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Abstract

Watershed cuts are among the fastest segmentation algorithms and therefore
well suited for interactive segmentation of very large 3D data sets. To minimize
the number of user interactions (“seeds”) required until the result is correct, we
want the computer to actively query the human for input at the most critical lo-
cations, in analogy to active learning. These locations are found by means of
suitable uncertainty measures. We propose various such measures for watershed
cuts along with a theoretical analysis of some of their properties. Extensive evalu-
ation on two types of 3D electron microscopic volumes of neural tissue shows that
measures which estimate the non-local consequences of new user inputs achieve
performance close to an oracle endowed with complete knowledge of the ground
truth.

1 Introduction
Interactive segmentation is a popular paradigm in image analysis because it combines
the number-crunching capabilities of a computer with the high-level understanding of
a human. When the segmentation result is immediately updated after each interaction,
the user can readily spot errors and correct these by a (hopefully small) number of addi-
tional inputs. Unfortunately, this elegant scheme breaks down in 3D because errors no
longer “pop out” to the user’s attention as they do in 2D – it is not possible to visualize
complicated 3D segmentations in a way that makes user inspection and intervention as
easy as in two dimensions. Most commonly, volume data is presented on a 2D screen
by means of three orthogonal views, and the user has to scroll through several, and
possibly many, layers in order to find or rule out segmentation errors.

We propose to solve this problem by guided interactive segmentation [1], akin to
active learning. Active learning (AL) [2] schemes aim at the steepest possible learning
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Figure 1: Raw data and ground truth. (a) Serial blockface electron microscopy (SBEM)
image slice and 3D rendering of some neural processes from the image stack. (b) Fo-
cused ion beam electron microscopy (FIBSEM) image slice and two neural processes.

curve by querying for user input on locations which are regarded as most informa-
tive by a suitable selection criterion, so that user effort is focused on decisions with
high impact. Accordingly, our algorithm not only proposes a segmentation based on
the user’s inputs, but also estimates a confidence in the segmentation result which will
guide the user to locations where the uncertainty is highest. Good uncertainty criteria
are especially challenging in our context because segmentation quality is a non-local
property: A very small error (e.g. a single wrongly deleted boundary) can have catas-
trophic global consequences (such as an erroneous merge of two very large regions).
Purely local error estimates as used in most existing AL work on interactive segmenta-
tion [3, 1, 4] are not sufficiently sensitive to these non-local effects.

Our interactive segmentation framework is based on the watershed algorithm be-
cause it has a small computational footprint and is attractive for our target applica-
tion: Microscopic images of neural tissue (see Fig. 1) are composed of very thin and
elongated structures, which may pose a problem for the graph cut and random walk
algorithms with their well-known shrinking bias.

For the neurobiological application example we compute watershed cuts on super-
voxel graphs [5, 6] (see section 4.2). The goal of interactive segmentation is therefore
to merge all supervoxels belonging to the same object. User labels are interpreted as
seeds for either a foreground object or the background, and regions are defined accord-
ing to a watershed cut initiated by these seeds [7]. Our AL criteria relate to the common
boundaries between adjacent supervoxels. They take into account the relevance of the
boundary with regard to the uncertainty in other regions.

Specifically we make the following contributions:
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• We define and characterize a number of uncertainty criteria that can be used in
the context of interactive segmentation with the watershed cut algorithm.

• We conduct extensive comparisons of the practical performance of these criteria
in 3D neuro-imaging application examples.

• We demonstrate empirically that correct segmentations are achieved much faster
when user attention is guided by our best active learning criteria.

2 Background and related work
Interactive segmentation algorithms must be able to take user input (“seeds”) into ac-
count and update results incrementally when new input arrives, and it must be suffi-
ciently fast to ensure interactive response times. Some of the most important seeded
segmentation methods can be unified in terms of the power-watershed framework [8].
It defines a segmentation as a labeling of a graph G(V,E), where the optimal labeling
x minimizes an energy function

E(x,w) =
∑
vi∈V

wp
0,i‖xi‖

q + wp
1,i‖1− xi‖

q

+
∑

eij∈E
wp

ij‖xi − xj‖
q

(1)

where xi ∈ L is the label associated with node vi ∈ V , x is the vector of all label
assignments, and wi, wij are node and edge weights, respectively. The first sum thus
measures compatibility of the labeling with a given region model, whereas the second
sum enforces smoothness of the solution. For different exponents, the power watershed
specializes to the watershed cut algorithm (p → ∞, q finite, [9], [7]), the random
walker (p finite, q = 2, [10]) and an Ising-type Markov random field amenable to
graph-cut segmentation (p finite, q = 1, [11]). A number of coarse-grained [12], pre-
computed [13] or warm-started [14] strategies have been suggested to speed up the
response to user input.

A significant simplification of the solution space is achieved by moving from a grid-
graph defined on the original voxels to a coarser graph of supervoxels. The weighted
graphs that reflect the supervoxel adjacency typically have a large total number of
nodes, a small number of seeded nodes (the user scribbles), and are sparse (i.e. the
number of edges is of the same order as the number of nodes). This is a favorable
situation for power-watershed methods.

A number of user guidance schemes have already been proposed in the context
of interactive segmentation for the random walker [1, 4] or graph cuts [3, 15]. These
works use uncertainty cues based on the margin in the case of the random walk or
min-marginal energies in the graph cut case [16], both of which capture mostly local
information. In addition a perturbation based local uncertainty estimator for the graph-
cut has recently been proposed in [15].

We propose several non-local uncertainty estimators for the watershed cut, and
show that they perform better than a local alternative. Closest in spirit to our work are
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the stochastic topological watershed variants that have been proposed for unseeded seg-
mentation [17, 18]. These authors consider a topological watershed from randomized
seeds, while we randomize the edge weights [7] instead.

3 Uncertainty measures for watershed cuts
After reviewing the notion of a watershed cut and its relation to a minimum spanning
tree (MST) in Section 3.1 we will present two different types of uncertainty estimators.
The first type presented in Section 3.2 is based on a minimal perturbation property
and expresses how the obtained segmentation boundary depends on single edges in a
graph. The second type of uncertainty estimators in Section 3.3 takes into account
the uncertainty of the edge weights themselves. It measures how much the overall
segmentation changes when sampling noisy edge weights.

3.1 Watershed cuts and minimum spanning trees
The interactive segmentation algorithm in this paper is based on watershed cuts [9, 7].
It starts from a supervoxel graph which is computed by a standard flooding-type water-
shed algorithm [19] on a suitable boundary indicator, in our case the largest eigenvalue
of the Hessian matrix which measures “ridgeness” and thus indicates cell membranes.
The region adjacency graph G(V,E) of the supervoxels is equipped with edge weights
that encode surface strength (in particular, the minimum value of the boundary indica-
tor on the corresponding surface patch). User seeds provide hard assignments of some
supervoxels to the background or one of the foreground regions.

It is well known [7] that the watershed cut is equivalent to a minimum spanning
tree (MST) computation on a suitably augmented graph G′(V ′, E′) that contains a su-
pernode v0 connected to seed nodes v−l, l ∈ L for each class type that are connected to
v0 with zero weight edges. All labeled nodes (i.e. all supervoxels holding a user seed)
are also connected to these seed nodes with zero-weight edges, which are guaranteed
to remain in the MST. Once the MST with root node v0 has been constructed, subtrees
originating from seed nodes v−l form segments of the final segmentation. The subtrees
and the segmentation of the seeded watershed cut are defined as follows:
Definition 3.1 (Subtree T i) Let T be a spanning tree of G with root node v0. The
subtree T i = (V i, Ei) is defined as the set of nodes V i and edges Ei which in T can
only be reached from the root node by a path containing vi.
Definition 3.2 (Segmentation x) Let T be a spanning tree ofG with root node v0. The
label assignment of all nodes is called the segmentation x with xi = l if node vi is
element of the subtree T−l of seed node v−l. Thus, all nodes i with label xi = l and
the edges connecting them form the subtree T−l of T with root node v−l.
Since we are concerned with non-local uncertainty estimates that measure influences on
the segmentation, we frequently rely on the definition of the edges connecting different
segments:
Definition 3.3 (Cut set C(T )) Let T be a spanning tree of G. An edge e = (i, j) is
element of the cut set C(T ) if the vertices vi and vj belong to different subtrees T−l so
that xi 6= xj .
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Figure 2: Illustration of the graph construction process. Colored nodes correspond to
user seeds. Shown are the original graph G, the modified graph G′ and a minimum
spanning tree (MST ) with the resulting segmentation label assignment indicated by
light colors.

In the following, we will introduce estimators arising from two different general
principles. The first one analyzes the effect of single edge weight perturbations on the
MST and the resulting segmentation, in a manner similar to [20]. The second estima-
tor takes into account that the edge weights of the supervoxel graph are themselves
subject to uncertainty, and measures how much the segmentation would change under
perturbations of all weights.

As a baseline we compare our non-local estimators to a local instability defined
by the margin of the seeeded watershed cut: It is computed from the maximum weight
wkl, (k, l) ∈ P (i, 0) that appears in the path P (i, 0) between a node i and the root node
0 in the MST, when only considering seeds of one type. The margin is the difference
between the lowest possible path from a seed type and the next best one from another
seed type.

3.2 Link instability via minimum perturbations
The first structural uncertainty measure we propose estimates the influence of individ-
ual edges on the final segmentation. In Lemma 7.3 (Appendix) we show that only the
inclusion of edges f ∈ C(T ) from the current cut set C(T ) (i.e. f /∈ T ) into the
minimum spanning tree changes the resulting segmentation. We propose to measure
the instability of all edges e ∈ T currently part of the MST T by calculating how often
an edge e would be removed from the MST when considering minimal perturbations
that would enforce the inclusion of an edge f ∈ C(T ), /∈ T into the MST. i.e. minimal
perturbations that change the segmentation. Thus, our uncertainty estimator measures
how much the overall segmentation depends on w(e) being being smaller than w(f)
considering a minimum perturbation of w(f) that would change the segmentation.

The minimal perturbation neccessary to enforce inclusion of a cut edge f into the
MST is characterized by the following Definition:
Definition 3.4 (Minimal edge weight perturbation) The minimal edge weight pertur-
bation ŵij of some edge f = (i, j) /∈ T that enforces the inclusion of this edge in a
minimum spanning tree of G is given by ŵij = min

(k,l)
wij − wkl + ε, (k, l) = e ∈ T
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This definition follows from Lemma 7.2 in the Appendix: a smaller perturbation does
not lead to any negative e, f exchange.

Algorithm 3.2.1 counts how often an edge which is part of the MST would be
removed from the spanning tree considering all minimal edge weight perturbations
(Definition 3.4) that change the segmentation (Definition 3.2) induced by the MST.
The correctness of Algorithm 3.2.1 is proven in the Appendix (Lemma 7.4).

Algorithm 3.2.1 Link Instability
1. Determine the cut set C(MST ).

2. Do a breadth first search starting from the root node of the MST and store at each
node the edge with maximum weight encountered so far.

3. For each edge in the cut set: The minimal exchange partner is the edge with
maximum weight stored in either end node of the cut edge. Increment the counter
of that edge.

We note that the runtime of Algorithm 3.2.1 is linear in the number of edges of the
graph and thus preserves the low computational overhead of the watershed cut. This
follows from the fact that the computational complexity of the determination of C(T ),
the breadth first search and the counter incrementation are all linear in the number of
edges. We propose to use the link instability as a uncertainty measure for the edges.

3.3 Uncertainty from stochastic graphs
Edge weights in the supervoxel graph are computed from local features. Since the raw
data are noisy, the edge weights are necessarily noisy as well. We accomodate this
uncertainty by moving from deterministic edge weights to stochastic ones, which are
distributed according to a probability distribution reflecting the noise. In contrast to
[17, 18] who obtain a stochastic watershed by random perturbations of the seed posi-
tions, we keep the seeds fixed and instead randomize the edge weights. In particular,
we define the stochastic watershed cut by replacing the original edge weights wij with
w′ij ∼ PDij , where PDij is the weight distribution of edge (i, j) that can be modeled
by multiplicative noise, for example.

Consequently, the hard label assignment xi of node vi in the fixed-weight water-
shed cut will be replaced by the probability of a label assignment pi(l), l ∈ L which
depends on the edge weight distribution PDij of all edges (i, j).

Ideally, we would like to compute these probabilities exactly, but the analysis in
the Appendix and Supplementary Material shows that no efficient algorithm for this
problem exists. This is why we study an approximation.

3.3.1 Sampling scheme

Since computing the exact label distribution is infeasible, we propose to sample tmax
complete graphs Gt, t ∈ {1, .., tmax} from the space of feasible graphs by sampling
their edge weights wt

ij from the independent probability distributions PDij .
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For each randomly drawn graph Gt, the seeded watershed cut is computed by cal-
culating the minimum spanning tree and assigning the node labels xti = l according to
Definition 3.2. After all repetitions, the probability of node vi carrying label l can be
estimated as pi(l) = 1

tmax

∑tmax
t′=1 δ(x

t′

i , l). The final segmentation after tmax repetitions
is defined as xi = argmax

l
pi(l), i.e. xi is assigned in a winner-take-all fashion to the

label l to which node i was most often assigned during the trials.
The computational complexity of this sampling scheme depends linearly on the

number of sampled graphs and the individual minimum spanning tree computations
can be executed in parallel.

3.3.2 Stochastic uncertainty estimators

Uncertainty estimators based on the stochastic watershed cut can be defined in various
ways, a natural one being the probability margin between the winning label xi = l
and the one with the next highest class count, i.e. mi = pi(l) − pi(z′) where z′ =
argmax

l′ 6=l
cl

′

i .

However, this is only a local estimator of uncertainty, whereas critical edges should
be characterized by their non-local effects. By combining the link instability according
to Algorithm 3.2.1 with stochastic watershed cuts by accumulating the link instability
of the edges over all tmax trials, a measure incorporating the influence of a single edge
on the global segmentation can be obtained. This estimator is called stochastic link
instability.

Algorithm 3.3.1 Stochastic segmentation instability
• Do tmax times

1. Construct graph Gt by sampling wt
ij from PDij .

2. Construct MST (Gt) with root node 0, and store the segmentation xti.

3. Calculate and store the size of the subtree hti = |T i| of each node i.

• Calculate pi(l) = 1
tmax

∑tmax
t′=1 δ(x

t′

i , l)

• Calculate the final segmentation from the winning label for each node: xi =
argmax

l
pi(l).

• Calculate the cut set C induced by xi.

• Aggregate for each node i with edge (i, j) ∈ C, i.e. for all nodes i touching the
segmentation border, the size of the subtrees hti over all trials where the label xti
differed from the winning label xi: Hi =

∑
t′:xt

i 6=xi
ht

′

i

Finally we propose another non-local alternative. Algorithm 3.3.1 takes advantage
of an important property of the randomization of edge weights: the changing segmen-
tation boundary (cut setC(T t)) that results from each trial t of the stochastic watershed
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Figure 3: User guidance example for two of the proposed estimators. The top row
displays the stochastic watershed using the stochastic segmentation instabiltiy estima-
tor (Algorithm 3.3.1) , the bottom row the stochastic link instability estimator (Sec-
tion 3.3.2). Displayed from left to right are the initial segmentation and two refine-
ments based on seeding at the position of highest uncertainty (uncertainty is indicated
by red color, the position of highest uncertainty by an arrow).

cut. This effect can be incorporated into an uncertainty estimator which attributes the
magnitude of the aggregated segmentation boundary movement throughout the trials
to individual edges.

The intuition behind the stochastic segmentation instability measureHi is that very
unstable segmentation boundaries indicate ambiguity in the data and need user verifica-
tion. The definition ofHi (Algorithm 3.3.1) ensures that nodes receive high uncertainty
when their label differs frequently from the winning label, or the affected subtrees are
large. Nodes of highest criticality exhibit both problems.

4 Evaluation

4.1 Robot user
To evaluate the proposed uncertainty estimators objectively, we have designed an inter-
active segmentation robot [21]. The automaton tries to segment all neural processes in
the data using two different seeding strategies. In the ground truth strategy the robot
places two initial seeds, one inside the object of interest, one outside and then loops
until convergence:

1. Calculate the set differences between ground truth and current segmentation.

2. Place a correcting single voxel seed in the center (maximum of the Euclidean
distance transform) of the largest false positive or false negative region.

3. Re-run the segmentation algorithm with the new set of seeds.
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Note that this segmentation robot requires knowledge of the complete three-dimensional
ground truth for each iteration. This is clearly unrealistic, because if this knowledge
were so readily available, then interactive segmentation would not be required in the
first place.

The uncertainty query strategy, on the other hand, does not require full knowl-
edge of the entire ground truth at each step. The robot begins by placing two initial
seeds, one inside the object of interest, and one outside. It then loops until conver-
gence:

1. Query the segmentation algorithm for the most uncertain region, using one of the
confidence measures defined in Section 3.

2. Query the ground truth for the true label at the corresponding position.

3. Place a suitable seed at that position and re-run the segmentation algorithm.

4.2 Experiments
To evaluate the proposed uncertainty estimators for the seeded watershed cut we com-
pare the estimators on a 3D segmentation problem from the neurosciences in a user
guided segmentation setting. The nearly isotropic and densely annotated ground truth
data is a subset of 400 × 200 × 200 voxels from a 20003 volume of neural tissue
acquired with a serial blockface electron microscopy (SBEM [22], Figure 1) and a
900×450×450 densely annotated subset from a 20003 volume acquired with focused
ion beam electron microscopy (FIBSEM [23], Figure 1). The reconstruction of the
neural processes in this tissue is a segmentation problem that exhibits many properties
that make it suitable for the seeded watershed cut [6].

We have tested all proposed uncertainty estimators with the uncertainty query strat-
egy of the robot user against the ground truth strategy, which can be seen as an upper
bound labeling strategy. During the segmentation process we recorded the resulting
segmentation f-measure after each additional seed to compare the convergence rate of
the robot for the different uncertainty estimators. Figure 4 shows the median across all
neural processes in the respective ground truth. The parameters, namely the bias of the
background seed (a background seed preference, [6]) and the amount of perturbation β
in the case of the estimators based on the stochastic watershed cut were determined by
a grid search over a training set consisting of 10% of the neural processes. For simplic-
ity, the edge weights for the trials twere sampled as wt

ij ∼ Unif(wij , (1.0+β)∗wij).
These edge weight distributions are simplistic, and even better results may be obtained
when using more appropriate distributions. Figure 5 b displays the averaged standard
deviation for pi(l) over 100 runs of the stochastic watershed cut with different trial
counts tmax. While the average standard deviation does not converge for the trial counts
considered here, Figure 5 a indicates, that the number of randomly sampled graphs has
virtually no effect on the predictive quality of the two proposed stochastic uncertainty
estimators, already a trial size of tmax = 5 can be used for successful user guidance.
Thus our estimators incur only a small additional computational overhead compared to
the standard watershed cut, which can be calculated inO(nα(n)) [24], i.e. quasi linear
time.
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5 Conclusion
We have presented and evaluated several novel uncertainty estimators for the seeded
watershed cut. The proposed estimators are based on a minimum perturbation prin-
ciple and stochastic edge weights, respectively. The proposed estimators were evalu-
ated on a 3D biological neuroimaging application example that can profit from good
uncertainty estimates and which exhibits many properties that make the seeded wa-
tershed cut a suitable algorithm. We showed that the proposed non-local uncertainty
estimators yield a tremendous improvement in the number of user interactions com-
pared to a simple local margin based approach which fails to query for more infor-
mative labels after the first few iterations. The proposed non-local estimators yield
segmentation improvements that come close to an error correction strategy that relies
on complete knowledge of the ground truth while incurring only an insignificant over-
head compared to a standard watershed cut. Code and a GUI are made available at
http://www.ilastik.org/carving-user-guidance.
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7 Appendix

7.1 General
Our uncertainty measures estimate by how much the segmentation would change if
the edges in the spanning tree were replaced, and how likely these replacements are.
MST edge exchange has been investigated in [25], and we repeat a useful lemma and
definition from there:
Definition 7.1 (e, f exchange) [25] Let T be a spanning tree of graph G. A e, f -
exchange is a pair of edges, e, f where e ∈ T, f /∈ T , and T \ e∪ f is a spanning tree.
The weight of the exchange e, f is w(f) − w(e). The weight of tree T \ e ∪ f is the
weight of tree T plus the weight of the exchange e, f .
Lemma 7.2 [25] A spanning tree T has minimum weight if and only if no e, f -exchange
has negative weight.

7.2 Link instability
Since we are only interested in changes of the MST that cause changes in the induced
segmentation, we analyze the sufficient and neccessary conditions that yield a different
segmentation:
Lemma 7.3 An e, f -exchange resulting in a spanning tree T ′ = T \ e ∪ f induces a
watershed segmentation different from T if and only if f ∈ C(T ).
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Proof →: Let e, f be an exchange with edge e = (i, j) ∈ T and edge f = (k, l) ∈ C.
Then, either node k or node l change their segmentation: before the exchange we
obtain from the definition of the cut set C and f ∈ C: xk 6= xl, while after the
exchange f ∈ T and thus xk = xl.
←: Let e, f be an exchange with edge e = (i, j) ∈ T and edge f = (k, l). Assume

f /∈ C. First consider f to connect two nodes in the same subtree T−l of e, i.e.
xi = xj = xk = xl = l. Thus an e, f exchange will not change the segmentation
of any node. Now consider f to connect two nodes in a different subtree T−l

′ 6= T−l

then e, i.e. xi = xj = l and xk = xl = l′, then the e, f exchange will not produce a
valid spanning tree: subtree T−l

′
contains a cycle, and subtree T l is partitioned into

two components.
Relying on the notion of an e, f -exchange (Definition 7.1) we now proof the correct-
ness of the edge link instability Algorithm:
Lemma 7.4 Algorithm 3.2.1 counts how often an edge in the minimum spanning tree
is exchange partner in negative e, f exchanges resulting from all minimal single edge
weight perturbations (Definition 3.4) that induce a different seeded watershed cut seg-
mentation (Lemma 7.3).
Proof Item 1: When considering all segmentation changing perturbations involving a
single edge, it suffices to consider the e, f -exchanges where e ∈ T and f ∈ C(T ). This
follows from Lemma 7.3.

Item 2: When considering the minimal perturbations that move edge f ∈ C(T )
into the minimum spanning tree via an e, f exchange, it suffices to consider the edges
on the path from node i or node j to the root node v0, with edge f = (i, j): if the edge
e were not on a path from node i or node j to the root node v0, with edge f = (i, j),
exchanging e with f would lead to a cycle. The fact that e has to be the edge of
maximum weight on either path follows from Definition 3.4.

From Item 1 and Item 2 follows that the algorithm is correct.

7.3 Stochastic watershed cut
While the computational complexity of the stochastic watershed cut is fully treated in
the supplementary material we provide some introductory remarks. To calculate pi(l),
i.e. the probability of node vi being assigned label l ∈ L it is necessary to calculate the
probability of vi being in a subtree of the MST that is a child of a seed node v−l with
label l. Since even the calculation of the expected length of a minimum spanning tree
of a stochastic graph is known to be a #P -hard problem [26] it seems plausible that
the calculation of the probability of two nodes belonging to the same subtree is as hard.

A proof of the #P -hardness for the stochastic watershed cut problem can be found
in the supplementary material, what follows is an outline of the construction and the
reduction to the l −m network reliability problem.
Definition 7.5 (l − m network reliability problem) The two terminal network relia-
bility problem is defined on an undirected graph G(E, V ) with edge weights wij ∼
Bernoulli(pij) where pij is the probability of the connection between i and j being
active (whereas an inactive edge is equivalent to a non-existing edge). The two termi-
nal network reliability problem is then to calculate the probability of the existence of a
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path between two nodes l and m.
We reduce the two terminal network reliability problem for G to the stochastic water-
shed cut on a new graph G′(V ′, E′) that contains all edges and vertices of the original
Graph G: We introduce a new node z′ which is connected with weight w′z′i′ = α
to all nodes i′ ∈ V ′ whith α � 1. The edge weights w′z′i′ connecting the newly
introduced vertex z′ to all nodes are set to α with probability 1 and ensure that the
graph is completely connected and a MST can be constructed. The stochastic wa-
tershed cut edge weight distribution of the original edges wij is modeled as w′i′j′ ∼
Bernoulli(1− pij) ∗ β + 1, i 6= z′ with β � α.
Lemma 7.6 The probability of the node m′ being a child of z′ in the MST (G′) is
exactly the probability of a connection between m and l in the original graph G. Thus
the two terminal network reliability problem can be reduced to a stochastic watershed
cut.
Lemma 7.7 The stochastic watershed cut with arbitrary edge weight distributionsPDij

can be reduced to a series of two terminal network reliability problems.
From Lemma 8.2 and Lemma 9.5 we conclude that the stochastic watershed cut is

at least as hard as the two terminal network reliability problem which is known to be a
#P -hard problem [27].

Part I

Supplementary Material
In the supplementary material the proofs for Lemma 7.6 and Lemma 7.7 from the
Appendix of the paper are given. We refer to the original Lemma 7.6 as Lemma 8.2
and Lemma 7.7 is Lemma 9.5 respectively.

8 Reducing the l,m network reliability problem to a
stochastic mst problem

First we give a definition of the l −m network reliability problem [27].
Definition 8.1 (l-m Network reliability problem) The two terminal network reliabil-
ity problem is defined on an undirected graph G(E, V ) with edge weights wij ∼
Bernoulli(pij) where pij is the probability of the connection between i and j being
active (whereas an inactive edge is equivalent to a non-existing edge). The two termi-
nal network reliability problem is then to calculate the probability of the existence of a
path between two nodes l and m.

Intuition We reduce the l−m network reliability problem to a stochastic minimum
spanning tree calculation by constructing a new graph G′ based on G. We add a new
root vertex 0 toG′ and introduce two label vertices−1 and−2. GraphG′ is constructed
in such a way, that when a connection between l and m exists in G node m is a child
of vertex −1 in a MST of G′ and a child of vertex −2 in a MST of G′ if no connection
exists in the original graph G.
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The new graph G′(V ′, E′) contains all edges and vertices of the original Graph
G. In addition a root vertex 0 is introduced which is connected with zero edge weight
w−1 0 = 0, w−2 0 = 0 to the new label vertices −1 and −2. Node −1 is connected
to node l′ with zero edge weight w−1 −2 = 0. Thes zero edge weights ensure that the
corresponding edges are included in any MST of G′.

In addition the newly introduced vertex −2 is connected with weight w′−2 i′ =
α, α > 1 to all nodes i′ ∈ V ′ that are also present in G.

The edge weight distributions of the original edges wi j of G are modeled as

w′i′ j′ ∼ Bernoulli(1 − pij) ∗ β + 1, β > α

Thus a random trial inG that removes an edge (i, j) corresponds to an edge with weight
w′i′j′ = β + 1 in G′. A random trial which leaves edge (i, j) intact in G induces an
edge with weight w′i′j′ = 1 in G′.
Lemma 8.2 The probability of the node m′ being a child of node −1 in the MST (G′)
is exactly the probability of a connection betweenm and l in the original graphG. Thus
the two terminal network reliability problem can be reduced to a stochastic watershed
cut.
Proof Consider a random draw of the edge weights. First we consider the case that
the realized graph induced by the trial leaves l and m connected in G. It is easy to
see that in this case m′ must be a child of node −1 in the MST of the corresponding
realization of G′, since any spanning tree in which m′ is a child of vertex −2 must
include an edge w′−2 i′ = α > 1, while the connectedness of l and m in the original
graph G implies by construction that a path P (l′,m′) in G′ exists with edge weights
w′i′ j′ = 1, (i′, j′) ∈ P (l′,m′). Thus any MST in G′ with root node 0 will have node
m′ and l′ in a subtree of node −1 (which is by construction connected with zero edge
weight to l′).

Secondly we consider the case that the realized graph induced by the trial leaves
l and m disconnected. It is also easy to see that in this case m′ must be a child of
node −2 in any MST of the corresponding realization of G′, since any spanning tree
connecting m′ to node −1 includes an edge w′i′j′ = β > α since the disconnectedness
in G implies that any P (l′,m′) in G′ includes at least on edge of such weight (by con-
struction of the edge weights in G′ which assigns weight w′i′j′ = β when the bernoulli
trial in the original graph G removes edge (i′, j′)). Thus any minimum spanning tree
connects node m′ to node −2 since this incurs the cheaper cost of w′−2 m′ = α < β.

We showed that any random trial that leaves l and m connected in G implies that
m′ is a child of node −1 in the MST (G′), while any random trial that disconnects l
and m in G implies that m′ is a child of −2 in the MST (G′).

Since the final probability is defined by the outcome of all possible trials and the
outcomes are linked in the described way it has been shown that the l − m terminal
network reliability can be answered by calculating the probability for m′ being a child
of a newly introduced node −1 in a MST of a newly constructed Graph G′. This is a
stochastic watershed cut problem.
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9 Solving the stochastic mst problem with a series of
l,m network reliability problems

Intuition We reduce the stochastic mst problem on a graph G with root node 0 and
two seed type nodes −1 and −2 to a series of l −m network reliability problems by
calculating the probability for a path P (−1, j) between seed type node −1 and node
j with height H(P (−1, j)) ≤ h. This can be done by solving a network connectiv-
ity problem on a new graph and considering the cumulative probability distributions
CDFij(h) instead of PDij(h). We denote the event that a path from node −1 to node
j with height equal or lower then h exists by event

A−1 j,≤h

The probability that a path H(P (−1, j)) ≤ h exists while at the same time no path
of such weight exists from seed node −2 is given by the probability for both events
happening:

p(A−1 j,≤h ∧A−2 j,>h)

By integrating over h the overall probability for the existance a lower path from node
−1 to node j then from node −2 is obtained (this event is denoted as B−1 j<−2 j):

p(B−1 j<−2 j) =

∞∫
0

p(A−1 j,≤h ∧A−2 j,>h)dh

The existance of a lower path from−1 to j guarantess that node j is a child of node−1
in a MST of G′ with root node 0 (Lemma 9.3). Thus by calculating p(B−1 j<−2 j),
i.e. the probability for j being a child of −1, the solution to a stochastic watershed cut
problem is obtained.
Definition 9.1 (Height of a path H(P (i, j))) The height of a path H(P (i, j)) from
i to j in G is defined as the maximum edge weight on this path:

H(P (i, j)) = max
wkl∈P (i,j)

wkl

Definition 9.2 (Lowest path P ′(i, j)) The Lowest possible path P ′(i, j) from i to j
in G is defined as the path with the lowest maximum edge weight amongs all possible
paths from i to j P(i, j):

P ′(i, j) = argmin
P (i,j)∈P(i,j)

H(P (i, j))

Lemma 9.3 Let i be a node in G and P ′(−1, i) be a lower path then P ′(−2, i), i.e.
H(P ′(−1, i)) < H(P ′(−2, i)), then node i is a child of seed node −1 in a minimum
spanning tree.
Proof Assuming the contrary violates the minimum spanning tree property of no neg-
ative edge exchanges.
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Lemma 9.4 LetG′ be a graph constructed fromG by settingw′i′j′ ∼ Bernoulli(CDFij(h))
whereCDFij is the cumulative probability density function of the edge weight distribu-
tion PDij . The probability of a path P (−1, i) with maximum heightH(P (−1, i)) ≤ h
is equal to the probability of a connection between node −1 and node i in G′.
Proof This follows from the definition of the edge weightsw′i′j′ ∼ Bernoulli(CDFij(h))
and the definition of the cumulative probability density function. I.e. Bernoulli(CDFij(h))
expresses the probability that edge weightwij ≤ h. The probability for a pathPG′(−1, i)
in G′ is then the probability of a PG(−1, i) in G such that all wnm ≤ h,wnm ∈
PG(−1, i).
Lemma 9.5 Let G be a graph with edge weight wij ∼ PDij , root vertex v0 and two
label type vertices v−1 and v−2. The stochastic watershed cut problem, i.e. the calcu-
lation of the probability of node i being a child of node −1 in a MST with root node 0
can be reduced to a series of l −m network reliability problems.
Proof LetG′ be a graph constructed fromG by settingw′i′j′ ∼ Bernoulli(CDFij(h))
where CDFij is the cumulative probability density function of the edge weight distri-
bution PDij . From Lemma 9.4 we have that by setting w′−2 j = 0 and w′−1i = w−1i
and solving the two terminal network reliability problem between node −1 and node j
one obtains the probability for a path from −1 to j with maximum height ≤ h

p(A−1 j,≤h)

the existence of such a path is denoted as eventA−1 j,<h. The probability for the events
p(A−2 j,≤h) is calculated accordingly. We note that p(A−1 j,>h) = 1 − p(A−1 j,≤h).

Let G′′ be a graph constructed from G by setting w′′ij ∼ Bernoulli(CDFij(h))
where CDFij is the cumulative probability density function of the edge weight distri-
bution PDij . By setting w′′−2 i = w−2 i and w′′−1 i = w−1 i and connecting node −1
in G′′ to the other seed node −2, i.e. w′′−1 −2 = 1 one can calculate the probability of
a path from −1 or −2 to j with maximum height ≤ h

p(A−1 j,≤h ∨A−2 j,≤h) =

p(A−1 j,≤h) + p(A−2 j,≤h)− p(A−1 j,≤h ∧A−2 j,≤h)

Thus, p(A−1 j,≤h ∧ A−2 j,≤h) can be calculated by solving three network reliability
problems.

From

p(A−1 j,≤h ∧A−2 j,≤h) = p(A−1 j,≤h)p(A−2 j,≤h|A−1 j,≤h)

and by using

p(A−2 j,>h|A−1 j,≤h) = 1− p(A−2 j,≤h|A−1 j,≤h)

one obtains
p(B−1 j<−2 j(h)) := p(A−1 j,≤h ∧A−2 j,>h) =

p(A−1 j,≤h)p(A−2 j,>h|A−1 j,≤h)
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By integrating over h the probability for the existance of a lower path from −1 to j
then from −2 to j is calculated as:

p(B−1 j<−2 j) =

∞∫
0

p(A−1 j,≤h ∧A−2 j,>h)dh

which in addition with Lemma 9.3 gives the probability of node j being a child of
node −1 in a MST with root node 0.

We conclud that a stochastic watershed cut problem can be reduced to a series of
network reliability problems.

In Lemma 8.2 it was shown that any l-m network reliability problem can be ex-
pressed as a stochastic watershed cut problem. In Lemma 9.5 we have shown how to
decompose a stochastic watershed cut problem with arbitrary edge weight distributions
PDij into a series of l-m network reliability problems. We conclude that the stochastic
watershed cut is at least as hard as the two terminal network reliability problem which
is known to be a #P -hard problem [27].
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(a)

(b)

Figure 4: Median F-measure over number of user interactions using the different uncer-
tainty estimators as the query strategy for the segmentation robot for the two different
datasets. (a) FIBSEM. (b) SBEM.
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(a)

(b)
Figure 5: (a) Median F-measure over number of user interactions using 5 and 65 ran-
domly sampled graphs. (b) Averaged standard deviation for pi(l) using 100 runs of the
stochastic watershed over the number of randomly sampled Graphs along the x-axis.
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