

ruprecht-karls. UNIVERSITÄT HEIDELBERG

Cross and Learn: Cross-Modal Self-Supervision

Nawid Sayed

Biagio Brattoli

Prof. Björn Ommer

HCI / IWR, Heidelberg University

Many real-world applications utilize supervised pre-training

Object detection [1]

Semantic segmentation [2]

A person riding a motorcycle on a dirt road.

Two dogs play in the grass.

A group of young people playing a game of frisbee. fighting over the puck.

Image captioning [3]

[1] Redmon et al., "You Only Look Once: Unified, Real-Time Object Detection" (2015)

[2] Zhao et al., "Pyramid Scene Parsing Network" (2016)

[3] Vinyals et al., "Show and Tell: A Neural Image Caption Generator" (2014)

Supervised learning from paired multi-modal data successful

SR.	Spatial stream ConvNet								
conv1 7x7x96 stride 2 norm. pool 2x2	conv2 5x5x256 stride 2 norm. pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax		
	Tem	npora	al stre	eam C	Convl	Vet			
conv1 7x7x96 stride 2 norm.	conv2 5x5x256 stride 2 pool 2x2	conv3 3x3x512 stride 1	conv4 3x3x512 stride 1	conv5 3x3x512 stride 1 pool 2x2	full6 4096 dropout	full7 2048 dropout	softmax		

Knowledge transfer from RGB to depth modality [1]

Action recognition jointly using RGB and optical flow [2]

[1] Gupta et al., "Cross-Modal Distillation for Supervision Transfer" (2015)

[2] Simonyan et al., "Two-Stream Convolutional Networks for Action Recognition in Videos" (2014)

Large scale unannotated image and video data free

Large scale unannotated image and video data free

Supervised learning relies on annotated data

Large scale unannotated image and video data free

Supervised learning relies on annotated data

Annotations costly and prone to errors

Samples from the ImageNet dataset [1]

[1] Russakovsky et al., "ImageNet Large Scale Visual Recognition Challenge" (2014)

Large scale unannotated image and video data free

Supervised learning relies on annotated data

Annotations costly and prone to errors

Supervised learning does not scale well into future

Increase in computational power

Self-supervised representation learning

Solving task with trainable CNN

Solving Jigsaw Puzzles [1]

[1] Noroozi et al., "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles" (2016)

Cross and Learn

Self-supervised learning from paired multi-modal data

Cross-modal information has high semantic meaning (barbell, bat)

Modalitiy specific content has low semantic meaning (background, camera motion)

Approach

Desirable features:

• Invariant to modality specific content

Similar features in a pair

• Sensitive to cross-modal information

Distant features between pairs

Achieved using L_{cross} and L_{div}

Model Pipeline

Cross and Learn

Model Pipeline

Cross and Learn

Model Pipeline

Cross and Learn

Cross and Learn

High-Level Input Activations

Input

regions of interest

High-Level Input Activations

[1] Lee et al., "Unsupervised Representation Learning by Sorting Sequences" (2017)

[2] Springenberg et al., "Striving for Simplicity: The All Convolutional Net" (2014)

Cross and Learn

High-Level Input Activations

[1] Lee et al., "Unsupervised Representation Learning by Sorting Sequences" (2017)

[2] Springenberg et al., "Striving for Simplicity: The All Convolutional Net" (2014)

	Pre-training data	Traintime	UCF-101	HMDB-51	
Random	None	None	48.2	19.5	
ImageNet [5]	ImageNet	3 days	67.7	28.0	
Shuffle and Learn [1]	UCF-101	-	50.2	18.1	
VGAN $[2]$ (C3D)	flickr (2M videos)	> 2 days	52.1	-	
LT-Motion[3] (RNN)	NTU (57K videos)	-	53.0	-	
Pose f. Action [4] (VGG)	UCF,HMDB,ACT	-	55.0	23.6	
OPN [5]	UCF-101	40 hours	56.3	22.1	
Our	UCF-101	6 hours	58.7	27.2	
Random (VGG16)+	None	None	59.6	24.3	
Our $(VGG16)+$	UCF-101	$1.5 \mathrm{days}$	70.5	33.0	

[1] Misra et al., "Shuffle and Learn Unsupervised Learning using Temporal Order Verification" (2016)

[2] Vondrick et al., "Generating Videos with Scene Dynamics" (2016)

[3] Luo et al., "Unsupervised Learning of Long-Term Motion Dynamics for Videos" (2017)

[4] Purushwalkam et al., "Pose from Action: Unsupervised Learningof Pose Features based on Motion" (2016)

[5] Lee et al., "Unsupervised Representation Learning by Sorting Sequences" (2017)

Transfer Learning

Pascal VOC 2007 object classification and detecion

	Pre-training data	Traintime	Classification	Detection
ImageNet [5]	ImageNet	$3 \mathrm{days}$	78.2	56.8
Context [1]	ImageNet	4 weeks	55.3	46.6
Counting $[2]$	ImageNet	-	67.7	51.4
Jigsaw [3]	ImageNet	$2.5 \mathrm{~days}$	67.6	53.2
Jigsaw++ [4]	ImageNet	-	72.5	56.5
Shuffle and Learn	UCF-101	-	54.3	39.9
OPN [5]	UCF,HMDB,ACT	> 2 days	63.8	46.9
Our	UCF,HMDB,ACT	12 hours	70.7	48.1

[1] Doersch et al., "Unsupervised Visual Representation Learning by Context Prediction" (2015)

[2] Noroozi et al., "Representation Learning by Learning to Count" (2017)

[3] Noroozi et al., "Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles" (2016)

[4] Noroozi et al., "Boosting Self-Supervised Learning via Knowledge Transfer" (2018)

[5] Lee et al., "Unsupervised Representation Learning by Sorting Sequences" (2017)

Different Modalities

Frame differences as cheap alternative to optical flow

Benefit for all modalities

Action Recognition

Dataset	Pre-training	RGB & Flow		RGB &	r Fi	Frame diff.		
UCF-101	No pre-training		49.1	76.4	49.1		64.5	
UCF-101	Our pre-training		59.3	79.2	55.4		66.3	
HMDB-51	No pre-training		19.2	47.1	19.2		30.8	
HMDB-51	Our pre-training		27.7	51.7	23.5		33.3	

Thank You! Questions?

Our model

https://hci.iwr.uni-heidelberg.de/compvis

Cross and Learn