
Computer Science – Research and Development manuscript No.
(will be inserted by the editor)

An object-oriented library for systematic training and comparison
of classifiers for computer-assisted tumor diagnosis from MRSI
measurements

Frederik O. Kaster · Bernd Merkel · Oliver Nix · Fred A. Hamprecht

Received: date / Accepted: date

Abstract We present an object-oriented library for the sys-
tematic training, testing and benchmarking of classification
algorithms for computer-assisted diagnosis tasks, with a fo-
cus on tumor probability estimation from magnetic reso-
nance spectroscopy imaging (MRSI) measurements. In con-
nection with a graphical user interface for data annotation,
it allows clinical end users to flexibly adapt these classifiers
towards changed classification tasks, to benchmark various
classifiers and preprocessing steps and to perform quality
control of the results. This poses an advantage over pre-
vious classification software solutions, which required ex-
pert knowledge in pattern recognition techniques in order to
adapt them to changes in the data acquisition protocols. This
software will constitute a major part of the MRSI analysis
functionality of RONDO, an integrated software platform
for cancer diagnosis and therapy planning which is under
current development.

This research was supported by the Helmholtz InternationalGradu-
ate School for Cancer Research and by the German Federal Ministry
for Education and Research within the DOT-MOBI project (grant no.
01IB08002).

F.O. Kaster· F.A. Hamprecht
University of Heidelberg, Heidelberg Collaboratory for Image Process-
ing, Speyerer Straße 6, D-69115 Heidelberg
Tel.: +49-6221-545274
Fax: +49-6221-545276
E-mail: frederik.kaster@iwr.uni-heidelberg.de

F.O. Kaster· O. Nix
German Cancer Research Center, Im Neuenheimer Feld 280, D-69120
Heidelberg

B. Merkel
Fraunhofer MeVis Institute for Medical Image Computing, Univer-
sitätsallee 29, D-28359 Bremen

Keywords Magnetic resonance spectroscopy imaging·

Computer-assisted diagnostics· Statistical classification·
Automated quality control

1 Introduction

1.1 Computer-assisted tumor diagnostics based on MRSI
measurements

Imaging methods for thein vivo diagnostics of tumors fall
into three categories based on the different physical mech-
anisms they exploit: In computer tomography (CT), X-rays
are transmitted through the body, which are attenuated dif-
ferently in different tissue types. In nuclear medicine meth-
ods such as positron emission tomography (PET) or single
photon emission computed tomography (SPECT), one de-
tects the radiation of radioactive nuclides, which are selec-
tively accumulated in the tumor region. Finally, magnetic
resonance imaging (MRI) exploits the fact that various nu-
clei (namely protons) have a different energy when aligned
in the direction of an external magnetic field than when they
are aligned opposite to it. By injecting a radiofrequencywave
into the imaged body, one can perturb some protons out
of their equilibrium state into a higher-energy state: the ra-
diofrequency signal which they emit upon relaxation is then
measured, and its amplitude is proportional to the concentra-
tion of the protons in the imaged region. This measurement
process can be performed in a spatially resolved fashion, so
that a three-dimensional image is formed.

Standard MRI produces a scalar image based on the to-
tal signal of all protons, irrespective of the chemical com-
pound to which they belong: typically, the protons in water
molecules and in lipids make the highest contribution due
to the large concentration of these molecules. However, the
protons in different compounds can be distinguished by their

2

resonance frequencies in the magnetic field (the so-called
chemical shift), and it is possible to resolve the overall sig-
nal not only spatially, but also spectrally: this leads to mag-
netic resonance spectroscopy imaging (MRSI) or chemical
shift imaging (CSI), for which a complex spectrum is ob-
tained at each image voxel instead of a single scalar value
as in MRI (de Graaf, 2008). Hence it is possible to measure
the local abundance of various biochemical molecules non-
invasively, and thereby gain information about the chemical
make-up of the body at different locations: besides water
and lipids, most major metabolites can be identified in the
MRSI spectra, e.g. the most common amino acids (gluta-
mate, alanine,. . .), the reactants and products of glycolysis
(glucose, ATP, pyruvate, lactate), precursors of membrane
biosynthesis (choline, myo-inositol, ethanolamine), energy
carriers (creatine) and tissue-specific marker metabolites (cit-
rate for the prostate, N-acetylaspartate or NAA for the brain).
As a downside, these metabolites occur in much lower con-
centrations than water, hence the spatial resolution must be
far coarser than in MRI: only by collecting signal from a
volume of typically 0.2–2 cm3, a sufficient signal-to-noise
ratio can be achieved.

MRSI provides valuable information for the noninva-
sive diagnosis of various human diseases, e.g. infantile brain
damage (Xu and Vigneron, 2010), multiple sclerosis (Sajja
et al, 2009), hepatitis (Cho et al, 2001) or several psychi-
atric disorders (Dager et al, 2008). The most important med-
ical application field lies in tumor diagnostics, especially in
the diagnosis and staging of brain, prostate and breast can-
cer as well as the monitoring of therapy response (Gillies
and Morse, 2005). In tumors, healthy cells are destroyed
and the signals of the biomarkers characteristic for healthy
tissue (e.g. citrate for the prostate, NAA for the brain) are
decreased. On the other hand, biomarkers for pathological
metabolic processes often occur in increased concentrations:
choline (excessive cell proliferation), lactate (anaerobic gly-
colysis), mobile lipids (impaired lipid metabolism). The top
right and bottom right spectra in fig. 1 are typical examples
of spectra occurring in healthy brain tissue and in brain tu-
mor, respectively.

While MRSI has proved its efficacy for radiological di-
agnostics, it is a fairly new technique that yet has to gain
ground in routine radiology and in the training curricula of
radiologists. Furthermore, the visual assessment is harder
and more time-consuming than for MRI: while most med-
ical imaging modalities provide two- or three-dimensional
data, MRSI provides four-dimensional data due to the addi-
tional spectral dimension. Automated decision-support sys-
tems may assist the radiologists by visualizing the most rel-
evant information in form of easily interpretablenosologic
images (de Edelenyi et al, 2000): from each spectrum, a
scalar classification score is extracted that discriminates well
between healthy and tumorous tissue, and all scores are dis-

played as a color map. Ideally the scores can even be inter-
preted as the probability that the respective spectrum cor-
responds to a tumor. While such a decision support system
may not completely obviate the need of manual inspection
of the spectra, it can at least guide the radiologist towards
suspicious regions that should be examined more closely,
and facilitate the comparison with other imaging modalities.

Methods for computing the classification scores fall into
two categories: quantitation-based approaches (Poullet et al,
2008) and pattern recognition-based approaches (Hagberg,
1998). Quantitation approaches exploit the fact that MRSI
signals are physically interpretable as superpositions ofme-
tabolite spectra; they can hence be used to quantify the local
relative concentrations of these metabolites by fitting mea-
sured or simulated basis spectra to the spectrum in every
voxel. The fitting parameters (amplitudes, frequency shifts,
. . .) may be regarded as a low-dimensional representation of
the signal. Classification scores are then usually computed
from amplitude ratios of relevant metabolites: for instance,
the choline/creatine and choline/NAA ratios are frequently
employed for the diagnosis of brain tumors (Martı́nez-Bisbal
and Celda, 2009).

Pattern recognition approaches forego an explicit data
model: instead, the MRSI signal is preprocessed to a (still
high-dimensional) feature vector, and the mapping of fea-
ture vectors to classification scores is learned from manually
annotated training vectors (the so-calledsupervised learn-
ing setting). Because of this need for manually annotated
examples, pattern recognition techniques require higher ef-
fort from human experts than quantitation-based techniques.
Furthermore, they have to be retrained if the experimen-
tal measurement conditions change (e.g. different magnetic
field strength, different imaged organ or different measure-
ment protocol). However, comparative studies of quantita-
tion and pattern recognition methods for prostate tumor de-
tection showed superior performance of the latter ones, as
they are more robust against measurement artifacts and noise
(Kelm et al, 2007). Given a sufficiently large and diverse
training data set, one can even use pattern recognition to
distinguish between different tumor types, e.g. astrocytomas
and glioblastomas (Tate et al, 2006).

MRSI data often have quality defects that render malig-
nancy assessment difficult or even impossible: low signal-
to-noise ratio, line widening because of shimming errors,
head movement effects, lipid contamination, signal bleed-
ing, ghosting etc. (Kreis, 2004). If these defects become
sufficiently grave, even pattern recognition methods cannot
tolerate them, and the resulting classification scores willbe
clinically meaningless and should not be used for diagno-
sis. Fig. 1 shows example spectra of good, poor, and very
poor (not evaluable) quality for healthy, undecided and tu-
morous tissue. One can deal with this problem by augment-
ing the classification score for the malignancy (also called

3

0

0.02

0.04

0.06

0

0.02

0.04

0.06

M
ag

ni
tu

de
 [a

.u
.]

1234
0

0.02

0.04

0.06

1234
Frequency [ppm]

1234

Fig. 1 Exemplary MRSI magnitude spectra of the brain, showing different voxel classes and signal qualities. All spectra have been water-
suppressed andL1 normalized (i.e. divided by the sum of all channel entries),and they are displayed on a common scale. Note the three distinct
metabolite peaks, which are characteristic for brain MRSI:Choline (3.2 ppm), creatine (3.0 ppm) and N-acetylaspartate (NAA, 2.0 ppm). NAA is
a marker for functional neurons, hence it has a high concentration in healthy tissue, and a low concentration in tumor tissue. On the other hand,
choline is a marker for membrane biogenesis and has a higher concentration in tumor tissue than in healthy tissue. Left column: Spectra that are
not evaluable owing to poor SNR or the presence of artifacts.Middle column: Spectra with poor signal quality, which however have sufficient
quality so that the voxel class may be ascertained. Right column: Spectra with good signal quality. Top row: Spectra fromhealthy brain tissue.
Middle row: Spectra of undecided voxel class. Bottom row: Spectra from tumor tissue. Note that the voxel class is only meaningful for the middle
and the right column, and that the spectra in the left column were randomly assigned to the different rows.

voxel class) with a second score for the signal quality: If
this score is high, the users know that the spectrum has high
quality and that the voxel class score is reliable, while fora
low score they know that the voxel class score is unreliable
and the spectrum should be ignored. This may also save the
users’ time, as poor-quality spectra need not be examined
in detail. Pattern recognition approaches have been success-
fully employed for signal quality prediction, with similar
performance to expert radiologists (Menze et al, 2008).

1.2 Comparison to existing software

Most existing software products for MRSI classification in-
corporate quantitation-based algorithms: for instance, they
are typically included in the software packages supplied by
MR scanner manufacturers. Furthermore, there are several
stand-alone software products such as LCModel (Provencher,
2001), jMRUI (Stefan et al, 2009) or MIDAS (Maudsley
et al, 2006).

In contrast, the application of pattern recognition-based
methods still has to gain ground in clinical routine: We be-

lieve that this may be partially due to differences in the flex-
ibility with which both categories of algorithms can be ad-
justed to different experimental conditions (e.g. changesin
scanner hardware and in measurement protocols) or to a dif-
ferent imaged organ. For quantitation-based methods one
must only update the metabolite basis spectra to a given
experimental setting, which can be achieved by quantum-
mechanical simulation, e.g. with the GAMMA library (Smith
et al, 1994). For pattern recognition-based methods on the
other hand, one has to provide manual labels of spectra from
many different patients with a histologically confirmed tu-
mor, which is time-consuming and requires the effort of one
or several medical experts. Since there exist many differ-
ent techniques whose relative and absolute performance on a
given task cannot be predicted beforehand, for every change
in conditions a benchmarking experiment as in (Menze et al,
2006) or (Garcı́a-Gomez et al, 2009) should also be con-
ducted to select the best classifier and monitor the classifi-
cation quality.

While we cannot obviate the need for classifier retrain-
ing, benchmarking and quality assessment, we have designed

4

an object-oriented C++ library and a graphical user inter-
face which assists this task better than existing software.Our
work is an extension of the CLARET software (Kelm et al,
2006): While the original prototype of this software was
written in MATLAB, we improved upon a C++ reimplemen-
tation for the MeVisLab1 environment. Most of the function-
ality described in this paper does not exist in the original
CLARET version and is hence novel: mainly the possibil-
ity to manually define labels and to train, test, evaluate and
compare various classifiers and preprocessing schemes.

There are two other alternative software products which
employ pattern recognition methods for the analysis of MRSI
spectra: HealthAgents by González-Vélez et al (2009) and
SpectraClassifier by Ortega-Martorell et al (2010). What sets
our software apart from these two systems, is the capabil-
ity to statistically compare various different classifiersand
to select the best one. SpectraClassifier provides statistical
analysis functionalities for the trained classifiers, but lin-
ear discriminant analysis is the only available classification
method. On the other hand, HealthAgent supports differ-
ent classification algorithms but does not provide statistical
evaluation functionality. Our manual annotation interface is
also unique: this enables the users to adapt the classifiers
flexibly to their (possible customized) measurement proto-
cols.

Extensibility was an important design criterion for our
library: by providing abstract interfaces for classifiers,data
preprocessing procedures and evaluation statistics, users may
plug in their own classes with moderate effort. Hereby it fol-
lows similar ideas as general purpose classification frame-
works such as Weka2, TunedIT3 or RapidMiner4. However,
it is much more focused in scope and tailored towards med-
ical diagnostic applications. Furthermore, a similar plug-in
concept for the analysis of MRSI data was used by Neuter
et al (2007), but with a focus on quantitation techniques as
opposed to pattern recognition techniques, and also lacking
statistical evaluation functionalities.

2 Software architecture

2.1 Overview and design principles

Our software is designed for the following use case: the
users label several data volumes with respect to voxel class
(tumor vs. healthy) and signal quality and save the results
(fig. 2). They specify several classifiers to be compared, the
free classifier-specific parameters to be adjusted in parame-
ter optimization (see fig. 3) and preprocessing steps for the

1 http://www.mevislab.de
2 http://www.cs.waikato.ac.nz/ml/weka/
3 http://tunedit.org/
4 http://www.rapid-i.com

data. A training and test suite is then defined, which may
contain the voxel class classification task, the signal qual-
ity classification task, or both. The users may partition all
data volumes explicitly into a separate training and testing
set, otherwise a cross-validation scheme is employed: the
data is partitioned into several folds, and the classifiers are
iteratively trained on all but one folds, and tested on the re-
maining fold. The latter option is advisable if only few data
are available; it has the additional advantage that means and
variances for the classifier results may be estimated.

Every classifier is assigned to a preprocessing pipeline,
which transforms the observed spectra into training and test
features. Some elements of this pipeline may be shared across
several classifiers, while others are specific for one classi-
fier. Input data (spectra and labels) are passed, preprocessed
and partitioned into cross validation folds if no explicit test
data are provided. The parameters of every classifier are op-
timized either on the designated training data or on the first
fold by maximizing an estimate for the generalization er-
ror. The classifiers are then trained with the final parameter
values, and performance statistics are computed by compar-
ing the prediction results on the current test data with the
actual test labels. Statistical tests are conducted to decide
whether the classifiers differ significantly in performance.
Typically not only two, but multiple classifiers are compared
against each other, which must be considered when judging
significance. Finally the classifiers are retrained on the total
data for predicting the class of unlabeled examples. The user
may perform quality control in order to assess if the perfor-
mance statistics are sufficient for employment in the clinic
(fig. 4). The trained classifiers may then be loaded and ap-
plied to new data sets, for which no manual labels are avail-
able (fig. 5).

Our main design criteria were extensibility, maintain-
ability and exception safety. Extensibility was achieved by
providing abstract base classes for classifiers, preprocessing
procedures and evaluation statistics, so that it is easily possi-
ble to add e.g. new classification methods by deriving from
the appropriate class. For maintainability, dedicated man-
ager objects handle the data flow between the different mod-
ules of the software and maintain the mutual consistency of
their internal states upon changes made by the user. Strong
exception safety guarantees are necessitated by the quality
requirements for medical software; it was achieved by the
techniques described in (Stroustrup, 2001).

2.2 The classification functionality

The design of the classification functionality of our library
follows the main aim of separating between classifier-specific
functionality (which must be provided by the user when in-
troducing a new classifier) and common functionality that is
used by all classifiers and does not need to be changed: the

5

Fig. 2 User interface for the labeling functionality of our data, showing an exemplary data set acquired at a 3 Tesla Siemens Trio scanner. Top left:
Corresponding morphological data set in sagittal view (T2-weighted turbo spin-echo sequence in this case). We can place a marker (blue) to select
a voxel of interest. Middle left: Magnitude spectrum of the selected voxel, which is typical for a cerebral tumor. Top right: Selected voxel (framed
in red) together with the axial slice in which it is contained. The user-defined labels are overlayed over a synopsis of allspectra in the slice. The
label shape encodes the signal quality (dot / asterisc / cross for “not evaluable” / “poor” / “good”), while the label color encodes the voxel class
(green / yellow / red for “healthy” / “undecided” / “tumor”).The labels may also be annotated by free-text strings. Bottom panel: User interface
with controls for label definition, text annotation and dataimport / export.

ClassifierManager class is responsible for the former,
while the classes derived from the abstractClassifier ba-
sis class are responsible for the latter. Simple extensibility
and avoiding code repetition were therefore the two main
design principles.

A ClassifierManagerobject corresponds to each clas-
sification task, e.g. classification with respect to signal qual-
ity and with respect to voxel class (see fig. 6). It controls all
classifiers which are trained and benchmarked for this task,
and ensures that operations such as training, testing, and
the averaging of performance statistics over cross-validation
folds as well as saving and loading are performed for each
classifier. It also partitions the training features and labels
into several cross-validation folds, if the users do not define
a designated test data set.

A Classifierobject encapsulates an algorithm for map-
ping feature vectors to discrete labels after training. Alterna-

tively, the output can also be a continuous score that gives in-
formation about the confidence that a spectrum corresponds
to a tumor. We implemented bindings for several linear and
nonlinear classifiers, which previously had been found to be
well-suited for the classification of MRSI spectra (Menze
et al, 2006): support vector machines (SVMs) with a lin-
ear and a radial basis function (RBF) kernel, random forests
(RF), ridge regression (RR) and principal components re-
gression (PCR); see (Hastie et al, 2009) for a description of
these methods. The actual classification algorithms are pro-
vided by external libraries such as LIBSVM (Chang and Lin,
2001) and VIGRA (Köthe, 2000).

Both binary classification (with two labels) as well as
multi-class classification (with more than two labels) are
supported. Some classifiers (e.g. random forests) natively
support multi-class classification, while for other classifiers

6

Fig. 3 Part of the user interface for classifier training and testing. In this panel, the search grids for automated parameter tuning of the different
classifiers may be defined (default values, starting values,incrementation step sizes and numbers of steps).

Fig. 4 Evaluation results for an exemplary training and testing suite. The upper two windows on the right-hand side show the estimated area under
curve value for a linear support vector machine classifier and its estimated standard deviation (0.554±0.036), while the lower two windows show
the same values for a ridge-regression classifier (0.809±0.048). This would allow a clinical user to draw the conclusionthat only the latter one of
these classifiers differs significantly from random guessing, and may sensibly be used for diagnostics. The poor qualityof these classifiers is due
to the fact that only a very small training set was used for thepurpose of illustrating the user interface design (2 patients).

7

Fig. 5 Exemplary application of a trained classifier for the computer-assisted diagnosis of a new data set. The classifier predictions for both voxel
class and signal quality are depicted for a user-defined region of interest: the voxel class is encoded by the color (greenfor “healthy”, yellow for
“undecided”, red for “tumor”), while the signal quality is encoded by the transparency (opaque for a good signal, invisible for a spectrum which is
not evaluable). As an alternative to the classifier predictions, it is possible to display precomputed color maps as wellas color maps based on the
parametric quantitation of relevant metabolites.

(e.g. ridge regression and principal components regression5),
it can be achieved via aone-vs.-all encoding scheme6, in
which each class is classified against all other classes in turn,
and the class with the largest score is selected for the predic-
tion (Rifkin and Klautau, 2004). This multi-class function-
ality allows the future extension of our library to the task of
discriminating different tumor types against each other.

Furthermore, every classifier encapsulates an instance of
the ClassifierParameterManager class controlling the
parameter combinations that are tested during parameter op-
timization. Most classifiers have one or more internal pa-
rameters that ought to be optimized for each data set in or-
der to achieve optimal predictive performance (see sec. 2.4).
This is done by maximizing an estimate of thegeneraliza-
tion error (i.e. the performance of the classifier on new test
data that were not encountered during the training process)
over a prescribed search grid, using the data from one of

5 To be precise, these two classifiers are actually regressionmethods
and can be used for binary classification by assigning the label +1 and
-1 to all positive and negative class examples and training aregressor.
The transformLabelsToBinary() function maps the original labels
to these two numbers.

6 The virtualisOnlyBinary() function allows one to specify the
affiliation of a classifier to these two categories.

the cross-validation folds (or the whole training data, if no
cross-validation is used). This generalization error could be
estimated by dividing the training data into another training
and test fold, training the classifier on the training part ofthe
training data and testing it on the testing part of the training
data7. However, this would be time-consuming. However,
there exists considerable theoretical as well as empiricalev-
idence (Golub et al, 1979; Breiman, 1996) that efficiently
computable approximations for the generalization error may
be sufficient for parameter adjustment: these are provided by
the functionestimatePerformanceCvFold().For SVMs,
this is an internal cross-validation estimate as describedin
(Lin et al, 2007), for random forests, theout-of-bag error
and for regression-based classifiers thegeneralized cross-
validation (Hastie et al, 2009). The optimal parameters are
selected by the functionoptimizeParametersCvFold()
based on the data from one specific cross-validation fold.

This part of the library may be easily extended by adding
new classifiers, as long as they fit into the supervised clas-
sification settings (i.e. based on labeled training vectors, a
function for mapping these vectors to the discrete labels is

7 Note that the actual test data must not be used during parameter
tuning.

8

learnt). Artificial neural networks, boosted ensemble classi-
fiers or Gaussian process classification are examples for al-
ternative classification algorithms that could be added in this
way. For this, one only needs to derive from theClassifier

abstract base class and to provide implementations for its ab-
stract methods (including the definition of thePreprocessor
subclass with which this classifier type is associated). For
parameter tuning, one also has to supply an estimate of the
classifier accuracy: This may always be computed via cross-
validation, but preferably this estimate should arise as a by-
product of the training or be fast to compute (same as e.g.
the out-of-bag error for the random forest or the generalized
cross-validation). Furthermore we assume the existence ofa
continuous classification score, which ideally can be inter-
preted as a tumor probability. However, for classifiers with-
out such a probabilistic interpretation it is sufficient to reuse
the 0/1 label values as scores: as long as higher scores cor-
respond to a higher likelihood for the positive (tumor) class,
they can take any values. We only use the single-voxel spec-
tra for classification, hence our architecture does not allow
classifiers that make explicit use of spatial context informa-
tion (so-calledprobabilistic graphical models).

2.3 The preprocessing functionality

Preprocessing (fig. 7) is the extraction of a feature vector
from the raw MRSI spectra with the aim of improved clas-
sification performance. While classification makes use of
both the label and the feature information (supervised pro-
cess), preprocessing only uses the feature information (un-
supervised process).Preprocessor objects may act both
on the total data (transformTotal()) and of the data of
a single cross-validation fold (transformCvFold()): the
distinction may be relevant since some preprocessing steps
(e.g. singular value decomposition) depend on the actual
training data used.

The main goal governing the design of the preprocessing
functionality was training speed: data preprocessing steps
which are common to multiple classifiers should only be
performed once. Hence the different preprocessing steps are
packaged into modules (deriving from thePreprocessor
abstract base class) and arranged into cascades. A common
PreprocessorManager ensures that every preprocessing
step is only performed once. Hiding the preprocessing func-
tionality from the library users was an additional criterion:
Every subclass ofClassifier is statically associated with
a specificPreprocessor subclass and is responsible for
registering this subclass with thePreprocessorManager
and passing the data to be preprocessed.

First, since we are only interested in the metabolite sig-
nals, the nuisance signal caused by water molecules has to
be suppressed, using e.g. a Hankel singular value decom-
position filter (Zhu et al, 1997). Then the spectra are trans-

formed from the time domain into the Fourier domain by
means of the FFTW library (Frigo and Johnson, 2005). The
subsequent steps may be adjusted by the user, and typically
depend on the classifier:

Common MRSI preprocessing steps used by all classi-
fiers are the rebinning of spectral vectors, the extraction of
parts of the spectrum andL1 normalization (i.e. the spec-
tral vector is normalized such that the sum of all compo-
nent magnitudes in a prescribed interval equals one): these
are performed by the classMrsiPreprocessor.8 Other pre-
processing steps are only relevant for some of the classi-
fiers, e.g. theRegressionPreprocessorperforms a singu-
lar value decomposition of the data which speeds up subse-
quent ridge regression or PCR. SVMs perform better when
the features have zero mean and unit variance: this can be
achieved by theWhiteningPreprocessor.

Two features of our software implementation support
this modular structure: ThePreprocessorManager incor-
porates a class factory, which ensures that only one instance
of each preprocessor class is created: this allows to share
preprocessors across various classifiers and prevents dupli-
cate preprocessing steps (such as e.g. performing the sin-
gular value decomposition twice on the same data). Further-
more, preprocessors are typically arranged in a tree structure
(via thepredecessorandsuccessors references) and ev-
ery classifier is assigned to one vertex of this tree, which
ensures that all preprocessing steps on the path from the
root to this vertex are applied in order (creating a pipeline
of preprocessing steps). Once the data encapsulated inside
one module changes, all successors are invalidated.

When new classifiers are added to the library, the pre-
processing part may easily extended with new preproces-
sor modules as long as they fit into the unsupervised set-
ting (i.e. they only make use of the features, but not of the
labels). Besides implementing the abstract methods of the
Preprocessorbase class, the association between the clas-
sifier and the preprocessor must be included in the classifier
definition by implementing itsgetPreprocessorStub()
method: then the classifier object ensures that the new pre-
processor is correctly registered with the preprocessor man-
ager object. As a limitation, the new preprocessor has to be
appended as a new leaf (or a new root node) to the prepro-
cessor tree: the intermediate results from other preprocess-
ing steps can only be reused if the order of these steps is not
changed.

2.4 The parameter tuning functionality

All classifiers have adjustable parameters, which are encap-
sulated in theClassifierParameter class (fig. 8). The

8 More sophisticated steps such as the extraction of wavelet features
might be added as well.

9

#classes : Matrix<double>

#nFeatures : FeatNr

#nCvFolds : FoldNr

#cvFoldTrained : Matrix<bool>

#totalTrained : bool

#cvFoldTested : Matrix<bool>

#meanTested : bool

#errorScores : Matrix<double>

#totalErrorScore : double

#isOnlyBinary()

#addClassifierSpecificParameters()

+estimatePerformanceCvFold()

+learn()

+learnCvFold()

+optimizeParametersCvFold()

+predictLabels()

+predictLabelsCvFold()

+testCvFold()

+computeTestMean()

+predictBinaryScores()

+predictBinaryScoresCvFold()

+save()

+load()

+getStats()

Classifier

-randomForestTotal : shared_ptr<RandomForest<double>>

-randomForestCvFold : vector<shared_ptr<RandomForest<double>>>

RandomForestClassifier

#svmTotal : shared_ptr<SupportVectorMachine<double>>

#svmCvFold : vector<shared_ptr<SupportVectorMachine<double>>>

SvmClassifier

1

-classes : Matrix<double>

-nFeatures : FeatNr

-nCvFolds : FoldNr

-allFeaturesTrain : shared_ptr<Matrix<double>>

-allLabelsTrain : shared_ptr<Matrix<double>>

-cvFoldFeaturesTrain : vector<shared_ptr<Matrix<double>>>

-cvFoldLabelsTrain : vector<shared_ptr<Matrix<double>>>

+addClassifier()

+load()

+save()

+setData()

+learnAll()

+learn()

+learnCvFold()

+predictLabels()

+predictLabelsCvFold()

+predictScores()

+predictScoresCvFold()

+testAll()

+testCvFold()

+computeTestMean()

ClassifierManager

0..*

ClassifierParameterManager

SingleClassifierStats

TrainTestSuite 0..*

1

Preprocessor

1 0..*

AllPairsClassifierStats

PCRClassifier

#weightsTotal : Matrix<double>

#meanLabelsTotal : Matrix<double>

#weightsCvFold : vector<Matrix<double>>

#meanLabelsCvFold : vector<Matrix<double>>

#isOnlyBinary()

#addClassifierSpecificParameters()

#transformLabelsToBinary()

RegressionClassifier

RidgeRegressionClassifier

PreprocessorManager

1

1

1

1

11

1

1

-getPreprocessorStub()

Fig. 6 Simplified UML diagram of the classification functionality of our library: detailed explanations can be found in section2.2. The connec-
tions to the classesTrainTestSuite (see fig. 10),Preprocessor / PreprocessorManager (fig. 7), ClassifierParameterManager (fig. 8) and
SingleClassifierStats / AllPairClassifierStats (fig. 9) are shown. In this diagram, as in the following ones, abstract methods are printed
in italics: to save space, we do not show the implementationsof these abstract methods if they are provided in the leaves of the inheritance tree.
The depiction here is simplified: we actually follow the non-virtual interface principle and give protected visibilityto all abstract methods, which
are then encapsulated by non-virtual public methods.

design of the parameter handling functionality was guided
by the main rationale of handling parameters of different
datatypes in a uniform way. Furthermore we aimed to enable
automated parameter adjustment over a search grid (which
may have linear or logarithmic spacing depending on the
range of reasonable parameter values), by hiding the details
of the search mechanism from the class users.

Some parameters should be optimized for the specific
classification task, as described in section 2.2: for the classi-
fiers supplied by us, these are the slack penaltyC for SVMs,
the kernel widthγ for SVMs with an RBF kernel, the ran-
dom subspace dimensionmtryfor random forests, the number
of principal componentsnPC for PCR and the regulariza-
tion parameterλ for ridge regression. They are represented

as aTypedOptimizableClassifierParameter: besides
the actual value, these objects also contain the search grid
of the parameters, namely the starting and end value, the
incrementation step and whether the value should be incre-
mented additively or multiplicatively (encoded in the field
incrInLogSpace.Multiplicative updates are appropriate for
parameters that can span a large range of reasonable values.

There are also parameters which may not be optimized:
these are encapsulated as aTypedClassifierParameter,
which only contains the actual value. A good example would
be the number of trees of a random forest classifier, since
the generalization error typically saturates as more treesare
added.

10

IdentityPreprocessor

-nBins : FeatNr

-imagingFrequency : double

-dwellTime : double

-ppmCutUpperBound : double

-ppmCutLowerBound : double

-ppmL1UpperBound : double

-ppmL1LowerBound : double

-useLowerSpectrum : bool

-useMiddleSpectrum : bool

-useUpperSpectrum : bool

MrsiPreprocessor

#nCvFolds : FoldNr

#nFeatsIn : FeatNr

#nFeatsOutTotal : FeatNr

#nFeatsOutCvFold : vector<FeatNr>

+transformTotal()

+transformCvFold()

+load()

+save()

Preprocessor

+getPreprocessor()

+load()

+save()

PreprocessorManager

-sgValTotal : Matrix<double>

-sgValCvFold : vector<Matrix<double>>

-rsvTotal : Matrix<double>

-rsvCvFold : vector<Matrix<double>>

RegressionPreprocessor

-meansTotal : Matrix<double>

-meansCvFold : vector<Matrix<double>>

-scalingsTotal : Matrix<double>

-scalingsCvFold : vector<Matrix<double>>

-scaleToStdOne : bool

WhiteningPreprocessor

1

0..*

0..*

0..1

0..*1

predecessor

successor(s)

ClassifierManager

Classifier

Fig. 7 Simplified UML diagram of the preprocessing functionality;see section 2.3 for details. The connections to the classesClassifier and
ClassifierManager (fig. 6) are shown.

While all currently used parameters are either integers or
floating-point numbers, one can define parameters of arbi-
trary type: however, one has to define how this data type can
be written to or retrieved from a file or another I/O medium
by implementing the corresponding I/O callbacks (see sec-
tion 2.6 for detailed explanation). For optimizable parame-
ters, it must also be defined what it means to increase the pa-
rameter by a fixed value (by overloading theoperator++()

member function). As a limitation, we assume that all pa-
rameters may be varied completely independently and can-
not encode constraints coupling the values of multiple pa-
rameters.

One should note that the parameter optimization process
followed by our library is exactly the way a human expert
would do it: in the absence of universal theoretical criteria

about the choice of good parameters, they have to be tuned
empirically so that a low generalization error is achieved.9

However, this is the most time-consuming part of adapting
a classifier to a new experiment, which is now completely
automated by our software.

9 If sufficient data were available, it would be preferable to perform
this parameter tuning on a separate tuning data set that is not used in
the training and testing of the classifier. Since typically clinics only
have access to few validated MRSI data, this approach may notbe
practicable, and the cross-validation scheme used in our library is the
best alternative to deal with scarce data.

11

-isInRange : bool

+init()

+inRange()

+operator++()

+isOptimizable()

+load()

+save()

ClassifierParameter

+createClassifierParameter()

ClassifierParameterFactory

+addClassifierParameter()

+load()

+save()

ClassifierParameterManager

#value : T

TypedClassifierParameter

-increment : T

-lowerBound : T

-upperBound : T

-incrInLogSpace : bool

+init()

+inRange()

+operator++()

+setSearchGrid()

+isOptimizable()

TypedOptimizableClassifierParameter

T : typename

T : typename

0..* 1

Classifier

1

1

1

1

Fig. 8 Simplified UML diagram of the parameter tuning functionality; see section 2.4 for details. The connection to the classClassifier (fig. 6)
is shown.

2.5 The statistics functionality

The computation of evaluation statistics is crucial for the
automated quality control of trained classifiers (fig. 9). We
designed this part of the library with the following aims in
mind: Needless recomputation of intermediate values should
be avoided; thus we compute the binary confusion matrix
only once and then cache it within aStatsDataManager
object, which can be queried for computing the different
statistics derived from it (e.g.Precision andRecall). The
library can be simply extended by new statistics character-
izing a single classifier. Dedicated manager classes (such as
SingleFoldStats, SingleClassifierStats as well as
PairClassifierStatsandAllPairsClassifierStats)
are each responsible for a well-defined statistical evaluation
task: namely, characterizing a classifier for a single cross-
validation fold, characterizing a classifier over all folds, char-
acterizing a single pair of classifiers and characterizing all
existing pairs of classifiers. They ensure that this computa-
tion is performed in a consistent way for all classifiers, so
that code redundancy is avoided.

The classSingleClassifierStatsmanages all statis-
tics pertaining to one single classifier: it is composed of ob-
jects of typeSingleFoldStats, which in turn manage all
statistics either of a single cross-validation fold (cvData),
or the mean and standard deviation values computed over all
folds (meanData). A StatsDataManager is a helper class

which caches several intermediate results required for the
computation of the differentStatistics.

There are different variants of how these statistics may
be computed in a multi-class classification setting: some of
them (e.g. theMisclassificationRate) can handle mul-
tiple classes natively; these statistics form the derived class
AllVsAllStat. Other statistics (e.g.Precision, Recall
or FScore) were originally designed for a binary classifica-
tion setting. For the latter kind, one must report multiple val-
ues, namely one for each class when discriminated against
all others (one-vs.-all encoding), and they inherit from the
OneVsAllStat class. TheAreaUnderCurve (AUC) value
of the receiver operating characteristic (ROC) curve (Fawcett,
2006) is a specialty: while it is also computed in a one-vs.-
all fashion, the underlying ROC curves are stored as well.
Standard deviation estimates are mostly available only for
themeanData averaged over several cross-validation folds,
with the exception of the AUC values for which nonpara-
metric bootstrap estimates can be easily computed (Bandos
et al, 2007).

Besides the statistical characterization of single classi-
fiers, it is also relevant to compare pairs of classifiers in
order to assess which one of them is best for the current
task, and whether the differences are statistically significant.
TheAllPairsClassifierStats class manages the statis-
tics characterizing the differences in misclassification rate
between all pairs of classifiers, each of which is represented
by a singlePairClassifierStats instance. We reportp-

12

values computed by statistical hypothesis tests with the null
hypothesis that there is no difference between classifier per-
formances. We provide implementations for two tests: Mc-
Nemar’s test (Dietterich, 1998) is used when the data are
provided as a separate training and test set, while a recently
proposed conservativet-test variant (Grandvalet and Ben-
gio, 2006) is used if the users provide only a training data
set, which is then internally partitioned into cross-validation
folds. The latter test assumes that there is an upper bor-
der on the correlation of misclassification rates across dif-
ferent cross-validation folds, which is stored in the variable
maxCorrelationGrandvalet10.

If we have more than two classifiers, we must adjust the
p-values for the effect of multiple comparisons: In the case
of five classifiers with equal performance, we have ten pair-
wise comparisons and a significant difference (praw<0.001)
is expected to occur with a probability of 1−0.99910

≈ 0.01.
After computing all “raw”p-values, we correct them using
Holm’s step-down or Hochberg’s step-up method (Demšar,
2006) and store all results asPValue structures.

If there is need to extend the statistics functionality, it is
simple to add any statistic characterizing a single classifier
that can be computed from the true labels and the predicted
labels and scores, as these values may be queried from the
StatsDataManager object. To our knowledge, this com-
prises all statistics which are commonly used for judging the
quality of general classification algorithms. As a limitation,
the evaluation statistics cannot use any information about
the spatial distribution of the labels: hence it is impossible
to compute e.g. the Hausdorff distance between the true and
the predicted tumor segmentation. Among the statistical sig-
nificance tests (likeMcNemarPairClassifierStat), one
can add any technique that only requires the mean values
of the statistic to be compared from each cross-validation
fold. The current design is not prepared for new methods of
multi-comparison adjustment beyond Holm’s or Hochberg’s
method: for every method acting only onp-values and com-
puting an adjustedp-value, this would be possible, but re-
quires moderate redesign of this part of the library. We also
have hard-wired the assumption that the mean and variance
of these evaluation shall be estimated using a cross-validation
scheme. The number of cross-validation folds can be spec-
ified at theClassifierManager level: It is theoretically
possible to run a leave-one-out validation scheme with this
machinery, but that would lead to prohibitive computation
times.

10 Note that a classicalt-test may not be used, since the variance
of misclassification rates is estimated from cross-validation and hence
systematically underestimated. (Bengio and Grandvalet, 2004) showed
that unbiased estimation of the variances is not possible; but the proce-
dure used here provides an upper bound on thep-value if the assump-
tions are fulfilled.

2.6 The input / output functionality

We designed the input / output functionality in order to keep
it separated from the modules responsible for the internal
computations: hence we pass function objects to the classi-
fier, preprocessor etc. objects, which can then be invoked to
serialize all types of the data that is encapsulated by these
objects. Similar function objects are used for streaming rel-
evant information outside and listening for user signals at
check points.

For persistence, classifiers, preprocessors, statistics and
all other classes with intrinsic state can be saved and reloaded
in a hierarchical data format, and the data input/output can
be customized by passing user-defined input and output func-
tion objects derived from the base classesLoadFunctorand
SaveFunctor (see fig. 10). For these function objects, the
user must define how to enter and leave a new hierarchy
level (initGroup() andexitGroup()) and how to seri-
alize each supported data type (save() andload()): for
the latter purpose, the function objects must implement all
required instantiations of theLoadFunctorInterface or
SaveFunctorInterface interface template. We exemplar-
ily provide support for HDF511 as the main storage format
(XML would be an obvious alternative). For integration into
a user interface, other function objects may be passed that
can either report progress information, e.g. for updating a
progress bar (StreamProgressFunctor), or report status
information (StreamStatusFunctor)or listen for abort re-
quests (AbortCheckFunctor) at regular check points. A
ProgressStatusAbortFunctor bundles these three dif-
ferent functions. TheTrainTestSuitemanages the actions
of the library at the highest level: the library users mainly
interact with this class by adding classifier manager objects,
passing data and retrieving evaluation results.

The I/O functionality can simply be extended to other
input and output streams, as long as the data can be stored
in a key-value form with string keys, and as long as a hier-
archical structure with group denoted by a name string can
be imposed. Instead of only listening for abort signals, the
AbortCheckFunctor could in principle handle more gen-
eral user requests: but aborting a time-consuming training
process is presumably the main requirement for user inter-
action capabilities.

2.7 User interaction and graphical user interface

In order to further aid the clinical users in spectrum anno-
tation, we developed a graphical user interface in MeVis-
Lab that displays MRSI spectra from a selected slice in the
context of its neighbor spectra, which can then be labeled
on an ordinal scale by voxel class and signal quality and

11 http://www.hdfgroup.org/HDF5/

13

-valid : bool

-maxCorrelationGrandvalet : double

-adjustPHolmHochberg()

+addSingleStat()

+computeAll()

+save()

AllPairsClassifierStats

-rocCurveValues : vector<Matrix<double>>

-rocCurveStds : vector<Matrix<double>>

AreaUnderCurve

FScore

-maxCorrelation : double

-crossValTTest()

GrandvaletPairClassifierStats

-mcNemarTest()

McNemarPairClassifierStats

MisclassificationRate

-valueRaw : Matrix<double>

-valueHolm : Matrix<double>

-valueHochberg : Matrix<double>

PValue

PairClassifierStats

-maxCorrelationGrandvalet : double

PairClassifierStatsFactory

Recall

#nClasses : ClassNr

+compute()

+computeAsMean()

+save()

+setData()

SingleFoldStats

#values : Matrix<double>

#stds : Matrix<double>

+save()

+compute()

+computeAsMean()

Statistic

-nClasses : ClassNr

-trueLabels : Matrix<double>

-predictedLabels : Matrix<double>

-predictedScores : Matrix<double>

-binaryConfusion : MultiArray<3, ObsNr>

-multiConfusion : Matrix<ObsNr>

-compute()

StatsDataManager

+compute()

#computeAllVsAllStat()

AllVsAllStat

Precision

1

0..*

1

0..*

1

1

0..*

0..*

stats of second classifierstats of first classifier

-classes : Matrix<double>

+computeFold()

+computeMean()

+save()

SingleClassifierStats

1 1

characterizes mean

ClassifierManager

Classifier

1

0..*

1 1

1 1

1 1

1 1

1

1

1

1

characterizes CV fold

+compute()

#computeOneVsAllStat()

OneVsAllStat

meanData cvData

Fig. 9 Simplified UML diagram of the statistical evaluation functionality; see section 2.5 for details. The connections to theclassesClassifier
andClassifierManager (fig. 6) are shown.

14

-hdf5Stack : deque<shared_ptr<MyCommonFG>>

LoadHDF5Functor

+load()

<<Interface>>

LoadFunctorInterface

Key : class

T : class

+initGroup()

+exitGroup()

LoadFunctor

Identifier : class

-hdf5Stack : deque<shared_ptr<MyCommonFG>>

SaveHDF5Functor

+initGroup()

+exitGroup()

SaveFunctor

Identifier : class

+save()

<<Interface>>

SaveFunctorInterface

Key : class

T : class

-msg : string

+what()

AbortException

+operator()()

AbortCheckFunctor

+operator()()

+setBaseStatus()

+setMaximumScore()

ProgressStatusAbortFunctor

-currentScore : float

-maximumScore : float

+operator()()

#doUponUpdate()

StreamProgressFunctor

StreamProgressToStdoutFunctor

#baseStatus : string

+operator()()

+setBaseStatus()

StreamStatusFunctor

+operator()()

PrintTimeFunctor

+addClassifierManager()

+run()

TrainTestSuite

1

ClassifierManager

1

1

1

1

1

1

1

1

1

11

1

1

Fig. 10 Simplified UML diagram of the data input / output functionality; see section 2.6 for details. The connection to the class
ClassifierManager (fig. 6) is shown.

imported into the classification library (fig. 2). Since clini-
cal end users only interact with this user interface, they can
start a training and testing experiment and evaluate the re-
sults without expert knowledge on pattern recognition tech-
niques: they only have to provide their domain knowledge
about the clinical interpretation of MRSI data. To this pur-
pose, our graphical user interface displays the MRSI spectra
of the different voxels both in their spatial context (upper
right of fig. 2) and as enlarged single spectra (middle left of
this figure). It is known that the ability to view MRSI spec-
tra in their surroundings and to incorporate the information
from the neighboring voxels is one of the main reasons why
human experts still perform better at classifying these spec-
tra than automated methods (Zechmann et al, 2010). Simul-
taneously one can display a morphological MR image that
is registered to the MRSI grid, which can give additional
valuable information for the labeling process of the raters.
Labels are provided on two axes (signal quality and voxel
class / malignancy) that are encoded by marker shape and
color; furthermore it is possible to add free-text annotations
to interesting spectra.

After saving the label information in a human-readable
text format, clinical users only have to provide the informa-
tion which label files (and associated files with MRSI data)
shall be used for training and testing. (As stated in section
2.6, it is not required to specify dedicated testing files; in
this case, all data are used in turn for both training and test-
ing via a hold-out scheme.) An expert mode provides the
opportunity to select which classifiers to train and test and
to set the classifier parameters manually (fig. 3). We also
propose default values for these parameters, which gave the
best or close to the best accuracy on different prostate data

sets acquired at 1.5 Tesla (table 1): these values can at least
serve as plausible starting values for the parameter fine tun-
ing on new classification tasks. Alternatively a search grid
of parameter values may be specified, so that the best value
is detected automatically: this allows to improve the classi-
fier accuracy in some cases, while still requiring little under-
standing about the detailed effects of the different parame-
ters on the side of the users.

Besides the weights of the trained classifiers, the train-
ing and testing procedures also generates test statistics that
are estimated from the cross-validation schemes and saved
in the HDF5 file format. By inspecting these files, one can
get a detailed overview over the accuracy and reliability of
the different classifiers and compare whether they yield sig-
nificantly different results (fig. 4).

Finally, the trained classifiers can be applied to predict
the labels of new MRSI spectra for which no manual labels
are available. For a user-selected region of interest, thisin-
formation can be displayed in the CLARET software as an
easily interpretable nosologic map overlayed over the mor-
phological MR image (fig. 5). The voxel class is encoded in
the color (green for healthy tissue, red for tumor, yellow for
undecided cases), while the signal quality is encoded in the
alpha channel (for poor spectra the nosologic map is trans-
parent, whereas for very good spectra it is nearly opaque).

15

3 Case studies

3.1 Exemplary application to 1.5 Tesla data of the prostate

As a case study, we recapitulate the results from a previous
study, in which we validated our library on 1.5 Tesla MRSI
data of prostate carcinomas (Kaster et al, 2009). We used
two different data sets for the training of signal quality and
of voxel class classifiers: For signal quality classification, we
provided 36864 training spectra and 45312 test spectra and
extracted 101 magnitude channels as features during prepro-
cessing (data set 1). For joint signal quality and voxel class
classification, we provided 19456 training spectra from 24
patients, from which however only the 2746 spectra with
“good” signal quality were used for learning the voxel class
classifiers: we extracted 41 magnitude channels as features
(data set 2). Since relatively few spectra were available for
the voxel class classification task, we opted for an eight-fold
cross-validation scheme rather than partitioning the datainto
a separate training and test set. No preprocessing steps be-
sides rebinning and selection of the appropriate part of the
spectrum were used.

Parameter (classifier) Search grid values Final values for DS1
(SQ) / DS2 (SQ) /
DS2 (VC)

C (SVM) 10−2,10−1, . . . ,103 101 / 102 / 102

mtry (RF) 4,6, . . .,16 16 / 14 / 16
λ (RR) 10−3

,10−2
, . . . ,102 10−1 / 10−1 / 10−2

nPC (PCR) 10,15, . . . ,40 40 / 35 / 25

Table 1 Search grid for automated classifier parameter selection and
final values for signal quality (SQ) classification based on data set 1
(DS1) and signal quality and voxel class (VC) classificationbased on
data set 2 (DS2).

As classifiers, we trained support vector machines with
linear kernel, random forests, principal component regres-
sion and ridge regression, as the training of support vector
machines with an RBF kernel was found to be too time-
consuming. We used the automated parameter search capa-
bilities of our library to find the optimal values that were
finally used (see table 1).

SVM RF RR PCR
Precision 0.815 0.869 0.921 0.922
Recall 0.913 0.913 0.797 0.802
Specificity 0.972 0.982 0.991 0.991
F-score 0.861 0.891 0.855 0.857
CCR 0.965 0.973 0.968 0.968
AUC 0.989(14) 0.993(14) 0.990(14) 0.990(14)

Table 2 Evaluation statistics for signal quality classifiers basedon data
set 1. The standard deviation of the area under curve value (in paren-
theses) is estimated as by Bandos et al (2007). Note that the recall is
also known as the “sensitivity”.

SVM RF RR PCR
Precision 0.73(11) 0.832(57) 0.79(12) 0.79(12)
Recall 0.57(18) 0.58(17) 0.42(17) 0.43(17)
Specificity 0.964(23) 0.9820(62) 0.980(18) 0.979(19)
F-score 0.621(14) 0.67(13) 0.53(15) 0.54(16)
CCR 0.905(37) 0.922(32) 0.899(37) 0.899(38)
AUC 0.891(54) 0.946(57) 0.890(54) 0.890(54)

Table 3 Average evaluation statistics for signal quality classifiers
based on data set 2 (with standard deviations in parentheses). While
the standard deviation reported for the area under curve value is esti-
mated as by Bandos et al (2007) to facilitate the comparison with table
2, the other standard deviation estimates are computed fromthe cross-
validation.

SVM RF RR PCR
Precision 0.908(76) 0.864(27) 0.966(39) 0.900(14)
Recall 0.69(17) 0.753(16) 0.50(21) 0.50(21)
Specificity 0.983(23) 0.9771(87) 0.9966(39) 0.9928(78)
F-score 0.76(12) 0.79(11) 0.63(22) 0.63(21)
CCR 0.932(42) 0.937(42) 0.909(59) 0.909(62)
AUC 0.97(15) 0.98(15) 0.96(15) 0.95(15)

Table 4 Average evaluation statistics for signal quality classifiers
based on data set 2 (see table 4 for further explanations).

With these input data, we achieved state-of-the art clas-
sification performance: For signal quality prediction on data
set 1, the different classifiers achieved correct classification
rates (CCR) of 96.5 % – 97.3 % and area under the ROC
curve values of 98.9 % – 99.3 % (see table 2). On data set 2,
we obtained correct classification rates of 89.9 % – 92.2 %
and area under curve values of 89.0 % – 94.6 % for the sig-
nal quality prediction task (table 3), and correct classifica-
tion rates of 90.9 % – 93.7 % as well as area under curve
values of 95 % – 98 % for the voxel class prediction task
(table 4).

The automated parameter tuning functionality is espe-
cially relevant for the use of support vector machines, since
wrong values of the parameterC may lead to a considerably
degraded accuracy. If e.g. the starting value of 0.01 forC had
been used for the signal quality classification of data set 1,
the correct classification rate would have dropped to 92.5 %
(which means that the number of wrongly classified spectra
would have doubled). The other classifiers that are currently
available in our library are more robust with respect to the
values of their associated parameters.

While these absolute quality measures are highly rele-
vant for the clinical practitioners, a research clinician may
also be interested in the question which classifier to use for
this particular task (and whether there is any difference be-
tween the different classifiers at all). This question couldbe
answered with the statistical hypothesis testing capabilities
of our library, sincep-values from McNemar’s test (for data
set 1) and thet-test variant (for data set 2) characterizing the
differences in the correct classification rates of various clas-

16

sifiers were automatically computed and corrected for mul-
tiple comparisons (both Holm’s step-down and Hochberg’s
step-up method yielded qualitatively the same results). For
the signal quality classifiers trained on data set 1, random
forests differed with high significance from all other clas-
sifiers (p < 10−6). Support vector machines differed from
principal components regression significantly (p < 10−3),
and ridge regression showed a barely significantly difference
to both principal components regression and support vector
machines (p < 10−2), while all other differences were non-
significant. For data set 2, all differences were non-significant
owing to the small number of data examples.

3.2 Extending the functionality with ak nearest neighbors
classifier

As an exemplary case of how the functionality of our library
may be extended, we discuss the addition of a new classi-
fier method in detail, namely thek nearest neighbors (kNN)
method as one of the simplest classifiers (Hastie et al, 2009).
Every test spectrum is assigned the majority label of itsk
closest neighbors among the training spectra (with respect
to the Euclidean distance).12 This classifier is represented
by aNearestNeighborClassifierclass derived from the
abstractClassifier base class:
class EXPORT_CLASSTRAIN

NearestNeighborClassifier : public Classifier {

private:

// All training spectra

vigra::Matrix <double > trainingSpectra ;

// All training labels

vigra::Matrix <double > trainingLabels ;

// Training spectra for the different cross - validation folds

std ::vector <vigra::Matrix <double > > trainingSpectraCvFolds ;

// Training labels for the different cross -validation folds

std ::vector <vigra::Matrix <double > > trainingLabelsCvFolds ;

// Name strings associated with the kNN classifier

static const std :: string knn_name;

static const std :: string k_name;

static const std :: string cv_error_name ;

static const std :: string training_spectra_name ;

static const std :: string training_labels_name ;

protected:

// Can be used for native multi -class classification

virtual bool isOnlyBinary () const {

return false;

}

public:

// Stub constructor

NearestNeighborClassifier () : Classifier (),

trainingSpectra (), trainingLabels (),

trainingSpectraCvFolds (), trainingLabelsCvFolds (){

}

// Read -only access to classifier name string

virtual std :: string getClassifierName () const {

return knn_name;

}

// Read -only access to error score name string

virtual std :: string getErrorScoreName () const {

return cv_error_name ;

}

protected:

/* The following virtual functions are discussed separately */

...

};

The only adjustable parameter is the number of nearest
neighborsk. By default, the odd values 1,3, . . . ,15 shall be
considered while optimizing over this parameter: they may
also be adjusted afterwards by the library user. The last argu-
ment of theaddClassifierParameter specifies that this

12 For binary classification, ties can easily be avoided by restricting
k to odd values. However, if the user chooses an evenk, we err on the
safe side and classify the spectrum as tumorous in case of a tie.

parameter shall be incremented additively rather than multi-
plicatively.
void

NearestNeighborClassifier ::

addClassifierSpecificParameters (){

unsigned kValue =5;

unsigned kLower =1;

unsigned kUpper =15;

unsigned kIncr=2;

parameters -> addClassifierParameter (k_name ,kValue ,kIncr ,

kLower ,kUpper ,false);

}

In this application case, the different spectral features
correspond to MRSI channels and can assumed to be com-
mensurable: hence no preprocessing except for the general
MRSI preprocessing steps is required, and the associated
preprocessor is an instance of theIdentityPreprocessor

class, which leaves the features unchanged. In cases where
one cannot assume the features to be commensurable, one
should rather associate this classifier with a preprocessorof
typeWhiteningPreprocessorwhich brings all features to
the same scale.
shared_ptr <Preprocessor >

NearestNeighborClassifier :: getPreprocessorStubSpecific () const {

shared_ptr <Preprocessor > output(new IdentityPreprocessor ());

return output;

}

For didactic reasons, we provide a simple, but admit-
tedly inefficient implementation. The training process con-
sists simply of storing the training features and labels:
double

NearestNeighborClassifier ::

estimatePerformanceCvFoldSpecific (FoldNr iF ,

const Matrix <double >& features,

const Matrix <double >& labels){

double output = learnCvFoldSpecific (iF ,features ,labels);

cvFoldTrained (iF ,0)=true;

return output;

}

double

NearestNeighborClassifier ::

learnSpecific (const Matrix <double >& features ,

const Matrix <double >& labels){

trainingSpectra = features;

trainingLabels = labels;

return estimateByInternalVal (features, labels);

}

double

NearestNeighborClassifier ::

learnCvFoldSpecific (FoldNr iFold ,const Matrix <double >&

features , const Matrix <double >& labels){

trainingSpectraCvFolds [iFold] = features;

trainingLabelsCvFolds [iFold] = labels;

return estimateByInternalVal (features, labels);

}

The automated parameter optimization requires an esti-
mate for the generalization error, which must be obtained
from one single cross-validation fold: if the data has for ex-
ample been split into a training and a testing fold, only the
training fold may be used for this estimation. Otherwise one
would incur a bias for the test error that is computed on
the separate testing data set. Unlike many other classifiers
(e.g. random forests), the kNN classifier does not automat-
ically generate a generalization error estimate during train-
ing: hence one must resort to an internal validation step, in
which the training data is split into an internal “training”and
“testing” subset:
struct

NearestNeighborClassifier ::

Comparison {

operator ()(const pair <double ,double >& p1 ,

const pair <double ,double >& p2){

17

return p1.first < p2.first;

}

};

double

NearestNeighborClassifier ::

estimateByInternalVal (const Matrix <double >& features,

const Matrix <double >& labels){

unsigned k = parameters ->getValue<unsigned >(k_name);

// randomly group into two folds

vector <int > folds(features.shape(0));

for(int i=0; i<features.shape(0); ++i){

folds[i] = rand() % 2;

}

unsigned correct = 0;

unsigned wrong = 0;

for(int i=0; i<features.shape(0); ++i){

if(folds[i]==0){ // 1 : test spectra, 0 : training spectra

continue;

}

priority_queue <pair <double ,double >, vector <pair <double ,double > >,

Comparison > currBest;

unsigned nFound = 0;

for(int j=0; j< features.shape(0); ++j){

if(folds[j]==1){

continue;

}

Matrix <double > tempVec = features.rowVector (i);

tempVec -= features.rowVector(j);

double newDist = tempVec.squaredNorm ();

if(nFound++ < k){ // first k spectra automatically pushed

currBest.push(pair <double ,double >(newDist ,labels(j ,0)));

} else {

if(newDist < currBest.top (). first){

currBest.pop ();

currBest.push(pair <double ,double >(newDist ,labels(j ,0)));

}

}

}

double maxLabel = retrieveMajority (currBest);

if(maxLabel== labels(i,0)){

correct++;

} else {

wrong++;

}

}

return double(wrong)/(correct+wrong);

}

retrieveMajority() is a helper function to retrieve
the most common label from the priority queue. Note that
the implementation is deliberately simple for didactical rea-
sons and has not been optimized for efficiency: in produc-
tion code, one would store the training spectra in a balanced
data structure like the box-decomposition trees (Arya et al,
1998) used in the ANN library13 for faster retrieval. A sim-
ilar implementation is used to predict the values of new test
examples:
void

NearestNeighborClassifier ::

predictLabelsAndScores (const Matrix <double >& featuresTrain ,

const Matrix <double >& labelsTrain ,

const Matrix <double >& featuresTest ,

Matrix <double >& labelsTest ,

Matrix <double >& scoresTest) const {

unsigned k = parameters ->getValue<unsigned >(k_name);

labelsTest = Matrix <double >(featuresTest .shape(0) ,1);

scoresTest = Matrix <double >(featuresTest .shape(0), classes.size() ,0.);

for(int i=0; i<featuresTest .shape(0); ++i){

priority_queue <pair <double ,double >, vector <pair <double ,double > >,

Comparison > currBest;

unsigned nFound = 0;

for(int j=0; j< featuresTrain .shape(0); ++j){

Matrix <double > tempVec = featuresTest .rowVector (i);

tempVec -= featuresTrain .rowVector (j);

double newDist = tempVec.squaredNorm ();

if(nFound++ < k){

currBest.push(pair <double ,double >(newDist ,labelsTrain (j ,0)));

} else {

if(newDist < currBest.top (). first){

currBest.pop ();

currBest.push(pair <double ,double >(newDist ,labelsTrain (j ,0)));

}

}

}

labelsTest (i ,0) = retrieveMajority (currBest);

while(!currBest.empty()){

scoresTest (i, classIndices .find(currBest.top (). second)-> second)+=1./k;

currBest.pop ();

}

}

}

This helper routine considerably simplifies the definition
of the virtual prediction functions:

13 http://www.cs.umd.edu/˜mount/ANN/

void

NearestNeighborClassifier ::

predictBinaryScoresSpecific (const Matrix <double >& features ,

Matrix <double >& scores) const {

Matrix <double > labels;

predictLabelsAndScores (trainingSpectra ,trainingLabels ,

features,labels ,scores);

}

void

NearestNeighborClassifier ::

predictBinaryScoresCvFoldSpecific (FoldNr iFold ,

const Matrix <double > &features,

Matrix <double > &scores)const {

Matrix <double > labels;

predictLabelsAndScores (trainingSpectraCvFolds [iFold],

trainingLabelsCvFolds [iFold],

features,labels ,scores);

}

void

NearestNeighborClassifier ::

predictLabelsSpecific (const Matrix <double >& features,

Matrix <double >& labels) const {

Matrix <double > scores;

predictLabelsAndScores (trainingSpectra , trainingLabels ,

features, labels , scores);

}

void

NearestNeighborClassifier ::

predictLabelsCvFoldSpecific (FoldNr iFold , const Matrix <double >&

features , Matrix <double > &labels) const{

Matrix <double > scores;

predictLabelsAndScores (trainingSpectraCvFolds [iFold],

trainingLabelsCvFolds [iFold],

features,labels ,scores);

}

Concerning serialization and derialization, this classifier
is only responsible for its internal data. In contrast, the se-
rialization of the parameterk is handled by the associated
ParameterManager object, while the evaluation statistics
are serialized by theClassifierManager.
void

NearestNeighborClassifier ::

saveSpecific (shared_ptr <SaveFunctor <string > > saver) const {

shared_ptr < SaveFunctorInterface <string , Matrix <double > > > matSaver =

dynamic_pointer_cast <SaveFunctorInterface <string ,Matrix <double > > >(

saver);

CSI_VERIFY(matSaver);

matSaver-> save(training_spectra_name , trainingSpectra);

matSaver-> save(training_labels_name , trainingLabels);

for(FoldNr iF=0; iF <nCvFolds; ++iF){

ostringstream currMatName ;

currMatName << getFoldName () << iF << " " << training_spectra_name ;

matSaver-> save(currMatName .str (), trainingSpectraCvFolds [iF]);

currMatName .str () = "";

currMatName << getFoldName () << iF << " " << training_labels_name ;

matSaver-> save(currMatName .str (), trainingLabelsCvFolds [iF]);

}

}

void

NearestNeighborClassifier ::

loadSpecific (shared_ptr <LoadFunctor <string > >loader){

shared_ptr < LoadFunctorInterface <string , Matrix <double > > > matLoader =

dynamic_pointer_cast <LoadFunctorInterface <string ,Matrix <double > > >(

loader);

CSI_VERIFY(matLoader);

matLoader ->load(training_spectra_name , trainingSpectra);

matLoader ->load(training_labels_name , trainingLabels);

trainingSpectraCvFolds .resize(nCvFolds);

for(FoldNr iF=0; iF <nCvFolds ;++ iF){

ostringstream currMatName ;

currMatName << getFoldName () << iF << " " << training_spectra_name ;

matLoader ->load(currMatName .str(), trainingSpectraCvFolds [iF]);

currMatName .str () = "";

currMatName << getFoldName () << iF << " " << training_labels_name ;

matLoader ->load(currMatName .str(), trainingLabelsCvFolds [iF]);

}

}

On the signal quality task for data set 1 (see section 3.1),
this classifier gives a correct classification rate of ca. 95 %
across all tested values for the parameterk.

4 Discussion and Outlook

To our best knowledge, this is the first C++ library specifi-
cally designed for medical applications which allows princi-
pled comparison of classifier performance and significance

18

testing. We believe that this will help automated quality as-
sessment and the conduction of clinical studies. While the
absolute performance statistics of the single classifiers are
most relevant for practical quality control in the clinic, the
relative comparisons between different classifiers are inter-
esting from a research-oriented point of view: for instance,
they may answer the question which out-of-the-box classi-
fication techniques work best for the specific task of MRSI
analysis, and can check whether newly proposed classifica-
tion techniques give a significant advantage over established
methods. Since quantitation-based classifiers may easily be
incorporated into our framework, it will be possible to study
the relative merits of quantitation-based techniques as op-
posed to pattern recognition-based techniques on a large set
of patient data.

The design of our library is deliberately restricted to
single-voxel classifiers that predict the malignancy or signal
quality of each voxel only based on the appearance of the
spectrum inside this voxel, without considering the context
of the surrounding spectra. The reason for this limitation is
that automatic single-voxel classification is a mature tech-
nology whose efficacy has been proved in several indepen-
dent studies, e.g. those by Tate et al (2006), Garcı́a-Gomez
et al (2009) or Menze et al (2006). In contrast, classification
with spatial context information has not yet been studied
thoroughly: the two-dimensional conditional random field
approach by Görlitz et al (2007) is the only one in this di-
rection to our knowledge. In that article, the authors achieve
a promising, but moderate improvement in prediction ac-
curacy over single-voxel classification on a simulated data
set (98.7 % compared to 98.2 %). However, it is yet far
from clear which kinds of spatial context information may
be beneficial for MRSI classification (2D neighborhoods,
3D neighborhoods, long-range context, comparison with co-
registered MRI), and this question would have to be solved
before a generic interface for such classifiers could be de-
signed.

As next steps, the visualization and data reporting func-
tionalities will be enhanced in order to improve usability:es-
pecially a more interpretable visualization of the statistical
results may considerably benefit the medical users (for in-
stance, plots of ROC curves could be provided, or the mean-
ing of the AUC scores could be explained verbally). The
clinical validation on 3 Tesla MRSI measurements of brain
and prostate carcinomas is scheduled for the immediate fu-
ture. Furthermore this software will eventually be integrated
into the RONDO software platform for integrated tumor di-
agnostic and radiotherapy planning14, where it is planned to
be a major workhorse for MRSI analysis. This will provide
a good test for the usefulness of pattern recognition tech-
niques in a clinical routine setting.

14 http://www.projekt-dot-mobi.de

Acknowledgements We acknowledge fruitful discussions with Ralf
Floca and Ullrich Köthe, as well as support for the softwaredevelop-
ment by Stephan Kassemeyer. A major share of the MeVisLab / C++
reimplementation of CLARET was done by B. Michael Kelm. The
graphical user interface was initiated by Markus Harz. We thank the
three anonymous reviewers for their helpful comments.

References

Arya S, Mount D, Netanyahu N, et al (1998) An Optimal
Algorithm for Approximate Nearest Neighbor Searching.
J ACM 45:891–923

Bandos A, Rockette H, Gur D (2007) Exact Bootstrap Vari-
ances of the Area Under ROC Curve. Comm Stat Theor
Meth 36:2443–2461

Bengio Y, Grandvalet Y (2004) No Unbiased Estimator of
the Variance ofK-Fold Cross-Validation. J Mach Learn
Res 5:1089–1105

Breiman L (1996) Out-of-Bag Estimation. Tech. rep., UC
Berkeley

Chang C, Lin C (2001) LIBSVM: a library for
support vector machines. Software available at
http://www.csie.ntu.tw/ cjlin/libsvm

Cho S, Kim M, Kim H, et al (2001) Chronic hepatitis:
in vivo proton MR spectroscopic evaluation of the liver
and correlation with histopathologic findings. Radiology
221(3):740–746

Dager S, Oskin N, Richards T, Posse P (2008) Research Ap-
plications of Magnetic Resonance Spectroscopy (MRS)
to Investigate Psychiatric Disorders. Top Magn Reson
Imaging 19(2):81–96

Demšar J (2006) Statistical Comparisons of Classifiers over
Multiple Data Sets. J Mach Learn Res 7:1–30

Dietterich T (1998) Approximate Statistical Tests for Com-
paring Supervised Classification Learning Algorithms.
Neur Comput 10:1895–1923

de Edelenyi FS, Rubin C, Estève F, et al (2000) A new ap-
proach for analyzing proton magnetic resonance spectro-
scopic images of brain tumors: nosologic images. Nature
Medicine 6:1287–1289

Fawcett T (2006) An introduction to ROC analysis. Patt
Recog Lett 27(8):861–874

Frigo M, Johnson S (2005) The Design and Implementation
of FFTW3. Proc IEEE 93(2):216–231

Garcı́a-Gomez J, Luts J, Julià-Sapé M, et al (2009)
Multiproject-multicenter evaluation of automatic brain
tumor classification by magnetic resonance spectroscopy.
Magn Reson Mater Phy 22:5–18

Gillies R, Morse D (2005) In Vivo Magnetic Resonance
Spectroscopy in Cancer. Ann Rev Biomed Eng 7:287–326

Golub G, Heath M, Wahba G (1979) Generalized Cross-
Validation as a Method for Choosing a Good Ridge Pa-
rameter. Technometrics 21(2):215–223

19

González-Vélez H, Mier M, Julià-Sapé M, et al (2009)
HealthAgents: distributed multi-agent brain tumor diag-
nosis and prognosis. Appl Intell 30:191–202

Görlitz L, Menze B, Weber M, et al (2007) Semi-Supervised
Tumor Detection in Magnetic Resonance Spectroscopic
Images Using Discriminative Random Fields. In: Pro-
ceedings DAGM 2007, Lecture Notes in Computer Sci-
ence, vol 4713/2007, pp 224–233

de Graaf R (2008) In Vivo NMR Spectroscopy: Principles
and Techniques. Wiley, New York

Grandvalet Y, Bengio Y (2006) Hypothesis Testing for
Cross-Validation. Tech. Rep. TR 1285, Département
d’Informatique et Recherche Opérationelle, University of
Montréal

Hagberg G (1998) From magnetic resonance spectroscopy
to classification of tumors: A review of pattern recogni-
tion methods. NMR Biomed 11(4–5):148–156

Hastie T, Tibshirani R, Friedman J (2009) The Elements of
Statistical Learning. Springer, New York

Kaster F, Kelm B, Zechmann C, et al (2009) Classification
of Spectroscopic Images in the DIROlab Environment. In:
World Congress on Medical Physics and Biomedical En-
gineering, IFMBE Proc, vol 25/V, pp 252–255

Kelm B, Menze B, Neff T, et al (2006) CLARET: a tool for
fully automated evaluation of MRSI with pattern recogni-
tion methods. In: Handels H, Ehrhardt J, Horsch A, et al
(eds) Bildverarbeitung für die Medizin 2006 – Algorith-
men, Systeme, Anwendungen, pp 51–55

Kelm B, Menze B, Zechmann C, et al (2007) Automated Es-
timation of Tumor Probability in Prostate Magnetic Res-
onance Spectroscopic Imaging: Pattern Recognition vs
Quantification. Magn Reson Med 57:150–159

Köthe U (2000) Generische Programmierung für die Bild-
verarbeitung. PhD thesis, University of Hamburg, soft-
ware available at http://hci.iwr.uni-heidelberg.de/vigra/

Kreis R (2004) Issues of spectral quality in clinical1H mag-
netic resonance spectroscopy and a gallery of artifacts.
NMR Biomed 17:361–381

Lin H, Lin C, Weng R (2007) A note on Platt’s probabilistic
outputs for support vector machines. Mach Learn 68:267–
276

Martı́nez-Bisbal M, Celda B (2009) Proton magnetic reso-
nance spectroscopy imaging in the study of human brain
cancer. Q J Nucl Med Mol Imaging 53(6):618–630

Maudsley A, Darkazanli A, Alger J, et al (2006) Compre-
hensive processing, display and analysis forin vivo MR
spectroscopic imaging. NMR Biomed 19:492–503

Menze B, Lichy M, Bachert P, et al (2006) Optimal clas-
sification of long echo time in vivo magnetic resonance
spectra in the detection of recurrent brain tumors. NMR
Biomed 19:599–609

Menze B, Kelm B, Weber M, et al (2008) Mimicking the
Human Expert: Pattern Recognition for an Automated

Assessment of Data Quality in MR Spectroscopic Images.
Magn Reson Med 59:1457–1466

Neuter BD, Luts J, Vanhamme L, et al (2007) Java-based
framework for processing and displaying short-echo-time
magnetic resonance spectroscopy signals. Comput Meth-
ods Programs Biomed 85:129–137

Ortega-Martorell S, Olier I, Julià-Sapé M, et al (2010)
SpectraClassifier 1.0: a user friendly, automated MRS-
based classifier-development system. BMC Bioinformat-
ics 11:106

Poullet J, Sima D, Van Huffel S (2008) MRS signal quanti-
tation: A review of time- and frequency-domain methods.
J Magn Reson 195(2):134–144

Provencher S (2001) Automatic quantitation of localized in
vivo 1H spectra with LCModel. NMR Biomed 14(4):260–
264

Rifkin R, Klautau A (2004) In Defense of One-Vs-All Clas-
sification. J Mach Learn Res 5:101–141

Sajja B, Wolinsky J, Narayana P (2009) Proton Mag-
netic Resonance Spectroscopy in Multiple Sclerosis. Neu-
roimaging Clin N Am 19(1):45–58

Smith S, Levante T, Meier B, et al (1994) Computer Simu-
lations in Magnetic Resonance. An Object-Oriented Pro-
gramming Approach. J Magn Reson A106(1):75–105

Stefan D, Cesare FD, Andrasescu A, et al (2009) Quantita-
tion of magnetic resonance spectroscopy signals: the jM-
RUI software package. Meas Sci Technol 20:104,035

Stroustrup B (2001) Exception Safety: Concepts and Tech-
niques. In: Dony C, Knudsen J, Romanovsky A, et al (eds)
Advances in Exception Handling Techniques, Springer,
New York, pp 60–76

Tate A, Underwood J, Acosta D, et al (2006) Development
of a decision support system for diagnosis and grading
of brain tumours usingin vivo magnetic resonance single
voxel spectra. NMR Biomed 19(4):411–434

Xu D, Vigneron D (2010) Magnetic Resonance Spec-
troscopy Imaging of the Newborn Brain – A Technical
Review. Seminars in Perinatology 34(1):20–27

Zechmann C, Menze B, Kelm B, Zamecnik P, Ikinger U,
Waldherr R, Delorme S, Hamprecht F, Bachert P (2010)
How much spatial context do we need? Automated versus
manual pattern recognition of 3D MRSI data of prostate
cancer patients. NMR Biomed (submitted)

Zhu G, Smith D, Hua Y (1997) Post-acquisition solvent sup-
pression by singular-value decomposition. J Magn Res
124:286–289

