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Abstract

We study the problem of learning to track a large quantity of homogeneous objects
such as cell tracking in cell culture study and developmental biology. Reliable
cell tracking in time-lapse microscopic image sequences is important for modern
biomedical research. Existing cell tracking methods are usually kept simple and
use only a small number of features to allow for manual parameter tweaking or
grid search. We propose a structured learning approach that allows to learn op-
timum parameters automatically from a training set. This allows for the use of a
richer set of features which in turn affords improved tracking compared to recently
reported methods on two public benchmark sequences.

1 Introduction

One distinguishing property of life is its temporal dynamics, and it is hence only natural that time
lapse experiments play a crucial role in current research on signaling pathways, drug discovery and
developmental biology [17]. Such experiments yield a very large number of images, and reliable
automated cell tracking emerges naturally as a prerequisite for further quantitative analysis.

Even today, cell tracking remains a challenging problem in dense populations, in the presence of
complex behavior or when image quality is poor. Existing cell tracking methods can broadly be
categorized as deformable models, stochastic filtering and object association. Deformable models
combine detection, segmentation and tracking by initializing a set of models (e.g. active contours) in
the first frame and updating them in subsequent frames (e.g. [17, 8]). Large displacements are diffi-
cult to capture with this class of techniques and are better handled by state space models, e.g. in the
guise of stochastic filtering. The latter also allows for sophisticated observation models (e.g. [20]).
Stochastic filtering builds on a solid statistical foundation, but is often limited in practice due to its
high computational demands. Object association methods approximate and simplify the problem by
separating the detection and association steps: once object candidates have been detected and char-
acterized, a second step suggests associations between object candidates at different frames. This
class of methods scales well [21, 16, 13] and allows the tracking of thousands of cells in 3D [19].

All of the above approaches contain energy terms whose parameters may be tedious or difficult
to adjust. Recently, great efforts have been made to produce better energy terms with helps of
machine learning techniques. This was first accomplished by casting tracking as a local affinity
prediction problem such as binary classification with either offline [1] or online learning [11, 5, 15],
weakly supervised learning with imperfect oracles [27], manifold appearance model learning [25],
or ranking [10, 18]. However, these local methods fail to capture the very important dependency
among associations, hence the resulting local affinities do not necessarily guarantee a better global
association [26]. To address this limitation, [26] extended the RankBoost method from [18] to rank
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global associations represented as a Conditional Random Field (CRF). Regardless of this, it has
two major drawbacks. Firstly, it depends on a set of artificially generated false association samples
that can make the training data particularly imbalanced and the training procedure too expensive
for large-scale tracking problems. Secondly, RankBoost desires the ranking feature to be positively
correlated with the final ranking (i.e. the association score) [10]. This in turn requires careful pre-
adjustment of the sign of each feature based on some prior knowledge [18]. Actually, this prior
knowledge may not always be available or reliable in practice.

The contribution of this paper is two-fold. We first present an extended formulation of the object
association models proposed in the literature. This generalization improves the expressiveness of the
model, but also increases the number of parameters. We hence, secondly, propose to use structured
learning to automatically learn optimum parameters from a training set, and hence profit fully from
this richer description. Our method addresses the limitations of aforementioned learning approaches
in a principled way.

The rest of the paper is organized as follows. In section 2, we present the extended object association
models and a structured learning approach for global affinity learning. In section 3, an evaluation
shows that our framework inherits the runtime advantage of object association while addressing
many of its limitations. Finally, section 4 states our conclusions and discusses future work.

2 Structured Learning for Cell Tracking

2.1 Association Hypotheses and Scoring

We assume that a previous detection and segmentation step has identified object candidates in all
frames, see Fig. 1. We set out to find that set of object associations that best explains these obser-
vations. To this end, we admit the following set E of standard events [21, 13]: a cell can move
or divide and it can appear or disappear. In addition, we allow two cells to (seemingly) merge, to
account for occlusion or undersegmentation; and a cell can (seemingly) split, to allow for the lifting
of occlusion or oversegmentation. These additional hypotheses are useful to account for the errors
that typically occur in the detection and segmentation step in crowded or noisy data. The distinction
between division and split is reasonable given that typical fluorescence stains endow the anaphase
with a distinctive appearance.
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Figure 1: Toy example: two sets of object candidates, and a small subset of the possible associa-
tion hypotheses. One particular interpretation of the scene is indicated by colored arrows (left) or
equivalently by a configuration of binary indicator variables z (rightmost column in table).

Given a pair of object candidate lists x = {C, C ′} in two neighboring frames, there is a multitude
of possible association hypotheses, see Fig. 1. We have two tasks: firstly, to allow only consistent
associations (e.g. making sure that each cell in the second frame is accounted for only once); and
secondly to identify, among the multitude of consistent hypotheses, the one that is most compatible
with the observations, and with what we have learned from the training data.
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We express this compatibility of the association between c ∈ P(C) and c′ ∈ P(C ′) by event e ∈ E
as an inner product

〈
fe
c,c′w

e
〉
. Here, fe

c,c′ is a feature vector that characterizes the discrepancy (if
any) between object candidates c and c′; and we is a parameter vector that encodes everything we
have learned from the training data. Summing over all object candidates in either of the frames and
over all types of events gives the following compatibility function:

L(x, z;w) =
∑
e∈E

∑
c∈P(C)

∑
c′∈P(C′)

〈fe
c,c′ ,w

e〉zec,c′ (1)

s. t.
∑
e∈E

∑
c∈P(C)

zec,c′ = 1 and
∑
e∈E

∑
c′∈P(C′)

zec,c′ = 1 with zec,c′ ∈ {0, 1} (2)

The constraints in the last line involve binary indicator variables z that reflect the consistency re-
quirements: each candidate in the first frame must have a single fate, and each candidate from the
second frame a unique history. As an important technical detail, note that P(C) := C ∪ (C ⊗C)
is a set comprising each object candidate, as well as all ordered pairs of object candidates from
a frame1. This allows us to conveniently subsume cell divisions, splits and mergers in the above
equation. Overall, the compatibility function L(x, z;w), i.e. the global affinity measure, states how
well a set of associations z matches the observations f(x) computed from the raw data x, given the
knowledge w from the training set.

The remaining tasks, discussed next, are how to learn the parameters w from the training data
(section 2.2); given these, how to find the best possible associations z (section 2.3); and finding
useful features (section 2.4).

2.2 Structured Max-Margin Parameter Learning

In learning the parameters automatically from a training set, we pursue two goals: first, to go beyond
manual parameter tweaking in obtaining the best possible performance; and second, to make the
process as facile as possible for the user. This is under the assumption that most experimentalists
find it easier to specify what a correct tracking should look like, rather than what value a more-or-less
obscure parameter should have.

Given N training frame pairs X = {xn} and their correct associations Z∗ = {z∗n}, n = 1, . . . , N ,
the best set of parameters is the optimizer of

arg min
w

R(w;X,Z∗) + λΩ(w) (3)

Here, R(w;X,Z∗) measures the empirical loss of the current parametrization w given the train-
ing data X,Z∗. To prevent overfitting to the training data, this is complemented by the reg-
ularizer Ω(w) that favors parsimonious models. We use L1 or L2 regularization (Ω(w) =
||w||pp/p, p = {1, 2}), i.e. a measure of the length of the parameter vector w. The latter is of-
ten used for its numerical efficiency, while the former is popular thanks to its potential to in-
duce sparse solutions (i.e., some parameters can become zero). The empirical loss is given by
R(w;X,Z∗) = 1

N

∑N
i=1 ∆(z∗n, ẑn(w;xn)). Here ∆(z∗, ẑ) is a loss function that measures the

discrepancy between a true association z∗ and a prediction by specifying the fraction of missed
events w.r.t. the ground truth:

∆(z∗, ẑ) =
1

|z∗|
∑
e∈E

∑
c∈P(C)

∑
c′∈P(C′)

z∗ec,c′(1− ẑec,c′). (4)

This decomposable function allows for exact inference when solving Eq. 5 [6].

Importantly, both the input (objects from a frame pair) and output (associations between objects)
in this learning problem are structured. We hence resort to max-margin structured learning [2] to
exploit the structure and dependency within the association hypotheses. In comparison to other
aforementioned learning methods, structured learning allows us to directly learn the global affinity
measure, avoid generating many artificial false association samples, and drop any assumptions on
the signs of the features. Structured learning has been successfully applied to many complex real

1For the example in Fig. 1, P(C) = {c1, c2, c3, {c1, c2}, {c1, c3}, {c2, c3}}.
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world problems such as word/sequence alignment [22, 24], graph matching [6], static analysis of
binary executables [14] and segmentation [3].

In particular, we attempt to find the decision boundary that maximizes the margin between the
correct association z∗n and the closest runner-up solution. An equivalent formulation is the condition
that the score of z∗n be greater than that of any other solution. To allow for regularization, one can
relax this constraint by introducing slack variables ξn, which finally yields the following objective
function for the max-margin structured learning problem from Eq. 3:

arg min
w,ξ≥0

1
N

∑N
n=1 ξn + λΩ(w)

s. t. ∀n, ∀ẑn ∈ Zn : L(xn, z
∗
n;w)− L(xn, ẑn;w) ≥ ∆(z∗n, ẑn)− ξn,

(5)

where Zn is the set of possible consistent associations and ∆(z∗n, ẑn) − ξn is known as “margin-
rescaling” [24]. Intuitively, it pushes the decision boundary further away from the “bad” solutions
with high losses.

2.3 Inference and Implementation

Since Eq. 5 involves an exponential number of constraints, the learning problem cannot be rep-
resented explicitly, let alone solved directly. We thus resort to the bundle method [23] which, in
turn, is based on the cutting-planes approach [24]. The basic idea is as follows: Start with some
parametrization w and no constraints. Iteratively find, first, the optimum associations for the current
w by solving, for all n, ẑn = arg maxz{L(xn, z;w) + ∆(z∗n, z)}. Use all these ẑn to identify the
most violated constraint, and add it to Eq. 5. Update w by solving Eq. 5 (with added constraints),
then find new best associations, etc. pp. For a given parametrization, the optimum associations can
be found by integer linear programming (ILP) [16, 21, 13].

Our framework has been implemented in Matlab and C++, including a labeling GUI for the gen-
eration of training set associations, feature extraction, model inference and the bundle method. To
reduce the search space and eliminate hypotheses with no prospect of being realized, we constrain
the hypotheses to a k-nearest neighborhood with distance thresholding. We use IBM CPLEX2 as
the underlying optimization platform for the ILP, quadratic programming and linear programming
as needed for solving Eq. 5 [23].

2.4 Features

To differentiate similar events (e.g. division and split) and resolve ambiguity in model inference, we
need rich features to characterize different events. In additional to basic features such as size/position
[21] and intensity histogram [16], we also designed new features such as “shape compactness” for
oversegmentation and “angle pattern” for division. Shape compactness relates the summed areas
of two object candidates to the area of their union’s convex hull. Angle pattern describes the con-
stellation of two daughter cells relative to their mother. Features can be defined on a pair of object
candidates or on an individual object candidate only. Our features are categorized in Table 1. Note
that the same feature can be used for different events.

Table 1: Categorization of features.
Feature Description

Position difference in position, distance to border, overlap with border;
Intensity difference in intensity histogram/sum/mean/deviation, intensity of father cell;
Shape difference in shape, difference in size, shape compactness, shape evenness;
Others division angle pattern, mass evenness, eccentricity of father cell.

2http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
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3 Results

We evaluated the proposed method on two publicly available image sequences provided in conjunc-
tion with the DCellIQ project3 [16] and the Mitocheck project4 [12]. The two datasets show a certain
degree of variations such as illumination, cell density and image compression artifacts (Fig. 2). The
GFP stained cell nuclei were segmented using the method in [19], yielding an F-measure over 99.3%
by counting. Full ground truth associations for training and evaluation were generated with a Mat-
lab GUI tool at a rate of approximately 20 frames/hour. Some statistics about these two datasets are
shown in Table 2.

Table 2: Some statistics about the datasets in our evaluation.
Name Image Size No. of Frames No. of Cells Segm. F-Measure Compressed

DCellIQ 512× 672 100 10664 99.5% No
Mitocheck 1024× 1344 94 24096 99.3% Yes

T=25 T=50 T=75

T=25 T=50 T=75

Figure 2: Selected raw images from the DCellIQ sequence (top) and the Mitocheck sequence (bot-
tom). The Mitocheck sequence exhibits higher cell density, larger intensity variability and “block-
ness” artifacts due to image compression.

Task 1: Efficient Tracking for a Given Sequence

We first evaluate our method on a task that is frequently encountered in practice: the user simply
wishes to obtain a good tracking for a given sequence with the smallest possible effort. For a fair
comparison, we extended Padfield’s method [21] to account for the six events described in section
2.1 and used the same features (viz., size and position) and weights as in [21]. Hand-tuning of the
parameters results in a high accuracy of 98.4% (i.e. 1 - total loss) as shown in Table 3 (2nd row).
A detailed analysis of the error counts for specific events shows that the method accounts well for
moves, but has difficulty with disappearance and split events. This is mainly due to the limited
descriptive power of the simple features used. To study the difference between manual tweaking
and learning of the parameters, we used the learning framework presented here to optimize the
model and obtained a reduction of the total loss from 1.64% to 0.65% (3rd row). This can be
considered as the limit of this model. Note that the learned parametrization actually deteriorates the
detection of divisions because the learning aims at minimizing the overall loss across all events. In
obtaining these results, one third of the entire sequence was used for training, just as in all subsequent
comparisons.

3http://www.cbi-tmhs.org/Dcelliq/files/051606 HeLaMCF10A DMSO 1.rar
4http://www.mitocheck.org/cgi-bin/mtc?action=show movie;query=243867
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Table 3: Performance comparison on the DCellIQ dataset. The header row shows the number of
events occurring for moves, divisions, appearance, disappearance, splits and mergers. The remaining
entries give the error counts for each event, summed over the entire sequence.

mov div app dis spl mer total loss
10156 104 78 76 54 55 -

Padfield et al. [21] 71 18 16 26 30 12 1.64%
Padfield et al. w/ learning 21 25 5 5 6 10 0.65%

Ours w/ learning (L2 regula.) 15 6 4 1 2 6 0.30%
Ours w/ learning (L1 regula.) 22 6 9 3 4 9 0.45%

Ours w/ manual tweaking 56 24 16 19 2 5 1.12%
Li et al. [16] - - - - - - 6.18%a

Local learning by Random Forest 18 14 2 0 12 13 0.55%

aHere we use the best reported error matching rate in [16] (similar to our loss).

Figure 3: Some diverging associations by [21] (top) and our method (bottom). Color code: yellow
– move; red – division; green – split; cyan – merger.

With 37 features included and their weights optimized using structured learning, our model fully
profits from this richer description and achieves a total loss of only 0.30% (4th row) which is a
significant improvement over [21, 16] (2nd/7th row) and manual tweaking (6th row). Though a
certain amount of efforts is needed for creating the training set, our method allows experimentalists
to contribute their expertise in an intuitive fashion. Some example associations are shown in Fig. 3.

The learned parameters are summarized in Fig. 4 (top). They afford the following observations:
Firstly, features on cell size and shape are generally of high importance, which is in line with the
assumption in [21]. Secondly, the correlations of the features with the final association score are
automatically learned. For example, shape compactness is positively correlated with split but neg-
atively with division. This is in line with the intuition that an oversegmentation conserves compact
shape, while a true division seemingly pushes the daughters far away from each other (in the present
kind of data, where only DNA is labeled). Finally, in spite of the regularization, many features are
associated with large parameter values, which is key to the improved expressive power.

Task 2: Tracking for High-Throughput Experiments

The experiment described in the foregoing draws both training and test samples from the same time
lapse experiment. However, in high-throughput experiments such as in the Mitocheck project [12],
it is more desirable to train on one or a few sequences, and make predictions on many others. To
emulate this situation, we have used the parameters w trained in the foregoing on the DCellIQ
sequence [16] and used these to estimate the tracking of the Mitocheck dataset. The main focus of
the Mitocheck project is on accurate detection of mitosis (cell division). Despite the difference in
illumination and cell density from the training data, and despite the segmentation artifacts caused
by the compression of the image sequence, our method shows a high generalization capability and
obtains a total loss of 0.78%. In particular, we extract 93.2% of 384 mitosis events which is a
significant improvement over the mitosis detection rate reported in [12] (81.5%, 294 events).
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Figure 4: Parameters w learned from the training data with L2 (top) or L1 (bottom) regularization.
Parameters weighing the features for different events are colored differently. Both parameter vectors
are normalized to unit 1-norm, i.e. ‖w‖1 = 1.

Table 4: Performance comparison on the Mitocheck dataset. The method was trained on the DCellIQ
dataset. The header row shows the number of events occurring for moves, divisions, appearance, dis-
appearance, splits and mergers. The remaining entries give the error counts for each event, summed
over the entire sequence.

mov div app dis spl mer total loss
22520 384 310 304 127 132 -

Padfield et al. w/ learning 171 85 58 47 53 13 1.39%
Ours w/ learning (L2 regula.) 98 26 31 25 43 9 0.78%
Ours w/ learning (L1 regula.) 93 35 54 25 26 48 0.98%

Local learning by Random Forest 214 281 162 10 82 68 2.33%

Comparison to Local Affinity Learning

We also developed a local affinity learning approach that is in spirit of [1, 15]. Rather than using
AdaBoost [9], we chose Random Forest (RF) [4] which provides fairly comparable classification
power [7]. We sample positive associations from the ground truth and randomly generate false
associations. RF classifiers are built for each event independently. The predicted probabilities by
the RF classifiers are used to compute the overall association score as in Eq. 6 (with the same
constraints in Eq. 2). Since we have multiple competing events (one cell can only have a single
fate), we also introduce weights {αe} to capture the dependencies between events. These weights
are optimized via a grid search on the training data.

L(x, z;w) =
∑
e∈E

∑
c∈P(C)

∑
c′∈P(C′)

αeProb(fe
c,c′)z

e
c,c′ (6)

The results are shown in Table 3 (8th row) and Table 4 (5th row), which afford the following ob-
servations. Firstly, a locally strong affinity prediction does not necessarily guarantee a better global
association. Secondly, local learning shows particularly weak generalization capability.

Sensitivity to Training Set
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The success of supervised learning depends on the representativeness (and hence also size) of the
training set. To test the sensitivity of the results to the training data used, we drew different numbers
of training image pairs randomly from the entire sequence and used the remaining pairs for testing.
For each training set size, this experiment is repeated 10 times. The mean and deviation of the losses
on the respective test sets is shown in Fig. 5. According to the one-standard-error-rule, associations
between at least 15 or 20 image pairs are desirable, which can be accomplished in well below an
hour of annotation work.

L1 vs. L2 Regularization

The results of L1 vs. L2 regularization are comparable (see Table 3 and Table 4). While L1 regular-
ization yields sparser feature selection 4 (bottom), it has a much slower convergence rate (Fig. 6).
The staircase structure shows that, due to sparse feature selection, the bundle method has to find
more constraints to escape from a local minimum.
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ing (L1 vs. L2 regularization).

4 Conclusion & Future Work

We present a new cell tracking scheme that uses more expressive features and comes with a struc-
tured learning framework to train the larger number of parameters involved. Comparison to related
methods shows that this learning scheme brings significant improvements in performance and, in
our opinion, usability.

We currently work on further improvement of the tracking by considering more than two frames at
a time, and on an active learning scheme that should reduce the amount of required training inputs.
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