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Abstract. In particle image velocimetry (PIV) a temporally separated
image pair of a gas or liquid seeded with small particles is recorded
and analysed in order to measure fluid flows therein. We investigate a
variational approach to cross-correlation, a robust and well-established
method to determine displacement vectors from the image data. A “soft”
Gaussian window function replaces the usual rectangular correlation
frame. We propose a criterion to adapt the window size and shape that
directly formulates the goal to minimise the displacement estimation er-
ror. In order to measure motion and adapt the window shapes at the
same time we combine both sub-problems into a bi-level optimisation
problem and solve it via continuous multiscale methods. Experiments
with synthetic and real PIV data demonstrate the ability of our ap-
proach to solve the formulated problem. Moreover window adaptation
yields significantly improved results.

1 Introduction

Overview. Particle image velocimetry is an important measurement technique
for industrial fluid flow questions. Small particles are introduced into liquids
or gases and act as indicators for the movement of the investigated substance
around obstacles and in mixing zones. A 2D plane is illuminated by laser light
rendering the particles in there visible to a camera which records two images of
the highlighted area within a short time interval.

The analysis of the image data allows to determine the movement of particles
and with this to measure the speed, turbulence or other derived mechanical
properties of the fluid. In contrast to particle tracking velocimetry where first
single objects are identified by their position and then matched between two
image frames, algorithms for PIV determine patches from the first and second
frame that fit best to some similarity measure. Cross-correlation has developed
the state-of-the-art method for motion estimation in PIV and benefits from its
robustness against noise and illumination disturbances.
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In this paper we describe a variational approach to cross-correlation by con-
tinuously optimising over the displacement variables. In addition a criterion is
defined to locally adapt the correlation window in order to improve accuracy of
the estimation.

Related Work and Contribution. A vast number of literature exists on
all aspects of the application of cross-correlation for PIV, here we only refer
to [1] for an excellent overview. Typically an exhaustive search over the integer
displacements is performed to search for the highest correlation peak. The corre-
lation function is interpolated to gain sub-pixel accuracy. In contrast we present
a variational approach to motion estimation based on continuously maximising
the cross-correlation between two images. The correlation window is described by
a “soft” Gaussian weighting function instead of a sharp rectangular mask. This
idea is used both in a local [2] and global context [3] for smoothing the optical
flow constraint. However while most approaches use a fixed window size com-
mon for all positions, we formulate a sound criterion for the location-dependent
choice of the window shape parameters (size, orientation, anisotropy) in words
of a further optimisation problem. Both displacements and window parameters
are determined as a solution of a combined, bi-level minimisation problem which
is being solved via a multiscale gradient-based algorithm. We test our approach
with synthetic and real particle images to demonstrate the ability to robustly
determine displacements and that window shape adaptation can improve results
significantly.

Organisation. In section 2 we explicitly define the cross-correlation in words
of a continuous minimisation problem and introduce the utilised weighting func-
tion. Our approach to window adaptation is motivated and described. Discreti-
sation and optimisation of the defined approach is subject to section 3. Results
of experiments with real and synthetic data are given in section 4. We conclude
and describe further work in section 5.

2 Problem Statement

2.1 Variational Approach to Correlation

The input data consists of two images defined on Ω ⊂ R2. However we define
them to vanish outside Ω and thus obtain two infinite image functions g1, g2 :
R2 7→ R. For the continuous case, we define the negative cross-correlation func-
tion at position x ∈ Ω by

C(v,Σ, x) := −
∫

R2
w(y − x,Σ) g1

(
y − 1

2
v

)
g2

(
y +

1
2
v

)
dy, (1)

with a window function w(x,Σ) parametrised by Σ. In order to estimate the
movement between two image frames in the considered areas, the correlation



function is minimised with respect to the displacement vector v ∈ R2. The local
estimation is extended to a global variational problem to determine a vector
field u : Ω 7→ R2,

min
u

C(u, Σ) , with C(u, Σ) :=
∫

Ω

C(u(x), Σ(x), x) dx , (2)

where Σ is defined on Ω and describes the location-dependent window shape.
This formulation allows to add regularisation terms such as physical priors, e.g.
incompressibility constraints [4], on the vector field. However here the integration
over the correlation window in (1) is the only spatial regularising mechanism.

In this work we jointly determine the integer and fractional part of the dis-
placement by continuously searching for an optimum of the correlation function.
In addition we choose a “soft” window function w(x,Σ) := exp

(
− 1

2x>Σ−1x
)

which is basically a non-normalised Gaussian function, instead of a sharp, rect-
angular window. The symmetric, positive definite two-by-two matrix Σ ∈ S2

++

allows to continuously steer the size, anisotropy and orientation of the window,
see Fig. 1 for some possible shapes.

Fig. 1. Possible shapes of the weighting function: varying size, anisotropy, orientation

2.2 Window Adaptation

When cross-correlation is employed for estimating motion it is implicitly assumed
that the displacements within the considered window are homogeneous. However
this only holds true in very simple cases and leads to estimation errors in areas
of large motion gradients as the vector field is smoothed out. This effect could be
avoided by reducing the window size, however with the harm of a smaller area
of support and number of particles and thus a higher influence of image noise.

In order to improve accuracy we propose to adapt the window shape by
minimising a function which models the expected error subject to the choice of
the window parameter Σ at position x ∈ Ω. Given a fixed vector field u we
define the energy function as

E(Σ, u, x) :=
∫

R2
w(y − x,Σ)e(x, y, u) dy +

σ2

2π
√

det Σ
, (3)

e(x, y, u) :=
{
‖u(x)− u(y)‖22 if y ∈ Ω
eout otherwise

.

The first term of (3) measures the deviation from the assumption u = const. In
addition we assume a constant error eout if the correlation window incorporates
data from outside the image domain.



The second term describes the error caused by insufficient large support
for the displacement estimation in the presence of a homogeneous movement.
We assume that each vector u results from a weighted least-square estima-
tion u = arg minu

∫
w(x,Σ) ‖u− u(x)‖22 dx over independent measurements u

of the true displacement u∗, which are disturbed by Gaussian additive noise,
i.e. u(x) ∼ N

(
u∗, σ2I

)
. Then it is possible to show that the expected square er-

ror is E
{
‖u− u∗‖22

}
= σ2R

w(x,Σ)dx
= σ2

2π
√

det Σ
. The parameter σ in E constitutes

an estimation of the influence of image noise on the measurement error.
Note that our definition of the error measure can easily be extended to involve

further expert knowledge about the local influence of experimental parameters,
such as particle seeding density, on the error of the cross-correlation method.

2.3 Joint Optimisation

In section 2.1 and 2.2 we proposed two concepts disregarding their dependencies
by assuming that the window shape is fixed during correlation respectively that
a vector field is known to estimate the error caused by spatial displacement
variations. Now we combine both by defining a bi-level optimisation problem,

min
u

C(u, Σ) (4)

with Σ(x) ∈ arg min
Σ∈S2

++

E(Σ, u, x) , ∀x ∈ Ω . (5)

The top-level optimisation estimates the displacements u at all positions x in the
image by maximising the correlation terms. The window shapes are adapted in
the underlying optimisation problems that constrains each Σ(x) to a minimum
of the error estimation function E and again depends on u.

3 Discretisation and Optimisation

3.1 Data and Variable Discretisation

The discrete input data g1, g2 is assumed to be sampled at a regular grid Y with
grid spacing ay and is stored in a cubic spline representation which yields a two
times continuously derivable representation. We use an efficient implementation
based on [5] to evaluate the function g, its gradient ∇g and its second deriva-
tives ∇2g also at non-integer positions. Grey values of g1 and g2 are shifted
beforehand so they have a mean of zero each. Values outside the image domain
are defined to be zero.

Displacement and window shape variables are discretised on a separate reg-
ular grid X ⊂ Ω with spacing ax which is typically chosen to be coarser than Y .
We denote the variables located at the coordinates xi ∈ X as ui := u(xi) re-
spectively Σi := Σ(xi). For the discretisation of the integral expressions in (2)
and (3) we use simple, piecewise constant element functions

vi(x) :=
{

1 if ‖x− xi‖∞ ≤
1
2a

0 otherwise ,



which incorporate a discrete basis for functions R2 7→ R if arranged on a regular
grid with spacing a. The discrete versions of the objective functions then read

C(u, Σ) = a2
x

∑
xi∈X

a2
y

∑
yj∈Y

w(yj − xi, Σi)g1

(
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2
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)
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(
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1
2
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and E(Σ, u, x) = a2
x

∑
xi∈X

w(xi − x,Σ)e(x, xi, u) +
σ2

2π
√

det Σ
.

The derivative of the first function with respect to ui simplifies to

∇uiC(u, Σ) = a2
xa2

y

∑
yj∈Y

w(yj − xi)∇ui

(
g1

(
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2
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)
g2

(
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1
2
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))
.

For speed up evaluation is restricted to a rectangular area that encloses all
positions with w(x,Σ) ≥ 10−3.

3.2 Optimisation

The joint formulation (4)–(5) is a bi-level optimisation problem with non-convex
function in both layers. First we remove the explicit constraints Σi � 0 of the
second level by including them into the objective function as a logarithmic barrier
function and define

Ẽ(Σ, u, x) := E(Σ, u, x)− µ log det Σ ,

with some constant µ > 0, here chosen as µ = 10−2. In the same manner it
is possible to incorporate additional upper and lower bounds on the window
size. We relax the optimisation objectives by considering only the first order
optimality conditions,

∇uC(u, Σ) = 0 (6)

∇ΣiẼ(Σi, u, xi) = 0 , ∀xi ∈ X . (7)

An initial solution is iteratively improved by updating the variables in parallel.

initialise Σ(0), u(0), k ← 0
repeat

k ← k + 1
for each xi ∈ X

u
(k+1)
i ←update(C(·, Σ(k)

i , xi),u
(k)
i ,λu)

Σ
(k+1)
i ←update(Ẽ(·, u(k), xi),Σ

(k)
i ,λΣ)

until convergence

The update step is a Levenberg-Marquardt method that just as the Newton step
method involves first and second order derivatives of the objective function f(x),
but additionally steers the step length by the parameters λ > 0.



function update(f(x),x0,λ)
H ← ∇2f(x0), g ← ∇f(x0)
d← −(H + λI)−1g
choose α ∈ [0, 1), so that f(x0 + αd) ≤ f(x0)
return x0 + αd

However due to the non-convexity of C and E, a variable assignment that fulfils
equations (6)-(7) does not necessarily incorporate a local optima for (4)-(5). For
this reason we line search along the step direction to reduce the value of the
objective functions and to avoid local maxima and saddle points.

3.3 Multiscale Framework

The optimisation method described in the previous section finds a local optimum
which however might be far from a globally optimal solution. Our approach
avoids most of them by plugging the single-level optimisation into a multiscale
framework. Figure 2 illustrates how this allows to circumnavigate the many sub-
optimal positions in the correlation function of two noisy images.

Fig. 2. Optimisation of the non-convex correlation function of noisy image data: Value
of −C(u, Σ, x) over u and evolution of the displacement over several iterations (bright
line, starting in (0, 0)); due to the multiscale framework the method does not get stuck
in a local optima but finds the correct solution in (+8,−8).

In order to gain a coarse-to-fine representation of the image frames, the data
is repetitively low-pass filtered and sub-sampled. When moving in opposite direc-
tion within the resolution pyramid, the variables are sampled to a finer grid and



used as initialisation for the next iteration steps. We use cubic spline interpola-
tion both for the re-sampling of data and vector variables. For the window shape
variables, bi-linear interpolation implicitly conserves the constraint Σ ∈ S2

++.

4 Experiments and Discussion

4.1 PIV Evaluation Data Set

Our first experiment is based on an evaluation data set designed to verify the
ability of correlation-based motion estimation methods to cope with large gradi-
ents in the vector field. Case A4 of the PIV Challenge 2005 [6] contains an area
named 1D Sinusoids I which consist of two synthetic particle images each 1000
by 400 pixels in size. Their vertical displacements vary sinus-like with different
wavelength (400 pixels on the left down to 20 on the right) while the horizontal
component is zero everywhere, see Fig. 3(a)-(b).

Six respectively two scale levels were used for the fixed-window experiments
and experiments with window adaptation. The scale factor between two suc-
cessive levels is

√
2. The parameters in (3) were set to σ = 20 and eout = 10.

Windows were constrained so that their 50%-level curve lies within a radius of
about 63 pixels, i.e. w(x,Σ) < 0.5 for all ‖x‖2 ≥ 63. The maximum displacement
in data is about 2.7 pixels and 1.2 pixels in average.

The results (see Fig. 3(c)) show that pure correlation with fixed window
shapes can capture the main structures of the images but fails to accurately
estimate the vector fields especially in the presence of large displacements gra-
dients. However when used as initialisation to adaptive correlation we obtained
a precise reconstruction (see Fig. 3(d)) of the displacement field, even for the
smallest wavelength.

4.2 Real Data

In order to test the ability of our approach to cope with noise and disturbances
in real-life turbulent data we applied it to an image pair from a wind tunnel
experiment (wake behind a cylinder, see [7]). Figure 4(a) shows the resulting
vector field.

The multiscale framework used eight scale levels and a scaling factor of
√

2.
Window adaptation parameters were chosen as σ = 10 and eout = 10. The
window radius was constrained to a maximum of about 32 pixels. The average
measured displacement is about seven pixels.

Although we used neither regularisation terms nor data validation algorithms
(e.g. median filter) on the vector field we obtained a smooth solution without
outliers. Figure 4(b)-4(d) demonstrate how the window shapes align themselves
along areas of equal displacements and avoid gradients as intended by the design
of the window adaptation criterion.



(a)

(b)

(c)

(d)

Fig. 3. Experiments with synthetic data: (a) Groundtruth vector field (sub-sampled).
(b) Vertical component (mapped to grey-values: bright = up, dark = down) of the
groundtruth vector field and highlighted detail, also shown on the right. (c) Correla-
tion with fixed window shape; estimates inevitably deteriorate at small wavelengths.
(d) Joint correlation and window adaptation can significantly improve accuracy despite
spatially variant wavelengths.



(a) overview (b) detailed view (lower left)

(c) detailed view (lower middle) (d) detailed view (upper right)

Fig. 4. Experiments with real data (wake behind a cylinder): (a) Results (sub-sampled)
of the correlation approach with window adaptation. The dark highlighting marks the
area of the (b)-(d) detailed views of the vector field with some adapted windows (con-
tour line: w(x, Σ) = 0.5). Note that each window propagates into regions of homoge-
neous movement and perpendicular to gradients in the vector field and not necessarily
along the flow.



5 Conclusion and Further Work

Conclusion. We proposed an approach to fluid flow estimation based on the
continuous optimisation of the cross-correlation measure. The expected esti-
mation error for the choice of the correlation window shape is modelled and
minimised in order to adapt the windows to displacement gradients. Both sub-
problems were combined in a bi-level optimisation problem. A multiscale gradi-
ent-based approach was described that continuously searches for both optimal
displacements and window shapes.

Experiments with synthetic and real data showed that the approach can cope
with large displacements and disturbances typical for real fluid flow experiments.
The adaptation of window shapes by means of the error expectation model leads
to meaningful results in the presence of displacement gradients and improved
error significantly in the PIV-Challenge data set.

Further Work. Our approach is the origin for further potential investigations:
Due to its variational formulation it is possible to extend the correlation term
to estimate also affine displacements within the window and to involve physical
priors, such as incompressibility.

Further expert knowledge and statistical information can be incorporated
into window adaptation criterion to improve the estimation accuracy. Also more
complex shapes for the weighting function should be considered. A comparison
to state-of-the-art correlation implementations is planned.
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