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Abstract. We introduce a probabilistic classifier that combines mul-
tiple instance learning and relational learning. While multiple instance
learning allows automated cancer diagnosis from only image-level anno-
tations, relational learning allows exploiting changes in cell formations
due to cancer. Our method extends Gaussian process multiple instance
learning with a relational likelihood that brings improved diagnostic per-
formance on two tissue microarray data sets (breast and Barrett’s can-
cer) when similarity of cell layouts in different tissue regions is used as
relational side information.

1 Introduction

Developments in imaging techniques make increasingly large data sets of medi-
cal processes available, rendering annotation of data sets more difficult. Weakly
supervised learning solves this problem by demanding labels only for large in-
stance groups, while keeping prediction performance similar. A powerful weakly
supervised learning framework is multiple instance learning (MIL) [9], which as-
sumes a data set X = {X1, · · · ,XB} consisting of groups of observations called
bags, and a vector of corresponding bag labels y = [y1, · · · , yB ]. Every bag Xi,
in turn, consists of multiple instances [xi

1, · · · ,xi
Nb

]. The specialty of MIL is to
learn only from labels provided at the bag level, but not at the instance level:
for binary classification, in a positive bag yb = +1, there exists at least one posi-
tively labeled instance in bag b, whereas in a negative bag yb = −1, all instances
are known to have negative labels. MIL can easily be applied to classification
of histology images by treating an image as a bag, and its regions (e.g. square
patches) as an instance [5].

Relational learning [7] is a field of machine learning that proposes to exploit
side information about relationships between data instances into the learning
process. In addition to a set of instances and their ground-truth labels, relational
methods leverage graphs indicating similarities of instance pairs for improved
prediction accuracy. Relational side information is shown to be useful in many
applications including web page categorization [4] and protein fold classification
[12]. However, despite the possibility of constructing relational side information
in many ways (e.g. spatial layout of cells, cross-existence of different cell types
in different regions), their potential in tissue microarray (TMA) based cancer
diagnosis applications has so far been largely ignored.



In this paper, we introduce a machine learning method that combines benefits
of multiple instance learning and relational learning. Our method extends Gaus-
sian process multiple instance learning (GPMIL) [8] with a likelihood function
that explains the relations of inter-bag instances by forcing similar instance pairs
to belong to the same class. We show in two computer-aided diagnosis (CAD)
applications, malignant breast cancer diagnosis and Barrett’s cancer diagnosis,
that using the similarity of the spatial layout of cells between different image
regions as side information brings a consistent increase in diagnostic accuracy.
The source code of the proposed method is available under 1.

2 Related work

The MIL framework has been shown to be useful in several digital pathology
applications. Xu et al. [5] propose a colon cancer diagnosis and grading method
that extends the boosting-based MIL approach [11] to multi-class classification
based on clustering. GPMIL [8], which replaces the instance-level sigmoid likeli-
hood of the standard Gaussian process classifier with a bag-level likelihood, has
been used for detecting various skin diseases from biopsy images by [13].

Relational learning has been extensively studied within the Gaussian process
framework. Mainstream approaches include calculating a relation dependent co-
variance matrix [10], and extending the likelihood by relational variables [4]. As
will be clarified below, we follow the latter approach. No application of relational
learning to cancer diagnosis from TMA images has been made prior to our work.

The only previous work that reconciles multiple instance learning and rela-
tional learning has been done by [12]. The model has been shown to perform
protein fold classification with higher accuracy when alignment scores of protein
pairs are used as relational side information.

3 Relational Gaussian process multiple instance learning

We are given a set of N observed data instances X = [x1, · · · ,xN ] partitioned
into bags as X = {X1, · · · ,XB}, the corresponding observed binary bag labels
y = [y1, · · · , yB ] such that yb ∈ {−1,+1}, and a set R containing an observed
set of triples (i, j, rij) indicating a relation rij between instances xi and xj . A
positive relation rij = +1 implies that instances i and j belong to the same class
(i.e. fi and fj have the same sign), and a negative relation rij = −1 implies the
opposite. The generative process of the proposed model, Relational Gaussian
process multiple instance learning (RGPMIL), is as follows

f |X,θ ∼ N (f |0,K) (1)

yb|fb ∼
1

1 + (
∑Nb

i ef
b
i )−yb

, ∀b (2)

rij |fi, fj ∼
1

1 + e−rijfifj
. ∀(i, j, rij) ∈ R (3)
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Here, N (x|µ,Σ) is a multivariate normal distribution with mean vector µ and
covariance matrix Σ, and K is a Gram matrix constructed by evaluating any
valid kernel function k(xi,xj |θ) on each pair of instances xi and xj in the data
set, and θ is the vector of kernel parameters. Equation 1 is a Gaussian process
prior defined on the latent decision outputs fi for each data instance. The vector
f = [f1, · · · , fN ] contains the decision outputs of all instances, and fb contains
decision outputs of instances of bag b. The sign of fi determines the class the
instance xi belongs. Equation 2 is the multiple-instance likelihood approximating
max(σ(f b1yb) · σ(f b1yb) · · ·σ(f bNb

yb)) by log
∑Nb

i exp(f bi yb), where σ(z) = 1/(1 +
exp(−z)) is a sigmoid function. Combination of Equations 1 and 2 corresponds
to GPMIL [8], which we extend with the relational likelihood in Equation 3.
The model includes a variable rij for all pairs of instances with an observed
relation. Equation 3 corresponds to the softened version of the link-likelihood
suggested in [4]. The variable rij incorporates similarity of instances i and j into
the learning process via coupling their latent decision output values fi and fj in
the denominator. If rij = +1, the link likelihood is maximized when fi and fj
have large values with the same sign, and the situation is opposite if rij = −1.

3.1 Inference

Within the Bayesian paradigm, a model is fit to data by inferring the posterior
of model parameters given a prior distribution over model parameters and a
data likelihood. The parameter set of RGPMIL is the latent decision output
vector f . Due to the non-conjugate likelihood functions in Equations 2 and 3,
the posterior distribution p(f |y,R,X) is not available in closed form. Thus, we
approximate the posterior by Laplace approximation

p(f |y,R,X) ' N (f |f̂ ,H−1),

where f̂ is the estimated mode of the posterior and H is the negative Hessian
of the logaritm of the posterior at its mode. We estimate the posterior mode by
gradient search, for which we need the logarithm of the posterior

Ψ(f) = log p(f |y,R,X) = log p(f |X) +

B∑
b=1

log p(yb|fb) +
∑

rij∈R
log p(rij |fi, fj) + const

=− 1

2
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and its gradient with respect to all entries of f
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where [K−1](ib,:) denotes the row of the inverse kernel matrix corresponding to
ith instance of bag b. The Hessian of the negative log-posterior at the mode is

H = −K−1−W, where Wij =
(
rij(1 + erij f̂if̂j )− f̂if̂jerij f̂if̂j

)/(
1 + erij f̂if̂j )2

)
.

3.2 Marginal likelihood and hyperparameter learning

The choice of kernel parameters, called model hyperparameters, is known to
have a significant effect on prediction performance. Thanks to the probabilistic
nature of GPs, model hyperparameters can be tuned in a principled way using
Type II Maximum Likelihood (empirical Bayes), where the marginal likelihood is
maximized with respect to hyperparameters. Based on the Laplace approximated
posterior, the marginal likelihood of our model is

p(y,R|X) =

∫
p(y,R|f)p(f |X)df =

∫
exp(Ψ(f))df .

When we perform second order Taylor expansion of Ψ(f) around f̂ , we have

Ψ(f) ' Ψ(f̂)− 1

2
(f − f̂)THf̂ (f − f̂). where Hf̂ is the Hessian at the mode. Thus,

p(y,R|X) ' q(y,R|X) = exp(Ψ(f̂))

∫
exp

(
−1

2
(f − f̂)THf̂ (f − f̂)

)
df .

Solving the integral analytically and taking the logarithm of the result, we get:

log q(y,R|X) = −1

2
f̂TK−1f̂ + log p(Y,R|f̂)− 1

2
log |I + KW|.

When the learned f̂ vector is fixed, the derivative of the marginal likelihood with
respect to kernel hyperparameters θ becomes

log q(y,R|X)

∂θr
=

1

2
aT
(
∂K

∂θr

)
a− 1

2
tr

(
(W−1 + K)−1

(
∂K

∂θr

))
where a = K−1f̂ . A local optimum can be found if f̂ and θ are updated in turns
by fixing one and optimizing the other using any gradient-based technique.

3.3 Prediction

For a trained model, we have the learned decision outputs f̂ and the vector of
learned kernel hyperparameters θ̂. For a newly-seen bag X∗ = {x∗1, · · · ,x∗Nb

},
the corresponding latent decision outputs can be predicted in the same way
as in Gaussian process classification: E(f∗|y,X,X∗) = k∗K−1f̂ , where k∗ is the
vector of kernel values between training and test instances. Finally, the bag class
probability can simply be calculated by plugging the point estimate of f∗ into
Equation 2.



4 Data Sets

We evaluate our method on two hematoxylin and eosin (H&E) stained TMA
image data sets:

– Malignant breast cancer data set: This public data set 2 consists of 58
TMA image excerpts of 896×768 pixel size taken from breast cancer patients,
32 of which are at benign status, and 26 are malignant. The learning task is
to classify images as benign and malignant [6]. We split each image into an
equal-sized 7× 7 grid.

– Barrett’s cancer data set: This private data set consists of 214 whole-
core images taken from the biopsy samples of the esophagus tissue of 97
Barrett’s cancer patients. 145 of the images include tumorous regions, and
69 are normal. Average resolution of the images is 2179× 1970. Each image
is split into patches of 200× 200 pixels.

For both data sets, each image is treated as a bag, and each patch as an
instance. A bag is assigned a positive label if its corresponding image includes
a diseased region, and a negative label otherwise. Each patch is represented by
a 657-dimensional feature vector including the following features: mean SIFT
descriptors, local binary patterns with 20 × 20-pixel cells, intensity histogram
of 26 bins for each of the RGB channels, and mean feature vector of the cells
lying in that patch. We represent each cell within a patch with 81 morphological
and intensity-based features as described in [1]. We avoid duplication of highly-
correlated features and increase variance by reducing the feature dimensionality
to 100 using principal component analysis.

Fig. 1: Sample images from breast and Barrett’s cancer data sets.

Breast cancer [6] Barrett’s cancer
Benign Malignant Green regions are tumors

We segment the breast cells using morphological filtering. We first perform a
colour deconvolution to separate the H-stain from the color image [3], followed
by a morphological opening filtering to reduce subtle textures in the H-channel.
Breast cell nuclei are then segmented by detecting extended regional maximas.
These filtering steps are done using Fiji and its plugins 3.

2 http://www.bioimage.ucsb.edu/research/biosegmentation
3 http://fiji.sc/Fiji

http://www.bioimage.ucsb.edu/research/biosegmentation
http://fiji.sc/Fiji


For the large esophagus cohort that consists of samples belonging to diverse
stages of the disease, we apply the segmentation scheme described in [1]. We
classify pixels as tumor, non-tumor, stromal cells, and background from annota-
tions provided on small regions (5.8 % of pixels) of two tumorous and two normal
tissue cores. We then segment the cell nuclei by applying watershed transform
on the probabilistic classifier output. We discard the four tissue cores used in
supervised cell segmentation from further analysis. We finally keep tumor and
non-tumor cells which are detected with high confidence, and discard the rest.
Even though this policy causes many false negatives on the cell level, it captures
higher-quality information of a subset of cells, which suffices to make better
diagnostic decisions.

5 Cell graphs as relational side information

One effect of cancer common to all tissues is an increase in cell population, and
one tissue-dependent effect is gland formation. While a normal colon tissue has
glands which disappear during cancer, the situation in Barrett’s cancer is vice
versa: cancer causes gland formations. Motivated by this widespread effect of
cancer on cell layout, we propose constructing relational side information from
the spatial positions of segmented cells in order to capture the differences in cell
formations caused by the disease status.

We construct a graph from the cells of each image patch that has a node for
each cell and an edge between each pair of cells whose centroids are closer to
each other than τ pixels. Let Ab

i and Ab
j be the adjacency matrices of cell graphs

of patches i and j of bag b, and λb
i and λb

j be vectors containing the largest Cmin

eigenvalues of these matrices in decreasing order, where Cmin is the minimum
of cell counts of the two patches. We define the similarity of these graphs as
Sij = exp(−||λb

i −λb
j ||2). Finally, we draw a positive link rij = +1 between each

pair of patches i and j whose similarity is larger than the mean of all pairs of
patches in the data set. For the breast cancer data set, we use τ = 15 pixels
and for the Barrett’s cancer data set we use τ = 20 pixels. These thresholds are
roughly chosen to connect only two adjacent cells, and are not fine tuned.

Figure 2 shows cell graphs constructed for sample tumorous and normal
patches taken from one core of the Barrett’s cancer data set, where cell segmen-
tation is harder. Cancer causes longer connected components of adjacent cells
due to glandular formation (Tumor 1), and uncontrolled proliferation (Tumors
2 and 3). The aforementioned graph similarity metric gives larger values for ma-
jority of the patches sharing the same disease status than ones with opposite
disease status, as illustrated by the Hinton diagram on the right.

6 Results and discussion

For both data sets, we evaluate our method using 4-fold cross validation. For the
breast cancer data set, we train on three data splits and evaluate on one, due



Fig. 2: Left: Cell graphs of tumorous and normal patches taken from the same
core of the Barrett’s cancer data set. Green dots are tissue cells detected with
high confidence and red lines connect cells closer to each other than 20 pixels.
Tumorous patches tend to contain larger connected components. Right: Hinton
diagram of patch similarity. Higher similarity is shown by a larger square.

Tumor 1 Tumor 2 Tumor 3 Cell graph similarity

Tumor 1 Tumor 2 Tumor 3 Normal 1 Normal 2 Normal 3

Tumor 1

Tumor 2

Tumor 3

Normal 1

Normal 2

Normal 3

Normal 1 Normal 2 Normal 3

to its small scale. On the other hand, for the Barrett’s cancer data set, we train
on one split and evaluate on three. We use the radial basis function (RBF) as
kernel, and tuned its length scale parameter using Type II maximum likelihood
method as described in Section 3.2.

Figure 3 shows the receiver operating characteristics (ROC) curves of GPMIL
and its relational extension (RGPMIL). Relational side information improves the
area under ROC curve of GPMIL 4 percentage points in breast cancer and 2
percentage points in Barrett’s cancer. According to paired t-test, improvement
gained by using cell graphs as relational side information is statistically signifi-
cant for breast cancer data set (p < 0.027), and is not significant for Barrett’s
cancer data set (p < 0.071). As a reference, we compare our results with three
existing MIL methods. Area Under ROC Curve of these methods averaged over
two data sets are: EMDD [14] 0.67, MILBoost [11,5] 0.83 , and MI-SVM [2] 0.82,
compared to 0.85 reached by GPMIL and 0.88 reached by RGPMIL. MILBoost
and MI-SVM give competitive performance for Barrett’s cancer, but are more
than 10 percentage points below RGPMIL for breast cancer.

The proposed method effectively incorporates cell graphs as relational side
information into the diagnosis process, and provides a consistent performance
increase over its non-relational counterpart in both applications. For the Bar-
rett’s cancer data set, we observe that in 75.4 % of the cores, patches with the
same ground-truth label to have a higher average similarity score than the ones
with opposite labels. We attribute the superior performance of RGPMIL over



Fig. 3: Receiver operating characteristics (ROC) curve of GPMIL [8], and our
method RGPMIL for two tissue types. Incorporating cell graph similarity as
relational information brings accuracy gain in both diagnostic applications.
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(a) Breast cancer data set
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(b) Barrett’s cancer data set

GPMIL to its ability to exploit this high correlation between label and cell graph
similarity for diagnosis.

References

1. Anonymized.
2. S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for

multiple-instance learning. In NIPS, 2003.
3. A.C. Ruifrok et al. Quantification of histochemical staining by color deconvolution.

Anal Quant Cytol Histol, 23:291–299, 2001.
4. W. Sindhwani et al. Relational learning with Gaussian processes. In NIPS, 2007.
5. Y. Xu et al. Multiple clustered instance learning for histopathology cancer image

classification, segmentation and clustering. In CVPR, 2012.
6. E.D. Gelasca, J. Byun, B. Obara, and B.S. Manjunath. Evaluation and benchmark

for biological image segmentation. In ICIP, 2008.
7. L. Getoor and B. Taskar. Introduction to statistical relational learning. MIT press,

2007.
8. M. Kim and F. Torre. Gaussian processes multiple instance learning. In ICML,

2010.
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