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Abstract

Bilinear approximation of a matrix is a powerful paradigm of unsupervised learn-
ing. In some applications, however, there is a natural hierarchy of concepts that
ought to be reflected in the unsupervised analysis. For example, in the neuro-
sciences image sequence considered here, there are the semantic concepts of pixel
→ neuron→ assembly that should find their counterpart in the unsupervised anal-
ysis. Driven by this concrete problem, we propose a decomposition of the matrix
of observations into a product of more than two sparse matrices, with the rank de-
creasing from lower to higher levels. In contrast to prior work, we allow for both
hierarchical and heterarchical relations of lower-level to higher-level concepts. In
addition, we learn the nature of these relations rather than imposing them. Finally,
we describe an optimization scheme that allows to optimize the decomposition
over all levels jointly, rather than in a greedy level-by-level fashion.
The proposed bilevel SHMF (sparse heterarchical matrix factorization) is the first
formalism that allows to simultaneously interpret a calcium imaging sequence in
terms of the constituent neurons, their membership in assemblies, and the time
courses of both neurons and assemblies. Experiments show that the proposed
model fully recovers the structure from difficult synthetic data designed to imitate
the experimental data. More importantly, bilevel SHMF yields plausible interpre-
tations of real-world Calcium imaging data.

1 Introduction

This work was stimulated by a concrete problem, namely the decomposition of state-of-the-art 2D+
time calcium imaging sequences as shown in Fig. 1 into neurons, and assemblies of neurons [20].
Calcium imaging is an increasingly popular tool for unraveling the network structure of local circuits
of the brain [11, 6, 7]. Leveraging sparsity constraints seems natural, given that the neural activations
are sparse in both space and time. The experimentally achievable optical slice thickness still results
in spatial overlap of cells, meaning that each pixel can show intensity from more than one neuron.
In addition, it is anticipated that one neuron can be part of more than one assembly. All neurons of
an assembly are expected to fire at roughly the same time [20].

A standard sparse decomposition of the set of vectorized images into a dictionary and a set of
coefficients would not conform with prior knowledge that we have entities at three levels: the pixels,
the neurons, and the assemblies, see Fig. 2. Also, it would not allow to include structured constraints
[10] in a meaningful way. As a consequence, we propose a multi-level decomposition (Fig. 3) that

• allows enforcing (structured) sparsity constraints at each level,
• admits both hierarchical or heterarchical relations between levels (Fig. 2),
• can be learned jointly (section 2 and 2.4), and
• yields good results on real-world experimental data (Fig. 2).
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Figure 1: Left: frames from a calcium imaging sequence showing firing neurons that were recorded
by an epi-fluorescence microscope. Right: two frames from a synthetic sequence. The underlying
biological aim motivating these experiments is to study the role of neuronal assemblies in memory
consolidation.

1.1 Relation to Previous Work

Most important unsupervised data analysis methods such as PCA, NMF / pLSA, ICA, cluster analy-
sis, sparse coding and others can be written in terms of a bilinear decomposition of, or approximation
to, a two-way matrix of raw data [22]. One natural generalization is to perform multilinear decompo-
sitions of multi-way arrays [4] using methods such as higher-order SVD [1]. This is not the direction
pursued here, because the image sequence considered does not have a tensorial structure.

On the other hand, there is a relation to (hierarchical) topic models (e.g. [8]). These do not use struc-
tured sparsity constraints, but go beyond our approach in automatically estimating the appropriate
number of levels using nonparametric Bayesian models.

Closest to our proposal are four lines of work that we build on: Jenatton et al. [10] introduce struc-
tured sparsity constraints that we use to find dictionary basis functions representing single neurons.
The works [9] and [13] enforce hierarchical (tree-structured) sparsity constraints. These authors find
the tree structure using extraneous methods, such as a separate clustering procedure. In contrast, the
method proposed here can infer either hierarchical (tree-structured) or heterarchical (directed acyclic
graph) relations between entities at different levels. Cichocki and Zdunek [3] proposed a multilayer
approach to non-negative matrix factorization. This is a multi-stage procedure which iteratively de-
composes the rightmost matrix of the decomposition that was previously found. Similar approaches
are explored in [23], [24]. Finally, Rubinstein et al. [21] proposed a novel dictionary structure
where each basis function in a dictionary is a linear combination of a few elements from a fixed base
dictionary. In contrast to these last two methods, we optimize over all factors (including the base
dictionary) jointly. Note that our semantics of “bilevel factorization” (section 2.2) are different from
the one in [25].

Notation. A matrix is a set of columns and rows, respectively, X = [x:1, . . . ,x:n] = [x1:; . . . ;xm:].
The zero matrix or vector is denoted 0, with dimensions inferred from the context. For any vector
x ∈ Rm, ‖x‖α = (

∑m
i=1 |xi|α)1/α is the lα (quasi)-norm of x, and ‖ · ‖F is the Frobenius norm.

2 Learning a Sparse Heterarchical Structure

2.1 Dictionary Learning: Single Level Sparse Matrix Factorization

Let X ∈ Rm×n be a matrix whose n columns represent an m-dimensional observation each. The
idea of dictionary learning is to find a decomposition X ≈ D

[
U0
]T

, see Fig. 3(a). D is called
the dictionary, and its columns hold the basis functions in terms of which the sparse coefficients in
U0 approximate the original observations. The regularization term ΩU encourages sparsity of the
coefficient matrix. ΩD prevents the inflation of dictionary entries to compensate for small coeffi-
cients, and induces, if desired, additional structure on the learned basis functions [16]. Interesting
theoretical results on support recovery, furthered by an elegantly compact formulation and the ready
availability of optimizers [17] have spawned a large number of intriguing and successful applica-
tions, e.g. image denoising [19] and detection of unusual events [26]. Dictionary learning is a special
instance of our framework, involving only a single-level decomposition. In the following we first
generalize to two, then to more levels.
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Figure 2: Bottom left: Shown are the temporal activation patterns of individual neurons U0 (lower
level), and assemblies of neurons U1 (upper level). Neurons D and assemblies are related by a
bipartite graph A1 the estimation of which is a central goal of this work. The signature of five
neuronal assemblies (five columns of DA1) in the spatial domain is shown at the top. The outlines in
the middle of the bottom show the union of all neurons found in D, superimposed onto a maximum
intensity projection across the background-subtracted raw image sequence. The graphs on the right
show a different view on the transients estimated for single neurons, that is, the rows of U0. The raw
data comes from a mouse hippocampal slice, where single neurons can indeed be part of more than
one assembly [20]. Analogous results on synthetic data are shown in the supplemental material.

a)

b)

c)

d)

Figure 3: Decomposition of X into {1, 2, 3, L+ 1} levels, with corresponding equations.
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2.2 Bilevel Sparse Matrix Factorization

We now come to the heart of this work. To build intuition, we first refer to the application that has
motivated this development, before giving mathematical details. The relation between the symbols
used in the following is sketched in Fig. 3(b), while actual matrix contents are partially visualized
in Fig. 2.

Given is a sequence of n noisy sparse images which we vectorize and collect in the columns of
matrix X. We would like to find the following:

• a dictionary D of q0 vectorized images comprising m pixels each. Ideally, each basis
function should correspond to a single neuron.

• a matrix A1 indicating to what extent each of the q0 neurons is associated with any of the
q1 neuronal assemblies. We will call this matrix interchangeably assignment or adjacency
matrix in the following. It is this matrix which encapsulates the quintessential structure
we extract from the raw data, viz., which lower-level concept is associated with which
higher-level concept.

• a coefficient matrix [U1]T that encodes in its rows the temporal evolution (activation) of
the q1 neuronal assemblies across n time steps.

• a coefficient matrix [U0]T (shown in the equation, but not in the sketch of Fig. 3(b)) that
encodes in its rows the temporal activation of the q0 neuron basis functions across n time
steps.

The quantities D, A1, [U0], [U1] in this redundant representation need to be consistent.

Let us now turn to equations. At first sight, it seems like minimizing ‖X − DA1[U1]T ‖2F over
D,A1,U1 subject to constraints should do the job. However, this could be too much of a simpli-
fication! To illustrate, assume for the moment that only a single neuronal assembly is active at any
given time. Then all neurons associated with that assembly would follow an absolutely identical
time course. While it is expected that neurons from an assembly show similar activation patterns
[20], this is something we want to glean from the data, and not absolutely impose. In response, we
introduce an auxiliary matrix U0 ≈ U1[A1]T showing the temporal activation pattern of individual
neurons. These two matrices, U0 and U1, are also shown in the false color plots of the collage of
Fig. 2, bottom left.

The full equation involving coefficient and auxiliary coefficient matrices is shown in Fig. 3(b). The
terms involving X are data fidelity terms, while ‖U0−U1[A1]T ‖2F enforces consistency. Parameters
η trade off the various terms, and constraints of a different kind can be applied selectively to each
of the matrices that we optimize over. Jointly optimizing over D,A1,U0, and U1 is a hard and
non-convex problem that we address using a block coordinate descent strategy described in section
2.4 and supplemental material.

2.3 Trilevel and Multi-level Sparse Matrix Factorization

We now discuss the generalization to an arbitrary number of levels that may be relevant for appli-
cations other than calcium imaging. To give a better feeling for the structure of the equations, the
trilevel case is spelled out explicitly in Fig. 3(c), while Fig. 3(d) shows the general case of L + 1
levels.

The most interesting matrices, in many ways, are the assignment matrices A1,A2, etc. Assume,
first, that the relations between lower-level and higher-level concepts obey a strict inclusion hier-
archy. Such relations can be expressed in terms of a forest of trees: each highest-level concept is
the root of a tree which fans out to all subordinate concepts. Each subordinate concept has a single
parent only. Such a forest can also be seen as a (special case of an L + 1-partite) graph, with an
adjacency matrix Al specifying the parents of each concept at level l − 1. To impose an inclusion
hierarchy, one can enforce the nestedness condition by requiring that ‖alk:‖0 ≤ 1.

In general, and in the application considered here, one will not want to impose an inclusion hier-
archy. In that case, the relations between concepts can be expressed in terms of a concatenation of
bipartite graphs that conform with a directed acyclic graph. Again, the adjacency matrices encode
the structure of such a directed acyclic graph.
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In summary, the general equation in Fig. 3(d) is a principled alternative to simpler approaches that
would impose the relations between concepts, or estimate them separately using, for instance, clus-
tering algorithms; and that would then find a sparse factorization subject to this structure. Instead,
we simultaneously estimate the relation between concepts at different levels, as well as find a sparse
approximation to the raw data.

2.4 Optimization

The optimization problem in Fig. 3(d) is not jointly convex, but becomes convex w.r.t. one variable
while keeping the others fixed provided that the norms ΩU , ΩD, and ΩA are also convex. Indeed,
it is possible to define convex norms that not only induce sparse solutions, but also favor non-zero
patterns of a specific structure, such as sets of variables in a convex polygon with certain symmetry
constraints [10]. Following [5], we use such norms to bias towards neuron basis functions holding a
single neuron only. We employ a block coordinate descent strategy [2, Section 2.7] that iteratively
optimizes one group of variables while fixing all others. Due to space limitations, the details and
implementation of the optimization are described in the supplemental material.

3 Methods

3.1 Decomposition into neurons and their transients only

Cell Sorting [18] and Adina [5] focus only on the detection of cell centroids and of cell shape,
and the estimation and analysis of Calcium transient signals. However, these methods provide no
means to detect and identify neuronal co-activation. The key idea is to decompose calcium imaging
data into constituent signal sources, i.e. temporal and spatial components. Cell sorting combines
principal component analysis (PCA) and independent component analysis (ICA). In contrast, Adina
relies on a matrix factorization based on sparse coding and dictionary learning [15], exploiting that
neuronal activity is sparsely distributed in both space and time. Both methods are combined with a
subsequent image segmentation since the spatial components (basis functions) often contain more
than one neuron. Without such a segmentation step, overlapping cells or those with highly correlated
activity are often associated with the same basis function.

3.2 Decomposition into neurons, their transients, and assemblies of neurons

MNNMF+Adina Here, we combine a multilayer extension of non-negative matrix factorization
with the segmentation from Adina. MNNMF [3] is a multi-stage procedure that iteratively decom-
poses the rightmost matrix of the decomposition that was previously found. In the first stage, we
decompose the calcium imaging data into spatial and temporal components, just like the methods
cited above, but using NMF and a non-negative least squares loss function [12] as implemented in
[14]. We then use the segmentation from [5] to obtain single neurons in an updated dictionary1

D. Given this purged dictionary, the temporal components U0 are updated under the NMF cri-
terion. Next, the temporal components U0 are further decomposed into two low-rank matrices,
U0 ≈ U1[A1]T , again using NMF. Altogether, this procedure allows identifying neuronal assem-
blies and their temporal evolution. However, the exact number of assemblies q1 must be defined a
priori.

KSVDS+Adina allows estimating a sparse decomposition [21] X ≈ DA1[U1]T provided that
i) a dictionary of basis functions and ii) the exact number of assemblies is supplied as input. In
addition, the assignment matrix A1 is typically dense and needs to be thresholded. We obtain good
results when supplying the purged dictionary1 of single neurons resulting from Adina [5].

SHMF – Sparse Heterarchical Matrix Factorization in its bilevel formulation decomposes the
raw data simultaneously into neuron basis functions D, a mapping of these to assemblies A1, as
well as time courses of neurons U0 and assemblies U1, see equation in Fig. 3. Sparsity is induced
by setting ΩU and ΩA to the l1-norm. In addition, we impose the l2-norm at the assembly level Ω1

D,

1Without such a segmentation step, the dictionary atoms often comprise more than one neuron, and overall
results (not shown) are poor.
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and let ΩD be the structured sparsity-inducing norm proposed by Jenatton et al. [10]. In contrast to
all other approaches described above, this already suffices to produce basis functions that contain,
in most cases, only single neurons. Exceptions arise only in the case of cells which both overlap in
space and have high temporal correlation. For this reason, and for a fair comparison with the other
methods, we again use the segmentation from [5]. For the optimization, D and U0 are initialized
with the results from Adina. U1 is initialized randomly with positive-truncated Gaussian noise,
and A1 by the identity matrix as in KSVDS [21]. Finally, the number of neurons q0 and neuronal
assemblies q1 are set to generous upper bounds of the expected true numbers, and are both set to
equal values (here: q0 = q1 = 60) for simplicity. Note that a precise specification as for the above
methods is not required.

4 Results

To obtain quantitative results, we first evaluate the proposed methods on synthetic image sequences
designed so as to exhibit similar characteristics as the real data. We also report a qualitative analysis
of the performance on real data from [20]. Since neuronal assemblies are still the subject of ongoing
research, ground truth is not available for such real-world data.

4.1 Artifical Sequences

For evaluation, we created 80 synthetic sequences with 450 frames of size 128 × 128 pixels with a
frame rate of 30fps. The data is created by randomly selecting cell shapes from 36 different active
cells extracted from real data, and locating them in different locations with an overlap of up to 30%.
Each cell is randomly assigned to up to three out of a total of five assemblies. Each assembly fires
according to a dependent Poisson process, with transient shapes following a one-sided exponential
decay with a scale of 500 to 800ms that is convolved by a Gaussian kernel with σ = 50ms. The
dependency is induced by eliminating all transients that overlap by more than 20%. Within such a
transient, the neurons associated with the assembly fire with a probability of 90% each. The number
of cells per assembly varies from 1 to 10, and we use five assemblies in all experiments. Finally,
the synthetic movies are distorted by white Gaussian noise with a relative amplitude, (max. intensity
− mean intensity)/σnoise ∈ {3, 5, 7, 10, 12, 15, 17, 20}. By construction, the identity, location and
activity patterns of all cells along with their membership in assemblies are known. The supplemental
material shows one example, and two frames are shown in Fig. 1.

Identificaton of assemblies First, we want to quantify the ability to correctly infer assemblies
from an image sequence. To that end, we compute the graph edit distance of the estimated assign-
ments of neurons to assemblies, encoded in matrices A1, to the known ground truth. We count the
number of false positive and false negative edges in the assignment graphs, where vertices (assem-
blies) are matched by minimizing the Hamming distance between binarized assignment matrices
over all permutations.

Remember that MNNMF+Adina and KSVDS+Adina require a specification of the precise number
of assemblies, which is unknown for real data. Accordingly, adjacency matrices, A1 ∈ Rq0×q1 for
different values for the number of assemblies q1 ∈ [3, 7] were estimated. Bilevel SHMF only needs
an upper bound on the number of assemblies. Its performance is independent of the precise value,
but computational cost increases with the bound. In these experiments, q1 was set to 60.

Fig. 4 shows that all methods from section 3.2 give respectable performance in the task of inferring
neuronal assemblies from nontrivial synthetic image sequences. For the true number of assemblies
(q1 = 5), Bilevel SHMF reaches a higher sensitivity than the alternative methods, with a median
difference of 14%. According to the quartiles, the precisions achieved are broadly comparable, with
MNNMF+Adina reaching the highest value.

All methods from section 3.2 also infer the temporal activity of all assemblies, U1. We omit a
comparison of these matrices for lack of a good metric that would also take into account the correct-
ness of the assemblies themselves: a fine time course has little worth if its associated assembly is
deficient, for instance by having lost some neurons with respect to ground truth.
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Sensitivity Precision

Figure 4: Performance on learning correct assignments of neurons to assemblies from nontrivial
synthetic data with ground truth. KSVDS+Adina and MNNMF+Adina require that the number of
assemblies q1 be fixed in advance. In contrast, bilevel SHMF estimates the number of assemblies
given an upper-bound. Its performance is hence shown as a constant over the q1-axis. Plots show
the median as well as the band between the lower and the upper quartile for all 80 sequences. Colors
at non-integer q1-values are a guide to the eye.

Detection of calcium transients While the detection of assemblies as evaluated above is com-
pletely new in the literature, we now turn to a better studied [18, 5] problem: the detection of
calcium transients of individual neurons. Some estimates for these characteristic waveforms are
also shown, for real-world data, on the right hand side of Fig. 2.

To quantify transient detection performance, we compute the sensitivity and precision as in [20].
Here, sensitivity is the ratio of correctly detected to all neuronal activities; and precision is the ratio
of correctly detected to all detected neuronal activities. Results are shown in Fig. 5.

Figure 5: Sensitivity and precision of transient detection for individual neurons. Methods that
estimate both assemblies and neuron transients perform at least as well as their simpler counterparts
that focus on the latter.

Perhaps surprisingly, the methods from section 3.2 (MNNMF+Adina and Bilevel SHMF2) fare at
least as well as those from section 3.1 (CellSorting and Adina). This is not self-evident, because a
bilevel factorization could be expected to be more ill-posed than a single level factorization.

We make two observations: Firstly, it seems that using a bilevel representation with suitable regular-
ization constraints helps stabilize the activity estimates also for single neurons. Secondly, the higher
sensitivity and similar precision of bilevel SHMF compared to MNNMF+Adina suggest that a joint
estimation of neurons, assemblies and their temporal activities as described in section 2 increases the
robustness, and compensates errors that may not be corrected in greedy level-per-level estimation.

Incidentally, the great spread of both sensitivities and precisions results from the great variety of
noise levels used in the simulations, and attests to the difficulty of part of the synthetic data sets.

2KSVDS is not evaluated here because it does not yield activity estimates for individual neurons.

7



Raw data Cell Sorting [18] Adina [5]
Neurons

(D[U0]T )
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Figure 6: Three examples of raw data and reconstructed images of the times indicated in Fig. 2. The
other examples are shown in the supplemental material.

4.2 Real Sequences

We have applied bilevel SHMF to epifluorescent data sets from mice (C57BL6) hippocampal slice
cultures. As shown in Fig. 2, the method is able to distinguish overlapping cells and highly correlated
cells, while at the same time estimating neuronal co-activation patterns (assemblies). Exploiting
spatio-temporal sparsity and convex cell shape priors allows to accurately infer the transient events.

5 Discussion

The proposed multi-level sparse factorization essentially combines a clustering of concepts across
several levels (expressed by the assignment matrices) with the finding of a basis dictionary, shared
by concepts at all levels, and the finding of coefficient matrices for different levels. The formalism
allows imposing different regularizers at different levels. Users need to choose tradeoff parameters
η, λ that indirectly determine the number of concepts (clusters) found at each level, and the sparsity.
The ranks ql, on the other hand, are less important: Figure 2 shows that the ranks of estimated
matrices can be lower than their nominal dimensionality: superfluous degrees of freedom are simply
not used.

On the application side, the proposed method allows to accomplish the detection of neurons, as-
semblies and their relation in a single framework, exploiting sparseness in the temporal and spatial
domain in the process. Bilevel SHMF in particular is able to detect automatically, and differenti-
ate between, overlapping and highly correlated cells, and to estimate the underlying co-activation
patterns. As shown in Fig. 6, this approach is able to reconstruct the raw data at both levels of
representations, and to make plausible proposals for neuron and assembly identification.

Given the experimental importance of calcium imaging, automated methods in the spirit of the
one described here can be expected to become an essential tool for the investigation of complex
activation patterns in live neural tissue.
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