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Summary. We present a scheme for the development of a spot detection proce-

dure which is based on the learning of latent linear features from a training data

set. Adapting ideas from face recognition to this low level feature extraction task, we

suggest to learn a collection of filters from representative data that span a subspace

which allows for a reliable distinction of a spot vs. the heterogeneous background;

and to use a non-linear classifier for the actual decision. Comparing different sub-

space projections, in particular principal component analysis, partial least squares,

and linear discriminant analysis, in conjunction with subsequent classification by

random forests on a data set from archaeological remote sensing, we observe a su-

perior performance of the subspace approaches, both compared with a standard

template matching and a direct classification of local image patches.
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1 Introduction – spot detection

In the hot and dry plains of ancient Mesopotamia and other parts of the Near

East, but also in an arc stretching from the Balkans to India, small artificial

mounds indicate the sites of early human settlements, some of them – as the

biblic Jericho – being the remains of the first urban metropoles.

These so called “tells” are the result of millennia of settlement activity.

Their base layers often reach as far back as 6000BC and a mud-based con-

struction technique, prevalent to these regions, allowed some of them to raise

up to significant heights during the millennia, forming characteristic land-

marks. Though a large number of these mounds are well studied, the best

current listings of them are neither comprehensive nor accurate. – However,

in the digital elevation model of the Space Shuttle radar topography mission

(SRTM), tells can be identified as small contrasting spots within the elevation

pattern of the natural variation of the land surface [1].

As agricultural landuse and the growth of modern settlements impose an

immanent threat to this cultural heritage and a study of the distribution of

these former settlements is of high archaeological interest, we seek for a robust

machine based processing of the SRTM data which allows for a fast, objective

and precise guidance to tell sites in order to document them in wide regions

of Turkey, Syria, Iraq and Iran.

Spot or point detection is a standard task in low level image processing.

While elementary template matching is optimal for detecting point-like pat-

terns in uncorrelated noise, other approaches exist in applications as diverse

as preprocessing of microarray and gel electrophoresis image data [2, 3], the

detection of cars in thermal bands of satellite imagery [4], or peak detection

in 2D mass spectrometric data [5], to name a random selection. – Most of
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the spot detection approaches can be categorized into two classes: Parametric

models are used to characterize the object, e.g. gaussian functions to model

the spots, splines to fit and correct for the background. Alternatively, the

detection is based on a phenomenological and nonparametric description of

characteristic features, e.g. when searching for local extremes by morphologi-

cal operations (watershed transformation), or evaluating the gradient images

by structure tensors.

Unfortunately, a simple matched filter fails in the detection of tell-like

mounds in the digital elevation model due to a high number of false posi-

tive hits. Also, the lack of positional a priori information, the variation of the

spot pattern (diameter and height of the tell), and the highly variable “back-

ground”, given by the natural topographic variation (ridges, walls, natural

mounds), prohibit the application of spot detection algorithms as the ones

mentioned above. –

Adapting ideas from face recognition, notably the concepts of “Eigen”-

and “Fisherfaces” (see [6] and references therein), we learn adaptive tem-

plates (section 2) from our data (section 3.1), extending the idea of a (single)

template matching to a multi-dimensional subspace approach for spot detec-

tion. Combined with a nonlinear classifier - random forests - we quantitatively

compare (sections 3.2) and discuss (section 4) different methods intermediate

between Eigen- and Fisherspots for our task.

2 Subspace filters – latent spaces

The optimal filter for the detection of a signal with known shape in additive

white Gaussian noise is the matched filter (MF) [7]. Convolving an image
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with the MF can be regarded as correlating the image with a template of

the signal to be detected. From a learning perspective, and extending the

idea of a signal detection to a binary classification task between (tell) pattern

vs. (non-tell) background, this approach corresponds to regarding the image

as a collection of (local and independent) patches. All pixels in a patch are

explanatory variables with an associated label, ie. pattern or background. In

this feature space, the matched filter defines a one-dimensional linear subspace

which is used to discriminate these two classes. From this point of view, the

MF is very much related to linear regression methods, which motivates the

approach taken in this paper and the naming subspace filter.

Real situations do not necessarily fulfill the ideal conditions under which

the MF is proven to be optimal. Instead of seeking an optimal one-dimensional

subspace and thus presuming linear separability in the feature space, we pro-

pose to perform a less restrictive dimensionality reduction, i.e. the projection

onto a subspace of higher dimension followed by a nonlinear decision rule.

A common basic approach to the construction of a subspace which captures

the most important variations in high dimensional data is principal component

analysis (PCA). Its ranking criterion for the kth direction βk is derived from

the empirical covariance of the features :

βPCA1,k = arg max
||β||=1

corr(βj ,βk)=0,j<k

var(X1β) (1)

with corr(βk, βj) denoting the correlation between βk and βj ; and where

X1 only holds the examples with the sought pattern. This projection com-

presses variation and information of the correlated spatial signal, but it ne-

glects knowledge about the background signal X0 and the binary character

of the detection problem. In order to incorporate knowledge about X0, PCA
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can be extended to derive the directions βPCA from the variance of the full

training data set X. This represents the prior belief that the variance of the

training sample is due to interclass variations which are represented by the

major eigendirections in the sample space.

The two-class information can be used explicitly as done in canonical cor-

relation analysis (CCA). For univariate Y this is equivalent to ordinary least

squares (OLS) regression [8] which, for the two-class problem, yields the same

directions as linear discriminant analysis (LDA) [9, p.88]. All these problems

determine the optimal direction β based on the correlation between the class

label Y and the projected feature scores Xβ. They choose directions with high

discriminative power:

βLDA,k = arg max
||β||=1

corr(βj ,βk)=0,j<k

corr2(Xβ, Y ) (2)

again with orthogonal directions βk for linearly nonseparable problems. –

OLS and LDA are known to have bad generalization performance in the pres-

ence of collinear features, i.e. they are vulnerable to overfitting (e.g. see OLS

projections in fig. 6).

Introducing a bias, forcing subspace projections to more “realistic” direc-

tions with higher data support, can help to overcome this problem. Regular-

ization is obtained by combining the two strategies mentioned above and opti-

mizing for covariance or equivalently for the product of variance and squared

correlation [10]:

βPLS,k = arg max
||β||=1

corr(βj ,βk)=0,j<k

cov2(Xβ, Y ) (3)

= arg max
||β||=1

corr(βj ,βk)=0,j<k

corr2(Xβ, Y ) var(Xβ) (4)
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This forces the directions of the subspaces to have a natural “backing” in the

data variation: the solution is pulled away from the OLS solution of maximal

correlation towards directions of maximal variance in sample space as obtained

by PCA.

Two related methods allow to vary the influence of the variance contin-

uously. Ridge regression/penalized discriminant analysis (RR/PDA) extends

the concept of OLS/LDA [10]:

βRR,k(γ) = arg max
||β||=1

corr(βT
j βk)=0,j<k

corr2(Xβ, Y )
var(Xβ)

var(Xβ) + γ
(5)

A generalization of PLS is continuum regression (CR) [11]:

βCR,k(γ) = arg max
||β||=1

corr(βj ,βk)=0,j<k

corr2(Xβ, Y ) var(Xβ)γ (6)

Both approaches come at the cost of a hyperparameter γ to be tuned in

addition to the optimal subspace dimension λ. Because of this and since PLS

provides means to regularize LDA they will not be studied in the following.

3 Methods

3.1 Data

Tell sites. Average tells reach a height of 10-50m and have a diameter of 50-

500m. In the SRTM elevation data set their patterns appear as small bright

spots of one to five pixels diameter and with approximate radial symmetry

(cf. fig. 1). In the SRTM of a North Syrian plain, the Khabur basin [12],

positions of 184 known tell sites could be identified. In addition, 50 000 lo-

cations were randomly sampled (with uniform distribution) from the same
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geographic region as representatives of the background class X0. An indepen-

dent test data set, comprising positions of another 133 sites, was available

from an archaeological survey in the same area [13].

Fig. 1. Point patterns in the digital terrain model. Left: Profiles. Right: Top view,
profile sections indicated.

Features. Elevation data from circular regions of 1km diameter, centered

around the training sites, was used as input for the classifier design (com-

pare geometry of resulting filters: fig. 6). To remove the absolute elevation,

the feature vector contained height differences relative to the center of the

image patch. The spatial extensions of the patch and therefore the optimal

scale of the detection problem were assessed from the random forest Gini

importance (P = 80, fig. 2). Rotational symmetry was assumed for the tell

pattern. Accordingly, tell patterns rotated by 90, 180 and 270 degrees were

also included in the training set, increasing the number of data points within

X1 to N1 = 736.

3.2 Benchmark

The performance of a number of filters were compared quantitatively: PCA

on the event class (PCA1), PCA, MF, LDA and PLS on both classes (see

table in fig. 3). The subspace scores of these filters were used for learning of

the following multivariate decision rule.
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Random forest [14] was chosen as decision rule on the various filter re-

sponses and was also applied to the original data without intermediate di-

mension reduction. Random forest models the posterior probability of a class

by an ensemble of trees on bootstrapped data sets. In contrast to traditional

bagging, only a limited number of features is randomly chosen in the search

for the optimal split at each node. Its advantage is the ease and speed of train-

ing, while its performance is comparable to other state of the art classifiers,

such as support vector machines.

In the error estimation, a tenfold cross-validation over a predefined spatial

grid of 60 non-overlapping boxes (152km2 each, covering the Khabur basin)

was chosen due to the spatial correlation of the data. Before applying them

to the holdout data, filter and classifier were optimized via a fivefold inner

cross-validation loop, also over the spatial grid. Within this step, the subspace

dimensionality was increased from λ = 1, ..., 10, while the classifier settings

were kept unchanged (300 trees, one randomly chosen variable at the nodes).

For the error quantification, the area under curve of the receiver opera-

tor characteristic (ROC AUC) was used to provide an integrated measure of

sensitivity (true positives / all positives) and specificity (true negatives / all

negatives). In the final evaluation also precision (true positives / (true posi-

tive + false positives)) and recall (= sensitivity) were considered, since these

measures focus on the event class.

4 Results and Discussion

Both PCA and PLS result in filter sets whose first component are similar to

a matched filter (fig. 6), hence their higher components indeed can be seen as

higher dimensional extension to a MF. The performance of the one dimen-

sional MF (see table 3) is exceeded by any multidimensional filter approach,
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Fig. 2. Relevant features in the classification
of spots and background. The size of the image
patch and filter mask are determined by the ran-
dom forest Gini importance (ranked, red/yellow
– low/high importance). The central pixel is con-
stant zero for all samples, see text.

Threshold PCA PCA1 PLS LDA MF all

FN 0.9 7.2 8.2 7.1 13.0 36.5 20.7
FN 0.95 5.0 4.9 4.6 11.0 33.7 16.7
FN 0.99 2.6 1.5 2.6 6.9 25.3 13.6

FP 0.9 6.7 7.4 6.1 8.8 13.5 7.6
FP 0.95 13.0 14.0 12.0 12.0 17.0 12.8
FP 0.99 57.0 59.0 48.0 22.0 23.4 31.5

Fig. 3. Table: Classification accuracy for different
thresholds. False negatives (FN) in % of the target
class, false positives (FP) in %0 of the background
class (compare to fig.4).
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Fig. 4. Classification performance: receiver-operator-characteristic (left), precision-
recall-curve (right). “ALL” denotes the direct application of the classifier without
subspace filter.
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Fig. 6. First ten subspace filters for LDA, PLS, PCA1, PCA (from top to bottom).

while the direct application of the non-linear classifier to unfiltered data leads

to a classification performance surpassed by any subspace approach. During

resampling, the optimal dimensionality of these filters λ was between 5 and

7.

The application of linear discriminant analysis results in a distinct sep-

aration of the data and a nearly binary distribution of the scores (fig. 5).

Falsely classified signals also appear at the tails of the distribution, thus lead-

ing to the weak performance of LDA under the ROC and the precision-recall

curve. The oscillating checker-board patterns in the filter set (fig. 6) indicate

an overfitting on the highly collinear image data, explaining the comparably

bad generalization behavior (table 3).

Principal component analysis performs very well in both variants (PCA,

PCA1). The distribution of the scores (fig. 5) shows a higher variance than

both PLS and LDA. The orthogonal loadings of PCA1 are adapted to variants

of the central point pattern, while loadings of PCA explain the overall varia-

tion (fig. 6) in the data set. Classification in the PCA subspace controls false

positives better than in the PCA1 subspace (table 3), while the latter allows
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the highest specificity/recall (fig. 4) of all methods at the cost of a somewhat

lower overall precision.

The shape of the partial least squares feature distribution is in-between the

distribution of LDA (max. correlation) and PCA (max. variation), reflecting

the intermediate character of PLS. On the present data, PLS is optimal under

the precision/recall curve (fig. 4) and in the control of false positive events,

although the differences between PLS and PCA remain faint. –

In our data set, PCA filters obtained from both classes perform nearly as

well as PCA filters learned only from the spot class (PCA1). Based on our

experience with similar problems, we argue that this a special feature of the

present data set, while in general a good performance of the (two-class) PCA

crucially depends on the appropriate choice of the background samples. Ac-

cordingly, we recommend to apply PCA1 if a highly precise representation of

the (spot-) pattern is sought and to consider PLS if the use of both classes and

an explicit incorporation of background prototypes is desired in the definition

of the subspace filters.

While the complementary concepts of Eigen- and Fisherfaces (PCA, LDA)

are the most frequently applied in face recognition, we can observe an advan-

tage of the regularized subspace filters (PCA, PLS) on our local image patches,

setting the presented low level feature extraction in proximity to chemomet-

rical data analysis rather than classical image processing. We note that the

definition of the relevant scale in our detection problem – the extensions of

the local image patches – by the multivariate random forest importance is

novel.

Applying the PLS filter on the digital elevation model of the geographical

region with the available archaeological ground truth [12], it is possible to
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detect all (regular) settlement mounds higher than 5-6m (85/133) with 327

false positives in a tile of 600*1200 pixels. This allows us to use the presented

spot detector in a screening of wide regions of the Near East and for a joint,

machine based evaluation with other remote sensing modalities.

5 Conclusions

Extending the idea of a matched filtering (to be followed by a threshold oper-

ation) to the training of higher dimensional latent space filters combined with

a subsequent nonlinear classifier proves to be a viable concept in the presented

spot detection. If a (binary) training data set is available, this approach can

be the appropriate choice for a detection of spot patterns in a highly varying

background, supporting or replacing traditional parametric spot detectors.
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