
  

Technical Report  

From experimental setup to bioinformatics: An RNAi
screening platform to identify host factors involved in
HIV-1 replication  
Kathleen Börner

1
*, Johannes Hermle

1
*, Christoph Sommer

2
, Nigel P. Brown

3
, Bettina Knapp

4
,

Bärbel Glass
1
, Julian Kunkel5, Gloria Torralba6, Jürgen Reymann7, Nina Beil7, Jürgen Beneke7,

Rainer Pepperkok8, Reinhard Schneider3, Thomas Ludwig5, Michael Hausmann6, Fred
Hamprecht2, Holger Erfle7, Lars Kaderali4, Hans-Georg Kräusslich

1 
and Maik J. Lehmann

1 
 

1 
Department of Infectious Diseases, Virology, University of Heidelberg, Heidelberg, Germany 

2 
Heidelberg 

Collaboratory for Image Processing (HCI), University of Heidelberg, Heidelberg, Germany 
3 

Structural and 
Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany 

4 
Viroquant 

Research Group Modelling, BioQuant Centre, University of Heidelberg, Heidelberg, Germany 
5 

Parallel and 
Distributed Systems, Institute for Informatics, University of Heidelberg, Heidelberg, Germany 

6 
Kirchhoff 

Institute of Physics, University of Heidelberg, Heidelberg, Germany 
7 

Viroquant-CellNetworks RNAi 
Screening Facility, BioQuant Centre, University of Heidelberg, Heidelberg, Germany 

8 
Cell Biology and Cell 

Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany  

RNA interference (RNAi) has emerged as a powerful technique for studying loss-of-function phe- 
Notypes by specific down-regulation of gene expression, allowing the investigation of virus-host in-   
teractions by large-scale high-throughput RNAi screens. Here we present a robust and sensitive  
small interfering RNA screening platform consisting of an experimental setup, single-cell image  
and statistical analysis as well as bioinformatics. The workflow has been established to elucidate  
host gene functions exploited by viruses, monitoring both suppression and enhancement of viral  
replication simultaneously by fluorescence microscopy. The platform comprises a two-stage pro 
cedure in which potential host factors are first identified in a primary screen and afterwards re-test 
ed in a validation screen to confirm true positive hits. Subsequent bioinformatics allows the iden 
tification of cellular genes participating in metabolic pathways and cellular networks utilised by  
viruses for efficient infection. Our workflow has been used to investigate host factor usage by the  
human immunodeficiency virus-1 (HIV-1), but can also be adapted to other viruses. Importantly,  
we expect that the description of the platform will guide further screening approaches for virus 
host interactions. The ViroQuant-CellNetworks RNAi Screening core facility is an integral part of  
the recently founded BioQuant centre for systems biology at the University of Heidelberg and will  
provide service to external users in the near future.  

Keywords: High-throughput screening · HIV · RNA interference · Small interfering RNA  

Correspondence: Dr. Maik J. Lehmann, Department of Infectious Diseases, Abbreviations: GFP, green fluorescent protein; HIV, human 
immunode-Virology, University of Heidelberg, Im Neuenheimer Feld 324, ficiency virus; RNAi, RNA interference; siRNA, small interfering RNA 
69120 Heidelberg, Germany E-mail: maik.lehmann@med.uni-heidelberg.de Fax: +49-6221-565003 * These authors contributed equally to this 
work.  

 



1 Introduction  efficacy and cytotoxicity of siRNAs are determined within
the validation screen. Genes showing similar effects in both 
the primary and the validation screen are considered as 
validated. Bioinformatics and modelling approaches on the 
validated hits in combination with published HIV-1 host 
factors, known metabolic pathways and protein-protein in-
teractions enable the identification of cellular networks and 
pathways involved in the replication of HIV-1. Further 
studies using this platform will characterise fundamental 
cellular functions of the identified hits and will shed light on 
their role in viral pathogenesis.  

Despite considerable advances in virological research over 
the last few decades, viruses continue to represent a major
health risk, being responsible for millions of deaths
worldwide each year. Like other viruses, HIV-1 has evolved
the capability to successfully infect – and efficiently transmit
between – human cells by recruiting various host proteins for 
each step of its life cycle [1–3]. Unravelling these critical
cellular factors will not only improve our fundamental
understanding of HIV-host interactions, but may eventually 
lead to novel anti-HIV therapeutics. Since the rate of
mutations of cellular genes is substantially lower than for
viral genomes, the particular benefit of targeting host factors
is that it may provide a higher barrier to the generation of 
anti-drug resistance. A most powerful and versatile approach
to identify such potential cellular interaction partners of
HIV-1 are RNAi-based loss-of-function screens, as suggested 
by very recent reports [4–6

2 Experimental setup  

The key elements of the experimental setup are the reverse 
transfection of commercially available siRNA libraries into 
HIV-permissive HeLa P4 cells (Fig. 1A). Following a 36 h 
incubation period to allow target knockdown, the cells are 
infected with HIV-1 virions encoding for GFP (Fig. 1B). This 
allows the straight-forward detection and quantitation of 
infected cells via a highly sensitive automated 
microscopy-based assay

].  

Although each of the three high-throughput screens published
thus far reported a large number of potential host cell factors,
there is only little overlap between the different sets
[7–9].This might be explained by differences in the individual
experimental conditions, such as the use of distinct cell lines,
siRNA libraries or virus strains, all of which could have
significantly affected the results. Importantly, however, it may
also be due to the use of different criteria for defining a “hit”
or inconsistencies concerning the techniques applied to vali-
date potential hits [9]. This highlights the need for comparable
experimental conditions in further studies and for the
selection of consistent analytical methods for future screening
approaches.  

 (Fig. 1C).  

2.1 Preparation of the siRNA arrays  

The platform was initially established for chambered 
coverglasses (LabTeks,NUNC,Thermo Fisher Scientific, 
Langenselbold, Germany), allowing the investigation of up to 
384 individual spotted siRNAs per LabTek. LabTeks are 
characterised by easy cell and liquid handling. As only a few 
cells can be monitored per spot, we considered at least eight 
replicates necessary for a statistically reliable analysis. Later 
experiments showed that 384-well plates (BD FALCON 
353962, BD Biosciences, Heidelberg, Germany) were more 
suitable for our high-throughput screening approach, as more 
images per well could be collected compared to LabTeks, 
resulting in a higher number of cells for statistical analysis. 
Therefore, 384-well plates have the advantage of providing 
stronger statistical power even with only two or three 
replicates, which is supported by the high correlation as 
shown in Fig. 2A. However, more sophisticated automated 
liquid handling devices are needed (for more information, see 
Section 2.3).  

In this report we describe a sensitive, automated
microscopy-based siRNA screening platform, which has been
designed to elucidate host factors utilised by a variety of
viruses. This platform has been used for studying host cell
interactions of infectious HIV-1. The detailed description of
the experimental setup as well as guidance on subsequent
image analysis, statistical methods and bioinformatics
approaches provides essential information for establishing
further screening platforms.  

In our platform several sub-genomic siRNA libraries are 
tested in a primary screen and the identified potential hits are
subsequently re-confirmed in a validation screen using
different siRNAs. In both screening stages a non-silencing 
siRNA and an siRNA targeting the HIV-1-specific cell
surface receptor CD4 are used as a negative and positive
control, respectively. In addition, the knockdown  

For validation screens, 96-well plates (Corning COSTAR 
3603, Corning Life Sciences, Amsterdam, The Netherlands) 
were used, allowing collection of even more images per well 
compared to the 384 wells. All experiments were performed 
with HeLa P4 cells as they are well suited for culturing in all 



 
Figure 1. Overview of the siRNA screening platform. (A) Automated workflow consisting of the four main stages: infection assay, image analysis, 
statistics and bioinformatics (boxes at left, running vertically downwards). Key sub-activities of each stage are indicated (boxes to right). (B) 
Genome of the GFP-encoding infectious HIV-1 particles. A portion of the viral nef gene (red) is replaced by GFP (green) [13]. (C) Antibody 
staining against the viral capsid protein reveals GFP expression as a suitable readout for infection in HeLa P4 cells. From left to right: (i) Hoechst 
33258 stain to identify individual cell nuclei. (ii) GFP expression after infection with GFP-encoding HIV-1 particles. (iii) Antibody stain against the 
viral capsid protein p24. (iv) Overlay of GFP-expression and anti-capsid stains with almost complete co-localisation, indicating that almost all 
GFP-expressing cells contain the viral capsid protein p24.  

siRNAs” are considered to achieve a more potent knockdown 
by the synergistic effects of combining several siRNAs 
targeting the same gene. However, less active siRNAs may 
interfere with the efficacy of highly active siRNAs and 
attenuate their effect.  

of the tested well plates and also highly transfectable with
siRNAs (data not shown).  
To keep replicates as reproducible as possible, the siRNA
libraries were printed in a batch-wise manner using a
previously described reverse transfection protocol [10,11].To
this end,a mixture of the respective siRNA, the transfection
reagent Lipofectamine 2000 (Invitrogen GmbH, Karlsruhe,
Germany), fibronectin (Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany), sucrose (USB Corporation, Ohio,
USA) and gelatine (Sigma-Aldrich, Steinheim, Germany)
were transferred automatically to a 384-well plate or any other 
cell culture format. After drying the well, the substrates can ei-
ther be stored for up to 15 months without any loss of efficacy
or can be directly used for knockdown studies [10]. This is a
major advantage of the reverse transfection method compared 
to liquid transfection, as it permits better reproducibility and
comparability between different plates of the same batch.  

Potential host factors identified in the primary screen as 
“hits” (for more information see Section 4) were 
subsequently re-tested within a validation screen with a 
minimum of five replicates in 96-well plates. Per gene, at 
least two novel chemically modified siRNAs (silencer select 
siRNAs, Ambion) were used to enhance specificity and min-
imise “off-target effects”. Two siRNAs against CD4 were 
chosen as positive controls: for the primary screen: 
5’-GAUCAAGAGACUCCUCAGUTT-3’ [12] and for the 
validation screen: Ambion silencer select “s2579”. The 
non-silencing controls were: Primary screen: 
5’-AGGUAGUGUAAUCGCCUUGTT3’ and for the 
validation screen:Ambion silencer select “negative control 
#1”.  

To determine a suitable time for efficient siRNA-mediated 
gene knockdown, the surface expression levels of the HIV-1 
specific receptor CD4 were determined by FACS analysis 
after varying siRNA treatment times. CD4 mediates cell entry 
of HIV-1 and thus represents a pivotal host factor for HIV-1 
infection. Our study revealed a gene knock 

For the primary screen, various libraries containing silencer 
siRNAs (Ambion, Applied Biosystems,Austin,TX, USA) were
used in 384-well plates or LabTeks, with one individual
siRNA per well/spot and three distinct siRNAs per target gene.
In contrast to individual siRNAs, “pooled  



staining or substrate-based indicator assays. Standard 
protocols for the production of HIV-1-AGFP yielded fully 
functional particles as described previously [13]. However, 
we found that particles lost the ability to induce cellular GFP 
expression over a period of several weeks, most likely due to 
high recombination rates. Thus, a commonly used procedure 
for large-scale virus production was not applicable and the 
protocol had to be adapted. The most important factor was to 
limit cell culture to ten passages. Cell culture and infection 
conditions were optimised to generate high titres of HIV-1-
AGFP as follows. Human embryonic kidney 293T cells were 
transfected with HIV-1-AGFP proviral DNA. At 42 h after 
transfection, the virus containing supernatant was harvested 
and used for an initial infection of human C8166 cells. After 
one passage the virus was used to start a co-culture with MT4 
cells for five passages in total. The virus-containing cell 
culture supernatant was enriched up to 100-fold using the 
crossflow filtration system VivaFlow 200 (Vivascience AG, 
Hannover, Germany) and a subsequent ultracentrifugation 
step.  

A typical production round yielded 20 mL of virus 
preparation with an average concentration of 66 µg/mL viral 
capsid protein (p24), determined by in-house ELISA. 
Infectivity and functional integrity of produced HIV-1-AGFP 
particles were confirmed prior to high-throughput screening. 
Infectivity of the viral particles was verified by measurement 
of luciferase activity in TZM cells (data not shown). As the 
assay depends on a GFP reporter, it is crucial that GFP and 
viral protein expression are correlated. Accordingly, HeLa P4 
cells were infected and stained for p24 with fluorescently 
tagged antibodies and subsequently monitored for co-lo-
calisation with GFP by fluorescence microscopy (Fig. 1C).  

Figure 2. Enhancing or inhibiting effects of individual gene
knockdowns on HIV-1-infection imaged by fluorescence microscopy.
HeLa P4 cells were transfected with siRNAs and infected with
HIV-1-AGFP particles after 36 h. After incubation for a further 36 h,
the cells were fixed and GFP and Hoechst images acquired by
high-throughput fluorescence microscopy. (A) Correlation between
z–scores of two replicates of an RNAi screen investigating host cell
functions in HIV-1 pathogenesis with individual siRNA-mediated gene
knockdowns (grey), non-silencing control siRNAs (red) and CD4
positive controls (green). The Pearson correlation coefficient is 0.82. 
(B) Z-score distributions of the non-silencing control siRNA and the 
positive control CD4. The separation of the two distributions
confirms CD4 as a significant down-regulator in our assay. (C)
Hoechst stain, GFP-expression and the overlay for the non-silencing 
control siRNA and for representatives of down- and up-regulating 
gene function in HIV-1 replication.  
down efficiency of approximately 90% within a period of 
24–92 h after siRNA transfection (data not shown). Thus, in
subsequent experiments cells were infected 36 h after
transfection and fixed after an additional 36 h.  

2.3 Infection assay  

For siRNA transfection and subsequent infection 
HeLa P4 cells were seeded into siRNA-pre-coated 
384-well plates (850 cells/well in 30 µL) or 96-well 
plates (2500 cells/well in 100 µL) using the reagent 
dispenser MultiDrop Combi (Thermo Fisher Scien-
tific) or manually into LabTeks (1.2 × 105 

cells/ LabTek in 3 mL). 
Following a 36 h incubation for target gene knockdown, the cells are infected with 
HIV-1-AGFP in a BSL-3 facility, using the compact automated liquid handler Hydra DT 
(Matrix,Thermo Fisher Scientific) for well plates.As we were in-
terested in detecting potential decreases as well as increases 
in GFP expression to identify down- and up-regulating genes 
in HIV-1 replication, we ad-justed the infection rate to 
approximately 30%  

2.2 Virus constructs, culture and harvesting  

In our screens, fully infectious HIV-1 particles encoding the 
green fluorescence protein (GFP) were used. The construct
was derived from wild-type HIV-1 (pNL4-3), in which the
gfp open reading frame was C-terminally fused to the first 16 
amino acids of the nef gene (referred to as HIV-1-AGFP, Fig. 
1B, [13]).  

The GFP expression after infection allows a direct 
measurement of viral replication by fluorescence microscopy,
thereby avoiding further timeand cost-intensive working steps
like antibody  



tested cell culture formats. In summary, the screening assay 
is able to reveal both down- and up-regulating host genes 
that are modulating HIV-1 replication by altering the 
GFP-intensity and infection ratio (Fig. 2

(384-well plate: 28 ng p24/well in 30 µL; 96-well plate: 80 ng 
p24/well in 50 µL; LabTek: 6.7 µg p24/LabTek in 2 mL).
After an additional 36 h, cells are fixed for 90 min with 4%
paraformaldehyde, removed from the BSL-3 facility and
stained for 45 min with the dye Hoechst 33258 (330 ng/mL)
for cell nuclei detection as further described in Section 3.  

C).  

3 Image analysis  

2.4 Image acquisition  Image analysis consisted of the following three successive 
steps: (i) Cell nuclei segmentation in the Hoechst channel, (ii) 
cell segmentation in the GFP channel, and (iii) quantification 
of cell characteristics. The inputs of the image analysis 
routine were the Hoechst and GFP channels, representing cell 
nuclei and cell cytoplasm (Fig. 3A). As output we computed 
the number of nuclei, the average signal intensity over all 
cells (in the GFP channel), and the proportion of cells that 
were infected. These calculations were performed per 
position in a well and served as input to the statistical 
analysis.  

For high-throughput image acquisition a fully automated 
epifluorescence ScanR screening microscope equipped with
the ScanR acquisition software (Olympus Biosystems GmbH,
Münster, Germany) was used. Images were acquired with a
10x objective in 9 positions per well for 384-well plates, up
to 16 positions for 96-well plates and in 1 position per spot
on a LabTek. In each position images were acquired in the
Hoechst and in the GFP channel using the corresponding
excitation and emission filters.  

3.1 Cell nuclei segmentation  
2.5 Cytotoxicity and non-specific effects  

To segment cell nuclei we used the ‘marker-controlled 
watershed transform’ method [14]. This method consisted of 
two basic steps. First, the algorithm detected a unique initial 
‘foreground marker’ for each cell nucleus (typically the 
marker that corresponds to the centre of the object). At the 
same time ‘background markers’ that lie in the dark region 
between cell nuclei were extracted (Fig. 3B). Second, the 
watershed transform expanded markers spatially to enclose 
the cell nuclei in the image. Finally, basins originating from 
foreground markers corresponded to masks of cell nuclei.  

Cytotoxic siRNAs in the primary screen were filtered out,as
described later in Section 4.All validation-screen siRNAs
were tested for potential confounding effects by the following
methods. Cytotoxicity was assessed by the Toxilight Assay
Kit (Lonza, Sales Ltd., Basel, Switzerland). The general
influence of the siRNAs on cellular protein expression was
determined using a stably GFP-expressing HeLa P4 cell line
seeded onto siRNAcoated cell culture plates under screening
conditions, but without viral infection. As variations in GFP
intensities reveal a virus-independent siRNAinduced effect on
the cellular expression machinery, siRNAs with significant
effects on GFP expression were excluded from further
investigations. Finally, the knockdown efficacy of the siRNAs
used in the validation screen was tested by qRT-PCR (SYBR
Green, Applied Biosystems, Darmstadt, Germany).  

3.2 Cell nuclei marker extraction  

A preliminary binarisation of the Hoechst image was found 
using a histogram adaptive threshold [15], leading to an initial 
nuclei versus background mask. In the case of an uneven 
illumination of the image, background correction could be 
applied before binarisation [16]. A Gaussian blurred version 
of the cell nuclei image was used to detect foreground 
markers (the variance for the Gaussian kernel is empirically 
adapted to cell nuclei size).All local maxima above the 
binarisation threshold were determined and dilated to 
suppress spurious markers (Fig. 3B). To extract background 
markers we computed the Euclidian distance map from the 
initial binary mask.This map contains the distance from each 
non-nucleic pixel to its nearest nucleic pixel in the binarised 
image. All ridges from the distance map were extracted to get 
a Voronoi-net  

2.6 Concluding remarks  

The specific viral construct (HIV-1-AGFP) was
harvested and produced in sufficient amounts for
high-throughput screening. Co-localisation of p24
and GFP demonstrated that virus-induced GFP ex-
pression was a suitable readout for infection. The siRNA
against CD4 and a non-silencing siRNA were established as
working positive and negative controls and could be clearly
distinguished (Fig. 2B). The platform was shown to work on
all  



 

Figure 3. Image segmentation and infection cut-off. (A) Epifluorescence microscopy image of HIV-1-AGFP-infected GFP-expressing cells with
cell nuclei (blue) and GFP-expressing cells (green). (B) Segmentation of cell nuclei (blue spots). (C) Segmentation of cells showing individual
infected cell bodies (green) (D) Histogram of mean grey values with fitted curves used to define infection cut-off criterion.  

fitted to the extracted mean grey values (Fig. 3D). One 
Gaussian component explains the variation of uninfected, 
while the other accounts for the variation of infected cells. If 
zero or all cells are infected, one of the two components 
should vanish; however, in practice, an intermediate number 
of infected cells produces two overlapping components. To 
remedy this, a prior is imposed on the position of the two 
Gaussian means, which essentially acts as a repelling force 
between the mixture components. Having found the 
parameters of the mixture model, an optimal threshold is 
computed to classify each cell as infected or not infected. 
Finally, the infection ratio is computed as the number of 
infected cells divided by the total cell count.  

like background marker (Fig. 3B). Both types of markers
(background from distance map, foreground from Gaussian
blur) served as the final markers for the watershed transform
operating on the gradient image.  

3.3 Cell segmentation  

The extracted cell nuclei masks were passed as foreground
markers to the cell segmentation process. As background
markers we re-used the background markers from the cell
nuclei segmentation (Fig. 3C). Note that background markers
cannot be computed directly from the GFP channel, as only
infected cells are visible in this channel.  

3.4 Quantification  3.5 Implementation and pipeline  

A fully automated pipeline was set up to process the large 
number of images produced by the screens. Image processing 
was implemented in Matlab and C++ and runs in a 
data-parallel fashion distributed over a 12 × 8-core Linux 
(64bit) compute cluster. For each well position, output 

The main readouts of the image analysis were the
average signal intensity over all cells in the image,
the number of nuclei, and the infection ratio. Unin-
fected cells appeared dark, while infected cells showed rather
high grey values over their area. A Gaussian mixture model
with two components was  

is writ



not valid. In this case, plates are made comparable by 
subtracting the median of the negative controls, and dividing 
by their median absolute deviation.  

ten to a virtual file system which automatically maps data
into a relational database for convenient post-processing.  

Since some knockdowns are cytotoxic and therefore interfere 
with the readout of viral replication, we excluded wells with 
the lowest 5% of cell counts in the entire screen. Furthermore, 
due to possible incorrect segmentation of images with very 
dense cell populations, wells with the highest 5% of cell 
counts were also removed. Locally weighted scatterplot 
smoothing [17] was used to de-correlate signal intensities and 
cell count, by adjusting the signal intensities for the effect of 
unequal cell numbers in wells.This was done for each plate 
individually, since effects may be different from plate to plate. 
Spatial effects within each plate were then corrected using 
B-score normalisation [18]. This method adjusts intensities 
using a median polish procedure on rows and columns sepa-
rately, thus estimating row- and column-effects on each plate. 
These estimates were then used to correct each spot 
individually. The procedure is very effective at removing 
spatial artefacts such as edge effects on a plate, but rests on 
the assumptions that siRNAs are randomly placed on the 
plates, and that most siRNAs do not have an effect on viral 
replica-tion.This method must therefore not be used in the 
analysis of secondary/validatio

3.6 Concluding remarks  

The use of parallel batch processing yields a major speed-up 
as a typical screen with 1.3 million images requiring 3.6 TB
of storage is processed in approximately 36 h. Automated
image quality control is being added to exclude foreign
bodies and artefacts in images before quantification, resulting
in improved measurements. A long-term goal is to create a
framework for interactive statistical learning of segmentation
tasks, allowing simple adaptation to novel cell types, sensor
settings, chemical dyes and assay-specific phenotypes,
without reprogramming the image processing routines.  

4 Statistical analysis  

Segmented images were processed further statistically, to 
identify up- and down-regulators of viral replication. Based
on the number of nuclei per well and the average signal
intensity over all cells in the GFP channel, our statistical
analysis pipeline consisted of the following steps: (i)
Log-transformation of raw data, (ii) normalisation between
different plates, (iii) identification and removal of siRNAs
with cytotoxic effects, (iv) removal of systematic effects of 
cell counts on signal intensity, (v) spatial normalisation
within one plate, and (vi) hit calling. The entire workflow
was complemented by strict quality control, monitoring at
each step the quality of raw and transformed data. In case of
failed quality control for individual wells or plates, these
were either removed from further analysis or repeated.  

n screens.  

4.2 Statistical testing  

The current standard practice to select hit genes from RNAi 
data is to select siRNA hits whose z-score-normalised 
intensity deviates from the bulk [19], but hits with smaller 
intensities will be missed using this method [20]. Thus, if 
enough replicates are available, a statistical approach is used 
that assigns a p value to each siRNA. If the p value is smaller 
than a given significance level α, the null hypothesis H

0 
that 

assumes no significant effect can be rejected. Since data in this study were more or less 
normally distributed, we used the onesample two-sided Welch’s t-test to 
compute p values. If siRNAs are randomly distributed on a 
plate and if it can be assumed that most siRNAs have no 
effect, replicates in the test can be compared with the overall 
population, acting as a de-facto negative control. If this 
assumption is not valid, e.g. in a validation screen, the test is 
carried out against negative controls. For primary screens, 
where only two replicates are available and a statistical test is 
thus not feasible, hits are called if their mean z-score over 
replicates is >2 (or < –2). For validation screens, we combine 
the information given by z-score and p value by requiring a p 
value <0.05 and a z-score >1.5 (or < – 1.5), respectively. The 
p value  

4.1 Data normalisation  

As a first step for the analysis of the data, a logtransformation
of the raw data is carried out. Since the distribution of raw 
fluorescence intensities is heavily right-skewed, a
logarithmic transformation of the data results in a more
normal distribution.  
In the primary screen, different plates are made comparable
by subtracting the plate median from each intensity value,
and dividing by the median absolute deviation (z–score).
These two measures are more robust alternatives to the mean
and the standard deviation. The normalisation steps are based
on the assumptions that the siRNAs are randomly distributed
over the plates, and that most siRNAs do not have an effect
on viral replication. Clearly, for validation screens, this
assumption is  



use this as a basis for comparisons and predictions to guide 
further experimentation.  

ensures that effects are repeatable over the replicates, while
the z-score assures that they are sufficiently strong on
average.  

5.1 Data integration  
4.3 Implementation  

The suppliers for our siRNA libraries designate target genes 
using NCBI Entrez GeneID [22] and RefSeq [23] identifiers. 
Thus the range of possible genes and their associated 
identifiers in our human screens is NCBI-centric, rather than 
being based on the overlapping EMBL-EBI/Sanger Ensembl 

The statistical analysis described here was implemented in the
free statistical environment R (www.R-project.org), and used
the cellHTS [19] and RNAither [21] Bioconductor packages
(www.bioconductor.org).The pipeline was integrated into the
full-screening workflow, and generated user-readable HTML
webpages for the assessment of data quality and normalisation
results. Z-scores and p values were also written to text files for
further processing (see Section 5).  

[24] collection. Entrez and RefSeq are continually being 
updated by NCBI as gene and protein product entries are 
refined, old records are withdrawn and new records are 
added, so that the identifiers and data for the gene targets 
referenced in the libraries, and in published studies, are 
subject to change. Symbolic gene names are particularly un-
reliable, so that, when reporting the results of a study, the 
Entrez and/or RefSeq identifiers as well as the database 
release from which they were obtained should be 
reported.The bioinformatics processing stage must track 
changes in gene accession numbers/identifiers and maintain 
cross-references to other external data sources, also having 
potentially changing identifiers.  

4.4 Concluding remarks  

Statistical analysis is important to robustly identify “hit” genes
and avoid errors. Data normalisation should be based on
controls.This procedure is only valid if sufficient numbers of
positive and negative controls have been spotted per plate.
This can normally only be achieved in validation screens with
a custom-designed layout. Normalisation on plate medians is
more robust, but requires random spotting of siRNAs on
plates and is feasible only for primary screens. Considerable
spatial effects are observed in cell arrays, but to a lower extent
also on well plates, and must be corrected during the nor-
malisation. As the correlation between cell numbers and
signal intensity is often non-linear, sophisticated methods such
as Lowess normalisation have to be used. With all these
considerations the raw data produced by the image analysis is
analysed and the outcome is represented by z-scores.  

We use a relational database to store human protein-encoding 
gene identifiers obtained primarily from NCBI Entrez and 
cross-referenced to the Human Genome Organisation 
Nomenclature Committee (HGNC [25]) and NCBI RefSeq 
collections. For our purposes, we group related identifiers 
into a functional ‘locus’ referring to a set of related gene or 
protein product identifiers, which are considered to represent 
the same protein or set of transcripts. Each ‘locus’ is assigned 
a unique, stable internal numeric identifier in the database so 
that all identifiers associated with a given locus, even com-
pletely different historical Entrez GeneID, HGNC and 
RefSeq identifiers, can be united and crossreferenced to older 
(or newer) identifiers found in other studies. Additional 
information mined from Entrez GeneID, HGNC and RefSeq 
collections are associated with each locus. These include 
current and obsolete gene symbols and synonyms, official 
gene product names, chromosome and map locations, UniProt 
[26] protein sequence identifiers, enzyme classification (EC) 
numbers, PubMed literature identifiers and OMIM 
(http://www.ncbi.nlm. nih.gov/omim) identifiers for disease 
associations. This forms the core of the database around 
which other types of data can be assembled. As new data are 
added to the database, they can be cross-referenced to the 
appropriate locus (for a single gene or gene product) or 
multiple loci (for relationships such as protein-protein 
interactions).  

5 Bioinformatics  

High-throughput screening of many hundreds or thousands of
genes requires integration of correspondingly large amounts of
data, both from the screens themselves and from external data
sources. External data may comprise information about the
genes and gene products including crossreferences to other
data sources, as well as relationships between the genes, such
as participation in metabolic pathways, protein-protein 
interaction and gene regulatory networks.  

The principal aims of bioinformatics are (i) to integrate data
about biological entities of interest into descriptive or
qualitative models, and (ii) to  



5.2 Processes and pathways  Clearly, no single process or pathway data source is 
sufficient to address every need, and several need to be 
combined in an analysis.  A basic problem facing the researcher is to understand the

contents of the screening library, since individual gene
product names and descriptions are often too terse or abstruse.
Systematised collections of general gene product descriptions
exist in the form of ontologies, the best known being the Gene
Ontology project (GO [27]). GO associates curated terms
with genes according to three ontologies: molecular function,
biological process, and cellular component. The terms form
three different networks (actually directed graphs), which are
stratified from the general to the specific, but allow multiple
paths rather than enforcing a strict hierarchy. In our
workflow, hit genes are automatically mapped to GO
annotations using RNAither [21], for all three ontologies.
Geneset enrichment analysis is then used to identify
categories and pathways containing more hits than would
randomly be expected, using topGO [28], to find molecular
functions, biological processes and cellular compartments that
may be particularly important for viral replication.  

5.3 Interaction networks  

For many genes, the pathway data are insufficient to identify 
any relationship between the hits from a screen. We then turn 
to protein-protein interaction networks and try to embed hits 
and search for clusters.  

A number of protein-protein interaction databases are 
publicly available, most of them containing interaction data 
for multiple organisms. For a review of these databases 
focusing on human-specific interactions, see [30]. These 
datasets vary according to the quality of the data source and 
curation that they offer. Interactions may be predicted 
computationally or obtained experimentally. Experimental 
observations may derive from highthroughput analyses such 
as yeast two-hybrid, or from co-immunoprecipitation assays, 
with varying degrees of confidence in the result. Similarly, 
the level of curation ranges from automatic literature mining, 
through manual literature mining by biologists, to direct 
submission of results by the investigator. One of the most 
comprehensive collections of human-only, experimental 
interaction data is the Human Protein Reference Database 
(HPRD, [31], http://www.hprd.org), which is manually 
curated and includes details of the type of experiment, the 
protein domains involved and post-translational 
modifications.  

Another ontology collection that is specialised for human,
mouse, rat and the fruit fly is the PANTHER Classification
System [29], which is intended for use in high-throughput 
analysis and is simplified accordingly. PANTHER biological
processes cover almost half (about 11 300 genes) of the hu-
man protein coding loci, although more coverage is obtainable
by looking at molecular function without placement in any
particular process. The designers of PANTHER have defined
a set of about 30 top-level biological processes dealing with
very general (overlapping) cellular activities such as ‘amino
acid metabolism’ or ‘cell adhesion’, and we incorporate these
into our core database to give a simplified overview, both of
the genes in the screening libraries and of the hits.  

In general, the reliability of an interaction increases as more 
corroboratory evidence is found. The STRING [32] database 
provides a merged multi-organism collection assembled from 
the public interaction databases, together with other predictive 
information such as pathways and expression profiles that are 
common across organisms. Each interaction is assigned an 
edge weighting to indicate the degree of confidence in that 
interaction. We currently use the STRING interactive web in-
terface (http://string.embl.de) to visualise small networks as 
graphs of nodes (proteins) and edges (interactions). Larger 
networks, such as the HPRD dataset, are visualised using 
Cytoscape [33], which is a cross-platform Java program 
(http://www. cytoscape.org).The graph layout can be 
manipulated directly and the software offers many different 
automatic layout schemes.  

A second problem, having performed a screen and identified
known pathways of interest, is to visualise the hits in these
pathways. High-quality pathway information is obtained from
the Kyoto Encyclopaedia of Genes and Genomes (KEGG,
[27]) in the form of navigable schematic diagrams of
metabolic and regulatory pathways, based on extensive
literature mining across multiple organisms.The maps are
interactive and KEGG provides a simple API (Application
Programming Interface) for several common programming
languages allowing selective manipulation of the diagrams
from locally written client applications communicating with
the KEGG server. Note, however, that the KEGG pathway
maps cover considerably less of the human genome than
PANTHER processes, accounting for slightly less than 4800
unique genes.  

There are broadly two strategies to identifying interesting 
genes in these networks for further study: First, given the 
known interactions of the pathogen with the host proteins, 
candidate hits that lie within one or a few steps away from 
these  



 

„front-line“ host genes on the known host protein-protein 
interaction network are of interest, as they deepen our
understanding of known pathogen/ host dependencies into the
rest of the network. One can also look for interaction
neighbours of other published modulators, such as those
found in other screens, to extend the boundaries of these clus-
ters. Second, one can search for novel, statistically significant
clusters of hit genes co-occurring in the known interaction
network.  

lular compartments and to associated stages of the virus life 
cycle.  

6 Conclusion  

We have described a modular and flexible microscopy-based 
RNAi screening platform for investigation of host factors 
involved in virus-host interaction. This uses a two-stage 
procedure (primary and subsequent validation screen) 
comprising four main steps: experimental assay, image 
analysis, statistical analysis and bioinformatics, each of which 
has been presented in detail. The platform was demonstrated 
in stably CD4-expressing HeLa P4 cells using a modified 
infectious HIV-1 strain carrying a GFP reporter 
(HIV-1-AGFP). The procedure was shown to be suitable for 
robust and sensitive detection of host cell factors involved in 
HIV-1 replication using different cell culture for

Much published information already exists for well-studied 
organisms or pathogen/host interactions such as HIV/human.
Known information on HIV/host gene interactions is
available from the NIAID HIV interaction dataset [34].This is
also incorporated into our database, allowing us to see which
HIV proteins are known to be associated with any of our 
screening hits, together with the nature of the interaction and
the evidence for it. Similarly, the collections of host factors
described in previous published HIV screens [4–6] have been
mined from the papers and added to the database, allowing
direct comparison of the degree of overlap and gene
composition of the various studies with each other and with
our screens.  

mats.  

Design and testing of standardised experimental setups for 
production of sufficient amounts of virus were found to be 
critical to obtaining reliable and comparable datasets. 
Dedicated image processing procedures were developed to 
process the very large amounts of high-throughput image data 
(tens of terabytes over the lifetime of a full genome screen) in 
reasonable time. Problems associated with the need for 
different data normalisation approaches in primary and 
validation screens were addressed in the statistical analysis 
step, which also deals with multiple potential sources of error 
in the readout. The bioinformatics step integrates exper-
imental results with data mined from public databases, 
allowing screening hits to be functionally classified and 
embedded into known pathways and protein-protein 
interaction networks.  

5.4 Implementation  

All bioinformatics processing is performed under Linux.
Regular updates of material from NCBI and other data
sources are automatically transferred and post-processed
locally into suitable form for subsequent stages. The
relational database uses PostgreSQL. Applications are written
in Python, Perl or using UNIX scripting tools.  

5.5 Concluding remarks  

Future extensions will include automated classification of 
images based on cell morphologies, so that knockdown 
phenotypes can be classified in more detail and better 
correlated with biological processes. Comparative analyses 
using other viruses on the same platform will elucidate 
commonly used cellular host factors exploited by different 
viruses, which may serve as novel drug targets for ‘broad 
spectrum’ antivirals. Finally, we would like to encourage 
efforts at standardisation of RNAi screening procedures and 
offer our experience with this platform as a robust basis on 
which to build new systems.  

Known or suspected interaction networks around single
identified genes can be mined from bioinformatics databases
to provide a connected subnetwork, into which multiple hits
from the screen can be embedded and correlated with
phenotypes of interest. A central component of the bioinfor-
matics strategy therefore is a database system to store and
process all this data effectively, since the amount and variety
of types of data that need to be managed, cross-referenced
and queried is potentially huge and changing. Finally, the
system is also used to help selecting interesting and
functionally related candidates from the primary screen for
validation screening, and for subsequent detailed ex-
perimental analysis. In the case of a virus-host interaction
screen as discussed in this paper, interesting hits need to be
mapped not only into host biological processes, but also, if
possible, to subcel- We thank Christiane Jost and Dirk Grimm for critical reading 
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