
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

The Mutex Watershed and its Objective:
Efficient, Parameter-Free Image Partitioning

Steffen Wolf∗, Alberto Bailoni∗, Constantin Pape, Nasim Rahaman,
Anna Kreshuk, Ullrich Köthe, and Fred A. Hamprecht

Abstract—Image partitioning, or segmentation without semantics, is the task of decomposing an image into distinct segments, or
equivalently to detect closed contours. Most prior work either requires seeds, one per segment; or a threshold; or formulates the task as
multicut / correlation clustering, an NP-hard problem. Here, we propose a greedy algorithm for signed graph partitioning, the “Mutex
Watershed”. Unlike seeded watershed, the algorithm can accommodate not only attractive but also repulsive cues, allowing it to find a
previously unspecified number of segments without the need for explicit seeds or a tunable threshold. We also prove that this simple
algorithm solves to global optimality an objective function that is intimately related to the multicut / correlation clustering integer linear
programming formulation. The algorithm is deterministic, very simple to implement, and has empirically linearithmic complexity. When
presented with short-range attractive and long-range repulsive cues from a deep neural network, the Mutex Watershed gives the best
results currently known for the competitive ISBI 2012 EM segmentation benchmark.

Index Terms—Image segmentation, partitioning algorithms, greedy algorithms, optimization, integer linear programming, machine
learning, convolutional neural networks.

F

1 INTRODUCTION

M OST image partitioning algorithms are defined over a graph
encoding purely attractive interactions. No matter whether

a segmentation or clustering is then found agglomeratively (as in
single linkage clustering / watershed) or divisively (as in spectral
clustering or iterated normalized cuts), the user either needs to
specify the desired number of segments or a termination criterion.
An even stronger form of supervision is in terms of seeds, where
one pixel of each segment needs to be designated either by a user
or automatically. Unfortunately, clustering with automated seed
selection remains a fragile and error-fraught process, because every
missed or hallucinated seed causes an under- or oversegmentation
error. Although the learning of good edge detectors boosts the
quality of classical seed selection strategies (such as finding local
minima of the boundary map, or thresholding boundary maps),
non-local effects of seed placement along with strong variability in
region sizes and shapes make it hard for any learned predictor to
place exactly one seed in every true region.

In contrast to the above class of algorithms, multicut / correla-
tion clustering partitions vertices with both attractive and repulsive
interactions encoded into the edges of a graph. Multicut has the
great advantage that a “natural” partitioning of a graph can be
found, without needing to specify a desired number of clusters, or
a termination criterion, or one seed per region. Its great drawback
is that its optimization is NP-hard.

The main insight of this paper is that when both attractive
and repulsive interactions between pixels are available, then a
generalization of the watershed algorithm can be devised that
segments an image without the need for seeds or stopping criteria
or thresholds. It examines all graph edges, attractive and repulsive,

∗ Authors contributed equally

• All authors are with HCI/IWR, Heidelberg University, Germany.
E-mail: <firstname>.<lastname>@iwr.uni-heidelberg.de

• A. Kreshuk and C. Pape are with EMBL, Heidelberg, Germany.

Manuscript received 2018-XX-XX; revised 2018-XX-XX.

Fig. 1: Left: Overlay of raw data from the ISBI 2012 EM
segmentation challenge and the edges for which attractive (green)
or repulsive (red) interactions are estimated for each pixel using
a CNN. Middle: vertical / horizontal repulsive interactions at
intermediate / long range are shown in the top / bottom half. Right:
Active mutual exclusion (mutex) constraints that the proposed
algorithm invokes during the segmentation process.

sorted by their weight and adds these to an active set iff they
are not in conflict with previous, higher-priority, decisions. The
attractive subset of the resulting active set is a forest, with one tree
representing each segment. However, the active set can have loops
involving more than one repulsive edge. See Fig. 1 for a visual
abstract.

In summary, our principal contributions are, first, a fast
deterministic algorithm for signed graph partitioning that does
not need prior specification of the number of clusters (section 4);
and second, its theoretical characterization, including proof that it
globally optimizes an objective related to the multicut correlation
clustering objective (4).

Combined with a deep net, the algorithm also happens to
define the state-of-the-art in a competitive neuron segmentation
challenge (section 5).

This is an extended version version of [1], with the second
principal contribution (section 4) being new.

ar
X

iv
:1

90
4.

12
65

4v
1

 [
cs

.C
V

]
 2

5
A

pr
 2

01
9

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

2 RELATED WORK

In the original watershed algorithm [2], seeds were automatically
placed at all local minima of the boundary map. Unfortunately, this
leads to severe over-segmentation. Defining better seeds has been
a recurring theme of watershed research ever since. The simplest
solution is offered by the seeded watershed algorithm [3]: It relies
on an oracle (an external algorithm or a human) to provide seeds
and assigns each pixel to its nearest seed in terms of minimax
path distance. In the absence of an oracle, automatic seed selection
is challenging because exactly one seed must be placed in every
region. Simple methods, e.g. defining seeds by connected regions
of low boundary probability, don’t work: The segmentation quality
is usually insufficient because multiple seeds are in the same region
and/or seeds leak through the boundary.

This problem is typically addressed by biasing seed selection
towards over-segmentation (with seeding at all minima being the
extreme case). The watershed algorithm then produces superpixels
that are merged into final regions by more or less elaborate
postprocessing. This works better than using watersheds alone
because it exploits the larger context afforded by superpixel
adjacency graphs. Many criteria have been proposed to identify the
regions to be preserved during merging, e.g. region dynamics [4],
the waterfall transform [5], extinction values [6], region saliency
[7], and (α, ω)-connected components [8]. A merging process
controlled by criteria like these can be iterated to produce a
hierarchy of segmentations where important regions survive to the
next level. Variants of such hierarchical watersheds are reviewed
and evaluated in [9].

These results highlight the close connection of watersheds to
hierarchical clustering and minimum spanning trees/forests [10],
[11], which inspired novel merging strategies and termination
criteria. For example, [12] simply terminated hierarchical merging
by fixing the number of surviving regions beforehand. [13]
incorporate predefined sets of generalized merge constraints into the
clustering algorithm. Graph-based segmentation according to [14]
defines a measure of quality for the current regions and stops when
the merge costs would exceed this measure. Ultrametric contour
maps [15] combine the gPb (global probability of boundary) edge
detector with an oriented watershed transform. Superpixels are
agglomerated until the ultrametric distance between the resulting
regions exceeds a learned threshold. An optimization perspective
is taken in [16], which introduces h-increasing energy functions
and builds the hierarchy incrementally such that merge decisions
greedily minimize the energy. The authors prove that the optimal
cut corresponds to a different unique segmentation for every value
of a free regularization parameter.

An important line of research is based on the observation that su-
perior partitionings are obtained when the graph has both attractive
and repulsive edges [17]. Solutions that optimally balance attraction
and repulsion do not require external stopping criteria such as
predefined number of regions or seeds. This generalization leads
to the NP-hard problem of correlation clustering or (synonymous)
multicut (MC) partitioning. Fortunately, modern integer linear
programming solvers in combination with incremental constraint
generation can solve problem instances of considerable size [18],
and good approximations exist for even larger problems [19], [20]
Reminiscent of strict minimizers [21] with minimal L∞-norm
solution, our work solves the multicut objective optimally when all
graph weights are raised to a large power.

Related to the proposed method, the greedy additive edge

contraction (GAEC) [22] heuristic for the multicut also sequentially
merges regions, but we handle attractive and repulsive interactions
separately and define edge strength between clusters by a maximum
instead of an additive rule. The greedy fixation algorithm introduced
in [23] is closely related to the proposed method; it sorts attractive
and repulsive edges by their absolute weight, merges nodes
connected by attractive edges and introduces no-merge constraints
for repulsive edges. However, similar to GAEC, it defines edge
strength by an additive rule, which increases the algorithm’s
runtime complexity compared to the Mutex Watershed. Also, it is
not yet known what objective the algorithm optimizes globally, if
any.

Another beneficial extension relative to standard approaches
is the introduction of additional long-range edges. The strength
of such edges can often be estimated with greater certainty than
is achievable for the local edges used by watersheds on standard
4- or 8-connected pixel graphs. Such repulsive long-range edges
have been used in [24] to represent object diameter constraints,
which is still an MC-type problem. When long-range edges are
also allowed to be attractive, the problem turns into the more
complicated lifted multicut (LMC) [25]. Realistic problem sizes can
only be solved approximately [22], [26], but watershed superpixels
followed by LMC postprocessing achieve state-of-the-art results
on important benchmarks [27]. Long-range edges are also used in
[28], as side losses for the boundary detection convolutional neural
network (CNN); but they are not used explicitly in any downstream
inference.

In general, striking progress in watershed-based segmentation
has been achieved by learning boundary maps with CNNs. This
is nicely illustrated by the evolution of neurosegmentation for
connectomics, an important field we also address in the experi-
mental section. CNNs were introduced to this application in [29]
and became, in much refined form [30], the winning entry of
the ISBI 2012 Neuro-Segmentation Challenge [31]. Boundary
maps and superpixels were further improved by progress in
CNN architectures and data augmentation methods, using U-
Nets [32], FusionNets [33] or inception modules [27]. Subsequent
postprocessing with the GALA algorithm [34], [35], conditional
random fields [36] or the lifted multicut [27] pushed the envelope
of final segmentation quality. MaskExtend [37] applied CNNs to
both boundary map prediction and superpixel merging, while flood-
filling networks [38] eliminated superpixels altogether by training
a recurrent neural network to perform region growing one region
at a time.

Most networks mentioned so far learn boundary maps on pixels,
but learning works equally well for edge-based watersheds, as was
demonstrated in [39], [40] using edge weights generated with a
CNN [41], [42]. Tayloring the learning objective to the needs
of the watershed algorithm by penalizing critical edges along
minimax paths [42] or end-to-end training of edge weights and
region growing [43] improved results yet again.

Outside of connectomics, [44] obtained superior boundary
maps from CNNs by learning not just boundary strength, but also
its gradient direction. Holistically-nested edge detection [45], [46]
couples the CNN loss at multiple resolutions using deep supervision
and is successfully used as a basis for watershed segmentation of
medical images in [47].

We adopt important ideas from this prior work (hierarchical
single-linkage clustering, attractive and repulsive interactions, long-
range edges, and CNN-based learning). The proposed efficient
segmentation framework can be interpreted as a generalization of

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

(c)(a) (b)

Fig. 2: In (a) and (b), possible active sets A (bold edges) with
associated clusterings (arbitrary node colors), for a given graph with
attractive (green) and repulsive (red) edges. In (c), the active set
includes a frustrated C1(A) cycle (highlighted in yellow), therefore
it cannot be associated with a consistent node clustering.

[13], because we also allow for soft repulsive interactions (which
can be overridden by strong attractive edges), and constraints are
generated on-the-fly.

3 THE MUTEX WATERSHED ALGORITHM

In this section we introduce the Mutex Watershed Algorithm, an
efficient graph clustering algorithm that can ingest both attractive
and repulsive cues. We first reformulate seeded watershed as a
graph partitioning with infinitely repulsive edges and then derive the
generalized algorithm for finitely repulsive edges, which obviates
the need for seeds.

3.1 Notation

We consider the problem of clustering a graph G(V,E+ ∪
E−,W+ ∪W−) with both attractive and repulsive edge attributes.
The scalar attribute w+

e ∈ R+
0 associated with edge e ∈ E+ is a

merge affinity: the higher this number, the higher the inclination
of the two incident vertices to be assigned to the same cluster.
Similarly, w−e ∈ R+

0 for e ∈ E− is a split tendency: the higher
this number, the greater the desire of the incident vertices to be in
different clusters. In our application, each vertex corresponds to
one pixel in the image to be segmented.

We describe a clustering of G by the active set A = A+ ∪A−
composed of two disjunct active sets A+ ⊆ E+, A− ⊆ E−, that
encode merges and mutual exclusions (must-not-link constraints)
between clusters, respectively. We then define the set Ci(A) of all
cycles with exactly i active repulsive edges

Ci(A) := {c ∈ cycles(G) | c ⊆ A and |c ∩ E−| = i}. (1)

An active set is consistent when it can be associated to a clustering
of G. More specifically, in a consistent active set two vertices cannot
be both mutually exclusive and connected. Thus, we enforce the
consistency of the segmentation by forbidding all cycles with
exactly one active repulsive edge, i.e. by allowing only active sets
s.t. C1(A) = ∅. See Fig. 2c for an example of an inconsistent
active set.

On the other hand, cycles with more than one active repulsive
edge are allowed and Ci≥2(A) can be nonempty in general. For
instance, there can be consistent active sets s.t. C2(A) 6= ∅
when there exist multiple mutual exclusion relations between two
clusters (see Fig. 2a). The fact that Ci≥3(A) can be nonempty
reflects a fundamental asymmetry between attractive and repulsive
edges, namely that attraction is transitive while mutual exclusion
constraints are not (Fig. 2b).

∞

14

15

12

161720

8

14

18

9 5
157

6
161720

1214

18

9 5
157

6

161720

8

(a) (b)

∞
∞∞ ∞ ∞

Fig. 3: Two equivalent representations of the seeded watershed
clustering obtained using (a) a maximum spanning tree com-
putation or (b) Algorithm 1. Both graphs share the weighted
attractive (green) edges and seeds (hatched nodes). The infinitely
attractive connections to the auxiliary node (gray) in (a) are replaced
by infinitely repulsive (red) edges between each pair of seeds in
(b). The two final clusterings are defined by the active sets (bold
edges) and are identical. Node colors indicate the clustering result,
but are arbitrary.

Inputs: weighted graph G(V,E+,W+) and seeds S ⊆ V ;
Output: clusters defined by spanning forest A ∩ E+;
Initialization: A = E−, where
E− = {(p, q)|p, q ∈ S; p 6= q};

for (i, j) = e ∈ E+ in descending order of w+ do
if C0(A ∪ {e}) = ∅ and C1(A ∪ {e}) = ∅ then

A← A ∪ e ;
end

end

Algorithm 1: Mutex version of seeded watershed algorithm. The
set of cycles C0(A) and C1(A) are defined in Equation 1.

Finally, the constraint C0(A) = ∅ can be enforced to ensure
that the active set A+ ⊆ E+ is a forest, similarly to a seeded
watershed algorithm.

3.2 Seeded watershed from a mutex perspective
One interpretation of the proposed method is in terms of a
generalization of the edge-based watershed algorithm [10], [48],
[49] or image foresting transform [50]. For didactic reasons, we
here first reformulate this fundamental algorithm in a manner
compatible with the proposed method.

Edge-based watershed can only ingest a graph with purely
attractive interations, G(V,E+,W+). Without further constraints,
the algorithm would yield only the trivial result of a single cluster
comprising all vertices. To obtain more interesting output, an oracle
needs to provide seeds, namely precisely one node per cluster.
These seed vertices are all connected to an auxiliary node (see
Fig. 3a) by auxiliary edges with infinite merge affinity. A maximum
spanning tree (MST) on this augmented graph can be found in
linearithmic time; and the maximum spanning tree (or in the case
of degeneracy: at least one of the maximum spanning trees) will
include the auxiliary edges. When the auxiliary edges are deleted
from the MST, a forest results, with each tree representing one
cluster [48], [50], [51].

We now reformulate this well-known algorithm in a way that
will later emerge as a special case of the proposed Mutex Watershed:
we eliminate the auxiliary node and edges, and replace them by a
set of infinitely repulsive edges, one for each pair of seeds (Fig. 3b).

Algorithm 1, applied to the seed mutex graph just defined,
gives results identical to seeded watershed on the original graph.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

The procedure closely resembles Kruskal’s MST algorithm, which
iterates over a sorted list of edges and adds each edge only if it
does not introduce a cycle.

Clearly, the modified algorithm has the same effect as the
original seeded watershed algorithm, because the final set A+ is
exactly the maximum spanning forest obtained after removing the
auxiliary edges from the original solution.

In the sequel, we generalize this construction by admitting
less-than-infinitely repulsive edges that do not need to coincide in
seed points. This allows repulsive edges to be estimated on the
same neighborhood for all pixels, favoring a fully convolutional
learning and prediction with CNNs (section 5).

3.3 Mutex Watersheds

We now introduce the first core contribution: an algorithm that
is empirically no more expensive than a MST computation; but
that can ingest both attractive and repulsive cues and partition a
graph into a number of clusters that does not need to be specified
beforehand. There is no requirement of one seed per cluster, and
not even of a hyperparameter that would implicitly determine the
number of resulting clusters.

The Mutex Watershed, Algorithm 2, is illustrated in Fig. 4 for
a toy example and proceeds as follows. Given a graph with sets of
attractive and repulsive edges E+ and E− with edge weights W+

and W− respectively, do the following: sort all edges E+ ∪ E−,
attractive and repulsive, by their weight in descending order into
a priority queue. Iteratively pop all edges from the priority queue
and add them to the active set A, one by one, provided that a set of
conditions are satisfied. More specifically, if the next edge popped
from the priority queue is attractive, then it is added to the active
set if and only if i) its incident vertices are not yet in the same tree
of the forest A+ (C0(A ∪ {e}) = ∅) and ii) there are no mutual
exclusion constraints between the two trees (C1(A ∪ {e}) = ∅).
If, on the other hand, the popped edge is repulsive, then a mutual
exclusion constraint is added to the active set if and only if the
incident vertices of the edge are not yet in the same tree of A+

(C1(A ∪ {e}) = ∅).
The crucial difference to algorithm 1 is that mutex constraints

are no longer pre-defined, but created dynamically whenever a
repulsive edge is found. However, new exclusion constraints can
never override earlier, high-priority merge decisions. In this case,
the repulsive edge in question is simply ignored. Similarly, an
attractive edge must never override earlier and thus higher-priority
must-not-link decisions.

Input: weighted graph G(V,E+ ∪ E−,W+ ∪W−);
Output: clusters defined by spanning forest A∗ ∩ E+;
Initialization: A = ∅;
for (i, j) = e ∈ (E+ ∪E−) in descending order of
W+ ∪W− do

if C0(A ∪ {e}) = ∅ and C1(A ∪ {e}) = ∅ then
A← A ∪ e;

end
end
A∗ ← A;
return A∗;

Algorithm 2: Mutex Watershed Algorithm. The set of cycles
C0(A) and C1(A) are defined in Equation 1.

14

18

9 5
157 10

13
11

2

19

1

6

12

161720

8 8

8 8

8

14

18

9 5
157 10

13
11

2

19

1

6

12

161720

1414

18

9 5
157 10

13
11

2

19

1

6

12

161720

14

18

9 5
157 10

1313
11

2

19

1

6

12

161720

14

18

9 5
157 10

13
11

2

19

1

6

1212

161720

14

18

9 5
157 10

1311

2

19

1

6

12

161720

88

(a) Iteration 1 (b) Iteration 2

(c) Iteration 7 (d) Iteration 8

(e) Iteration 9 (f) Final active set

Fig. 4: Some iterations of the Mutex Watershed Algorithm 2 applied
to a graph with weighted attractive (green) and repulsive (red)
edges. Edges accumulated in the active set A after a given number
of iterations are shown in bold. Once the algorithm terminates,
the final active set (f) defines the final clustering (indicated using
arbitrary node colors). Some edges that are not added to the active
set because they would violate constraints C0 or C1 are highlighted
in blue and yellow, respectively.

Fig. 4 illustrates the proposed algorithm: Fig. 4a and Fig. 4b
show examples of an unconstrained merge and an added mutex
constraint, respectively; Fig. 4c shows a C0-constrained attractive
edge (w+

e = 14) with incident vertices in the same tree of the forest
A+; finally, Fig. 4d and Fig. 4e show, respectively, a repulsive
edge (w−e = 13) and an attractive edge (w+

e = 12) ruled out by
C1 mutual exclusion relations.

4 THEORETICAL CHARACTERIZATION

This section summarizes our second core contribution, the proof
that the Mutex Watershed Algorithm presented in the previous
section globally optimizes a precise energy minimization problem.
We begin by defining the Mutex Watershed Objective (Sec. 4.1)
and prove that the Mutex Watershed Algorithm solves it optimally
(Sec. 4.2).

Finally, we show how this objective is related to the NP-hard
correlation clustering / multicut graph partitioning problem [52]
(Sec. 4.3).

4.1 Mutex Watershed Objective
We now define the Mutex Watershed energy that is minimized by
the Mutex Watershed Algorithm. First, we introduce the following
property:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Definition 4.1. Dominant power: Let G = (V,E,W) be an edge-
weighted graph, with unique weights we ∈ R+

0 , ∀e ∈ E. We call
p ∈ R+ a dominant power if:

wp
e >

∑
t∈E, wt<we

wp
t ∀e ∈ E, (2)

Note that there exists a dominant power for any finite set of edges,
since for any e ∈ E we can divide (2) by wp

e and observe that the
normalized weights wp

t /w
p
e (and any finite sum of these weights)

converges to 0 when p tends to infinity.

Definition 4.2. Mutex Watershed Objective: Let G = (V,E,W)
be a weighted graph, with unique weights we ∈ R+

0 and p ∈ R+

a dominant power. Then the Mutex Watershed Objective is defined
as the integer linear program

min
a∈{0,1}|E|

−
∑
e∈E

ae w
p
e (3)

s.t. C0(A) = C1(A) = ∅, (4)

with A := {e ∈ E|ae = 1}

Theorem 4.1. Let G = (V,E+ ∪ E−,W+ ∪W−) be an edge-
weighted graph and p ∈ R+ a dominant power. The final active
set of the Mutex Watershed Algorithm a∗e = 1{e ∈ A∗} minimizes
the Mutex Watershed Objective.

To prove Theorem 4.1 and show that the Mutex Watershed
Algorithm 2 finds the optimum of the Mutex Watershed Objective,
we prove its greedy choice and optimal substructure property
[53]. For both proofs we rely on Equation 2, which guarantees that
the greedy choice (i.e. the feasible edge with the highest weight)
will always give a greater negative energy contribution than any
combination of weaker edges.

4.2 Optimality of the Mutex Watershed Algorithm
In this section we prove Theorem 4.1, i.e. that the Mutex Watershed
Objective defined in Equation 3 is solved to optimality by the Mutex
Watershed Algorithm 2.
First, we generalize the Mutex Watershed (see algorithm 3) and
objective (definition 4.3) such that an initial consistent set of active
edges Ã ⊆ E is supplied and required to be a subset of the final
solution. For readability, we use the set A = {e ∈ E|ae = 1} of
active edges instead of the indicator ae.

Definition 4.3. Energy optimization subproblem. Let G =
(V,E+∪E−,W+∪W−) be an edge-weighted graph. Define the
optimal solution of the subproblem as

S(G, Ã) := argmin
A⊆(E\Ã)

T (A) with T (A) := −
∑
e∈A

wp
e ,

(5)

s.t. C0(A ∪ Ã) = C1(A ∪ Ã) = ∅, (6)

where Ã ⊆ E is a set of initially activated edges such that
C0(Ã) = ∅ and C1(Ã) = ∅.

We note that for Ã = ∅, this optimization problem and its
optimal solution S(G, ∅) are equivalent to the Mutex Watershed
Objective defined in Equation 3.

Definition 4.4. Incomplete, feasible initial set: For an edge-
weighted graph G = (V,E,W) a set of edges Ã ⊆ E is feasible
if

C0(Ã) = C1(Ã) = ∅. (7)

Inputs:
• weighted graph G(V,E+ ∪ E−,W+ ∪W−);
• initially activated set of edges Ã fulfilling C0(Ã) = ∅

and C1(Ã) = ∅ ;

Output: final set of activated edges A ⊆ E \ Ã;
Initialization: A← ∅;
for e ∈ E \ Ã in descending order of weight do

if C0(A ∪ Ã ∪ {e}) = ∅ and C1(A ∪ Ã ∪ {e}) = ∅
then

A← A ∪ e;
end

end

Algorithm 3: Generalization of the Mutex Watershed algorithm
defined in Algorithm 2. An initial set Ã of active edges is given
as additional input and the final active set A ⊆ E \ Ã. Note
that Algorithm 2 is a special case of this algorithm when Ã = ∅.
Differences with Algorithm 2 are highlighted in blue.

Ã is incomplete if it is not the final solution and there exists
a feasible edge ẽ that can be added to Ã without violating the
constraints.

∃ẽ ∈ E \ Ã s.t. C0(Ã ∪ {ẽ}) = C1(Ã ∪ {ẽ}) = ∅ (8)

Definition 4.5. First greedy step: Let us consider an incomplete,
feasible initial active set Ã ⊆ E on G = (V,E,W). We define

g := argmax
e∈(E\Ã)

w(e) s.t. C0(Ã ∪ {e}) = C1(Ã ∪ {e}) = ∅.

(9)
as the feasible edge with the highest weight, which is always the
first greedy step of algorithm 3.

In the following two theorems, we prove that the Mutex Watershed
problem has an optimal substructure property and a greedy
choice property [53], which are sufficient to prove that the Mutex
Watershed algorithm finds the optimum of the Mutex Watershed
Objective.

Theorem 4.2. Greedy-choice property. For an incomplete, feasi-
ble initial active set Ã of the Mutex Watershed, the first greedy step
g is always part of the optimal solution

g ∈ S(G, Ã).

Proof. We will prove the theorem by contradiction by assuming
that the first greedy choice is not part of the optimal solution,
i.e. g /∈ S(G, Ã). Since g is by definition the feasible edge with
highest weight, it follows that:

w(e) < w(g) ∀e ∈ S(G, Ã). (10)

We now consider the alternative active set A′ = {g}, that is a
feasible solution, with

T (A′) = −wp
g

(2)
< −

∑
t∈S(G,Ã)

wp
t = T

(
S(G, Ã)

)
. (11)

which contradicts the optimality of S(G, Ã).

Theorem 4.3. Optimal substructure property. Let us consider an
initial active set Ã, the optimization problem defined in Equation 5,
and assume to have an incomplete, feasible problem (see Definition
4.4). Then it follows that:

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

1) After making the first greedy choice g, we are left with a
subproblem that can be seen as a new optimization problem
of the same structure;

2) The optimal solution S(G, Ã) is always given by the combi-
nation of the first greedy choice and the optimal solution of
the remaining subproblem.

Proof. After making the first greedy choice and selecting the first
feasible edge g defined in Equation 9, we are clearly left with a new
optimization problem of the same structure that has the following
optimal solution: S(G, Ã ∪ {g}).
In order to prove the second point of the theorem, we now show
that:

S(G, Ã) = {g} ∪ S(G, Ã ∪ {g}). (12)

Since algorithm 3 fulfills the greedy-choice property, g ∈ S(G, Ã)
and we can add the edge g as an additional constraint to the optimal
solution:

S(G, Ã) = argmin
A⊆(E\Ã)

T (A)

s. t. C0(A ∪ Ã) = C1(A ∪ Ã) = ∅; g ∈ A
(13)

Then it follows that:

S(G, Ã) = {g} ∪ argmin
A⊆ E\(Ã∪{g})

T (A)

s. t. C0
(
A ∪ {g} ∪ Ã

)
= C1

(
A ∪ {g} ∪ Ã

)
= ∅

(14)

which is equivalent to Equation 12.

Proof of Theorem 4.1. In Theorems 4.2 and 4.3 we have proven
that the optimization problem defined in 3 has the optimal
substructure and a greedy choice property. It follows through
induction that the final active set A∗ found by the Mutex Watershed
Algorithm 2 is the optimal solution for the Mutex Watershed
objective (3) [53].

4.3 Relation to multicut / correlation clustering
In this section, we show how the Mutex Watershed Objective (Def.
4.2) is related to the NP-hard multicut graph partition problem
of [52], [54], [55]. The quick reader finds a summary in the last
paragraph of this section.

Consider a graph G = (V,E) with unique and finite weights
w̃e ∈ R, ∀e ∈ E. A large positive weight w̃e is associated to
a strong inclination of the two incident vertices to be assigned to
the same cluster; on the other hand, a large negative weight w̃e

represents a great tendency of the incident vertices to be in different
clusters. Small weights express (near) indifference. Solving the
correlation clustering amounts to finding a graph multicut for which
the sum of the weights of cut edges is minimal, which is equivalent
to solving the following integer linear program for p = 1:

min
y∈{0,1}|E|

∑
e∈E

w̃p
e ye (15)

s.t. ∀c ∈ Cycles in G ∀e− ∈ c
∑

e∈c\{e−}

ye ≥ ye− (16)

Optimizing this objective is NP-hard. Remarkably, we can derive a
related objective that is optimally solved by the Mutex Watershed
Algorithm, by choosing p sufficiently large.

In order to make the relation to the Mutex Watershed Objective
explicit, let us separate the sum in the objective into repulsive

(E− := {e ∈ E|w̃e < 0}) and attractive edges (E+ := {e ∈
E|w̃e ≥ 0}) ∑

e∈E+

w̃p
e ye −

∑
e∈E−

|w̃e|p ye, (17)

subtract the constant sum of all positive edge weights

−
∑

e∈E+

w̃p
e (1− ye)−

∑
e∈E−

|w̃e|p ye (18)

and substitute

ae :=

{
ye, if e ∈ E−

1− ye if e ∈ E+
(19)

we := |w̃e| (20)

to obtain

−
∑
e∈E

wp
e ae (21)

Observe that for p = 1 this objective is equivalent to the multicut,
but for p large enough to become a dominant power, becomes the
MWS energy (3).

Let us now consider the cycle inequalities (16). We find that
the subset

∀c ∈ C1 ∀e− ∈ c ∩ E−
∑

e∈c\{e−}

ye ≥ ye′ ⇔ C1(A) = ∅

(22)

of these inequalities over cycles from C1 is equivalent to the MWS-
C1 cycle constraints (for a detailed derivation see Appendix A.2).
Therefore,

min
a∈{0,1}|E|

−
∑
e∈E

ae w
p
e (23)

s.t. C1(A) = ∅ with A := {e ∈ E|ae = 1}

is an integer linear program with multicut energy at p = 1 and a
subset of multicut constraints.

The Mutex Watershed objective differs from (23) only in the
additional set of constrains C0(A) = ∅. These are purely cosmetic
and do not affect the clustering result, since only edges within a
cluster are constrained. Their purpose is to restrict the solution to
be a forest (a set of trees rather than a set of disconnected loopy
graphs) w.r.t. the attractive edges which is motivated by the relation
of MWS to minimum spanning trees. However, since the proof
of Theorem 4.1 does not rely on C0(A) = ∅, one can remove
C0(A∪{e}) = ∅ from Algorithm 2 and use identical arguments to
prove that it yields the optimal solution to (23) for p large enough
in the sense of Equation 2. This optimal solution is a consistent cut
of G and thus lies within the tighter full set of multicut constrains.
Therefore, it is also a solution to the modified multicut linear
program (15-16) when p is chosen sufficiently large.

In summary, we make the following remarkable observation:
in a graph with real (both positive and negative) edge weights in
which the absolute weight of each edge is larger than the sum of
absolute weights of all “lighter” edges (Equation 2), the normally
NP-hard multicut problem becomes simpler and can be solved
optimally using the greedy Mutex Watershed Algorithm.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

5 EXPERIMENTS

We evaluate the Mutex Watershed on the challenging task of neuron
segmentation in electron microscopy (EM) image volumes. This
application is of key interest in connectomics, a field of neuro-
science that strives to reconstruct neural wiring digrams spanning
complete central nervous systems. The task requires segmentation
of neurons from electron microscopy images of neural tissue – a
challenging endeavor, since segmentation has to be based only on
boundary information (cell membranes) and some of the boundaries
are not very pronounced. Besides, cells contain membrane-bound
organelles, which have to be suppressed in the segmentation. Some
of the neuron protrusions are very thin, but all of those need to be
preserved in the segmentation to arrive at the correct connectivity
graph. While a lot of progress is being made, currently only manual
tracing or proof-reading yields sufficient accuracy for correct circuit
reconstruction [56].

We validate the Mutex Watershed algorithm on the most popular
neural segmentation challenge: ISBI2012 [31]. We estimate the
edge weights using a CNN as described in Section 5.1 and compare
with other entries in the leaderboard as well as with other popular
post-processing methods for the same network predictions in
Section 5.2.

5.1 Estimating edge weights with a CNN
The common first step to EM segmentation is to predict which
pixels belong to a cell membrane using a CNN. Different post-
processing methods are then used to obtain a segmentation, see
section 2 for an overview of such methods. The CNN can either be
trained to predict boundary pixels [27], [30] or undirected affinities
[28], [57] which express how likely it is for a pixel to belong to a
different cell than its neighbors in the 6-neighborhood. In this case,
the output of the network contains three channels, corresponding to
left, down and next imaging plane neighbors in 3D. The affinities do
not have to be limited to immediate neighbors – in fact, [28] have
shown that introduction of long-range affinities is beneficial for the
final segmentation even if they are only used to train the network.
Building on the work of [28], we train a CNN to predict short- and
long-range affinities and then use those directly as weights for the
Mutex Watershed algorithm.

We estimate the affinities / edge weights for the neighborhood
structure shown in Figure 5. To that end, we define local attrac-
tive and long-range repulsive edges. When attractive edges are
only short-range, the solution will consist of spatially connected
segments that cannot comprise “air bridges”. This holds true for
both (lifted) multicut and for Mutex Watershed. We use a different
pattern for in-plane and between-plane edges due to the great
anisotropy of the data set. In more detail, we pick a sparse ring
of in-plane repulsive edges and additional longer-range in-plane
edges which are necessary to split regions reliably (see Figure 5a).
We also added connections to the indirect neighbors in the lower
adjacent slice to ensure correct 3D connectivity (see Figure 5b).
In our experiments, we pick a subset of repulsive edges, by using
strides of 2 in the XY-plane in order to avoid artifacts caused by
occasional very thick membranes. Note that the stride is not applied
to local (attractive) edges, but only to long-range (repulsive) edges.
The particular pattern used was selected after inspecting the size of
typical regions. The specific pattern is the only one we have tried
and was not optimized over.

In total, C+ attractive and C− repulsive edges are defined for
each pixel, resulting in C+ + C− output channels in the network.

We partition the set of attractive / repulsive edges into subsets H+

and H− that contain all edges at a specific offset: E+ =
⋃C+

c=1H
+
c

for attractive edges, with H− defined analogously. Each element
of the subsets H+

c and H−c corresponds to a specific channel
predicted by the network. We further assume that weights take
values in [0, 1].

Network architecture and training
We use the 3D U-Net [32], [58] architecture, as proposed in [57].

Our training targets for attractive / repulsive edges
∗
w± can be

derived from a groundtruth label image
∗
L according to

∗
w+

e=(i,j)=

{
1, if

∗
Li=

∗
Lj

0, otherwise
(24)

∗
w−e=(i,j)=

{
0, if

∗
Li=

∗
Lj

1, otherwise
(25)

Here, i and j are the indices of vertices / image pixels. Next,
we define the loss terms

J +
c = −

∑
e∈H+

c
(1− w+

e)(1−
∗
w+

e)∑
e∈H+

c
((1− w+

e)2 + (1− ∗w+
e)

2)
(26)

J−c = −
∑

e∈H−c w
−
e

∗
w−e∑

e∈H−c ((w−e)2 + (
∗
w−e)

2)
(27)

for attractive edges (i.e. channels) and repulsive edges (i.e. chan-
nels).

Equation 26 is the Sørensen-Dice coefficient [59], [60]
formulated for fuzzy set membership values. During training
we minimize the sum of attractive and repulsive loss terms
J =

∑C+

c J +
c +

∑C−

c J−c . This corresponds to summing up the
channel-wise Sørensen-Dice loss. The terms of this loss are robust
against prediction and / or target sparsity, a desirable quality for
neuron segmentation: since membranes are locally two-dimensional
and thin, they occupy very few pixels in three-dimensional the
volume. More precisely, if w+

e or
∗
w+

e (or both) are sparse, we
can expect the denominator

∑
e((w

+
e)

2 + (
∗
w+

e)
2) to be small,

which has the effect that the numerator is adaptively weighted
higher. In this sense, the Sørensen-Dice loss at every pixel i is
conditioned on the global image statistics, which is not the case
for a Hamming-distance based loss like Binary Cross-Entropy or
Mean Squared Error.

We optimize this loss using the Adam optimizer [61] and
additionally condition learning rate decay on the Adapted Rand
Score [31] computed on the training set every 100 iterations.
During training, we augment the data set by performing in-plane
rotations by multiples of 90 degrees, flips along the X- and Y-axis
as well as elastic deformations. At prediction time, we use test time
data augmentation, presenting the network with seven different
versions of the input obtained by a combination of rotations by a
multiple of 90 degrees, axis-aligned flips and transpositions. The
network predictions are then inverse-transformed to correspond to
the original image, and the results averaged.

5.2 ISBI Challenge
The ISBI 2012 EM Segmentation Challenge [31] is the neuron
segmentation challenge with the largest number of competing
entries. The challenge data contains two volumes of dimensions 1.5
× 2 × 2 microns and has a resolution of 50 × 4 × 4 nm per pixel.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(9, 4)(-9, 4)

(9,-4)(-9,-4)

(4, 9)

(4, -9)

(-4, 9)

(-4, -9) (0,-9)

(0, 9)

(9, 0)(-9,0)

(9,-9)

(9, 9)

(-9, -9)

(-9,9)

(0,-27)

(0, 27)

(27, 0)(-27,0)

(a) XY-plane neighborhood with local attractive edges (green) and
sparse repulsive edges (red) with approximate radius 9 and further
long-range connections with distance 27

(b) Due to the great anisotropy of the data we limit the Z-plane
edges to a distance of 1. The direct neighbors are attractive, whereas
the indirect neighbors are repulsive.

Fig. 5: Local neighborhood structure of attractive (green) and
repulsive (red) edges in the Mutex Watershed graph.

The groundtruth is provided as binary membrane labels, which can
easily be converted to a 2D, but not 3D segmentation. To train a
3D model, we follow the procedure described in [27].

The test volume has private groundtruth; results can be
submitted to the leaderboard. They are evaluated based on the
Adapted Rand Score (Rand-Score) and the Variation of Information
Score (VI-Score) [31].

Our method holds the top entry in the challenge’s leader
board1 at the time of submission, see Table 1a. This is especially
remarkable insofar as it is simpler than the methods holding
the other top entries. Three out of four rely on a CNN to
predict boundary locations and postprocess its output with the
complex pipeline described in [27]. This post-processing first
generates superpixels via distance transform watersheds. Then
it computes a merge cost for local and long-range connections
between superpixels. Based on this, it defines a lifted multicut
partioning problem that is solved approximately. In contrast, our

1. http://brainiac2.mit.edu/isbi_challenge/leaders-board-new

(a) Mutex Watershed (b) Mutex Watershed

(c) Multicut partitioning based
segmentation (MC-FULL)

(d) Thresholding of local
boundary maps (THRESH)

(e) Watershed, seeded at local
minima of the smoothed input

map (WS)

(f) Distance Transform
Watershed (WSDT)

Fig. 6: Mutex Watershed and baseline segmentation algorithms
applied on the ISBI Challenge test data. Red arrows point out major
errors. Orange arrows point to difficult, but correctly segmented
regions. All methods share the same input maps.

method operates purely on the pixel level and does not involve a
NP-hard partioning step.

Comparison with other segmentation methods
The weights predicted by the CNN described above can be post-
processed directly by the Mutex Watershed algorithm. To ensure
a fair comparison, we transform the same CNN predictions into
a segmentation using basic and state-of-the-art post-processing
methods. We start from simple thresholding (THRESH) and seeded
watershed. Since these cannot take long-range repulsions into
account, we generate a boundary map by taking the maximum2

values over the attractive edge channels. Based on this boundary
map, we introduce seeds at the local minima (WS) and at the
maxima of the smoothed distance transform (WSDT). For both
variants, the degree of smoothing was optimized such that each

2. The maximum is chosen to preserve boundaries.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

region receives as few seeds as possible, without however causing
severe under-segmentation. The performance of these three baseline
methods in comparison to Mutex Watershed is summarized in
Table 1b. The methods were applied only in 2D, because the high
degree of anisotropy leads to inferior results when applied in 3D.
In contrast, the Mutex Watershed can be applied in 3D out of the
box and yields significantly better 2D segmentation scores.

Qualitatively, we show patches of results in Figure 6. The
major failure case for WS (Figure 6e) and WSDT (Figure
6f) is over-segmentation caused by over-seeding a region. The
major failure case for THRESH is under-segmentation due to
week boundary evidence (see Figure 6d). In contrast, the Mutex
Watershed produces a better segmentation, only causing minor
over-segmentation (see Figure 6a, Figure 6b).

Note that, in contrast to most pixel-based postprocessing
methods, our algorithm can take long range predictions into account.
To compare with methods which share this property, we turn
to the multicut and lifted multicut-based partitioning for neuron
segmentations as introduced in [18] and [25]. As proposed in [62],
we compute costs corresponding to edge cuts from the affinities
estimated by the CNN via:

se =

log
w+

e

1−w+
e
, if e ∈ E+

log
1−w−e
w−e

, otherwise,
(28)

We set up two multicut problems: the first is induced only by the
short-range edges (MC-LOCAL), the other by short- and long-
range edges together (MC-FULL). Note that the solution to the
full connectivity problem can contain “air bridges”, i.e. pixels that
are connected only by long-range edges, without a path along the
local edges connecting them. However, we found this not to be a
problem in practice. In addition, we set up a lifted multicut (LMC)
problem from the same edge costs.

Both problems are NP-hard, hence it is not feasible to solve
them exactly on large grid graphs. For our experiments, we use
the approximate Kernighan Lin [22], [63] solver. Even this allows
us to only solve individual 2D problems at a time. The results for
MC-LOCAL and MC-FULL can be found in Table 1b. The MC-
LOCAL approach scores poorly because it under-segments heavily.
This observation emphasizes the importance of incorporating the
longer-range edges. The MC-FULL and LMC approaches perform
well. Somewhat surprisingly, the Mutex Watershed yields a better
segmentation still, despite being much cheaper in inference. We
note that both MC-FULL, LMC and the Mutex Watershed are
evaluated on the same long-range affinity maps (i.e. generated by
the same CNN with the same set of weights).

6 CONCLUSION AND DISCUSSION

We have presented a fast algorithm for the clustering of graphs
with both attractive and repulsive edges. The ability to consider
both obviates the need for the kind of stopping criterion or even
seeds that all popular algorithms except for multicut / correlation
clustering need. The proposed method has low computational
complexity in imitation of its close relative, Kruskal’s algorithm.
We have shown which objective this algorithm optimizes exactly,
and that this objective emerges as a specific case of the multicut
objective. It is possible that recent interesting work [67] on partial
optimal solutions may open an avenue for an alternative proof.

Finally, we have found that the proposed algorithm, when
presented with informative edge costs from a good neural network,

Method Rand-Score VI-Score

UNet + MWS 0.98792 0.99183
ResNet + LMC [64] 0.98788 0.99072
SCN + LMC [65] 0.98680 0.99144
M2FCN-MFA [66] 0.98383 0.98981
FusionNet + LMC [33] 0.98365 0.99130

(a) Top five entries at time of submission. Our Mutex Watershed
(MWS) is state-of-the-art without relying on the complex lifted
multicut postprocessing used by most other top entries.

Method Rand-Score VI-Score Time [s]

MWS 0.98792 0.99183 43.3
MC-FULL 0.98029 0.99044 9415.8
LMC 0.97990 0.99007 966.0
THRESH 0.91435 0.96961 0.2
WSDT 0.88336 0.96312 4.4
MC-LOCAL 0.70990 0.86874 1410.7
WS 0.63958 0.89237 4.9

(b) Comparison to other segmentation strategies, all of which are
based on our CNN.

TABLE 1: Results on the ISBI 2012 EM Segmentation Challenge.

outperforms all known methods on a competitive bioimage par-
titioning benchmark, including methods that operate on the very
same network predictions.

7 ACKNOWLEDGMENTS

This work was partially supported by the grants DFG HA 4364/8-1,
DFG SFB 1129 from the Deutsche Forschungsgemeinschaft and
the Baden-Württemberg Stiftung Elite PostDoc Program.

REFERENCES

[1] S. Wolf, C. Pape, A. Bailoni, N. Rahaman, A. Kreshuk, U. Köthe, and
F. Hamprecht, “The mutex watershed: Efficient, parameter-free image
partitioning,” Proc. ECCV’18, 2018.

[2] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient
algorithm based on immersion simulations,” IEEE Trans. Pattern Analysis
Machine Intelligence, no. 6, pp. 583–598, 1991.

[3] S. Beucher and F. Meyer, “The morphological approach to segmentation:
the watershed transformation,” Optical Engineering, vol. 34, pp. 433–433,
1992.

[4] M. Grimaud, “New measure of contrast: the dynamics,” in Proc. Image Al-
gebra and Morphological Processing, ser. SPIE Conf. Series, P. D. Gader,
E. R. Dougherty, & J. C. Serra, Ed., vol. 1769, 1992, pp. 292–305.

[5] S. Beucher, “Watershed, hierarchical segmentation and waterfall algo-
rithm.” in Proc. ISMM’94, vol. 94, 1994, pp. 69–76.

[6] C. Vachier and F. Meyer, “Extinction value: a new measurement of
persistence,” in Worksh. Nonlinear Signal and Image Processing, vol. 1,
1995, pp. 254–257.

[7] L. Najman and M. Schmitt, “Geodesic saliency of watershed contours and
hierarchical segmentation,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 12, pp. 1163–1173, 1996.

[8] P. Soille, “Constrained connectivity for hierarchical image decomposition
and simplification,” IEEE Trans. Patt. Anal. Mach. Intell., vol. 30, no. 7,
pp. 1132–1145, 2008.

[9] B. Perret, J. Cousty, S. J. F. Guimaraes, and D. S. Maia, “Evaluation of
hierarchical watersheds,” IEEE Transactions on Image Processing, vol. 27,
no. 4, pp. 1676–1688, 2018.

[10] F. Meyer, “Morphological multiscale and interactive segmentation.” in
NSIP, 1999, pp. 369–377.

[11] L. Najman, “On the equivalence between hierarchical segmentations and
ultrametric watersheds,” J. of Mathematical Imaging and Vision, vol. 40,
no. 3, pp. 231–247, 2011.

[12] P. Salembier and L. Garrido, “Binary partition tree as an efficient
representation for image processing, segmentation, and information
retrieval,” IEEE Trans. Image Proc., vol. 9, pp. 561–576, 2000.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

[13] F. Malmberg, R. Strand, and I. Nyström, “Generalized hard constraints
for graph segmentation,” in Scandinavian Conference on Image Analysis.
Springer, 2011, pp. 36–47.

[14] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Image
Segmentation,” Int. J. Comput. Vision, vol. 59, no. 2, pp. 167–181, 2004.

[15] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection and
hierarchical image segmentation,” IEEE Trans. Patt. Anal. Mach. Intell.,
vol. 33, no. 5, pp. 898–916, 2011.

[16] B. R. Kiran and J. Serra, “Global–local optimizations by hierarchical cuts
and climbing energies,” Pattern Recognition, vol. 47, no. 1, pp. 12–24,
2014.

[17] M. Keuper, S. Tang, Y. Zhongjie, B. Andres, T. Brox, and B. Schiele,
“A multi-cut formulation for joint segmentation and tracking of multiple
objects,” arXiv preprint arXiv:1607.06317, 2016.

[18] B. Andres, T. Kröger, K. L. Briggmann, W. Denk, N. Norogod, G. Knott,
U. Köthe, and F. A. Hamprecht, “Globally optimal closed-surface
segmentation for connectomics,” in Proc. ECCV’12, part 2, no. 7574,
2012, pp. 778–791.

[19] J. Yarkony, A. Ihler, and C. C. Fowlkes, “Fast planar correlation clustering
for image segmentation,” in Proc. ECCV’12, 2012, pp. 568–581.

[20] C. Pape, T. Beier, P. Li, V. Jain, D. D. Bock, and A. Kreshuk, “Solving
large multicut problems for connectomics via domain decomposition,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 1–10.

[21] Z. Levi and D. Zorin, “Strict minimizers for geometric optimization,”
ACM Trans. Graph., vol. 33, no. 6, pp. 185:1–185:14, Nov. 2014.

[22] M. Keuper, E. Levinkov, N. Bonneel, G. Lavoué, T. Brox, and B. Andres,
“Efficient decomposition of image and mesh graphs by lifted multicuts,”
in Proc. ICCV’15, 2015, pp. 1751–1759.

[23] E. Levinkov, A. Kirillov, and B. Andres, “A comparative study of local
search algorithms for correlation clustering,” in German Conference on
Pattern Recognition. Springer, 2017, pp. 103–114.

[24] C. Zhang, J. Yarkony, and F. A. Hamprecht, “Cell detection and
segmentation using correlation clustering,” in Proc. MICCAI’14, 2014, pp.
9–16.

[25] A. Horňáková, J.-H. Lange, and B. Andres, “Analysis and optimization of
graph decompositions by lifted multicuts,” in International Conference on
Machine Learning, 2017, pp. 1539–1548.

[26] T. Beier, B. Andres, U. Köthe, and F. A. Hamprecht, “An efficient
fusion move algorithm for the minimum cost lifted multicut problem,” in
European Conference on Computer Vision. Springer, 2016, pp. 715–730.

[27] T. Beier, C. Pape, N. Rahaman, and T. e. a. Prange, “Multicut brings
automated neurite segmentation closer to human performance,” Nature
Methods, vol. 14, no. 2, pp. 101–102, 2017.

[28] K. Lee, J. Zung, P. Li, V. Jain, and H. S. Seung, “Superhuman accuracy on
the SNEMI3D connectomics challenge,” arXiv preprint arXiv:1706.00120,
2017.

[29] V. Jain, J. F. Murray, F. Roth, S. Turaga, V. Zhigulin, K. L. Briggman,
M. N. Helmstaedter, W. Denk, and H. S. Seung, “Supervised learning of
image restoration with convolutional networks,” Proc. ICCV’07, pp. 1–8,
2007.

[30] D. C. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep
neural networks segment neuronal membranes in electron microscopy
images,” Proc. NIPS’12, 2012.

[31] I. Arganda-Carreras, S. Turaga, D. Berger et al., “Crowdsourcing the
creation of image segmentation algorithms for connectomics,” Front.
Neuroanatomy, vol. 9, p. 142, 2015.

[32] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” Proc. MICCAI’15, pp. 234–241,
2015.

[33] T. M. Quan, D. G. Hilderbrand, and W.-K. Jeong, “FusionNet: a deep
fully residual convolutional neural network for image segmentation in
connectomics,” arXiv:1612.05360, 2016.

[34] J. Nunez-Iglesias, R. Kennedy, T. Parag, J. Shi, and D. Chklovskii,
“Machine learning of hierarchical clustering to segment 2D and 3D images,”
PLoS one, vol. 8, p. e71715, 2013.

[35] S. Knowles-Barley, V. Kaynig, T. R. Jones, A. Wilson, J. Morgan, D. Lee,
D. Berger, N. Kasthuri, J. W. Lichtman, and H. Pfister, “RhoanaNet
pipeline: Dense automatic neural annotation,” arXiv:1611.06973, 2016.

[36] M. G. Uzunbaş, C. Chen, and D. Metaxas, “Optree: a learning-based
adaptive watershed algorithm for neuron segmentation,” in Int. Conf. Med-
ical Image Computing and Computer-Assisted Intervention (MICCAI’14),
2014, pp. 97–105.

[37] Y. Meirovitch, A. Matveev, H. Saribekyan, D. Budden, D. Rolnick,
G. Odor, S. K.-B. T. R. Jones, H. Pfister, J. W. Lichtman, and
N. Shavit, “A multi-pass approach to large-scale connectomics,” arXiv
preprint:1612.02120, 2016.

[38] M. Januszewski, J. Kornfeld, P. H. Li, A. Pope, T. Blakely, L. Lindsey,
J. Maitin-Shepard, M. Tyka, W. Denk, and V. Jain, “High-precision
automated reconstruction of neurons with flood-filling networks,” Nature
methods, p. 1, 2018.

[39] A. Zlateski and H. S. Seung, “Image segmentation by size-dependent
single linkage clustering of a watershed basin graph,” arXiv:1505.00249,
2015.

[40] T. Parag, F. Tschopp, W. Grisaitis, S. C. Turaga, X. Zhang, B. Mate-
jek, L. Kamentsky, J. W. Lichtman, and H. Pfister, “Anisotropic EM
segmentation by 3d affinity learning and agglomeration,” arXiv preprint
1707.08935, 2017.

[41] S. C. Turaga, J. F. Murray, V. Jain, F. Roth, M. Helmstaedter, K. Briggman,
W. Denk, and H. S. Seung, “Convolutional networks can learn to generate
affinity graphs for image segmentation,” Neural Computation, vol. 22,
no. 2, pp. 511–538, 2010.

[42] K. Briggman, W. Denk, S. Seung, M. N. Helmstaedter, and S. C. Turaga,
“Maximin affinity learning of image segmentation,” in Advances in Neural
Information Processing Systems, 2009, pp. 1865–1873.

[43] S. Wolf, L. Schott, U. Köthe, and F. Hamprecht, “Learned watershed:
End-to-end learning of seeded segmentation,” Proc. ICCV’17, 2017.

[44] M. Bai and R. Urtasun, “Deep watershed transform for instance seg-
mentation,” in 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, 2017, pp. 2858–2866.

[45] S. Xie and Z. Tu, “Holistically-nested edge detection,” in Proc. ICCV’15,
2015, pp. 1395–1403.

[46] I. Kokkinos, “Pushing the boundaries of boundary detection using deep
learning,” arXiv:1511.07386, 2015.

[47] J. Cai, L. Lu, Z. Zhang, F. Xing, L. Yang, and Q. Yin, “Pancreas
segmentation in MRI using graph-based decision fusion on convolutional
neural networks,” in Proc. MICCAI, 2016.

[48] F. Meyer, “Topographic distance and watershed lines,” Signal processing,
vol. 38, no. 1, pp. 113–125, 1994.

[49] ——, “Minimum spanning forests for morphological segmentation,” in
Mathematical morphology and its applications to image processing, 1994,
pp. 77–84.

[50] A. X. Falcão, J. Stolfi, and R. de Alencar Lotufo, “The image foresting
transform: Theory, algorithms, and applications,” IEEE Trans. Patt. Anal.
Mach. Intell., vol. 26, no. 1, pp. 19–29, 2004.

[51] J. Cousty, G. Bertrand, L. Najman, and M. Couprie, “Watershed cuts:
Minimum spanning forests and the drop of water principle,” IEEE Trans.
Patt. Anal. Mach. Intell., 2009.

[52] J. H. Kappes, M. Speth, B. Andres, G. Reinelt, and C. Schn, “Globally
optimal image partitioning by multicuts,” in International Workshop
on Energy Minimization Methods in Computer Vision and Pattern
Recognition. Springer, 2011, pp. 31–44.

[53] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[54] S. Chopra and M. R. Rao, “On the multiway cut polyhedron,” Networks,
vol. 21, no. 1, pp. 51–89, 1991.

[55] B. Andres, “Lifting of multicuts,” CoRR, vol. abs/1503.03791, 2015.
[56] P. Schlegel, M. Costa, and G. S. X. E. Jefferis, “Learning from

connectomics on the fly.” Current opinion in insect science, vol. 24,
pp. 96–105, 2017.

[57] J. Funke, F. D. Tschopp, W. Grisaitis, A. Sheridan, C. Singh, S. Saalfeld,
and S. C. Turaga, “Large scale image segmentation with structured loss
based deep learning for connectome reconstruction,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2018.

[58] Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger,
“3D U-Net: learning dense volumetric segmentation from sparse anno-
tation,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 2016, pp. 424–432.

[59] L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology, vol. 26, no. 3, pp. 297–302, 1945.

[60] T. Sørensen, “A method of establishing groups of equal amplitude in plant
sociology based on similarity of species and its application to analyses of
the vegetation on danish commons,” Biol. Skr., vol. 5, pp. 1–34, 1948.

[61] D. Kinga and J. B. Adam, “A method for stochastic optimization,” in
International Conference on Learning Representations (ICLR), vol. 5,
2015.

[62] B. Andres, T. Kroeger, K. L. Briggman, W. Denk, N. Korogod, G. Knott,
U. Koethe, and F. A. Hamprecht, “Globally optimal closed-surface
segmentation for connectomics,” in European Conference on Computer
Vision. Springer, 2012, pp. 778–791.

[63] B. W. Kernighan and S. Lin, “An efficient heuristic procedure for
partitioning graphs,” The Bell system technical journal, vol. 49, no. 2, pp.
291–307, 1970.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

[64] C. Xiao, J. Liu, X. Chen, H. Han, C. Shu, and Q. Xie, “Deep contex-
tual residual network for electron microscopy image segmentation in
connectomics,” in Biomedical Imaging (ISBI 2018), 2018 IEEE 15th
International Symposium on. IEEE, 2018, pp. 378–381.

[65] M. Weiler, F. A. Hamprecht, and M. Storath, “Learning steerable filters
for rotation equivariant CNNs,” 2018, pp. 849–858.

[66] W. Shen, B. Wang, Y. Jiang, Y. Wang, and A. L. Yuille, “Multi-stage
multi-recursive-input fully convolutional networks for neuronal boundary
detection,” 2017 IEEE International Conference on Computer Vision
(ICCV), pp. 2410–2419, 2017.

[67] J.-H. Lange, A. Karrenbauer, and B. Andres, “Partial optimality and
fast lower bounds for weighted correlation clustering,” in International
Conference on Machine Learning, 2018, pp. 2898–2907.

APPENDIX A
EFFICIENT IMPLEMENTATION OF THE MUTEX WA-
TERSHED ALGORITHM

In this section we propose an efficient implementation of the MWS,
derive its theoretical average runtime complexity and show that in
practice the MWS scales with O(E logE).

Notation:
Let us explicitly define clusters using the “connected” predicate
∀i, j ∈ V :

connected(i, j|A) := I{∃ path π ⊆ A+ from i to j}
cluster(i|A) = {i} ∪ {j : connected(i, j|A)}

Conversely, the active subset A− ⊆ E− of repulsive edges defines
mutual exclusion relations by using the following predicate:

mutex(i, j|A) := I{∃ path π ⊆ A from i to j s.t. |π ∩A−| = 1}

To implement the MWS efficiently we reformulate the algorithm in
terms of the predicates connected and mutex using the following
equalities (for an arbitrary set A ⊆ E with C0/1(A) = ∅)

∀(i, j) ∈ E+ \A : connected(i, j|A)⇔ C0(A ∪ {(i, j)}) 6= ∅
mutex(i, j|A) ⇔ C1(A ∪ {(i, j)}) 6= ∅

∀(i, j) ∈ E− \A : connected(i, j|A)⇔ C1(A ∪ {(i, j)}) 6= ∅

to rewrite the Mutex Watershed Algorithm as Algorithm 4. In the
following analysis we omit the dependence on A in all predicates
to improve readability.

A.1 Time Complexity Analysis
Before analyzing the time complexity of algorithm 4 we first review
the complexity of Kruskal’s algorithm. Using a union-find data
structure (with path compression and union by rank) the time
complexity of merge(i, j) and connected(i, j) is O(α(V)),
where α is the slowly growing inverse Ackerman function, and the
total runtime complexity is dominated by the initial sorting of the
edges O(E logE) [53].
To check for mutex constraints efficiently, we maintain a set of all
active mutex edges

M [Ci] = {(u, v) ∈ A−|u ∈ Ci ∨ v ∈ Ci}

for every Ci = cluster(i) using hash tables, where insertion of
new mutex edges (i.e. addmutex) and search have an average
complexity of O(1). Note that every cluster can be efficiently
identified by its union-find root node. For mutex(i, j) we check
if M [Ci] ∩ M [Cj] = ∅ by searching for all elements of the
smaller hash table in the larger hash table. Therefore mutex(i, j)

Input: weighted graph G(V,E+ ∪ E−,W+ ∪W−);
Output: clusters defined by active set A+;
Initialization: A+ = ∅; A− = ∅;
for (i, j) = e ∈ (E+ ∪E−) in descending order of
W+ ∪W− do

if e ∈ E+ then
if not connected(i, j) and not mutex(i, j) then

merge(i, j): A+ ← A+ ∪ e;
. merge i and j and inherit the mutex

constraints of the parent clusters
end

else
if not connected(i, j) then

addmutex(i, j): A− ← A− ∪ e;
. add mutex constraint between i and j

end
end

end

Algorithm 4: Efficient implementation of Mutex Watershed. The
connected predicate can be efficiently evaluated.

has an average complexity of O(min(|M [Ci]|, |M [Cj]|). Sim-
ilarly, during merge(i, j), mutex constraints are inherited by
merging two hash tables, which also has an average complexity
O(min(|M [Ci]|, |M [Cj]|).
In conclusion, the average runtime contribution of attractive edges
O(|E+| · α(V) + |E+| ·M) (checking mutex constraints and
possibly merging) and repulsive edges O(|E−| · α(V) + |E−|)
(insertion of one mutex edge) result in a total average runtime
complexity of algorithm 4:

O(E logE + E · α(V) + EM). (29)

where M is the expected value of min(|M [Ci]|, |M [Cj]|). Using
α(V) ∈ O(log V) ∈ O(logE) this simplifies to3

O(E logE + EM). (30)

In the worst caseO(M) ∈ O(E), the Mutex Watershed Algorithm
has a runtime complexity of O(E2). Empirically, we find that
O(EM) ≈ O(E logE) by measuring the runtime of Mutex
Watershed for different sub-volumes of the ISBI challenge (see
Figure 7), leading to a

Empirical Mutex Watershed Complexity: O(E logE) (31)

A.2 Multicut Cycle Inequalities
Here we prove equation (22)

∀c ∈ C1 ∀e− ∈ c∩E−
∑

e∈c\{e−}

ye ≥ ye− ⇔ C1(A) = ∅.

Using the indicator

ae :=

{
ye, if e ∈ E−

1− ye if e ∈ E+

we can decompose the r.h.s. of equation (22) into

C1(A) = ∅ ⇔
∑
e∈c

ae < |c| ∀c ∈ C1 (32)

3. In the worst case G is a fully connected graph, with |E| = |V |2, hence
log |V | = 1

2
log |E| for graphs without parallel edges.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

106 107

Total Number of Edges |E|

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
un

tim
e[

s]
/T

ot
al

N
um

be
ro

fE
dg

es
|E

|
1e-7

Fig. 7: Runtime T of Mutex Watershed (without sorting of edges)
measured on sub-volumes of the ISBI challenge of different
sizes (thereby varying the total number of edges E). We plot
T
|E| over |E| in a logarithmic plot, which makes T ∼ |E|log(|E|)
appear as straight line. A logarithmic function (blue line) is fitted
to the measured T

|E| (blue circles) with (R2 = 0.9896). The good
fit suggests that empirically T ≈ O(E logE).

and show the equivalence for any cycle c ∈ C1 with repulsive edge
e− ∈ c ∩ E−:∑

e∈c
ae < |c| ⇔

∑
e∈c

ae ≤ |c| − 1

⇔
∑
e∈c

(ae − 1) ≤ −1

⇔
∑
e∈c

(1− ae)− 1 ≥ 0

⇔
∑

e∈c\{e−}

(1− ae) ≥ ae−

⇔
∑

e∈c\{e−}

ye ≥ ye−

	1 Introduction
	2 Related Work
	3 The Mutex Watershed Algorithm
	3.1 Notation
	3.2 Seeded watershed from a mutex perspective
	3.3 Mutex Watersheds

	4 Theoretical characterization
	4.1 Mutex Watershed Objective
	4.2 Optimality of the Mutex Watershed Algorithm
	4.3 Relation to multicut / correlation clustering

	5 Experiments
	5.1 Estimating edge weights with a CNN
	5.2 ISBI Challenge

	6 Conclusion and Discussion
	7 Acknowledgments
	References
	Appendix A: Efficient implementation of the Mutex Watershed Algorithm
	A.1 Time Complexity Analysis
	A.2 Multicut Cycle Inequalities

