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Abstract We present an object-oriented library for the sys-Keywords Magnetic resonance spectroscopy imaging

tematic training, testing and benchmarking of classifozati

Computer-assisted diagnosticStatistical classification

algorithms for computer-assisted diagnosis tasks, witht a f Automated quality control

cus on tumor probability estimation from magnetic reso-
nance spectroscopy imaging (MRSI) measurements. In con-

nection with a graphical user interface for data annotation] |ntroduction

it allows clinical end users to flexibly adapt these classfie

towards changed classification tasks, to benchmark various1 Computer-assisted tumor diagnostics based on MRS
classifiers and preprocessing steps and to perform qualipfeasurements

control of the results. This poses an advantage over pre-

vious classification software solutions, which requireel ex |maging methods for thin vivo diagnostics of tumors fall
pert knowledge in pattern recognition techniques in order tinto three categories based on the different physical mech-
adapt them to changes in the data acquisition protocols. Thianisms they exploit: In computer tomography (CT), X-rays
software will constitute a major part of the MRSI analysisare transmitted through the body, which are attenuated dif-
functionality of RONDO, an integrated software platform ferently in different tissue types. In nuclear medicine Imet
for cancer diagnosis and therapy planning which is undegds such as positron emission tomography (PET) or single
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photon emission computed tomography (SPECT), one de-
tects the radiation of radioactive nuclides, which arecsele
tively accumulated in the tumor region. Finally, magnetic
resonance imaging (MRI) exploits the fact that various nu-
clei (hamely protons) have a different energy when aligned
in the direction of an external magnetic field than when they
are aligned opposite to it. By injecting a radiofrequencyeva
into the imaged body, one can perturb some protons out
of their equilibrium state into a higher-energy state: the r
diofrequency signal which they emit upon relaxation is then
measured, and its amplitude is proportional to the conaentr
tion of the protons in the imaged region. This measurement
process can be performed in a spatially resolved fashion, so
that a three-dimensional image is formed.

Standard MRI produces a scalar image based on the to-
tal signal of all protons, irrespective of the chemical com-
pound to which they belong: typically, the protons in water
molecules and in lipids make the highest contribution due
to the large concentration of these molecules. However, the
protons in different compounds can be distinguished by thei



resonance frequencies in the magnetic field (the so-calleglayed as a color map. Ideally the scores can even be inter-
chemical shift), and it is possible to resolve the overall sig- preted as the probability that the respective spectrum cor-
nal not only spatially, but also spectrally: this leads tagma responds to a tumor. While such a decision support system
netic resonance spectroscopy imaging (MRSI) or chemicahay not completely obviate the need of manual inspection
shift imaging (CSl), for which a complex spectrum is ob- of the spectra, it can at least guide the radiologist towards
tained at each image voxel instead of a single scalar valuguspicious regions that should be examined more closely,
as in MRI (de Graaf, 2008). Hence it is possible to measurand facilitate the comparison with other imaging modaditie
the local abundance of various biochemical molecules non- Methods for computing the classification scores fall into
invasively, and thereby gain information about the chemicatwo categories: quantitation-based approaches (Poubét e
make-up of the body at different locations: besides watepp08) and pattern recognition-based approaches (Hagberg,
and lipids, most major metabolites can be identified in the;998). Quantitation approaches exploit the fact that MRS
MRSI spectra, e.g. the most common amino acids (glutasignals are physically interpretable as superpositiomsesf
mate, alanine,..), the reactants and products of glycolysistabolite spectra; they can hence be used to quantify thé loca
(glucose, ATP, pyruvate, lactate), precursors of membrang|ative concentrations of these metabolites by fitting mea
biosynthesis (choline, myo-inositol, ethanolamine),rgge  sured or simulated basis spectra to the spectrum in every
carriers (creatine) and tissue-specific marker metaisdliie  yoxel. The fitting parameters (amplitudes, frequency shift
rate for the prostate, N-acetylaspartate or NAA forthedjrai . ) may be regarded as a low-dimensional representation of
As a downside, these metabolites occur in much lower corthe signal. Classification scores are then usually computed
centrations than water, hence the spatial resolution meust Brom amplitude ratios of relevant metabolites: for insenc
far coarser than in MRI: only by collecting signal from a the choline/creatine and choline/NAA ratios are frequentl
volume of typically 0.2-2 ¢y a sufficient signal-to-noise employed for the diagnosis of brain tumors (Martinez-Blsb
ratio can be achieved. and Celda, 2009).

MRSI provides valuable information for the noninva-  Pattern recognition approaches forego an explicit data
sive diagnosis of various human diseases, e.g. infantli@br model: instead, the MRSI signal is preprocessed to a (still
damage (Xu and Vigneron, 2010), multiple sclerosis (Sajjaigh-dimensional) feature vector, and the mapping of fea-
et al, 2009), hepatitis (Cho et al, 2001) or several psychiture vectors to classification scores is learned from méayual
atric disorders (Dager et al, 2008). The most important medannotated training vectors (the so-callgbervised learn-
ical application field lies in tumor diagnostics, espegiall  ing setting). Because of this need for manually annotated
the diagnosis and staging of brain, prostate and breast cagxamples, pattern recognition techniques require higher e
cer as well as the monitoring of therapy response (Gilliesort from human experts than quantitation-based techsique
and Morse, 2005). In tumors, healthy cells are destroyegurthermore, they have to be retrained if the experimen-
and the signals of the biomarkers characteristic for hgalthtal measurement conditions change (e.g. different magneti
tissue (e.g. citrate for the prostate, NAA for the brain) arefield strength, different imaged organ or different measure
decreased. On the other hand, biomarkers for pathologicatent protocol). However, comparative studies of quantita-
metabolic processes often occur in increased concentgatio tion and pattern recognition methods for prostate tumor de-
choline (excessive cell proliferation), lactate (anaérgly-  tection showed superior performance of the latter ones, as
colysis), mobile lipids (impaired lipid metabolism). Thapt  they are more robust against measurement artifacts anel nois
right and bottom right spectra in fig. 1 are typical examplegKelm et al, 2007). Given a sufficiently large and diverse
of spectra occurring in healthy brain tissue and in brain tutraining data set, one can even use pattern recognition to
mor, respectively. distinguish between different tumor types, e.g. astratgte

While MRSI has proved its efficacy for radiological di- and glioblastomas (Tate et al, 2006).
agnostics, it is a fairly new technique that yet has to gain MRSI data often have quality defects that render malig-
ground in routine radiology and in the training curricula of nancy assessment difficult or even impossible: low signal-
radiologists. Furthermore, the visual assessment is harde-noise ratio, line widening because of shimming errors,
and more time-consuming than for MRI: while most med-head movement effects, lipid contamination, signal bleed-
ical imaging modalities provide two- or three-dimensionaling, ghosting etc. (Kreis, 2004). If these defects become
data, MRSI provides four-dimensional data due to the addisufficiently grave, even pattern recognition methods canno
tional spectral dimension. Automated decision-suppat sy tolerate them, and the resulting classification scoreshaill
tems may assist the radiologists by visualizing the most relclinically meaningless and should not be used for diagno-
evant information in form of easily interpretabesologic  sis. Fig. 1 shows example spectra of good, poor, and very
images (de Edelenyi et al, 2000): from each spectrum, apoor (not evaluable) quality for healthy, undecided and tu-
scalar classification score is extracted that discrimsyatdl  morous tissue. One can deal with this problem by augment-
between healthy and tumorous tissue, and all scores are digg the classification score for the malignancy (also called
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Fig. 1 Exemplary MRSI magnitude spectra of the brain, showingediifit voxel classes and signal qualities. All spectra haenhwater-
suppressed and; normalized (i.e. divided by the sum of all channel entries)d they are displayed on a common scale. Note the threadisti
metabolite peaks, which are characteristic for brain MR3ioline (3.2 ppm), creatine (3.0 ppm) and N-acetylaspaftdAA, 2.0 ppm). NAA is

a marker for functional neurons, hence it has a high conagoitr in healthy tissue, and a low concentration in tumcuis On the other hand,
choline is a marker for membrane biogenesis and has a higheentration in tumor tissue than in healthy tissue. Lefiom: Spectra that are
not evaluable owing to poor SNR or the presence of artifadtddle column: Spectra with poor signal quality, which hawehave sufficient
guality so that the voxel class may be ascertained. Righinwoi Spectra with good signal quality. Top row: Spectra fiogalthy brain tissue.
Middle row: Spectra of undecided voxel class. Bottom rone@ga from tumor tissue. Note that the voxel class is onlymmegdul for the middle
and the right column, and that the spectra in the left colurarewandomly assigned to the different rows.

voxel class) with a second score for the signal quality: If lieve that this may be partially due to differences in the-flex
this score is high, the users know that the spectrum has highility with which both categories of algorithms can be ad-
quality and that the voxel class score is reliable, whileafor justed to different experimental conditions (e.g. chariges
low score they know that the voxel class score is unreliablscanner hardware and in measurement protocols) or to a dif-
and the spectrum should be ignored. This may also save tHerent imaged organ. For quantitation-based methods one
users’ time, as poor-quality spectra need not be examinedust only update the metabolite basis spectra to a given
in detail. Pattern recognition approaches have been ssiccegxperimental setting, which can be achieved by quantum-
fully employed for signal quality prediction, with similar mechanical simulation, e.g. with the GAMMA library (Smith
performance to expert radiologists (Menze et al, 2008). et al, 1994). For pattern recognition-based methods on the
other hand, one has to provide manual labels of spectra from
many different patients with a histologically confirmed tu-
mor, which is time-consuming and requires the effort of one
or several medical experts. Since there exist many differ-
ent techniques whose relative and absolute performance on a
Xgiven task cannot be predicted beforehand, for every change

MR scanner manufacturers. Furthermore, there are Seveljglcondmonsal?enchmarkmg experimentas in (Menze etal,
stand-alone software products such as LCModel (Provench%QOG) or (Garcia-Gomez et al,_ _2009) shoul_d also be con-
2001), jMRUI (Stefan et al, 2009) or MIDAS (Maudsley dugted to s_elect the best classifier and monitor the classifi-
et al, 2006). cation quality.

In contrast, the application of pattern recognition-based While we cannot obviate the need for classifier retrain-
methods still has to gain ground in clinical routine: We be-ing, benchmarking and quality assessment, we have designed

1.2 Comparison to existing software

Most existing software products for MRSI classification in-
corporate quantitation-based algorithms: for instaricey t
are typically included in the software packages supplied b



an object-oriented C++ library and a graphical user interdata. A training and test suite is then defined, which may
face which assists this task better than existing softwawe. contain the voxel class classification task, the signal-qual
work is an extension of the CLARET software (Kelm et al, ity classification task, or both. The users may partition all
2006): While the original prototype of this software wasdata volumes explicitly into a separate training and tgstin
written in MATLAB, we improved upon a C++ reimplemen- set, otherwise a cross-validation scheme is employed: the
tation for the MeVisLab environment. Most of the function- data is partitioned into several folds, and the classifiezs a
ality described in this paper does not exist in the originaiteratively trained on all but one folds, and tested on the re
CLARET version and is hence novel: mainly the possibil-maining fold. The latter option is advisable if only few data
ity to manually define labels and to train, test, evaluate andre available; it has the additional advantage that meahs an
compare various classifiers and preprocessing schemes. variances for the classifier results may be estimated.

There are two other alternative software products which  Every classifier is assigned to a preprocessing pipeline,
employ pattern recognition methods for the analysis of MRSWhich transforms the observed spectra into training and tes
spectra: HealthAgents by Gonzalez-Vélez et al (2009) anteatures. Some elements of this pipeline may be sharedsacros
SpectraClassifier by Ortega-Martorell et al (2010). Whtst se several classifiers, while others are specific for one classi
our software apart from these two systems, is the capabifier. Input data (spectra and labels) are passed, prepestess
ity to statistically compare various different classifiarsd  and partitioned into cross validation folds if no expli@st
to select the best one. SpectraClassifier provides statisti data are provided. The parameters of every classifier are op-
analysis functionalities for the trained classifiers, kot | timized either on the designated training data or on the first
ear discriminant analysis is the only available classificat fold by maximizing an estimate for the generalization er-
method. On the other hand, HealthAgent supports differror. The classifiers are then trained with the final parameter
ent classification algorithms but does not provide statisti values, and performance statistics are computed by compar-
evaluation functionality. Our manual annotation inteefé&e  ing the prediction results on the current test data with the
also unique: this enables the users to adapt the classifieastual test labels. Statistical tests are conducted taddeci
flexibly to their (possible customized) measurement protowhether the classifiers differ significantly in performance
cols. Typically not only two, but multiple classifiers are compdire

Extensibility was an important design criterion for our against each other, which must be considered when judging
library: by providing abstract interfaces for classifietata  significance. Finally the classifiers are retrained on tha to
preprocessing procedures and evaluation statisticss osgy ~ data for predicting the class of unlabeled examples. The use
plug in their own classes with moderate effort. Hereby it fol may perform quality control in order to assess if the perfor-
lows similar ideas as general purpose classification framenance statistics are sufficient for employment in the clinic
works such as WekaTunedI ™ or RapidMinef. However,  (fig. 4). The trained classifiers may then be loaded and ap-
it is much more focused in scope and tailored towards medplied to new data sets, for which no manual labels are avail-
ical diagnostic applications. Furthermore, a similar plag able (fig. 5).
concept for the analysis of MRSI data was used by Neuter Our main design criteria were extensibility, maintain-
et al (2007), but with a focus on quantitation techniques agbility and exception safety. Extensibility was achievgd b
opposed to pattern recognition techniques, and also lgckinproviding abstract base classes for classifiers, prepsowes
statistical evaluation functionalities. procedures and evaluation statistics, so that it is eassgip

ble to add e.g. new classification methods by deriving from
the appropriate class. For maintainability, dedicated -man

2 Software architecture ager objects handle the data flow between the different mod-
ules of the software and maintain the mutual consistency of
2.1 Overview and design principles their internal states upon changes made by the user. Strong

exception safety guarantees are necessitated by theyqualit
Our software is designed for the following use case: théequirements for medical software; it was achieved by the
users label several data volumes with respect to voxel claggchniques described in (Stroustrup, 2001).
(tumor vs. healthy) and signal quality and save the results

(fig. 2). They specify several classifiers to be compared, thﬁ 2 The classification functionalit
free classifier-specific parameters to be adjusted in parame’ y

ter optimization (see fig. 3) and preprocessing steps for they g gesign of the classification functionality of our libyar

1 http:/www. mevislab.de follows the main aim of separating between classifier-gjmeci

2 hitp:/lwww.cs.waikato.ac.nz/mliweka/ functiqnality (which m_u_st be provided by the user when in-

3 http:/itunedit.org/ troducing a new classifier) and common functionality that is

4 hitp://www.rapid-i.com used by all classifiers and does not need to be changed: the




LabelTool

~Annotations

Fig. 2 User interface for the labeling functionality of our datapwing an exemplary data set acquired at a 3 Tesla Siememscemner. Top left:
Corresponding morphological data set in sagittal vigwweighted turbo spin-echo sequence in this case). We cap plenarker (blue) to select
a voxel of interest. Middle left: Magnitude spectrum of tieéested voxel, which is typical for a cerebral tumor. TopghtidSelected voxel (framed
in red) together with the axial slice in which it is containdthe user-defined labels are overlayed over a synopsis spetitra in the slice. The
label shape encodes the signal quality (dot / asterisc 6 davs'not evaluable” / “poor” / “good”), while the label cal@ncodes the voxel class
(green / yellow / red for “healthy” / “undecided” / “tumor”Y he labels may also be annotated by free-text strings. Bogptanel: User interface
with controls for label definition, text annotation and datgort / export.

ClassifierManager class is responsible for the former, tively, the output can also be a continuous score that gives i
while the classes derived from the abstiéicissifier ba-  formation about the confidence that a spectrum corresponds
sis class are responsible for the latter. Simple exteiitgibil to a tumor. We implemented bindings for several linear and
and avoiding code repetition were therefore the two maimonlinear classifiers, which previously had been found to be
design principles. well-suited for the classification of MRSI spectra (Menze
et al, 2006): support vector machines (SVMs) with a lin-
ear and a radial basis function (RBF) kernel, random forests

ity and with respect to voxel class (see fig. 6). It contrals al (RF). ridge regression (RR) and principal components re-

classifiers which are trained and benchmarked for this tasi@'¢SSIon (PCRY); see (Hastie et a,"?o‘?g) for a quCI‘Ip'[IOI’I of
and ensures that operations such as training, testing, aﬁf&ese methods. The ac_:tual classification algorithms are pro
the averaging of performance statistics over cross-vida vided by external |Ibr6.1.rles such as LIBSVM (Chang and Lin,
folds as well as saving and loading are performed for eacﬁom) and VIGRA (Kothe, 2000).

classifier. It also partitions the training features ancelab
into several cross-validation folds, if the users do notraefi
a designated test data set.

A ClassifierManager object correspondsto each clas-
sification task, e.g. classification with respect to signelle

Both binary classification (with two labels) as well as
multi-class classification (with more than two labels) are

A Classifier objectencapsulates an algorithm for mapsupported. Some classifiers (e.g. random forests) natively
ping feature vectors to discrete labels after trainingel-  support multi-class classification, while for other clfiess
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Fig. 3 Part of the user interface for classifier training and tegstin this panel, the search grids for automated parameténglof the different
classifiers may be defined (default values, starting valneesmentation step sizes and numbers of steps).
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Fig. 4 Evaluation results for an exemplary training and testiriges@he upper two windows on the right-hand side show thieneséd area under
curve value for a linear support vector machine classifidritsestimated standard deviation§94+ 0.036), while the lower two windows show
the same values for a ridge-regression classifi@0@+t 0.048). This would allow a clinical user to draw the conclusibat only the latter one of
these classifiers differs significantly from random guegssamd may sensibly be used for diagnostics. The poor quaiitiyese classifiers is due
to the fact that only a very small training set was used fopilmpose of illustrating the user interface design (2 p#jen
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Fig. 5 Exemplary application of a trained classifier for the corepuatssisted diagnosis of a new data set. The classifierctiadi for both voxel
class and signal quality are depicted for a user-definedmegfi interest: the voxel class is encoded by the color (gfeethealthy”, yellow for
“undecided”, red for “tumor”), while the signal quality imeoded by the transparency (opaque for a good signal, lseifr a spectrum which is
not evaluable). As an alternative to the classifier prealig] it is possible to display precomputed color maps asasetiolor maps based on the
parametric quantitation of relevant metabolites.

(e.g. ridge regression and principal components regnedsio the cross-validation folds (or the whole training data,df n
it can be achieved via ane-vs.-all encoding schenfein  cross-validation is used). This generalization error dd
which each class is classified against all other classesrin tu estimated by dividing the training data into another tragni
and the class with the largest score is selected for theg@rediand test fold, training the classifier on the training pathef
tion (Rifkin and Klautau, 2004). This multi-class function training data and testing it on the testing part of the tragni
ality allows the future extension of our library to the tagk o datd. However, this would be time-consuming. However,
discriminating different tumor types against each other.  there exists considerable theoretical as well as empical

Furthermore, every classifier encapsulates an instance fence (Golub et al, 1979; Breiman, 1996) that efficiently
the ClassifierParameterManager class controlling the computable approximations for the generalization erroy ma
parameter combinations that are tested during parameter oe sufficient for parameter adjustment: these are proviged b
timization. Most classifiers have one or more internal pathe functionestimatePerformanceCvFold().For SVMs,
rameters that ought to be optimized for each data set in othis is an internal cross-validation estimate as described
der to achieve optimal predictive performance (see se}. 2.4(Lin et al, 2007), for random forests, thet-of-bag error
This is done by maximizing an estimate of theneraliza-  and for regression-based classifiers geaeralized cross-
tion error (i.e. the performance of the classifier on new testvalidation (Hastie et al, 2009). The optimal parameters are
data that were not encountered during the training processglected by the functionptimizeParametersCvFold()
over a prescribed search grid, using the data from one dfased on the data from one specific cross-validation fold.
This part of the library may be easily extended by adding

5 To be precise, these two classifiers are actually regressathods ~ new classifiers, as long as they fit into the supervised clas-
and can be used for binary classification by assigning thel ttband  sification settings (i.e. based on labeled training vectars

-1 to all positive and negative class examples and rainif@PEESsOr. ¢, vtion for mapping these vectors to the discrete labels is
The transformLabelsToBinary() function maps the original labels

to these two numbers.
6 The virtual isOnlyBinary () function allows one to specify the 7 Note that the actual test data must not be used during pasamet
affiliation of a classifier to these two categories. tuning.




learnt). Artificial neural networks, boosted ensemblesitas formed from the time domain into the Fourier domain by
fiers or Gaussian process classification are examples for aheans of the FFTW library (Frigo and Johnson, 2005). The
ternative classification algorithms that could be addetisnt subsequent steps may be adjusted by the user, and typically
way. For this, one only needs to derive fromtiassifier  depend on the classifier:

abstract base class and to provide implementationsfdsitsa ~ Common MRSI preprocessing steps used by all classi-
stract methods (including the definition of teeprocessor fiers are the rebinning of spectral vectors, the extractfon o
subclass with which this classifier type is associated). Foparts of the spectrum aridy normalization (i.e. the spec-
parameter tuning, one also has to supply an estimate of theal vector is normalized such that the sum of all compo-
classifier accuracy: This may always be computed via crossient magnitudes in a prescribed interval equals one): these
validation, but preferably this estimate should arise ag-a b are performed by the claligsiPreprocessor.® Other pre-
product of the training or be fast to compute (same as e.gprocessing steps are only relevant for some of the classi-
the out-of-bag error for the random forest or the generdlizefiers, e.g. th@®egressionPreprocessor performs a singu-
cross-validation). Furthermore we assume the existenae oflar value decomposition of the data which speeds up subse-
continuous classification score, which ideally can be interquent ridge regression or PCR. SVMs perform better when
preted as a tumor probability. However, for classifiers with the features have zero mean and unit variance: this can be
out such a probabilistic interpretation it is sufficientémse  achieved by th@hiteningPreprocessor.

the 0/1 label values as scores: as long as higher scores cor- Two features of our software implementation support
respond to a higher likelihood for the positive (tumor) slas this modular structure: ThRreprocessorManager incor-

they can take any values. We only use the single-voxel spe@orates a class factory, which ensures that only one instanc
tra for classification, hence our architecture does notallo of each preprocessor class is created: this allows to share
classifiers that make explicit use of spatial context infarm preprocessors across various classifiers and prevents dupl
tion (so-calledorobabilistic graphical models). cate preprocessing steps (such as e.g. performing the sin-
gular value decomposition twice on the same data). Further-
more, preprocessors are typically arranged in a tree siict
(viathepredecessor andsuccessors references) and ev-

Preprocessing (fig. 7) is the extraction of a feature vector ery classifier is assigned tolone vertex of this tree, which
from the raw MRSI spectra with the aim of improved clas-ENSUres that all preprocessing steps on the path from the

sification performance. While classification makes use ofootto this vertex are applied in order (creating a pipeline

both the label and the feature information (supervised proc—)f preprocessing steps). Once the data encapsulated inside
ne module changes, all successors are invalidated.

cess), preprocessing only uses the feature information (uﬁ ) i
supervised processireprocessor objects may act both Whe_n new classifiers are added to t_he library, the pre-
on the total datatransformTotal ()) and of the data of processing part may easily extended with new preproces-

a single cross-validation foldtgansformCvFold()): the sor modules as long as they fit into the unsupervised set-

distinction may be relevant since some preprocessing stef)'gg (i.e. they only make use of the features, but not of the

(e.g. singular value decomposition) depend on the actudqbels). Besides implementing the abstract methods of the
training data used Preprocessor base class, the association between the clas-
The main goal ;governing the design of the preprocessingiﬁer and the preprocessor must be included in the classifier

functionality was training speed: data preprocessingssteg € inition by implementing itgetPreprocessorStub()
which are common to multiple classifiers should only bemethod: then the classifier object ensures that the new pre-

performed once. Hence the different preprocessing steps gprocessor is correctly registered with the preprocessor ma

packaged into modules (deriving from theeprocessor ager object. As a limitation, the new preprocessor has to be

abstract base class) and arranged into cascades. A comm%?Pended ?Sr? new Ieafd(_or a nevvl ro;)t noder)l fo the prepro-
PreprocessorManager ensures that every preprocessingcessor tree: the intermediate results from other prepseces

step is only performed once. Hiding the preprocessing funci_ng steps can only be reused if the order of these steps is not
tionality from the library users was an additional criterio changed.

Every subclass oflassifier is statically associated with

a specificPreprocessor subclass and is responsible for
registering this subclass with tfRreprocessorManager

and passing the data to be preprocessed. . . .
First, since we are only interested in the metabolite SigAII classifiers have adjustable parameters, which are encap
' glated in theClassifierParameter class (fig. 8). The

nals, the nuisance signal caused by water molecules has Y

be suppressed, using e.g. a Hankel singular value decoms \ore sophisticated steps such as the extraction of waveétifes
position filter (Zhu et al, 1997). Then the spectra are transmight be added as well.

2.3 The preprocessing functionality

2.4 The parameter tuning functionality




Preprocessor
1
0.
1 Classifier
0. #classes : Matrix<double>
#nFeatures : FeatNr
Classi #nCvFolds : FoldNr
-classes : Matrix<double> #cvFoldTrained : Matrix<bool>
-nFeatures : FeatNr #totalTrained : bool
-nCvFolds : FoldNr #cvFoldTested : Matrix<bool>
-allFeaturesTrain : shared_ptr<Matrix<double>> #meanTested : bool
-allLabelsTrain : shared_ptr<Matrix<double>> #errorScores : Matrix<double>
-cvFoldFeaturesTrain : vector<shared_ptr<Matrix<double>>> #totalErrorScore : double
-cvFoldLabelsTrain : vector<shared_ptr<Matrix<double>>> 1 ox #isOnlyBinary()
+addClassifier() #addClassifierSpecificF ()
+load() +estimatePerformanceCvFold()
+save() +learn()
+setData() +learnCvFold()
+learnAll() +optimizeParametersCvFold()
+learn() +predictLabels()
+learnCvFold() +predictLabelsCvFold()
+predictLabels() +testCvFold()
+predictLabelsCvFold() +computeTestMean()
+predictScores() +predictBinaryScores()
+predictScoresCvFold() +predictBinaryScoresCvFold()
+testAll() +save()
+testCvFold() +load()
+computeTestMean() +getStats()
-getPreprocessorStub()
L 3 2 AN $
1 1 1 1
RegressionClassifier
1 #weightsTotal : Matrix<double>
#meanLabelsTotal : Matrix<double> 1
@' #weightsCvFold : vector<Matrix<double>>
1 #meanLabelsCvFold : vector<Matrix<double>> Ml
PreprocessorManager #isOnlyBinary()
#addClassifierSpecificParameters() 1

#transformLabelsToBinary() 1

g gl PCRC
SvmCl i or
#svmTotal : shared_ptr<SupportVectorMachine<double>> -randomForestTotal : shared_ptr<RandomForest<double>>
#svmCvFold : vector<shared_ptr<SupportVectorMachine<double>>> -randomForestCvFold : vector<shared_ptr<RandomForest<double>>>

Fig. 6 Simplified UML diagram of the classification functionality our library: detailed explanations can be found in secidh The connec-
tions to the classeBrainTestSuite (see fig. 10)Preprocessor / PreprocessorManager (fig. 7), ClassifierParameterManager (fig. 8) and
SingleClassifierStats / AllPairClassifierStats (fig. 9) are shown. In this diagram, as in the following ondssteact methods are printed
in italics: to save space, we do not show the implementatiéisese abstract methods if they are provided in the lealvégednheritance tree.
The depiction here is simplified: we actually follow the nartual interface principle and give protected visibility all abstract methods, which
are then encapsulated by non-virtual public methods.

design of the parameter handling functionality was guide@s aTypedOptimizableClassifierParameter: besides

by the main rationale of handling parameters of differenthe actual value, these objects also contain the search grid
datatypes in a uniform way. Furthermore we aimed to enablef the parameters, namely the starting and end value, the
automated parameter adjustment over a search grid (whidghcrementation step and whether the value should be incre-
may have linear or logarithmic spacing depending on thenented additively or multiplicatively (encoded in the field
range of reasonable parameter values), by hiding the getaiincrInLogSpace. Multiplicative updates are appropriate for

of the search mechanism from the class users. parameters that can span a large range of reasonable values.

Some parameters should be optimized for the specific
classification task, as described in section 2.2: for thestla There are also parameters which may not be optimized:
fiers supplied by us, these are the slack per@lyr SVMs,  these are encapsulated abypedClassifierParameter,
the kernel widthy for SVMs with an RBF kernel, the ran- which only contains the actual value. A good example would
dom subspace dimensiamyfor random forests, the number be the number of trees of a random forest classifier, since
of principal componentsipc for PCR and the regulariza- the generalization error typically saturates as more taees
tion parametep for ridge regression. They are representecadded.
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PreprocessorManager

+getPreprocessor()
+load() ’l ClassifierManager

+save()

0. predecessor 0.1

Preprocessor

#nCvFolds : FoldNr

#nFeatsIn : FeatNr

#nFeatsOutTotal : FeatNr
#nFeatsOutCvFold : vector<FeatNr>

successor(s)

0..*

+transformTotal()
+transformCvFold()
+load()

*save() — Classifier
1 0.*

RegressionPreprocessor

IdentityPreprocessor -sgValTotal : Matrix<double>
-sgValCvFold : vector<Matrix<double>>
-rsvTotal : Matrix<double>

-rsvCvFold : vector<Matrix<double>>

MrsiPreprocessor

-nBins : FeatNr
-imagingFrequency : double
-dwellTime : double
-ppmCutUpperBound : double
-ppmCutLowerBound : double
-ppmL1UpperBound : double
-ppmL1LowerBound : double
-useLowerSpectrum : bool
-useMiddleSpectrum : bool
-useUpperSpectrum : bool

WhiteningPreprocessor

-meansTotal : Matrix<double>
-meansCvFold : vector<Matrix<double>>
-scalingsTotal : Matrix<double>
-scalingsCvFold : vector<Matrix<double>>
-scaleToStdOne : bool

Fig. 7 Simplified UML diagram of the preprocessing functionalisge section 2.3 for details. The connections to the classesifier and
ClassifierManager (fig. 6) are shown.

While all currently used parameters are either integers oabout the choice of good parameters, they have to be tuned
floating-point numbers, one can define parameters of arbempirically so that a low generalization error is achievied.
trary type: however, one has to define how this data type caHowever, this is the most time-consuming part of adapting
be written to or retrieved from a file or another I/O mediuma classifier to a new experiment, which is now completely
by implementing the corresponding I/O callbacks (see seautomated by our software.
tion 2.6 for detailed explanation). For optimizable parame
ters, it must also be defined what it means to increase the pa-
rameter by a fixed value (by overloading hygerator++()
member function). As a limitation, we assume that all pa-
rameters may be varied completely independently and can-

not encode constraints coupling the values of multiple pa- ° If sufficient data were available, it would be preferable éofprm
rameters. this parameter tuning on a separate tuning data set that issed in

ge training and testing of the classifier. Since typicalipics only

One should n_Ote tha_t the parameter optimization proces{wave access to few validated MRSI data, this approach mapeot
followed by our library is exactly the way a human expertpacticable, and the cross-validation scheme used in braryi is the
would do it: in the absence of universal theoretical criteri best alternative to deal with scarce data.
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Classifier
¢
1
ClassifierParameter 1
-isinRange : bool Cl ifierParameter
+init() 0.* L [+addClassifierParameter()
+inRange() +load()
+operator++() +save()
+isOptimizable()
+load()
+save() 1
1
T _______ ClassifierParameterFactory
Ir : typename _! +createClassifierParameter(
TypedClassifierParameter
#value : T
———————
IT: typename J
TypedOptimi lassifierParamet er

-increment : T
-lowerBound : T
-upperBound : T
-incrinLogSpace : bool

+init()
+inRange()
+operator++()
+setSearchGrid()
+isOptimizable()

Fig. 8 Simplified UML diagram of the parameter tuning functiongliee section 2.4 for details. The connection to the dasssifier (fig. 6)
is shown.

2.5 The statistics functionality which caches several intermediate results required for the
computation of the differerfitatistics.

The computation of evaluation statistics is crucial for the There are different variants of how these statistics may

automated quality control of trained classifiers (fig. 9). Webe computed in a multi-class classification setting: some of

designed this part of the library with the following aims in them eg. thehs_dasmflcathnpfate) can handlg mul

T . . . tiple classes natively; these statistics form the derivadsc
mind: Needless recomputation of intermediate values shoul . .
o . . . A11VsAl11Stat. Other statistics (e.(Precision, Recall
be avoided; thus we compute the binary confusion matrix

only once and then cache it withinStatsDataManager or FScore) were originally designed for a binary classifica-

object, which can be queried for computing the dif“ferenttlon setting. For the latter kind, one must .rep(.)rt.multu vV
o . . .. ues, namely one for each class when discriminated against

statistics derived from it (e.@recision andRecall). The ) . .

. : . all others (one-vs.-all encoding), and they inherit frora th

library can be simply extended by new statistics character-

. ) L ; OneVsAllStat class. TheAreaUnderCurve (AUC) value
izing a single classifier. Dedicated manager classes (ich a

SingleFoldStats, SingleClassifierStats as well as ggt(r)g")rlescsl\slegggirat\llcﬁlIcehirgc;esrgsggr(_?outcg dC:JnrvaecEIrjeemil/Cs
PairClassifierStatsandAllPairsClassifierStats) P y: P '

. ) - . all fashion, the underlying ROC curves are stored as well.

are each responsible for a well-defined statistical evalnoat - : .
; - o . Standard deviation estimates are mostly available only for
task: namely, characterizing a classifier for a single eross

Co s o themeanData averaged over several cross-validation folds,
validation fold, characterizing a classifier over all foldsar-

o ; : - . with the exception of the AUC values for which nonpara-
acterizing a single pair of classifiers and characterizihg a

existing pairs of classifiers. They ensure that this computaglilnczggg;snap estimates can be easily computed (Bandos

tion is performed in a consistent way for all classifiers, so . - L . .
. . Besides the statistical characterization of single classi
that code redundancy is avoided. . o . e .
fiers, it is also relevant to compare pairs of classifiers in
The classSingleClassifierStats manages all statis- order to assess which one of them is best for the current
tics pertaining to one single classifier: it is composed of obtask, and whether the differences are statistically sicgmif.
jects of typeSingleFoldStats, which in turn manage all TheAllPairsClassifierStatsclass manages the statis-
statistics either of a single cross-validation fold'§ata), tics characterizing the differences in misclassificatiater
or the mean and standard deviation values computed over detween all pairs of classifiers, each of which is represente
folds (meanData). A StatsDataManager is a helper class by a singlePairClassifierStats instance. We repor-
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values computed by statistical hypothesis tests with thie nu2.6 The input/ output functionality
hypothesis that there is no difference between classifier pe
formances. We provide implementations for two tests: McWe designed the input/ output functionality in order to keep
Nemar's test (Dietterich, 1998) is used when the data aré separated from the modules responsible for the internal
provided as a separate training and test set, while a rgcenttomputations: hence we pass function objects to the classi-
proposed conservativetest variant (Grandvalet and Ben- fier, preprocessor etc. objects, which can then be invoked to
gio, 2006) is used if the users provide only a training datsserialize all types of the data that is encapsulated by these
set, which is then internally partitioned into cross-vatidn ~ objects. Similar function objects are used for streamig re
folds. The latter test assumes that there is an upper boevant information outside and listening for user signals at
der on the correlation of misclassification rates across difcheck points.
ferent cross-validation folds, which is stored in the Vialéa For persistence, classifiers, preprocessors, statistits a
maxCorrelationGrandvalet'?, all other classes with intrinsic state can be saved anddetba

If we have more than two classifiers, we must adjust thg a hierar;hical data f_ormat, and Fhe d_ata input/output can

e customized by passing user-defined input and output func-

p-values for the effect of multiple comparisons: In the cas S biects derived f the b lasEesdF d
of five classifiers with equal performance, we have ten pair-Ion objects derived from the base classesdrunctor an

wise comparisons and a significant differenggy < 0.001) SaveFunCt(;r f(.seer:ﬂg. 10). For thezel function obje;]:.ts, theh
is expected to occur with a probability 0£10.999'°~ 0.01. Iuserl rr.1u.st efine owdto gnter an eavz ?‘ new hierarchy
After computing all “raw” p-values, we correct them using evel (initGroup() andexitGroup()) and how to seri-

Holm’s step-down or Hochberg’s step-up method (Deméar","r:'ZT each SUF’F’C’”G;]j dfata t}’p&(f;() and 1oa.d()|): for ”
2006) and store all results a8alue structures. the latter purpose, the function objects must implement a

required instantiations of theoadFunctorInterface or

If there is need to extend the statistics functionalitysiti g,veFunctorInterface interface template. We exemplar-
simple to add any statistic characterizing a single classifi ily provide support for HDF5! as the main storage format
that can be computed from the true labels and the predictegk L would be an obvious alternative). For integration into
labels and scores, as these values may be queried from the,ser interface, other function objects may be passed that
StatsDataManager object. To our knowledge, this com- can either report progress information, e.g. for updating a
prises all statistics which are commonly used for judgireg th progress barStreamProgressFunctor), or report status
quality of general classification algorithms. As a limitetj  jnformation GtreamStatusFunctor)or listen for abort re-
the evaluation statistics cannot use any information abmﬁuests fbortCheckFunctor) at regular check points. A
the spatial distribution of the labels: hence it is impokesib ProgressStatusAbortFunctor bundles these three dif-
to compute e.g. the Hausdorff distance between the true angrent functions. TherainTestSuite manages the actions
the predicted tumor segmentation. Among the statistigal si of the library at the highest level: the library users mainly
nificance tests (lik@lcNemarPairClassifierStat), 0N interact with this class by adding classifier manager object
can add any technigque that only requires the mean Va'“‘iﬁassing data and retrieving evaluation results.
of the statistic to be compared from each cross-validation The |/0 functionality can simply be extended to other
fold. The current design is not prepared for new methods Oifnput and output streams, as long as the data can be stored
multi-comparison adjustment beyond Holm’s or Hochberg'sy, 5 key-value form with string keys, and as long as a hier-
method: for every method acting only @avalues and com-  grchical structure with group denoted by a name string can
puting an adjusteg-value, this would be possible, but re- pe jmposed. Instead of only listening for abort signals, the
quires moderate redesign of this part of the library. We alsQy v+ checkFunctor could in principle handle more gen-
have hard-wired the assumption that the mean and varianggg| yser requests: but aborting a time-consuming training
of these evaluation shall be estimated using a cross-vaida process is presumably the main requirement for user inter-
scheme. The number of cross-validation folds can be spegytion capabilities.
ified at theClassifierManager level: It is theoretically
possible to run a leave-one-out validation scheme with this
machinery, but that would lead to prohibitive computationp 7 User interaction and graphical user interface
times.

In order to further aid the clinical users in spectrum anno-

" . . . tation, we developed a graphical user interface in MeVis-
Note that a classicattest may not be used, since the variance) o, 1ha; displays MRS spectra from a selected slice in the

of misclassification rates is estimated from cross-valiaand hence . ) .
systematically underestimated. (Bengio and Grandvalé4pshowed ~context of its neighbor spectra, which can then be labeled
that unbiased estimation of the variances is not possibltehe proce-  on an ordinal scale by voxel class and signal quality and
dure used here provides an upper bound orpthelue if the assump-
tions are fulfilled. 11 hitp://www.hdfgroup.org/HDF5/
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PairClassifierStatsFactory
-maxCorrelationGrandvalet : double

AllPairsClassifierStats

-valid : bool
-maxCorrelationGrandvalet : double

ClassifierManager | @————— ;gjustPHolmHochberg()

1 1 |+addSingleStat()

+computeAll()
Pvalue +save()
-valueRaw : Matrix<double>
-valueHolm : Matrix<double> 1 1
-valueHochberg : Matrix<double>
0..*
1
* o
PairClassifierStats
1 1
Gr Pair ifierStats
-maxCorrelation : double
-crossValTTest()
) Pair ifierStats
-mcNemarTest()
stats of first classifier stats of second classifier
1 1 0..*
SingleClassifierStats
-classes : Matrix<double>
+computeFold()
1 1 +computeMean()
+save()
1 1
meanData cvData
characterizes mean 1 characterizes CV fold 0..*
SingleFoldStats
#nClasses : ClassNr
1 ’ +compute()
+computeAsMean()
+save()
+setData()
1
StatsDataManager 1
*
-nClasses : ClassNr 0.
-trueLabels : Matrix<double> Statistic
-predictedLabels : Matrix<double> #values : Matrix<double>
-predictedScores : Matrix<double> #stds : Matrix<double>
-binaryConfusion : MultiArray<3, ObsNr> +save()
-multiConfusion : Matrix<ObsNr> +compute()
-compute() +computeAsMean()
AreaUnderCurve OneVsAlistat AllvsAllstat
-rocCurveValues : vector<Matrix<double>> +compute() +compute()
-rocCurveStds : vector<Matrix<double>> #computeOneVsAllStat() #computeAllVsAllStat()

Ay

Precision

Recall | FScore | Mi

Fig. 9 Simplified UML diagram of the statistical evaluation furmstality; see section 2.5 for details. The connections taclhgseslassifier

andClassifierManager (fig. 6) are shown.
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StreamProgressFunctor

[ PrintTimeFunctor _|

AbortCheckFunctor

-currentScore : float

+operator()()

+operator()()

-maximumScore : float

“+operator()() 1
#doUponUpdate()

15 1

[ streamProgressTostdoutFunctor |

StreamStatusFunctor

#baseStatus : string

+operator()()
+setBaseStatus()

1

1

1
* * >
gressStatusAbortFunctor
j————= \ +operator()() jm———= 1
|Key : class | l\dentifier : class | +setBaseStatus() \Td;];ﬁ;fd’a; 1 |Key : class |
. | ——dentifier : class o ——dentiner: class | :
ITiclass | o dFunctor +setMaximumScore() ITiclass |
<<lInterface>> — <<Interface>>
initGrouy
L a . ! | | icrow0 SaveFunctorinterface
+exitGroup()
+oad() +save() ‘
LF <g 1 1 <E 1 13
LoadHDF5Functor TrainTestSuite SaveHDF5Functor
-hdfSStack : deque<shared_ptr<MyCommonFG>> :add(flaSS‘ﬁerManagerH -hdf5Stack : deque<shared_ptr<MyCommonFG>>
run =
AbortException
-msg : string ¢

1
1

CIassiﬁerManagFr

+what()

Fig. 10 Simplified UML diagram of the data input / output functiongli see section 2.6 for details. The connection to the class
ClassifierManager (fig. 6) is shown.

imported into the classification library (fig. 2). Since &lin sets acquired at 1.5 Tesla (table 1): these values can &t leas
cal end users only interact with this user interface, they caserve as plausible starting values for the parameter fine tun
start a training and testing experiment and evaluate the réag on new classification tasks. Alternatively a search grid
sults without expert knowledge on pattern recognition techof parameter values may be specified, so that the best value
nigues: they only have to provide their domain knowledges detected automatically: this allows to improve the dfass
about the clinical interpretation of MRSI data. To this pur-fier accuracy in some cases, while still requiring little and
pose, our graphical user interface displays the MRSI spectistanding about the detailed effects of the different parame
of the different voxels both in their spatial context (upperters on the side of the users.

right of fig. 2) and as enlarged single spectra (middle left of

this figure). It is known that the ability to view MRSI spec-

tra in their surroundings and to incorporate the informatio

from the neighboring voxels is one of the main reasons why ) . . . .
human experts still perform better at classifying thesespe Besides _the weights of the trained classifiers, the .traln-
tra than automated methods (Zechmann et al, 2010). Simdf?9 and testing procedures also generates test Statiscs t

taneously one can display a morphological MR image thaf'® estimated from the cross-validation schemes and saved
is registered to the MRSI grid, which can give additional™ the HDFS5 file format. By inspecting these files, one can

valuable information for the labeling process of the ratersJ€t @ detailed overview over the accuracy and reliability of

Labels are provided on two axes (signal quality and voxe}he different classifiers and compare whether they yield sig

class / malignancy) that are encoded by marker shape antficantly different results (fig. 4).
color; furthermore it is possible to add free-text annotadi
to interesting spectra.

After saving the label information in a human-readable
text format, clinical users only have to provide the informa Finally, the trained classifiers can be applied to predict
tion which label files (and associated files with MRSI data)the labels of new MRSI spectra for which no manual labels
shall be used for training and testing. (As stated in sectioare available. For a user-selected region of interestjrhis
2.6, it is not required to specify dedicated testing files; information can be displayed in the CLARET software as an
this case, all data are used in turn for both training and teseasily interpretable nosologic map overlayed over the mor-
ing via a hold-out scheme.) An expert mode provides thghological MR image (fig. 5). The voxel class is encoded in
opportunity to select which classifiers to train and test andhe color (green for healthy tissue, red for tumor, yellow fo
to set the classifier parameters manually (fig. 3). We alsandecided cases), while the signal quality is encoded in the
propose default values for these parameters, which gave tladpha channel (for poor spectra the nosologic map is trans-
best or close to the best accuracy on different prostate dafmrent, whereas for very good spectra it is nearly opaque).
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3 Case studies SVM RF RR PCR
Precision 0.73(11) 0.832(57) 0.79(12) 0.79(12)
Recall 0.57(18)  0.58(17) 0.42(17)  0.43(17)

3.1 Exemplary application to 1.5 Tesla data of the prostate gpecificity 0.964(23) 0.9820(62) 0.980(18) 0.979(19)
F-score 0.621(14) 0.67(13) 0.53(15)  0.54(16)
As a case study, we recapitulate the results from a previouscCR 0.905(37) 0.922(32)  0.899(37)  0.899(38)
study, in which we validated our library on 1.5 Tesla MRS _AYC 0.891(54) 0.946(57) 0.890(54) 0.890(54)
data of prostate carcinomas (Kaster et al, 2009). We usetgble 3 Average evaluation statistics for signal quality classfie

; P ; ; based on data set 2 (with standard deviations in parenjhasisie
two different data sets for the training of signal qualitdan the standard deviation reported for the area under curvevalesti-

of voxel class classifiers: For signal quality classificative mated as by Bandos et al (2007) to facilitate the comparigtntable
provided 36864 training spectra and 45312 test spectra arilthe other standard deviation estimates are computedtfreroross-
extracted 101 magnitude channels as features during prepriglidation.

cessing (data set 1). For joint signal quality and voxelslas

classification, we provided 19456 training spectra from 24

patients, from which however only the 2746 spectra with
“good” signal quality were used for learning the voxel class SVM RF RR PCR

classifiers: we extracted 41 magnitude channels as featuregfciﬁion g'ggg%@ (?'785?;((125) é’f&g(l?’)g) 005900((2)(11)4)

(data set 2). Since rg!ati\{ely few spectra were avai_labie fo Specificity 0.983(23) 0.9771(87) 0.9966(39)  0.9928(78)
the voxel class classification task, we opted for an eiglt-fo  F-score 0.76(12)  0.79(11) 0.63(22) 0.63(21)
cross-validation scheme rather than partitioning theidda ~ CCR 0.932(42) 0.937(42)  0.909(59)  0.909(62)
a separate training and test set. No preprocessing steps héUC 0.97(15  0.98(15) 0.96(15) 0.95(15)

sides rebinning and selection of the appropriate part of th&able 4 Average evaluation statistics for signal q_uality classdfie
spectrum were used. based on data set 2 (see table 4 for further explanations).

Parameter (classifier)  Search grid values  Final values 8% D With these input data, we achieved state-of-the art clas-
(DSSQZ) (/V%“;’z (SQ)/ sification performance: For signal quality prediction oteda

IS 0210 10 10 /17 /1 set 1, the different cla(1)55|f|ers a(;hleved correct clastifica

My (RF) 46.....16 16/14/16 rates (CCR) of 96.5 % — 97.3 % and area under the ROC

A (RR) 103,102,...,1¢¢ 101/10°1/10°2 curve values of 98.9 % — 99.3 % (see table 2). On data set 2,

Nec (PCR) 1015,...,40 40/35/25 we obtained correct classification rates of 89.9 % — 92.2 %

Table 1 Search grid for automated classifier parameter selectidn anand area under curve values of 89.0 % — 94.6 % for the sig-
final values _for signal _quality (SQ) classification ba_sgd qtadset 1 nal quality prediction task (table 3), and correct clasaific
(DS1) and signal quality and voxel class (VC) classificatiased on tion rates of 90.9 % — 93.7 % as well as area under curve

dat t 2 (DS2).
ata set 2 (DS2) values of 95 % — 98 % for the voxel class prediction task
(table 4).

- . . . The automated parameter tuning functionality is espe-
As classifiers, we trained support vector machines with . b 9 Y P

cially relevant for the use of support vector machines,esinc

linear kernel, random forests, principal component regresWrong values of the paramet@may lead to a considerably

sion and ridge regression, as the training of support VeCtociegraded accuracy. If e.g. the starting value of 0.0Cfoad

machines with an RBF kernel was found to be too time- . : e
. been used for the signal quality classification of data set 1,
consuming. We used the automated parameter search ca

- . ! . RRE correct classification rate would have dropped to 92.5 %
bilities of our library to find the optimal values that were . oo
finally used (see table 1) (which means that the number of wrongly classified spectra
y ' would have doubled). The other classifiers that are cusrentl
available in our library are more robust with respect to the

SVM RF RR PCR values of their associated parameters.
Precision ~ 0.815 0.869 0.921 0.922 While these absolute quality measures are highly rele-
Recall 0913 0.913 0.797 0.802 vant for the clinical practitioners, a research cliniciaaym
Specificity  0.972 0.982 0.991 0.991 . ) . ; -
F-score 0.861 0.891 0.855 0.857 also be interested in the question which classifier to use for
CCR 0.965 0.973 0.968 0.968 this particular task (and whether there is any difference be
AUC 0.989(14) 0.993(14) 0.990(14) 0.990(14) tween the different classifiers at all). This question cdadd

Table 2 Evaluation statistics for signal quality classifiers basedata ~answered with the statistical hypothesis testing capasli
set 1. The standard deviation of the area under curve vaiugafen-  of our library, sincep-values from McNemar’s test (for data
theses) is estimated as by Bandos et al (2007). Note thaetadl Is oo 1) and the-test variant (for data set 2) characterizing the
also known as the “sensitivity”. . . e .
differences in the correct classification rates of varidas-
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sifiers were automatically computed and corrected for mulparameter shall be incremented additively rather thanimult
tiple comparisons (both Holm's step-down and Hochberg'plicatively.

step-up method yielded qualitatively the same results). Fo,,.,

the signal quality classifiers trained on data set 1, randoriicce:s oreperioserasanerers 0

forests differed with high significance from all other clas-
sifiers (o < 10°%). Support vector machines differed from
principal components regression significantty< 10-3),
and ridge regression showed a barely significantly diffeeen
to both principal components regression and support vector In this application case, the different spectral features
machines p < 10-2), while all other differences were non- correspond to MRSI channels and can assumed to be com-
significant. For data set 2, all differences were non-sigaiift mensurable: hence no preprocessing except for the general
owing to the small number of data examples. MRSI preprocessing steps is required, and the associated
preprocessor is an instance of fidentityPreprocessor

class, which leaves the features unchanged. In cases where
one cannot assume the features to be commensurable, one
should rather associate this classifier with a preprocessor

. . . typeWhiteningP which brings all features to
As an exemplary case of how the functionality of our I|brarytﬁz sar;ee;:leillg reprocessor g

may be extended, we discuss the addition of a new classi-
. . . . shared_ptr<Preprocessor>
flel' methOd N detaIL name|y tHeneareSt nelgthI’S (kNN) Nearestf{eighborpcussifier ::getPreprocessorStubSpecific () const {

shared_ptr<Preprocessor> output(new IdentityPreprocessor ());

method as one of the simplest classifiers (Hastie et al, 2009) return cutput;

Every test spectrum is assigned the majority label okits

closest neighbors among the training spectra (with respect For didactic reasons, we provide a simple, but admit-
to the Euclidean distancéd. This classifier is represented tedly inefficient implementation. The training process-con
by aNearestNeighborClassifier class derived fromthe Sists simply of storing the training features and labels:
abstractlassifier base class:

class EXPORT_CLASSTRAIN
NearestNeighborClassifier
private:
// ALl training spectra
vigra::Matrix<double> trainingSpectra;
// All training labels
vigra::Matrix<double> traininglabels;
// Training spectra for the different cross-validation folds
std::vector <vigra::Matrix<double> > trainingSpectraCvFolds ;
// Training labels for the different cross-validation folds
std::vector <vigra::Matrix <double> > trainingLabelsCvFolds ;
// Name strings associated with the kNN classifier

unsigned kValue=5;

unsigned kLower=1

unsigned kUpper=15;

unsigned kIncr=2;

parameters->addClassifierParameter (k_name ,kValue ,kIncr,
kLower ,kUpper ,false);

3.2 Extending the functionality with lanearest neighbors
classifier

double
NearestNeighborClassifier ::
estimatePerformanceCvFoldSpecific ( FoldNr iF,
const Matrix<double>& features,
const Matrix<double>& labels ){
double output = learnCvFoldSpecific (iF,features,labels);
cvFoldTrained (iF ,0)=true;
return output;

: public Classifier {

double

NearestNeighborClassifier ::

learnSpecific ( const Matrix<double>& features,
const Matrix<double>& labels ){

static const std::string knn_name; trainingSpectra = features;
static const std::string k_name; traininglLabels = labels
static const std::string cv_error_name; return estimateByInternalVal ( features, labels );
static const std::string training_spectra_name;
static const std::string training_labels_name;
protected: double

// Can be used for native multi-class classification

virtual bool isOnlyBinary() comnst {
return false;

}

public:

// Stub constructor

NearestNeighborClassifier () : Classifier(),
trainingSpectra (), trainingLabels (),
trainingSpectraCvFolds (), trainingLabelsCvFolds (){

¥

// Read-only access to classifier name string

virtual std::string getClassifierName () const {
return knn_name;

}

// Read-only access to error score name string

virtual std::string getErrorScoreName () const {
return cv_error_name;

protected:
/* The following wirtual functions are discussed separately */

};..l

NearestNeighborClassifier ::
learnCvFoldSpecific (FoldNr iFold,const Matrix<double>&
features, const Matrix<double>& labels){
trainingSpectraCvFolds [iFold] features;
traininglLabelsCvFolds [iFold] = labels;
return estimateByInternalVal ( features,

}

labels );

The automated parameter optimization requires an esti-
mate for the generalization error, which must be obtained
from one single cross-validation fold: if the data has for ex
ample been split into a training and a testing fold, only the
training fold may be used for this estimation. Otherwise one
would incur a bias for the test error that is computed on
the separate testing data set. Unlike many other classifiers

The only adjustable parameter is the number of nearege.g. random forests), the kNN classifier does not automat-

neighborsk. By default, the odd values 3,...,15 shall be

ically generate a generalization error estimate durinigtra

considered while optimizing over this parameter: they mayng: hence one must resort to an internal validation step, in

also be adjusted afterwards by the library user. The lastarg
ment of theaddClassifierParameter specifies that this

12 For binary classification, ties can easily be avoided byricstg
k to odd values. However, if the user chooses an &yeve err on the
safe side and classify the spectrum as tumorous in case@f a ti

which the training data is splitinto an internal “trainingsid
“testing” subset:

struct
NearestNeighborClassifier ::
Comparison {
operator () (const pair<double,double>& pi
const pair<double ,double>& p2){
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return pi.first < p2.first;
};

double
NearestNeighborClassifier ::
estimateByInternalVal (const Matrix<double>& features,
const Matrix <double>& labels){

unsigned k = parameters->getValue<unsigned>(k_name);

// randomly group into two folds

vector <int> folds( features.shape(0) );

for ( int i=0; i<features.shape(0); ++i ){

folds[i]l = rand() % 2;

unsigned correct = 0;
unsigned wrong = 0;
for (int i=0; i<features.shape(0); ++i ){
if ( folds[il==0 ){ // 1 test spectra, 0 :
continue;
}
priority_queue<pair<double ,double>, vector<pair<double , double> >
Comparison> currBest;
unsigned nFound = 0;
for (int j=0; j<features.shape(0); ++j){
if ( folds[jl==1 ){
continue;

training spectra

}
Matrix <double> tempVec = features.rowVector(i);
tempVec -= features.rowVector(j);
double newDist = tempVec.squaredNorm();
if ( nFound++ < k ){ // first k spectra automatically pushed
currBest.push(pair<double ,double >(newDist ,labels(j,0)));
} else {
if ( newDist < currBest.top().first ){
currBest.pop();
currBest.push( pair<double ,double >(newDist ,labels(j,0)));
}
¥
}
double maxLabel = retrieveMajority (currBest);
if ( maxLabel==labels(i,0) ){
correct++;
} else {
wrong++;
}
}

return double(wrong)/(correct+wrong);

retrieveMajority() is a helper function to retrieve

void
NearestNeighborClassifier ::
predictBinaryScoresSpecific (const Matrix<double>& features,
Matrix <double >& scores) const {
Matrix <double> labels;
predictLabelsAndScores (trainingSpectra,traininglabels,
features,labels,scores);

+

void
NearestNeighborClassifier ::
predictBinaryScoresCvFoldSpecific (FoldNr iFold,
const Matrix<double> &features,
Matrix <double> &scores)const {
Matrix <double> labels;
predictLabelsAndScores (trainingSpectraCvFolds [iFold],
trainingLabelsCvFolds [iFold],
features,labels,scores);

}

void
NearestNeighborClassifier ::
predictLabelsSpecific (const Matrix<double >% features,
Matrix <double >% labels) const {
Matrix <double > scores;
predictLabelsAndScores (trainingSpectra, trainingLabels,
features, labels, scores);

}

void
NearestNeighborClassifier ::
predictLabelsCvFoldSpecific (FoldNr iFold, const Matrix<double>&
features, Matrix<double> &labels) const{
Matrix <double> scores;
predictLabelsAndScores (trainingSpectraCvFolds [iFold],
traininglabelsCvFolds [iFold],
features,labels,scores);

Concerning serialization and derialization, this classifi

is only responsible for its internal data. In contrast, the s
rialization of the parameter is handled by the associated
ParameterManager object, while the evaluation statistics

are serialized by thelassifierManager.

the most common label from the priority queue. Note thaficaressieigmorciassitier :

the implementation is deliberately simple for didactied+

sons and has not been optimized for efficiency: in produc-

saveSpecific ( shared_ptr<SaveFunctor<string> > saver) const {

shared_ptr<SaveFunctorInterface<string, Matrix<double> > > matSaver =
dynamic_pointer_cast <SaveFunctorInterface<string,Matrix<double> > >(
saver);

CSI_VERIFY( matSaver );

tion code, one would store the training spectra in a balancedsa:saver->save(training_spectra_nane, trainingspectra);

data structure like the box-decomposition trees (Arya et al

1998) used in the ANN libraiy for faster retrieval. A sim-

ilar implementation is used to predict the values of new test

examples:

void

NearestNeighborClassifier ::

predictLabelsAndScores (const Matrix<double>& featuresTrain,
const Matrix<double>& labelsTrain,
const Matrix<double>% featuresTest,
Matrix <double > labelsTest,
Matrix <double >& scoresTest) const {

unsigned k = parameters->getValue<unsigned>(k_name);
labelsTest = Matrix <double>(featuresTest.shape(0),1);
scoresTest = Matrix<double >(featuresTest.shape(0),classes.size(),0.);

for (int i=0; i<featuresTest.shape(0); ++i){
priority_queue<pair<double ,double>, vector <pair<double ,double> >
Comparison> currBest;
unsigned nFound = 0;
for (int j=0; j<featuresTrain.shape(0); ++j){
Matrix <double > tempVec = featuresTest.rowVector (i);
tempVec -= featuresTrain.rowVector(j);
double newDist = tempVec.squaredNorm();
if ( nFound++ < k ){
currBest.push(pair<double ,double >(newDist ,labelsTrain(j,0)));
} else {
if ( newDist < currBest.top().first ){
currBest.pop();
currBest.push(pair<double ,double >(newDist ,labelsTrain(j,0)));
}
}
}
labelsTest (i,0) = retrieveMajority (currBest);
while( !currBest.empty() ){
scoresTest (i, classIndices.find(currBest.top().second)->second)+=1./k;
currBest.pop ();

}

matSaver->save(training_labels_name, trainingLabels);

for( FoldNr iF=0; iF<nCvFolds; ++iF ){
ostringstream currMatName;
currMatName << getFoldName() << iF << " " << training_spectra_name;
matSaver->save(currMatName.str (), trainingSpectraCvFolds [iF]);
currMatName .str() = "";
currMatName << getFoldName () << iF << " " << training_labels_name;
matSaver->save(currMatName.str (), trainingLabelsCvFolds [iF]);

¥

}

void
NearestNeighborClassifier ::
loadSpecific( shared_ptr<LoadFunctor<string> >loader){
shared_ptr<LoadFunctorInterface<string, Matrix<double> > > matLoader =
dynamic_pointer_cast <LoadFunctorInterface <string,Matrix <double> > >(
loader);
CSI_VERIFY( matLoader );
matLoader->load(training_spectra_name, trainingSpectra);
matLoader->load(training_labels_name, trainingLabels);
trainingSpectraCvFolds .resize (nCvFolds);
for( FoldNr iF=0; iF<nCvFolds;++iF ){
ostringstream currMatName;

currMatName << getFoldName() << iF << " " << training_spectra_name;
matLoader->load(currMatName.str (), trainingSpectraCvFolds [iF]);
currMatName.str() = "";

currMatName << getFoldName() << iF << " " << training_labels_name;

matLoader->load(currMatName.str (), trainingLabelsCvFolds [iF]);

On the signal quality task for data set 1 (see section 3.1),
this classifier gives a correct classification rate of ca. 95 %

across all tested values for the parameter

4 Discussion and Outlook

This helper routine considerably simplifies the definition

: - . To our best knowledge, this is the first C++ library specifi-
of the virtual prediction functions:

cally designed for medical applications which allows prHnc
pled comparison of classifier performance and significance

13 http:/iwww.cs.umd.edu/"mount/ANN/
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