-by-assignment model from [5] (we set
m = 2) and use Gaussian process classifiers for the detection,
transition, and division priors using the GP implementations
in the GPy package [15]. The parameters of the graphical
model are trained using the structured max-margin learning
implementation from [16]. We used the first 20 frames as
training set and the remaining 80 frames as test set.

As performance measure, we choose the f-measure (=
2·True Positives (TP)

2·TP+False Negatives+False Positives ) since it balances the number of
true events found (recall) and the rate of true predictions (pre-
cision). Note that although tracking-by-assignment is a two-
stage model, we here only evaluate the second stage, namely
the tracking model, since the ambiguity measures proposed
only apply to that; we hence only compare to the ground truth
actually seen by the tracking model. The numbers may de-
viate from those reported in [5] since a separate test set and
different classifiers are used. We want to show in this evalua-
tion that presenting the most ambiguous events to the user and
asking for corrections may quickly boost performance. The
samples are drawn from the graphical model offline, so no
expensive human interaction time is needed during the gener-
ation of the uncertainty values. In our experiments, drawing a
sample took ≈ 30 seconds on a contemporary workstation.

Our experimental setup is as follows: We iteratively
present the event with the highest labeling uncertainty ac-
cording to Eq. (7) to an oracle which corrects the event if
necessary. For both divisions and moves, most of the highly
uncertain events must be corrected by the oracle as shown in
Fig. 3(b) and (d), and less corrections need to be made for
less uncertain events. Our baseline is a random suggestion of
events. Both presented sampling methods perform similarly
well with a slight advantage for the GP sampling approach for
division events. As expected, the more samples are drawn, the
more meaningful are the uncertainty measures. As shown in
Table 1 and Fig. 3(a), manually correcting the divisions pro-
posed by the GP sampling method can boost the performance
from 68.3% to 80.0% already after 100 presented examples.
The f-measure of moves (cf. Fig. 3(c)) increases more slowly
due to the large number of move events in the dataset.

5. CONCLUSIONS

We propose to apply Perturb-and-MAP [7] random fields and
a novel Gaussian process sampling procedure to cell tracking
models for the generation of proposal solutions. A labeling
uncertainty measure is derived from the marginal predictions
across these samples, which guides users to most ambiguous
labels. In the future, we will try to fuse the proposal solutions
(and the corrections made by the user) to consistent solutions.

(a) Division: F-Measure

(b) Division: Corrected Events

(c) Move: F-Measure

(d) Move: Corrected Events

Fig. 3. Comparison of sampling methods and the resulting
labeling uncertainties. The curves terminate prematurely if
all remaining uncertainty estimates are zero. “iters” stands
for the number of samples generated from one model. See
main text for details.
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