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Abstract. We introduce an approach to both image labeling and unsu-
pervised image partitioning as different instances of the multicut prob-
lem, together with an algorithm returning globally optimal solutions.
For image labeling, the approach provides a valid alternative. For unsu-
pervised image partitioning, the approach outperforms state-of-the-art
labeling methods with respect to both optimality and runtime, and ad-
ditionally returns competitive performance measures for the Berkeley
Segmentation Dataset as reported in the literature.
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1 Introduction

Partitioning an image into a number of segments is a key problem in computer
vision. We distinguish (i) image labeling where segments are associated with
a finite number of classes (e.g., street, sky, person, etc.) based on pre-defined
features, and (ii) unsupervised partitioning where no prototypical features as
class representatives are available, but only pairwise distances between features.

Concerning (i), partitions are determined by inference with respect to vari-
ables that take values in a finite set of labels and are assigned to the nodes
of the underlying graph [1]. Accordingly, the marginal polytope has become a
focal point of research on relaxations and approximate inference for image la-
beling [2–4].

In this paper, we focus on the image partitioning problem as a multicut prob-
lem which appears natural for unsupervised partitioning (ii) and includes image
labeling (i) as a special case. Here, random variables are assigned to the edges
of the underlying graph. This is appealing because in order to form a partition,
edges have to adjoin in order to separate nodes properly and thus explicitly rep-
resent local shape, which can only indirectly be achieved through labelled nodes
by taking differences. Clearly, edge indicator vectors have to be constrained in
order to form valid partitions [5–7], and the resulting combinatorial problem
is NP-hard. We demonstrate below, however, that especially for unsupervised
scenarios (ii), our multicut approach enables us to compute efficiently globally
optimal image partitions – see Fig. 1.
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(a) Image (b) Superpixels (c) λ = 0.3 (d) λ = 1

Fig. 1. (a-b) An image preprocessed into a set of superpixels [11]. (c-d) Globally
optimal partition minimizing the objective function (11) for two different values of λ
in an unsupervised setting, computed in less than 0.1 seconds excluding the time for
computing superpixels.

A subclass of the multicut problem, the multiway cut problem, has been intro-
duced to computer vision in [8] as a generalization of the basic min-cut/max-flow
approach. For specific problems in this subclass, efficient approximative methods
exist [9], and for few special cases, e.g., for planar graphs, exact polynomial time
algorithms are known [10].

Our approach applies to both scenarios (i) and (ii) sketched above and can
deal with generalized Potts terms that might have negative signs.
Our contributions are the following:

1. We reformulate image labeling in terms of generalized Potts models as a
multicut problem (Sec. 2).

2. We provide an economical multicut formulation of the unsupervised parti-
tioning problem. It can be based on arbitrary features and pairwise distances,
and generates a hierarchy of partitions by varying a single parameter (Sec. 2).

3. We devise a three-phase iterative procedure for computing globally opti-
mal partitions in both scenarios (i) and (ii) based on LP-relaxation, in-
teger programming, and the cutting plane method (Sec. 3). For our LP-
relaxation, a deterministic rounding procedure suggested by [12] returns a(
3
2 −

1
k

)
-approximate integer solution of the k-multiway cut problem and

improves the performance bound 2− 2
k known in computer vision so far [13].

4. We compare our approach for image labeling problems (Sec. 4). State-of-
the-art methods [4, 13] are competitive concerning both optimality (though
they do not provide any guarantee) and runtime. Thus, our approach only
provides a competitive alternative using a different problem formulation.

5. We compare our approach for unsupervised partitioning (Sec. 4). Our opti-
mization method clearly outperforms competing methods concerning both
optimality and runtime. Concerning the Berkeley Segmentation Dataset and
Benchmark (BSD), our approach even is on par with approaches that rely
on edge detection (privileging them), rather than on image partitioning.

In contrast to [14], the present paper discusses a 3-phase algorithm together
with a hierarchy of inequality constraints (Sec. 3) and examines experimentally
optimization methods for the multicut/image partitioning problem.
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2 Problem Description

2.1 Image Labeling

Given a graph G = (V,E), we assign labels from a label set L = {1, . . . , k} to all
nodes v ∈ V by using node variables xv ∈ L. A labeling x = (xv)v∈V ∈ L|V | de-
fines a partition of V into subsets of nodes Sl assigned to class l, i.e.,

⋃
l∈L Sl = V .

Furthermore, for a logical expression ϕ, we define an indicator function I(ϕ)
which is 1 if the expression is true and 0 otherwise.

The cost of a labeling is the sum of the label assignment costs for each
node, plus the sum of weighted edges connecting different classes which may
be considered as an approximation of the weighted length of the separating
boundaries:

J(x) =
∑
v∈V

fv(xv) +
∑
uv∈E

βuv I(xu 6= xv). (1)

Note that the weight of the boundary βuv ∈ R depends only on the edge uv and
not on the labels assigned to u and v. In the simplest case, all edges are treated
equally, i.e., βuv = β̂ for all uv ∈ E.

The function fv(l) encodes the similarity of data observed at location v to
class l. Since the number of labels is finite, we can represent the function by a
vector θv ∈ Rk:

θv,l = fv(l), fv(xv) =
∑
l∈L

θv,lI(xv = l). (2)

A common approach to determine a labeling is to consider the combinatorial
optimization problem

min
x∈L|V |

∑
v∈V

fv(xv) +
∑
uv∈E

βuv I(xu 6= xv). (P1)

Instead of optimizing over the set of all node labelings (node domain), we opti-
mize over the set of all separating boundaries related to valid partitions (edge
domain), which is known as the multicut problem, see Sec. 2.3.

2.2 Unsupervised Pairwise Image Partitioning

We will also study the following important variant of problem (P1):

min
x∈L|V |

∑
uv∈E

βuvI(xu 6= xv), L = {1, . . . , |V |}. (P2)

Here, in comparison to (P1), we have fv ≡ 0 for all v ∈ V . Coefficients βuv may
depend on data but are assumed not to depend on prototypical prior information
about a fixed number of classes L, so that the maximum number of labels is |V |.
Rather, only pairwise distances between data (or features) are used. To obtain
a well-posed problem, the sign of βuv is not restricted.

As for the image labeling problem in the previous section, we will also study
solving problem (P2) by multicuts which turns out to offer an economical rep-
resentation – cf. Fig. 1.
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2.3 The Multicut Problem

Let G = (V,E) and
⋃k

i=1 Si = V be a partition of V . Then we call the edge set

δ(S1, . . . , Sk) := {uv ∈ E | ∃i 6= j : u ∈ Si and v ∈ Sj} (3)

a multicut and the sets S1, . . . , Sk the shores of the multicut.
To obtain a polyhedral representation of multicuts, we define incidence vec-

tors χ(F ) ∈ R|E| for each subset F ⊆ E:

χe(F ) =

{
1, if e ∈ F ,
0, if e ∈ E \ F .

The multicut polytope is given by

MC(G) := conv {χ(δ(S1, . . . , Sk)) | δ(S1, . . . , Sk) is a multicut of G} . (4)

For an overview and further details on the geometry of this and related polytopes,
we refer to [5].

For given edge weights w(e) ∈ R, e ∈ E, the multicut problem is to find
a multicut for which the sum of the weights of cut edges is minimal. Since
all vertices of the multicut polytope correspond to multicuts, this amounts to
solving the linear program

min
y∈MC(G)

∑
e∈E

w(e) ye. (P3)

In order to apply linear programming techniques, we have to represent MC(G)
as intersection of half-spaces given by a system of affine inequalities. Since the
multicut problem is NP-hard [15], we cannot expect to find a system of polyno-
mial size. But, as we will see later, partial systems may be very helpful to solve
the multicut problem.

Before discussing how problem (P3) can be solved efficiently, we will show
how the problems (P1) and (P2) can be transformed into problem (P3).

2.4 Image Labeling as Multicut Problem

To write problem (P1) as a multicut problem, we use its defining graph G and
introduce k additional terminal nodes T = {t1, . . . , tk}. Then we define the graph
G′ = (V ′, E′) by

V ′ = V ∪ T, E′ = E ∪ {(t, v) | t ∈ T, v ∈ V } ∪ {(ti, tj) | 1 ≤ i < j ≤ k}.

Each node v ∈ V is connected to all terminal nodes t ∈ T . The terminal nodes
represent the k labels, and label l is assigned to variable xv, v ∈ V , if edge tlv
is not part of the multicut. Since we want to assign only a single label to each
variable, k − 1 edges joining node v and the terminal nodes have to be part of
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t1 t2 t3

(a) Multicut graph for (P1) (b) Multicut graph for (P2)

Fig. 2. Construction of G′ = (V ′, E′) for 4 × 4-grid for the supervised case with
L = {1, 2, 3} (a) and the unsupervised case (b). Red edges are part of the multicut,
i.e., they separate shores. Blue edges join nodes of the same shore of the partition.

the multicut. Let E be the matrix of all ones and I be the identity matrix, both
of size k × k. Then the weights w(tlv), l ∈ L, v ∈ V , are given byfv(1)...

fv(k)

 = (E − I)

w(t1v)...
w(tkv)

 , (E − I)−1 =
1

k − 1
E − I, (5)

so as to represent problem (P1). For edges uv ∈ E, we use w(uv) = βuv. Edges
between terminal nodes have the weight −∞ to enforce that all terminal nodes
belong to different shores. Note that this can also be considered as a multiway
cut problem [8].

For the unsupervised partitioning problem (P2), we would have to add |V |
terminal nodes and |V |2 + |V |·(|V |−1)2 edges. As shown in [6], we can remove the
terminal nodes from our graph without changing the optimal partition if the
maximal number of possible shores is the number of nodes. This observation is
crucial since it reduces the number of variables in (P3) to |E|. Thus, to repre-
sent (P2) as a multicut problem (P3), we just use the graph G defining (P2),
i.e., T = ∅. As before, we use w(uv) = βuv for uv ∈ E.

3 Finding an Optimal Multicut

3.1 Linear Programming Formulations

Finding a minimal cost multicut is NP-hard in general [15]. However, since im-
ages induce a certain structure, there is some hope that the problems are easier
to solve in practice than problems without any structure.

We use a cutting plane approach to iteratively tighten an outer relaxation of
the multicut polytope. In each step we solve a problem relaxation in terms of
a linear program, detect violated constraints from a pre-specified finite list, and
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augment the constraint system accordingly. This procedure is repeated until no
more violated constraints are found.

After each iteration we obtain a lower bound as the solution of the LP and
an upper bound by mapping the obtained solution to the multicut polytope
(rounding, see Sec. 3.2). Finally, if the relaxed solution is not integral, we use
integer linear programming and again add violated constraints after each round
of optimization. Overall, we optimize the following integer linear program:

min
y∈[0,1]|E′|

∑
e∈E′

w(e)ye (6a)

s.t.
∑

t∈T
y(t,v) = (k − 1) · I(T 6= ∅) ∀v ∈ V (6b)

ytu + ytv ≥ yuv ∀uv ∈ E, t ∈ T (6c)
ytu + yuv ≥ ytv ∀uv ∈ E, t ∈ T (6d)
ytv + yuv ≥ ytu ∀uv ∈ E, t ∈ T (6e)

yuv ≥
∑

t∈S
(ytu − ytv) ∀uv ∈ E,S ⊆ T (6f)∑

e∈C\{e′}
ye ≥ ye′ ∀ cycles C ⊆ E, e′ ∈ C (6g)

ye ∈ {0, 1} ∀e ∈ E′ (6h)

Note that not every y ∈ {0, 1}|E′| lies inside the multicut polytope. As shown
in [7], Lemma 2.2, y is a vertex of the multicut polytope if and only if∑

e∈C
ye 6= 1 ∀ cycles C ⊆ E′, (7)

i.e., there exist no active edges inside a shore. If T is not empty, (6b)–(6e)
implies (7) [7] and if T is empty, (7) is equivalent to (6g). Therefore, any y
that satisfies (6b)–(6h) is a vertex of the multicut polytope. Later, we will also
consider the linear programming relaxation (6a)–(6f) introduced in [12].

3.2 Rounding Fractional Solutions

As pointed out by Călinescu et al. [12], the integrality ratio of the relaxed
LP (6a)–(6f) is 3

2 −
1
k . This is superior to the α-expansion algorithm and the

work of Dahlhaus et al. [10], that guarantees only a ratio of 2 − 2
k . However,

while derandomized rounding procedures as suggested in [12] provide optimality
bounds, they may perform worse than simple heuristics.

We therefore proceed as follows. For problem (P1), we obtain a partition by
assigning each node to the terminal with minimal edge costs:

xa = argminl∈Lytla, ∀a ∈ V. (8)

For problems of type (P2), we determine the connected components by a union-
set structure in O(|V |+ |E|) and assign a single label to each connected compo-
nent. In short, both mappings transform a vector y ∈ [0, 1]|E

′| into a partition
that in turn implies a valid multicut vector y′ ∈ MC(G).
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3.3 Finding Violated Constraints

Starting with the linear program (6a)–(6b), we add violated constraints and
re-optimize the new LP. If its solution still violates constraints, we repeat the
current phase, otherwise we continue with the next one.
Phase 1: Given the optimal solution for the current LP, we check (6c)–(6e) for
violated constraints to be added. This requires 3 · |E| · |T | checks per iteration.
If no violated constraint is found, we have the optimal solution for the LP-
relaxation (6a)–(6e)1 and continue with phase 2.
Phase 2: We search for violated constraints of the form (6f). The number of
these constraints is exponential in |T |, but can be represented in polynomial
size using slack variables [12]. To avoid additional slack variables, we include
in each round for each uv ∈ E only the subset S corresponding to the most
violated constraint. If no violated constraint is found, we have determined the
optimal solution for the LP-relaxation (6a)–(6f)1 and continue with phase 3.
Phase 3: We switch to the integer program by including (6h) and check (6g)
and (6c)–(6e) for violated constraints. If none exist, we have found the integer
solution of (6). Otherwise, the current solution is outside the multicut polytope.
In this case, we calculate a mapping to a vertex of the multicut polytope as
described in Sec. 3.2 to obtain a partition of V ′. When checking for (6g), we
consider without loss of generality only edges uv ∈ E for which yuv = 1 and
check if this edge is consistent with the partition. If not, this is an active edge
inside a shore. We then compute the shortest path from u to v in the shore by
breadth-first search and add the corresponding constraint to our ILP.

It is well known that if the cycle is chordless, the constraint is facet-defining. If
there is a chord, the constraint is not facet-defining with respect to the multicut
polytope but still a valid and maybe useful and facet-defining constraint with
respect to the polytope relaxation. Consequently, the constraints (6c)–(6e) are
facet-defining by construction and the constraints (6g) can be facet-defining.

In cases where no terminal nodes are included (cf. Sec. 2.2), the constraint
set (6b)–(6f) is empty and we can start directly with phase 3. Of course, it is also
possible to start with a relaxation and add constraints of the form (6g) to the
relaxed problem, but then (i) shortest paths have to be computed for all edges e
with ye > 0, i.e., usually for all, and (ii) the shortest path search can no longer
be performed by breadth-first search so that more time consuming methods have
to be used.

4 Experiments

We propose two algorithms: The multicut algorithm MCA that optimizes (6)
and MCA-LP (MCA until phase 2) that solves the LP-relaxation (6a)–(6f). We
compare them with three state-of-the-art algorithms:
ILP-N: The commercial integer linear program solver CPLEX 12.1 is used
to solve the integer problem in the node domain, i.e., the LP-relaxation over

1 If the solution is integral, this is the solution of the complete ILP (6).
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the local polytope [2] with integer constraints. This method guarantees global
optimality, and due to the progress of ILP solvers in the last years, it is ap-
plicable for small problems but does not scale. We will refer to this method in
the following as ILP-N (ILP in node domain).
TRW-S: For models with grid structure, we use the tree-reweighted message
passing code from the Middlebury benchmark [16], for other structures an al-
ternative code provided by the author of TRW-S [4]. Since this code provides
no stopping criteria, we run the algorithm a sufficiently large but fixed num-
ber of iterations. When we measure the runtime of TRW-S, we consider the
iteration in which the best lower bound was obtained the first time.
α-expansion: The α-expansion algorithm [13] is used if the model includes
no negative Potts terms, i.e., if βuv ≥ 0. Again, we use the implementation
available in the Middlebury benchmark [16] provided by the corresponding
authors.

All code is written in C/C++ and compiled with the same compiler and flags,
experiments are performed on a standard desktop computer with a Pentium
Dual processor (2.00 GHz) without multi-threading. The subproblems in each
iteration of MCA and MCA-LP are solved by the commercial solver CPLEX 12.1
using warm-start.
Synthetic Problems: For an evaluation of the influence of different parameters,
we generate synthetic N×N -grid models and vary the width of the grid (N), the
number of labels (k), and the coupling strength (λ). The corresponding energy
function has the form

J(x) = (1− λ)

(∑
v∈V

∑
l∈L

θv,lI(xv = l)

)
+ λ

(∑
uv∈E

βuvI(xu 6= xv)

)
(9)

where θv,l for all v ∈ V and l ∈ L, and βuv for all uv ∈ E are sampled uniformly
from [−1, 1]. The coupling strength λ adjusts the influence of the pairwise terms
relative to the unary ones and is selected from [0, 1]. Note that since βuv can be
negative, common approximations for the multiway cut problem [13] can not be
applied.

Fig. 3 shows the influence of changing the parameters on the mean relative op-
timality gap of the rounded integer solution and bound of TRW-S and MCA-LP
as well as the mean runtimes for the compared methods. Reported numbers are
averaged over 10 sampled models per setting. The maximal number of iterations
for TRW-S was set to 5000.

Our method is faster and requires less memory than ILP-N. The objective of
the ILP-N has |V |·k+|E|·k2 variables, while MCA has only |V |·k+|E|+ k(k−1)

2 .
Furthermore, we keep the number of required constraints low by using the cutting
plane scheme. In contrast to TRW-S, our method is able to compute the global
optimum in all cases. However, with increasing number of variables the runtime
of MCA increases faster than for TRW-S.

Image Labeling: We use the four-color images that were introduced in [17].
They contain segment boundaries in all directions and points in which three
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Fig. 3. Synthetic Problems (P1) We generate synthetic data according to (9). We
vary the image width N , the number of labels k, and the coupling strength λ and set
the other two values to the default parameters N = 8, k = 4, and λ = 0.5. The top row
shows the relative optimality gap (J(x)− J(xopt))/J(xopt) for integer solutions (solid)
and lower bounds (dashed) for MCA-LP and TRW-S. The bottom row shows runtimes
in seconds for MCA, MCA-LP, ILP-N, and TRW-S. MCA and ILP-N always return a
globally optimal solution, TRW-S and MCA-LP return a rounded integer solution and
a lower bound. While the runtime for ILP-N increases in all cases, MCA scales quite
good. However, with increasing number of variables the runtime of MCA grows faster
than that of TRW-S. MCA-LP gives similar results as TRW-S, but produces slightly
worse integer solutions, since TRW-S uses more advanced rounding methods.

classes meet. We add Gaussian noise with variance 1 to each of the three color
channels independently and use the `1-norm of the difference between pixel-
color (Iv) and class-color (Cl) as unary data term. As regularizer, we use a Potts
prior which for indicator functions provides an anisotropic approximation of the
total variation (TV) measure:

J(x) =

(∑
v∈V

∑
l∈L

‖Iv − Cl‖1 · I(xv = l)

)
+ λ

∑
uv∈E

I(xu 6= xv). (10)

We generate 50 noisy images as illustrated in Fig. 4 for different image sizes
shown in Tab. 1. For a reconstruction, we minimize the energy function (10)
with λ = 0.5 by MCA, ILP-N, MCA-LP, TRW-S, and α-expansion. The number
of globally optimal integer solutions, the mean integrality gap2, and the runtime
for these algorithms are reported in Tab. 1. While ILP-N and MCA always
find the globally optimal solution, MCA does this much faster. TRW-S finds
better solutions than MCA-LP and α-expansion but all fail to find the optimal
integer solution for larger problems. However, from the practical point of view,
2 The integrality gap is the gap between the calculated and optimal integer solution.
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(a) Ground truth (b) Noisy image (c) MCA (d) α-expansion

Fig. 4. Image Labeling (P1) Denoising of the noisy data is done by minimizing an
energy function. Here we show the optimal result found by our multicut method and
the result of α-expansion. While both look similarly good, α-expansion has not found
the global optimum. The reconstructions differ in 110 pixel, e.g., border between blue
and red rectangle.

the quality is similar, see Fig. 4. In Fig. 5, we illustrate the 3-phase optimization
of MCA. For phase one, it requires 4.76 seconds, for phase two 0.47 seconds, and
for phase three 5.42 seconds, for the particular image of width 128.

Table 1. Image Labeling (P1) Results for the labeling problem with synthetic four-
color images of size N × N . # denotes the number of optimal solutions found and
i-gap is the average integrality gap of 50 runs. MCA and ILP-N guarantee to find
the optimal integer solution. MCA makes use of the problem structure, is significantly
faster than ILP-N, and requires less memory. MCA-LP, TRW-S, and α-expansion are
approximative methods and do not guarantee optimal solutions. However, they are
much faster and, after rounding if needed, return integer solutions close to optimality.

MCA ILP-N MCA-LP TRW-S α-expansion
N # time # time # i-gap time # i-gap time # i-gap time

16 50 0.05 50 0.25 46 0.03 0.03 47 0.01 0.01 13 0.26 0.01
32 50 0.25 50 0.83 38 0.12 0.16 38 0.05 0.05 0 1.01 0.01
64 50 1.25 50 3.59 40 0.07 0.82 44 0.02 0.16 0 2.28 0.05
128 50 13.50 50 27.59 10 0.80 5.28 22 0.14 1.51 0 6.15 0.27
192 50 35.72 50 89.39 5 1.20 15.33 9 0.27 4.44 0 12.11 0.67
256 50 86.20 50 209.04 2 1.67 33.45 1 0.40 9.76 0 19.80 1.23
320 50 156.59 50 587.18 0 2.14 61.92 1 0.53 15.76 0 28.95 1.92

Unsupervised Image Partitioning: Finally, we consider the case when the
number of parts in which the image should be segmented is unknown and no
data term for a single pixel label is given. In this case, distances between local
features codetermine the edge weights, and large distances vote for including the
corresponding edges into the multicut. As a counterpart to this term, we force
the total length of the boundary between segments to be small by adding a total
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Fig. 5. Image Labeling (P1) Exemplarily, for the behavior of our multicut algorithm,
we show the bounds for a four-color image of width 128. MCA-LP already leads to
useful results. If after simple rounding an integrality gap remains, we enforce a boolean
solution by integer constraints (MCA). This leads to better results than TRW-S and
α-expansion but requires more runtime (dotted lines show objectives after termination).

variation term. Instead of working on pixel-level, we suggest to work on super-
pixels. This has several advantages, firstly, it makes the model robust to pixel
noise, and secondly, it prunes the search space. On the other hand, it is somehow
critical to use superpixels, since decisions made by a superpixel segmentation are
irreversible. Therefore it is important to avoid an under-segmentation, i.e., each
edge between segments should be an edge between superpixels.

For our simple model, we use the publicly available code of Mori [11] to
generate a superpixel segmentation of the image. We apply the default parameter
values and omit any further data specific tuning. As similarity measure between
superpixels, we use the `2-distance of the mean RGB-colors. We denote the
mean color of the superpixel v by Iv and the length of the boundary between
two superpixels u and v by luv. Our objective function is

J(x) =
∑
uv∈E
− (‖Iu − Iv‖2 · luv · I(xu 6= xv)) + λ ·

∑
uv∈E

(luv · I(xu 6= xv)) . (11)

We illustrate this approach in Fig. 6. Starting from the superpixel representation,
we show segmentations for three different values of λ. While MCA can deal with
the maximal number of labels k = |V |, we set the number of labels for TRW-S
sufficiently high, here k = 100. For the plots in the bottom row, we set k to
the optimal number of segments calculated by MCA and run TRW-S. Even in
this case, where the number of segments is already given, TRW-S does not find
the optimal solution. Note that α-expansion can not be used since some edge
weights are negative.

Segmentation results on the Berkley Segmentation Dataset: We apply
the proposed method on the Berkley Segmentation Dataset (BSD) [18]. Instead
of the simple model above, more complex features are used and edge weights are
calculated by a random forest, see [14] for details. From the optimization point
of view, this does not make any difference.

At the time of writing, the quality of the partitioning as measured by the
F-score [18] in the setting where the same (optimal) parameterization of algo-
rithms is used for all images, our method [14] (F = 0.67, Pre = 0.64, Rec = 0.74)
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(a) Image (b) Superpixels (c) Image (d) Superpixels

(e) MCA (f) TRW-S (g) MCA (h) TRW-S

(i) (j)

Fig. 6. Unsupervised Partitioning (P2) To deal with pixel-noise and scale to large
images, we use a superpixel representation (b) and (d) of the images and apply a simple
model to join superpixels based on their similarity and border length, cf. (11). We
compare our method MCA with TRW-S and restrict the number of labels for TRW-S
to a sufficiently large number, here k = 100. MCA can deal with the maximal number
of superpixels k = |V | and selects the optimal number implicitly in the optimization
process. The images show the resulting segmentation from low (top) to high (bottom)
values of λ. TRW-S never finds the global optimum and tends to include additional
segments. If we set the number of labels for TRW-S for a fixed λ (corresponding to the
middle segmentation) to the optimal number of segments found by MCA, TRW-S is
still not able to solve this problem and converges to a non-optimal fixpoint as shown in
(i) and (j). Note that if we increase the number of labels, TRW-S becomes significantly
slower.
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Fig. 7. Unsupervised Partitioning (P2) Exemplary results on the BSD

is on a par with [19] (F = 0.67, Pre = 0.66, Rec = 0.69) with a higher recall
but lower precision. Note that no other algorithm that produces closed contours
has a better F-score. Pure boundary detectors that need not produce closed
contours [20, 21] still have a higher F-score. From the viewpoint of polyhedral
theory, these solutions lie outside the multicut polytope and do not correspond
to any partition.

5 Conclusions

We present an image partitioning framework for supervised and unsupervised
scenarios together with a novel optimization algorithm (MCA) that solves these
problems to optimality. We show that this framework is appealing and that MCA
outperforms state-of-the-art optimization methods in the unsupervised case, i.e.,
when no unary data term is included.

In general, it provides a more compact linear program than methods working
in the node domain, i.e., it has less variables. MCA calculates an optimal solution
by using cutting plane and integer programming techniques, and in its variant
MCA-LP an approximative solution by solving a polynomial size LP.

Even without any post-processing, our results on the Berkley Segmentation
Dataset and Benchmark (BSD) are on par with the best-performing methods
that ensure closed contours.
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