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Continuous Multiclass Labeling Approaches and Algorithms∗
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Abstract. We study convex relaxations of the image labeling problem on a continuous domain with regularizers
based on metric interaction potentials. The generic framework ensures existence of minimizers and
covers a wide range of relaxations of the original combinatorial problem. We focus on two specific
relaxations that differ in flexibility and simplicity—one can be used to tightly relax any metric
interaction potential, while the other covers only Euclidean metrics but requires less computational
effort. For solving the nonsmooth discretized problem, we propose a globally convergent Douglas–
Rachford scheme and show that a sequence of dual iterates can be recovered in order to provide
a posteriori optimality bounds. In a quantitative comparison to two other first-order methods, the
approach shows competitive performance on synthetic and real-world images. By combining the
method with an improved rounding technique for nonstandard potentials, we were able to routinely
recover integral solutions within 1%–5% of the global optimum for the combinatorial image labeling
problem.
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1. Problem formulation. The multiclass image labeling problem consists of finding, for
each pixel x in the image domain Ω ⊆ Rd, a label ℓ(x) ∈ {1, . . . , l} which assigns one of l
class labels to x so that the labeling function ℓ adheres to some local data fidelity as well as
nonlocal spatial coherency constraints.

This problem class occurs in many applications, such as segmentation, multiview recon-
struction, stitching, and inpainting [51]. We consider the variational formulation

(1.1) inf
ℓ:Ω→{1,...,l}

f(ℓ), f(ℓ) :=

∫

Ω
s(x, ℓ(x))dx

︸ ︷︷ ︸
data term

+ J(ℓ).︸ ︷︷ ︸
regularizer

The data term assigns to each possible label ℓ(x) a local cost s(x, ℓ(x)) ∈ R, while the regular-
izer J enforces the desired spatial coherency. We will in particular be interested in regularizers
that penalize the weighted length of interfaces between regions of constant labeling. Minimiz-
ing f is an inherently combinatorial problem, as there is a discrete decision to be made for
each point in the image.
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1050 J. LELLMANN AND C. SCHNÖRR

Figure 1. Convex relaxation of the multiclass labeling problem. The assignment of one unique label to
each point in the image domain Ω is represented by a vector-valued function u : Ω → Rl. Ideally, u partitions
the image into l sets by assuming one of the unit vectors {e1, . . . , el} everywhere. By relaxing this set to the
standard (probability) simplex ∆l, the original combinatorial problem can be treated in a convex framework.

In the fully discretized setting, the problem can be expressed in terms of a Markov random
field [69] with a finite state space, where the data and regularization terms can be thought of as
unary and binary potentials, respectively. For graph-based discretizations of J , the resulting
objective contains only terms that depend on the labels at one or two points, and the problem
can be approached with fast graph cut–based methods. Unfortunately, this scheme introduces
an anisotropy [10] and thus does not represent isotropic regularizers well. Using ternary or
higher-order terms, the metrication error can be reduced, but then graph-based methods
cannot be directly applied.

It can be shown, however, that even in the graph-based representation the problem is
NP-hard for relatively simple J [12], so we cannot expect to easily derive fast solvers for this
problem. This is caused in part by the discrete nature of the feasible set. In the following,
we relax this set. This allows us to solve the problem in a globally optimal way using convex
optimization methods. On the downside, we cannot expect the relaxation to be exact for any
problem instance; i.e., we might get nonintegral (or integral but suboptimal) solutions.

There are several choices for the relaxation method, of which in our opinion the following
is the most transparent (Figure 1): identify label i with the ith unit vector ei ∈ Rl, set
E := {e1, . . . , el}, and solve

(1.2) inf
u:Ω→E

f(u) , f(u) :=

∫

Ω
⟨u(x), s(x)⟩dx + J(u) .

The data term is now linear in u and fully described by the vector

s(x) := (s1(x), . . . , sl(x))
⊤ := (s(x, 1), . . . , s(x, l))⊤.(1.3)

Due to the linearization, the local costs s may be arbitrarily complicated, possibly derived
from a probabilistic model, without affecting the overall problem class. In this form, we relax
the label set by allowing u to take “intermediate” (nonintegral) values in the convex hull
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CONTINUOUS MULTICLASS LABELING 1051

convE of the original label set. This is just the standard simplex ∆l,

∆l := conv{e1, . . . , el} =

{

a ∈ Rl|a ! 0,
l∑

i=1

ai = 1

}

.(1.4)

The problem is then considered on the relaxed feasible set C:

C := {u ∈ BV(Ω)l|u(x) ∈ ∆l for a.e. x ∈ Ω} .(1.5)

The space of functions of bounded variation BV(Ω)l ⊂ L1(Ω)l guarantees a minimal regularity
of the discontinuities of u; see section 2.2. Assuming we can extend the regularizer J to the
whole relaxed set C, we get the relaxed problem

(1.6) inf
u∈C

f(u) , f(u) :=

∫

Ω
⟨u(x), s(x)⟩dx + J(u) .

If J can be made convex, the overall problem is convex as well, and it may likely be compu-
tationally tractable. In addition, J should ideally have a closed-form expression, or at least
lead to a computationally tractable problem.

Whether these points are satisfied depends on the way in which a given regularizer is
extended to the relaxed set. The prototypical example for such a regularizer is the total
variation,

(1.7) TV(u) =

∫

Ω
∥Du∥ ,

where ∥·∥ denotes the Frobenius norm, in this case on Rd×l. Note that umay be discontinuous,
so the gradient Du has to be understood in a distributional sense (section 2.2). Much of the
popularity of TV stems from the fact that it allows us to include boundary-length terms: the
total variation of the indicator function χS of a set S,

(1.8) Per(S) := TV(χS) ,

is called the perimeter of S and is just the classical length of the boundary ∂S.
In this paper, we will in more generality consider ways to construct regularizers which

penalize interfaces between two adjacent regions with labels i ̸= j according to the perimeter
(i.e., length or area) of the interface weighted by an interaction potential (or distance) d :
{1, . . . , l}2 → R depending on the labels (in a slight abuse of notation the interaction potential
is also denoted by d, since there is rarely any ambiguity with respect to the ambient space
dimension). The simplest case is the Potts model with the uniform metric, d(i, j) = 0 iff i = j
and otherwise d(i, j) = 1. In this case, the regularizer penalizes the total interface length, as
seen above for the total variation.

As a prime motivation for our work, consider the two-class case l = 2 with J = TV. As
the second component of u is given by the first via u2 = 1−u1 here, we may pose the relaxed
problem in the form

(1.9) min
u′∈BV(Ω),

u′(x)∈[0,1] for a.e. x∈Ω

∫

Ω
u′(x)(s1(x)− s2(x))dx + 2TV(u′) ,
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1052 J. LELLMANN AND C. SCHNÖRR

where u′(x) is a scalar. This formulation is also referred to as continuous cut in analogy to
graph cut methods. It can be shown [18] that while there may be nonintegral solutions of the
relaxed problem, an integral—i.e., u′(x) ∈ {0, 1}—global optimal solution can be recovered
from any solution of the relaxed problem. We can thus reduce the combinatorial problem to
a convex problem. While there are reasons to believe that this procedure cannot be extended
to the multiclass case, we may still hope for “nearly” integral solutions.

1.1. Related work. The difficulty of the labeling problem varies greatly with its precise
definition. Formulations of the labeling problem can be categorized based on

1. whether they tackle the binary (two-class) or the much harder multiclass problem, and
2. whether they rely on a graph representation or are formulated in a spatially continuous

framework.
An early analysis of a variant of the binary continuous cut problem and the associated dual
maximal flow problem was done by Strang [62]. Chan, Esedoḡlu, and Nikolova [18] pointed out
that by thresholding a nonintegral result of the relaxed convex problem at almost any threshold
one can generate integral solutions of the original combinatorial problem (this can be carried
over to any threshold and to slightly more general regularizers [8, 73]). The proof heavily
relies on the coarea formula [25], which unfortunately does not transfer to the multiclass case.
The binary continuous case is also closely related to the thoroughly analyzed Mumford–Shah
[46] and Rudin–Osher–Fatemi (ROF) [58] problems, where a quadratic data term is used.

For the graph-based discretization, the binary case can be formulated as a minimal-cut
problem on a grid graph, which allows us to solve the problem exactly and efficiently for a
large class of metrics using graph cuts [36, 11]. Graph cut algorithms have become a work
horse in many applications as they are very fast for medium-sized problems. Unfortunately
they offer hardly any potential for parallelization. As mentioned in the introduction, the graph
representation invariably introduces a grid bias [10] (Figure 2). While it is possible to reduce
the resulting artifacts by using larger neighborhoods or by moving higher-order potentials
through factor graphs, this greatly increases graph size as well as processing time.

Prominent methods for handling the graph-based multiclass case rely on finding a local
minimum by solving a sequence of binary graph cuts [12] (see [37] for a recent generalization).
These methods have recently been extended to the continuous formulation [65] with similar
theoretical performance [50]. Our results can be seen as a continuous analogon to [32], where
it was shown that potentials of the form d(i, j) = |i − j| can be exactly formulated as a
cut on a multilayered graph. An early analysis can be found in [34], where the authors also
derive suboptimality bounds of a linear programming relaxation for metric distances. All
these methods rely on the graph representation with pairwise potentials.

In this work, we focus on the continuous multiclass setting with higher-order potentials
in the discretization. Closely related to our approach is [15]. In contrast to approaches that
rely on a linear ordering of the labels [32, 5], the authors of [15] represent labels in a higher-
dimensional space. In a certain sense, [43] can be seen as a predecessor of this approach: in
this work, the authors represent the label assignment using a piecewise constant real-valued
function but parametrize the function using a set of l polynomial basis functions, which enables
them to employ the Potts regularizer.

The approach of [15] allows us to formulate interaction potentials of the form d(i, j) =
γ(|i − j|) with nondecreasing, positive, concave γ. The authors provide a thorough analysis
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Figure 2. Discretization schemes. Left to right: Graph-based with 4- and 8-neighborhoods; higher-order
potentials. In graph-based approaches the regularizer is discretized using terms depending on the labels of at
most two neighboring points. This leads to artifacts because isotropic metrics are not approximated well. Using
higher-order terms, the discrete functional more closely approximates the continuous functional (Figure 3).

Figure 3. Effect of the discretization on an inpainting problem. Left to right: Input image with unknown
black region; graph-based method using pairwise potentials (α-β-swap code from [64]); proposed method using
higher-order potentials. Due to the introduced anisotropy, the graph-based method shows a bias toward axis-
parallel edges.

of the continuous model and propose a relaxation based on the convex envelope, which gives
almost integral solutions in many cases. We extend this approach to the more general class of
regularizers where d is an arbitrary metric. The same authors proposed a “fast primal-dual”
algorithm with proven convergence to solve the associated saddle point problem [53]. By
lifting the objective to a higher-dimensional space, it turns out that the same method also
can be used to solve many problems with a nonlinear data term [54].

Our approach is a generalization of [72, 40], where a similar linearization is used with
the regularizer restricted to the Potts distance, and with weaker convergence results. These
methods have also been extended to segmentation on manifolds [20].

Regarding optimization, several authors have proposed smoothing of the primal or dual
objective together with gradient descent [8, 6]. In contrast, our approach does not require
any a priori smoothing. Using Nesterov’s method [48] for the labeling problem was proposed
in [40]. An earlier analysis of the method in the context of ℓ1-norm and TV minimization can
be found in [67]. In [7] the method is applied to a class of general ℓ1 regularized problems.
In [29] a predecessor of the proposed Douglas–Rachford approach was presented in the split
Bregman framework [60], restricted to the two-class case. We provide an extension to the
multiclass case, with proof of convergence and a sound stopping criterion.
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1.2. Contribution. The paper is organized as follows:
1. We formulate natural requirements on the regularizer J and show their implications on

the choice of the interaction potential d (section 3). In particular, d must necessarily
be a metric under these requirements (Proposition 3.1).

2. Given such a metric, we study two possible approaches to extend regularizers J on the
relaxed set (section 4):

• The “envelope” approach, which is a generalization of the method recently sug-
gested by Chambolle, Cremers, and Pock [15] (section 4.3). While there is no
simple closed-form expression, we show that it can be used to construct a true
extension for any metric d (Proposition 4.4).

• The “Euclidean distance” approach (section 4.4), which yields exact extensions
for Euclidean metrics d only but has a closed-form expression. We review some
methods for the approximation of non-Euclidean metrics.

We provide a unified continuous framework and show existence of a minimizer.
3. Both approaches lead to nonsmooth convex problems, which can be studied in a gen-

eral saddle point formulation (section 5). Within this framework, we propose an im-
proved rounding technique for nonstandard potentials to recover approximate integral
solutions for the nonrelaxed problem (section 5.6).

4. We provide and analyze two different methods that are capable of minimizing the
specific class of saddle point problems (section 6):

• A specialization of a method for nonsmooth optimization as suggested by Nesterov
(section 6.2). The method is virtually parameter-free and provides explicit a priori
and a posteriori optimality bounds.

• A Douglas–Rachford splitting approach (section 6.3). We show that the approach
allows us to compute a sequence of dual iterates that provide an optimality bound
and a stopping criterion in the form of the primal-dual gap.

Both methods are highly parallelizable and are shown to converge. For reference, we
also summarize the primal-dual technique from [53] (section 6.1).

5. Finally, we illustrate and compare the above methods under varying conditions and
demonstrate the applicability of the proposed approaches on real-world problems (sec-
tion 7).

In contrast to existing graph-based methods, we provide a continuous and isotropic formula-
tion, while in comparison with existing continuous approaches, we provide a unified framework
for arbitrary, nonuniform metrics d. The Euclidean metric method and Nesterov optimization
have been announced in less generality in [40, 38].

2. Mathematical preliminaries. In the following sections we provide a reference of the
notation used and a brief introduction to the concept of functions of bounded variation and
corresponding functionals. We aim to provide the reader with the basic ideas. For more
detailed expositions we refer the reader to [1, 75].

2.1. Notation. In the following, superscripts vi denote a collection of vectors or matrix
columns, while subscripts vk denote vector components: we denote, for A ∈ Rd×l,

A = (a1| . . . |al) = (Aij), Aij =
(
aj
)
i
= aji , 1 " i " d, 1 " j " l.(2.1)
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Additional parentheses v(i) indicate an element of a sequence (v(i)). We frequently make use
of the Kronecker product [31],

(2.2) ⊗ : Rn1×m1 × Rn2×m2 → R(n1n2)×(m1m2),

in order to formulate all results for arbitrary dimensions. The standard simplex in Rl is
denoted by ∆l := {x ∈ Rl|x ! 0, e⊤x = 1}, where e := (1, . . . , 1)⊤ ∈ Rl. In is the identity
matrix in Rn, and ∥ · ∥ is the usual Euclidean norm for vectors and the Frobenius norm for
matrices. Analogously, the standard inner product ⟨·, ·⟩ extends to pairs of matrices as the
sum over their elementwise product. Br(x) denotes the ball of radius r at x, and Sd−1 the set
of x ∈ Rd with ∥x∥ = 1. The characteristic function χS(x) of a set S is defined as χS(x) = 1
iff x ∈ S and χS(x) = 0 otherwise. By δS(x) = 0 iff x ∈ S and δS(x) = +∞ otherwise, we
denote the corresponding indicator function. For a convex set C, σC(u) := supv∈C⟨u, v⟩ is the
support function from convex analysis. ∇u denotes the classical Jacobian of u.

Ck
c (Ω) is the space of k-times continuously differentiable functions on Ω with compact

support, and C0(Ω) the completion of C0
c (Ω) under the supremum norm. As usual, Ld denotes

the d-dimensional Lebesgue measure, while Hk denotes the k-dimensional Hausdorff measure.
For some measure µ and set M , µ#M denotes the restriction of µ to M , i.e., (µ#M)(A) :=
µ(M ∩A).

2.2. Total variation and BV. The total variation will be our main tool for constructing
the regularizer J . For a differentiable scalar-valued function u, the total variation is simply
the integral over the norm of its gradient:

TV(u) =

∫

Ω
∥∇u∥dx .(2.3)

As u is the designated labeling function, which ideally should be piecewise constant, the
differentiability and continuity assumptions have to be dropped. In the following we briefly
review the general definition of the total variation and its properties.

We require the image domain Ω ⊆ Rd to be a bounded open domain with compact Lipschitz
boundary; that is, the boundary can locally be represented as the graph of a Lipschitz-
continuous function. For simplicity, we assume in the following that Ω = (0, 1)d.

We consider general vector-valued functions u = (u1, . . . , ul) : Ω→ Rl which are absolutely
integrable, i.e., u ∈ L1(Ω)l. For any such function u, its total variation TV(u) is defined in a
dual way [1, Def. 3.4] as

TV(u) := sup
v∈DTV

−
l∑

j=1

∫

Ω
uj div v

jdx = sup
v∈DTV

−
∫

Ω
⟨u,Div v⟩dx ,(2.4)

DTV := {v ∈ C∞
c (Ω)d×l|∥v(x)∥ " 1 ∀x ∈ Ω} ,(2.5)

Div v :=
(
div v1, . . . ,div vl

)⊤
.

This definition can be derived for continuously differentiable u by extending (2.3) to vector-
valued u, i.e.,

TV(u) =

∫

Ω
∥∇u∥dx ,(2.6)
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replacing the norm by its dual formulation, and using partial integration. If TV(u) <∞, u is
said to be of bounded variation. The vector space of all such functions is denoted by BV(Ω)l:

BV(Ω)l =
{
u ∈ L1(Ω)l|TV(u) <∞

}
.(2.7)

Equivalently, u ∈ BV(Ω)l iff u ∈ L1(Ω)l and its distributional derivative corresponds to a finite
Radon measure; i.e., uj ∈ L1(Ω), and there exist Rd-valued measures Duj = (D1uj , . . . ,Dduj)
on the Borel subsets B(Ω) of Ω such that [1, p. 118]

l∑

j=1

∫

Ω
uj div v

jdx = −
l∑

j=1

d∑

i=1

∫

Ω
vji dDiuj ∀v ∈ (C∞

c (Ω))d×l .(2.8)

These measures form the distributional gradient Du = (Du1| . . . |Dul), which is again a mea-
sure that vanishes on any H(d−1)-negligible set. If u ∈ BV(Ω), then |Du|(Ω) = TV(u), where
|Du| is the total variation of the measure Du in the measure-theoretic sense [1, Prop. 3.6].
The total variation of characteristic functions has an intuitive geometrical interpretation: for
a Lebesgue-measurable subset S ⊆ Rd, its perimeter is defined as the total variation of its
characteristic function,

Per(S) := TV(χS) .(2.9)

Assuming the boundary ∂S is sufficiently regular, Per(S) is just the classical length (d = 2)
or area (d = 3) of the boundary.

2.3. Properties of TV and compactness. We review the most important ingredients for
proving existence of minimizers for variational problems on BV involving the total variation.

Convexity. As TV is the pointwise supremum of a family of linear functions, it is convex
and positively homogeneous; i.e., TV(αu) = αTV(u) for α > 0.

Lower semicontinuity. A functional J is said to be lower semicontinuous with respect to
some topology if, for any sequence (u(k)) converging to u,

lim inf
k→∞

J(u(k)) ! J(u) .(2.10)

It can be shown that for fixed Ω, the total variation TV is well defined on L1
loc(Ω)

l and lower
semicontinuous in BV(Ω)l [75, Prop. 5.2.1], [1, Rem. 3.5 and Prop. 3.6].

Compactness. For BV, instead of the norm topology induced by

∥u∥BV :=

∫

Ω
∥u∥dx +TV(u) ,(2.11)

which makes BV(Ω)l a Banach space but is often too strong, one frequently uses the weak*
convergence: Define u(k) → u weakly* iff

1. u, u(k) ∈ BV(Ω)l for all k ∈ N,
2. u(k) → u in L1(Ω), and
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3. Du(k) → Du weakly* in measure, i.e.,

∀v ∈ C0(Ω) : lim
k→∞

∫

Ω
v dDu(k) =

∫

Ω
v dDu .(2.12)

For u, u(k) ∈ BV(Ω)l this is equivalent to u(k) → u in L1(Ω)l and (u(k)) being uniformly
bounded in BV(Ω)l; i.e., there exists C < ∞ such that ∥u(k)∥BV " C for all k ∈ N [1,
Prop. 3.13]. For the weak* topology in BV, a compactness result holds [1, Thm. 3.23]: if
(u(k)) ⊂ BV(Ω)l and (u(k)) is uniformly bounded in BV(Ω)l, then (u(k)) contains a subsequence
weakly*-converging to some u ∈ BV(Ω)l.

2.4. General functionals on BV. We now review how general functionals depending on
the distributional gradient Du can be defined. Recall that for any u ∈ BV(Ω)l the distribu-
tional gradient Du is a measure. Moreover, it can be uniquely decomposed into three mutually
singular measures

Du = Dau+Dju+Dcu ,(2.13)

that is, an absolutely continuous part Da, the jump part Dj, and the Cantor part Dc. Mutual
singularity refers to the fact that Ω can be partitioned into three subsets, such that each of
the measures is concentrated on exactly one of the sets. We give a short intuitive explanation;
see [1, Def. 3.91] for the full definitions.

The Da part is absolutely continuous with respect to the d-dimensional Lebesgue measure
Ld; i.e., it vanishes on any Ld-negligible set. It captures the “smooth” variations of u: In any
neighborhood where u has a (possibly weak) Jacobian ∇u, the jump and Cantor parts vanish
and

(2.14) Du = Dau = (∇u)Ld .

The jump part Dj is concentrated on the set of points where locally u jumps between two
values u− and u+ along a (d − 1)-dimensional hypersurface with normal νu ∈ Sd−1 (unique
up to a change of sign). In fact, there exists a jump set Ju of discontinuities of u and Borel
functions u+, u− : Ju → Rl and νu : Ju → Sd−1 such that [1, Thm. 3.78, Lem. 3.90]

(2.15) Dju = Du#Ju = νu(u
+ − u−)⊤Hd−1#Ju ,

where Hd−1#Ju denotes the restriction of the (d − 1)-dimensional Hausdorff measure on the
jump set Ju, i.e., (Hd−1#Ju)(A) = Hd−1(Ju ∩A) for measurable sets A. The Cantor part Dc

captures anything that remains.
As an important consequence of the mutual singularity, the total variation decomposes

into |Du| = |Dau| + |Dju|+ |Dcu|. Using this idea, one can define functionals depending on
the distributional gradient Du [1, Prop. 2.34]. Let u ∈ BV(Ω)l and define, for some convex,
lower semicontinuous Ψ : Rd×l → R,

J(u) :=

∫

Ω
Ψ(Du) :=

∫

Ω
Ψ(∇u(x))dx + · · ·

+

∫

Ju

Ψ∞

(
νu(x)

(
u+(x)− u−(x)

)⊤)
dHd−1 + · · ·

+

∫

Ω
Ψ∞

(
Dcu

|Dcu|

)
d|Dcu| .(2.16)
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Here Ψ∞ is the recession function Ψ∞(x) = limt→∞
Ψ(tx)

t of Ψ, and Dcu/|Dcu| denotes the
polar decomposition of Dcu, which is the density of Dcu with respect to its total variation
measure |Dcu|. If Ψ is positively homogeneous, Ψ∞ = Ψ holds, and

J(u) =

∫

Ω
Ψ

(
Du

|Du|

)
d|Du|.(2.17)

From (2.16) it becomes clear that the meaning of Ψ acting on the Jacobian of u is extended
to the jump set as acting on the difference of the left- and right-hand-side limits of u at the
discontinuity. This is a key point: by switching to the measure formulation, one can handle
noncontinuous functions as well.

3. Necessary properties of the interaction potential. Before applying the above methods
to the labeling problem, we start with some basic considerations about the regularizer and the
interaction potential d. We begin by formalizing the requirements on the regularizer of the
relaxed problem as mentioned in the introduction. Let us assume that we are given a general
interaction potential d : {1, . . . , l}2 → R. Intuitively, d(i, j) assigns a weight to switching
between label i and label j. We require

d(i, j) > 0, i ̸= j ,(3.1)

but no other metric properties (i.e., symmetry or triangle inequality) for now. Within this
work, we postulate that the regularizer should satisfy the following:
(P1) J is convex and positively homogeneous on BV(Ω)l.
(P2) J(u) = 0 for any constant u; i.e., there is no penalty for constant labelings.
(P3) For any partition (S, S$) of Ω into two sets with finite perimeter Per(S) <∞ and for

any i, j ∈ {1, . . . , l},

J(eiχS + ejχS!
)
= d(i, j) Per(S);(3.2)

i.e., a change from label i to label j gets penalized proportional to d(i, j) as well as the
perimeter of the interface. Note that this implies that J is isotropic (i.e., rotationally
invariant).

We require convexity in (P1) in order to render global optimization tractable. Indeed, if J is
convex, the overall objective function (1.6) will be convex as well due to the linearization of
the data term. Positive homogeneity is included as it allows J to be represented in terms of
a support function (i.e., its convex conjugate is an indicator function and J = σD for some
closed convex set D), which will be exploited by our optimization methods.

Requirements (P3) and (P2) formalize the principle that the multiclass labeling problem
should reduce to the classical continuous cut (1.9) when restricted to two classes. This allows
us to include boundary length–based terms in the regularizer that can additionally be weighted
depending on the labels of the adjoining region (Figure 4). Together, these requirements pose
a natural restriction on d.

Proposition 3.1. Let (J, d) satisfy (P1)–(P3) as well as the general assumption (3.1). Then
d must necessarily be a metric; i.e., for all i, j, k ∈ {1, . . . , l},

1. d(i, i) = 0,
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Figure 4. Effect of choosing different interaction potentials. Top row: The original image (left) is seg-
mented into 12 regions corresponding to prototypical color vectors. The Potts interaction potential penalizes
the boundary length independently of the labels (right), which leads to a uniformly smooth segmentation. Bot-
tom row: By modifying the interaction potential, the regularization strength is selectively adjusted to suppress
background (left) or foreground (right) structures while allowing for fine details in the other regions.

2. d(i, j) = d(j, i) > 0 for all i ̸= j,
3. d is subadditive: d(i, k) " d(i, j) + d(j, k).
Proof. Statement 1 follows from (P2) and (P3) by choosing i = j and S with Per(S) > 0.

Symmetry in statement 2 is obtained from (P3) by replacing S with S$, as Per(S) = Per(S$);
the definiteness d(i, j) > 0 follows from the general assumption (3.1). To show statement
3, first note that J(u) = 2J(u/2 + c/2) for any constant c ∈ Rl and all u ∈ BV(Ω)l, since
J(u) = J(u+ c− c) " 2J((u+ c)/2) + J(−c) = 2J(u/2 + c/2) " J(u) + J(c) = J(u). Fix any
set S with perimeter

(3.3) c := Per(S) > 0 .

Then, using the above-mentioned fact and the positive homogeneity of J ,

cd(i, k) = J
(
eiχS + ekχS!

)
(3.4)

= 2J

(
1

2

(
eiχS + ekχS!

)
+

1

2
ej
)

(3.5)

= 2J

(
1

2

(
eiχS + ejχS!

)
+

1

2

(
ejχS + ekχS!

))
(3.6)

" J
(
eiχS + ejχS!

)
+ J

(
ejχS + ekχS!

)
(3.7)

= c (d (i, j) + d(j, k)) .(3.8)

Note that the general assumption (3.1) is required only for the definiteness. If the require-
ment (3.1) is dropped, d must still be a semimetric, and it is easy to show that if d(i, j) = 0
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for some i ̸= j, then d(i, k) = d(j, k) for any k. In this case the classes i and j can be collapsed
into a single class as far as the regularizer is concerned. The decision between label i and
label j is then completely local; i.e., it depends only on the data term and can be postponed
to a postprocessing step (assuming that a minimizer exists) by modifying the data term to

s′i(x) := s′j(x) := min{si(x), sj(x)} .(3.9)

Thus (3.1) is not a real limitation and can be always assured. As a side note, it can be shown
that, under some assumptions and in the space of piecewise constant functions, subadditivity
of d already follows if J is required to be lower semicontinuous [14, p. 88].

Proposition 3.1 implies that for nonmetric d, we generally cannot expect to find a regu-
larizer satisfying (P1)–(P3). Note also that J is not required to be of any particular form. In
the following sections, we will show that on the other hand, if d is metric as in Proposition
3.1, such a regularizer can always be constructed. This implies that the interaction potentials
allowing for a regularizer that satisfies (P1)–(P3) are exactly the metrics.

4. Constructing regularizers from the interaction potential. We study next how to
construct regularizers on BV(Ω)l satisfying (P1)–(P3). As in (2.16) we set

(4.1) J(u) :=

∫

Ω
Ψ(Du) .

We additionally require Ψ : Rd×l → R!0 to be a support function; i.e., for some closed, convex
∅ ̸= Dloc ⊆ Rd×l,

Ψ(z) = σDloc(z) = sup
v∈Dloc

⟨z, v⟩ .(4.2)

As a support function, Ψ coincides with its recession function Ψ∞; thus

J(u) =

∫

Ω
Ψ(∇u(x))dx+ · · ·

+

∫

Ju

Ψ
(
νu(x)

(
u+(x)− u−(x)

)⊤)
dHd−1 + · · ·

+

∫

Ω
Ψ

(
Dcu

|Dcu|

)
d|Dcu| .(4.3)

Also, we have an equivalent dual formulation in analogy to (2.4),

J(u) = sup

{
−
∫

Ω
⟨u ,Div v⟩dx|v ∈ C∞

c (Ω)d×l , v(x) ∈ Dloc ∀x ∈ Ω

}
.(4.4)

For simplicity we also assume that Dloc is rotationally invariant along the image dimensions;
i.e., for any rotation matrix R ∈ Rd×d,

v = (v1, . . . , vl) ∈ Dloc ⇔ (Rv1, . . . , Rvl) ∈ Dloc .(4.5)

This is equivalent to J being isotropic.
We now show under which circumstances a minimizer exists in BV(Ω)l, and then see how

the approach can be used to construct regularizers for specific interaction potentials.
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4.1. Existence of minimizers. The complete problem considered here is of the form (cf.
(1.6) and (4.3))

(4.6) inf
u∈C

f(u) , f(u) :=

∫

Ω
⟨u, s⟩dx+ J(u) ,

where J(u) =
∫
ΩΨ(Du) as in (4.1),

(4.7) Ψ(z) = sup
v∈Dloc

⟨z, v⟩

for some closed convex Dloc ̸= ∅, and

C = {u ∈ BV(Ω)l|u(x) ∈ ∆l Ld-a.e. x ∈ Ω} .(4.8)

Note that f is convex, as it is the pointwise supremum of affine functions (4.4). Again for
simplicity we set Ω = (0, 1)d. Then we have the following proposition.

Proposition 4.1. Let Dloc ̸= ∅ be closed convex, Ψ = σDloc, s ∈ L∞(Ω)l, and

(4.9) f(u) =

∫

Ω
⟨u, s⟩dx+

∫

Ω
Ψ(Du) .

Additionally assume that Dloc ⊆ Bρu(0) ⊆ Rd×l for some 0 < ρu. Then f is lower semicon-
tinuous in BV(Ω)l with respect to L1 convergence.

Proof. As the data term is continuous, it suffices to show that the regularizer is lower
semicontinuous. This is an application of [1, Thm. 5.47]. In fact, the theorem shows that f is
the relaxation of f̃ : C1(Ω)l → R,

(4.10) f̃(u) :=

∫

Ω
⟨u, s⟩dx+

∫

Ω
Ψ(∇u(x))dx ,

on BV(Ω)l with respect to L1
loc convergence and thus lower semicontinuous in BV(Ω)l. To

apply the theorem, we have to show that Ψ is quasi-convex in the sense of [1, Def. 5.25], which
holds as it is convex by construction. The other precondition is (at most) linear growth of Ψ,
which holds with 0 " Ψ(x) " ρu∥x∥.

Proposition 4.2. Let f,Ψ, s be defined as in Proposition 4.1 and additionally assume that

(4.11) Bρl(0) ∩
{
(v1, . . . , vl)|

l∑

i=1

vi = 0)

}
⊆ Dloc ⊆ Bρu(0)

for some 0 < ρl " ρu. Then the problem

(4.12) min
u∈C

f(u)

has at least one minimizer.
Proof. From the inner and outer bounds it follows that ρl∥z∥ " Ψ(z) " ρu∥z∥ for any

z = (z1| . . . |zl) ∈ Rd×l with z1 + · · · + zl = 0. Moreover, the constraint u ∈ C implies that
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Du = (Du1| . . . |Dul) satisfies Du1 + · · · + Dul = 0 (to see this, note that u 2→ Du is linear
and u1 + · · · + ul ≡ 1). Therefore the density function Du/|Du| satisfies (Du/|Du|)e = 0
in a |Du|-a.e. sense (cf. [1, Cor. 1.29]), which allows us to apply the assumption (4.11) to
obtain ρl " Ψ(Du/|Du|) " ρu on C (again in a |Du|-a.e. sense). Consequently, we conclude
from (2.17) that

0 " ρl TV(u) " J(u) " ρuTV(u) .(4.13)

From

(4.14)

∫

Ω
⟨u, s⟩dx ! −

∫

Ω
∥u(x)∥1∥s(x)∥∞dx

and the fact that s ∈ L∞(Ω)l and u ∈ L1(Ω)l, it follows that the data term is bounded from
below.

We now show coercivity of f with respect to the BV norm: let (u(k)) ⊂ C with ∥u(k)∥1 +
TV(u(k))→∞. Since the data term is bounded from below, and using the fact that J(u(k)) !
ρl TV(u(k)), it follows that f(u(k))→ +∞. Thus f is coercive.

Equations (4.13) and (4.14) also show that f is bounded from below. Thus we can choose
a minimizing sequence (u(k)). Due to the coercivity, the sequence ∥u(k)∥1 + TV(u(k)) must
then be bounded from above. From this and [1, Thm. 3.23] we conclude that there is a
subsequence of (u(k)) weakly*- (and thus L1-) converging to some u ∈ BV(Ω)l. With the
lower semicontinuity from Proposition 4.1 and closedness of C with respect to L1 convergence,
existence of a minimizer follows.

4.2. Relation to the interaction potential. To relate such J to the labeling problem in
view of (P3), we have the following proposition.

Proposition 4.3. Let Ψ = σDloc and J(u) =
∫
Ω Ψ(Du) as in Proposition 4.1. For some

u′ ∈ BV(Ω) and vectors a, b ∈ ∆l, let u(x) = (1 − u′(x))a + u′(x)b. Then for any vector
y ∈ Rd with ∥y∥ = 1,

J(u) = Ψ
(
y(b− a)⊤

)
TV(u′) =

(
sup

v∈Dloc

∥v (b− a) ∥
)
TV(u′) .(4.15)

In particular, if for all i, j ∈ {1, . . . , l} there exists a vector y with ∥y∥ = 1 such that
Ψ
(
y(ei − ej)⊤

)
= d(i, j), then J fulfills (P3).

Proof. To show the first equality, (2.17) implies

J(u) =

∫

Ω
Ψ

(
Du

|Du|

)
|Du|(4.16)

=

∫

Ω
Ψ

(
D(a+ u′(b− a))

|D(a+ u′(b− a))|

)
|D(a+ u′(b− a))|(4.17)

=

∫

Ω
Ψ

(
(Du′)(b− a)⊤

|(Du′)(b− a)⊤|

)
|(Du′)(b− a)⊤|.(4.18)
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We make use of the property |(Du′)(b− a)⊤| = |Du′|∥b− a∥, which is a direct consequence of
the definition of the total variation measure and the fact that ∥w(b − a)⊤∥ = ∥w∥∥b − a∥ for
any vector w ∈ Rd (note that a, b ∈ Rl are also vectors). Therefore

J(u) =

∫

Ω
Ψ

(
(Du′)(b− a)⊤

|Du′|∥b− a∥

)
|Du′|∥b− a∥,(4.19)

which by positive homogeneity of Ψ implies

J(u) =

∫

Ω
Ψ

(
Du′

|Du′| (b− a)⊤
)
|Du′|.(4.20)

Since the density function Du′/|Du′| assumes values in Sd−1, there exists, for |Du′|-a.e. x ∈ Ω,
a rotation matrix mapping (Du′/|Du′|)(x) to y. Together with the rotational invariance of
Dloc from (4.5) this implies

J(u) =

∫

Ω
Ψ
(
y(b− a)⊤

)
|Du′| = Ψ

(
y(b− a)⊤

)
TV(u′) ,(4.21)

which proves the first equality in (4.15). The second equality can be seen as follows: consider

r := sup
v∈Dloc

∥v (b− a) ∥(4.22)

= sup
v∈Dloc

sup
z∈Rd,∥z∥"1

⟨z, v(b − a)⟩(4.23)

= sup
z∈Rd,∥z∥"1

sup
v∈Dloc

⟨z, v(b − a)⟩ .(4.24)

Denote by Rz a rotation matrix mapping z to y, i.e., Rzz = y; then

r = sup
z∈Rd,∥z∥"1

sup
v∈Dloc

⟨Rzz,Rzv(b− a)⟩(4.25)

= sup
z∈Rd,∥z∥"1

sup
v′∈RzDloc

⟨y, v′(b− a)⟩ .(4.26)

The rotational invariance of Dloc provides RzDloc = Dloc; therefore

r = sup
z∈Rd,∥z∥"1

sup
v∈Dloc

⟨y, v(b− a)⟩(4.27)

= sup
v∈Dloc

⟨y, v(b− a)⟩ = Ψ(y(b− a)⊤) .(4.28)

The second part of the assertion follows directly by setting u′ = χS , a = ei, and b = ej .
As a consequence, if the relaxed multiclass formulation is restricted to two classes by

parametrizing u = (1−u′)a+u′b for u′(x) ∈ [0, 1], it essentially reduces to the scalar continu-
ous cut problem: solving

(4.29) min
u′∈BV(Ω),

u′(x)∈[0,1],Ld-a.e. x∈Ω

∫

Ω
⟨(1− u′)a+ u′b, s⟩dx+ J(u)
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is equivalent to solving

(4.30) min
u′∈BV(Ω),

u′(x)∈[0,1],Ld-a.e. x∈Ω

∫

Ω
u′(b− a)dx+Ψ(y(b− a)⊤)TV(u′) ,

which is just the classical binary continuous cut approach with data (b − a) and regularizer
weight Ψ(y(b − a)⊤), where y ∈ Rd is some arbitrary unit vector. For the multiclass case,
assume that

u = uP = e1χP 1 + · · · + elχP l(4.31)

for some partition P 1 ∪ · · · ∪ P l = Ω with Per(P i) < ∞, i = 1, . . . , l. Then the absolutely
continuous and Cantor parts vanish [1, Thm. 3.59, Thm. 3.84, Rem. 4.22], and only the jump
part remains:

J(uP ) =

∫

SuP

Ψ
(
νuP (uP+ − uP−)

⊤
)
dHd−1 ,(4.32)

where SuP =
⋃

i=1,...,l ∂P
i is the union of the interfaces between regions. Define i(x), j(x) such

that uP+(x) = ei(x) and uP−(x) = ej(x). Then

J (uP ) =

∫

SuP

Ψ

(
νuP

(
ei(x) − ej(x)

)⊤)
dHd−1 .(4.33)

By rotational invariance,

J (uP ) =

∫

SuP

Ψ

(
y
(
ei(x) − ej(x)

)⊤)
dHd−1(4.34)

for some y with ∥y∥ = 1. Thus the regularizer locally penalizes jumps between labels i and j
along an interface with the interface length, multiplied by the factor Ψ(y(ei−ej)⊤) depending
on the labels of the adjoining regions.

The question is now how to choose the set Dloc such that Ψ(y(ei − ej)⊤) = d(i, j) for
a given interaction potential d. We will consider two approaches which differ with respect
to expressiveness and simplicity of use: in the local envelope approach (section 4.3), Dloc is
chosen as large as possible. In turn, J is as large as possible in the integral formulation (4.1).
This prevents introducing artificial minima generated by the relaxation and potentially keeps
minimizers of the relaxed problem close to minimizers of the discrete problem. However,
the set Dloc is only implicitly defined, which complicates optimization. In contrast, in the
embedding approach (section 4.4), Dloc is simpler at the cost of being able to represent only
a subset of all metric potentials d. For an illustration of the two approaches, see Figure 5.

4.3. Local envelope method. Chambolle, Cremers, and Pock [15] proposed an interesting
approach for potentials d of the form d(i, j) = γ(|i− j|) for a positive concave function γ. The
approach is derived by specifying the value of J on integral u only and then constructing an
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(−1, 1, 0)

(1,−1, 0)(−1, 0, 1)

(1, 0,−1)

(0,−1, 1)

(0, 1,−1)

Figure 5. Illustration of the set Dloc used to build the regularizer for the uniform distance, d(i, j) = 0
iff i = j and d(i, j) = 1 otherwise, for l = 3 in (d = 1)-dimensional space. Shown is a cut through the
z1 + z2 + z3 = 0 plane; the labels correspond to the points ei − ej with i ̸= j. The local envelope method
leads to a larger set Dloc (dashed) than the Euclidean metric method (solid). This improves the tightness of the
relaxation but requires more expensive projection steps.

approximation of the convex envelope by pulling the convexification into the integral. This
potentially generates tight extensions, and thus one may hope that the convexification process
does not generate too many artificial nonintegral solutions.

We propose to extend this approach to arbitrary metric d by setting (cf. Figure 5)

Dd
loc :=

⋂

i ̸=j

{
v =

(
v1, . . . , vl

)
∈ Rd×l|∥vi − vj∥ " d(i, j),

l∑

k=1

vk = 0

}
(4.35)

for some given interface potential d(i, j). By definition Dd
loc is rotationally invariant, and by

the considerations in section 3 we assume d to be a metric. Then the inner and outer bound
assumptions required for existence of a minimizer in Proposition 4.2 are satisfied. Moreover,
d can be reconstructed from Dd

loc as follows.
Proposition 4.4. Let d : {1, . . . , l}2 → R!0 be a metric. Then for any i, j,

sup
v∈Dd

loc

((
vi
)
1
−
(
vj
)
1

)
= d(i, j) .(4.36)

Proof. “"” follows from the definition (4.35). “!” can be shown using a network flow
argument: we have

sup
v∈Dd

loc

((
vi
)
1
−
(
vj
)
1

)
(4.37)

! sup

{
pi − pj | p ∈ Rl,

l∑

k=1

pk = 0 ∀i′, j′ : pi′ − pj′ " d(i′, j′)

}
(4.38)

(∗)
= sup{pi − pj | p ∈ Rl ∀i′, j′ : pi′ − pj′ " d(i′, j′)}(4.39)
(∗∗)
= d(i, j) .(4.40)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1066 J. LELLMANN AND C. SCHNÖRR

Equality (∗) holds since each p in the set in (4.39) can be associated with p̃ := p − 1
l

∑
k pk,

which is contained in the set in (4.38) and satisfies pi − pj = p̃i − p̃j. The last equality (∗∗)
follows from [47, Prop. 5.1] with the notation γ = d (and γ̄ = d, since d is a metric and
therefore the triangle inequality implies that the length of the shortest path from i to j is
always d(i, j)).

The final result of this section is the following proposition.
Proposition 4.5. Let d : Rl×l → R!0 be a metric. Define Dloc := Dd

loc as in (4.35), Ψd :=
σDd

loc
, and

Jd :=

∫

Ω
Ψd(Du)(4.41)

as in (4.3). Then Jd satisfies (P1)–(P3).
Proof. (P1) and (P2) are clear from the definition of Jd. (P3) follows directly from

Propositions 4.4 and 4.3 with y = e1.
Defining Dd

loc as in (4.35) provides us with a way to extend the desired regularizer for any
metric d to nonintegral u ∈ C via (4.3). The price to pay is that there is no simple closed
expression for Ψ and thus for Jd, which potentially complicates optimization. Note that in
order to define Dd

loc, d does not have to be a metric. However, Proposition 4.4 then does not
hold in general, so J is not a true extension of the desired regularizer, although it still provides
a lower bound.

4.4. Euclidean metric method. In this section, we consider a regularizer which is less
powerful but more efficient to evaluate. Recall the classical total variation for vector-valued u
as defined in (2.4),

(4.42) TV(u) =

∫

Ω
∥Du∥ .

This classical definition has also been used in color denoising and is also referred to as MTV
[59, 22]. We propose extending this definition by choosing an embedding matrix A ∈ Rk×l for
some k " l and defining

JA(u) := TV(Au) .(4.43)

This corresponds to substituting the Frobenius matrix norm on the distributional gradient
with a linearly weighted variant. In the framework of (4.3), it amounts to setting Dloc = DA

loc
(cf. Figure 5) with

DA
loc := {v′A|v′ ∈ Rd×k, ∥v′∥ " 1} = B1(0)A.(4.44)

Clearly, 0 ∈ DA
loc and

Ψ(z) = σDA
loc
(z) = sup

v′∈B1(0)A
⟨z, v′⟩ = sup

v∈B1(0)
⟨z, vA⟩(4.45)

= sup
v∈B1(0)

⟨zA⊤, v⟩ = ∥zA⊤∥ .(4.46)
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In particular, we formally have

Ψ(Du) = ∥(Du)A⊤∥ = ∥D(Au)∥ ,(4.47)

since u 2→ Du is linear in u. To further clarify the definition, we may rewrite this as

TVA(u) =

∫

Ω

√
∥D1u∥2A + · · ·+ ∥Ddu∥2A ,(4.48)

where ∥v∥A := (v⊤A⊤Av)1/2. In this sense, the approach can be understood as replacing the
Euclidean norm by a linearly weighted variant.

It remains to show for which interaction potentials d assumption (P3) can be satisfied.
The next proposition shows that this is possible for the class of Euclidean metrics.

Proposition 4.6. Let d be a Euclidean metric; i.e., there exist k ∈ N and vectors a1, . . . , al ∈
Rk such that d(i, j) = ∥ai − aj∥. Then for A = (a1| . . . |al), JA := TVA satisfies (P1)–(P3).

Proof. (P1) and (P2) are clearly satisfied. In order to show (P3) we apply Proposition 4.3
and assume ∥y∥ = 1 to obtain with (4.46)

Ψ(y(ei − ej)⊤) = ∥y(ei − ej)⊤A⊤∥(4.49)

= ∥y(ai − aj)⊤∥ = ∥ai − aj∥ .

The class of Euclidean metrics comprises some important special cases:
• The uniform, discrete or Potts metric as also considered in [72, 40] and as a special

case in [34, 37]. Here d(i, j) = 0 iff i = j and d(i, j) = 1 in any other case, which
corresponds to A = (1/

√
2)I.

• The linear (label) metric, d(i, j) = c|i − j|, with A = (c, 2c, . . . , lc). This regularizer
is suitable for problems where the labels can be naturally ordered, e.g., depth from
stereo or grayscale image denoising.

• More generally, if label i corresponds to a prototypical vector zi in k-dimensional
feature space and the Euclidean norm is an appropriate metric on the features, it is
natural to set d(i, j) = ∥zi−zj∥, which is Euclidean by construction. This corresponds
to a regularization in feature space rather than in “label space.”

Note that the boundedness assumption involving ρl required for the existence proof (Propo-
sition 4.2) is fulfilled only if the kernel of A is sufficiently small, i.e., kerA ⊆ {te|t ∈ R},
with e = (1, . . . , 1)⊤ ∈ Rl. Otherwise, DA

loc = (B1(0)A) ∩ {(v1, . . . , vl)|
∑

i v
i = 0} is con-

tained in a subspace of at most dimension (l − 2)d, and (4.11) cannot be satisfied for any
ρl > 0. Thus if d is a degenerate Euclidean metric which can be represented by an embedding
into a lower-dimensional space, as is the case with the linear metric, it has to be regularized
for the existence result in Proposition 4.2 to hold. This can, for example, be achieved by
choosing an orthogonal basis (b1, . . . , bj) of kerA, where j = dimkerA, and replacing A with
A′ := (A⊤, εb1, . . . , εbj)⊤, enlarging k as required. However, these observations are mostly of
theoretical interest, as the existence of minimizers for the discretized problem already follows
from compactness of the (finite-dimensional) discretized constraint set.

Non-Euclidean d, such as the truncated linear metric, d(i, j) = min{2, |i − j|}, cannot be
represented exactly by TVA. In the following we demonstrate how to construct approximations
for these cases.
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Figure 6. Euclidean embeddings into R3 for several interaction potentials with four classes. Left to right:
Potts; linear metric; non-Euclidean truncated linear metric. The vertices correspond to the columns a1, . . . , al

of the embedding matrix A. For the truncated linear metric an optimal approximate embedding was computed
as outlined in section 4.4 with the matrix norm ∥X∥M := maxi,j |Xij |.

Assume that d is an arbitrary metric with squared matrix representation D ∈ Rl×l, i.e.,
Dij = d(i, j)2. Then it is known [9] that d is Euclidean iff for C := I − 1

l ee
⊤, the matrix

T := −1
2CDC is positive semidefinite. In this case D is called a Euclidean distance matrix

and A can be found by factorizing T = A⊤A. If T is not positive semidefinite, setting the
nonnegative eigenvalues in T to zero yields a Euclidean approximation. This method is known
as classical scaling [9] and does not necessarily give good absolute error bounds.

More generally, for some nonmetric, nonnegative d, we can formulate the problem of
finding the “closest” Euclidean distance matrix E as the minimization problem of a matrix
norm ∥E − D∥M over all E ∈ El, the set of l × l Euclidean distance matrices. Fortunately,
there is a linear bijection B : Pl−1 → El between El and the space of positive semidefinite
(l− 1)× (l− 1) matrices Pl−1 [30, 33]. This allows us to rewrite the problem as a semidefinite
program [70, pp. 534–541]

(4.50) inf
S∈Pl−1

∥B(S)−D∥M .

Problem (4.50) can be solved using available numerical solvers. Then E = B(S) ∈ El, and A
can be extracted by factorizing −1

2CEC. Since both E and D are explicitly known, εE :=

maxi,j |(Eij)1/2 − (Dij)1/2| can be explicitly computed and provides an a posteriori bound on
the maximum distance error. Figure 6 shows a visualization of some embeddings for a four-
class problem. In many cases, in particular when the number of classes is large, the Euclidean
embedding provides a good approximation for non-Euclidean metrics (Figure 7).

Based on the embedding matrices computed in this way, the Euclidean distance approach
can be used to solve approximations of the labeling problem with arbitrary metric interaction
potentials, with the advantage of having a closed expression for the regularizer.

5. Discretized problem.

5.1. Saddle point formulation. We now turn to solving the discretization of the relaxed
problem (4.6). In order to formulate generic algorithms, we study the bilinear saddle point
problem,

min
u∈C

max
v∈D

g (u, v) , g(u, v) := ⟨u, s⟩+ ⟨Lu, v⟩ − ⟨b, v⟩ .(5.1)
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Figure 7. Euclidean approximation of the non-Euclidean truncated linear metric with interaction potential
d(i, j) =

√
2/8min{|i − j|, 16}. Left to right: Original potential for 64 classes; potential after Euclidean

approximation. Bottom: Cross section of the original (dashed) and approximated (solid) metric at i = 1. The
approximation was computed using semidefinite programming as outlined in section 4.4. It represents the closest
Euclidean metric with respect to the matrix norm ∥X−Y ∥M :=

∑
i,j |Xij−Yij |. The maximal error with respect

to the original potential is εE = 0.2720.

As will be shown in section 5.2–5.4, this covers both Jd (4.41) and JA (4.43) as well as many
other—even nonuniform and nonisotropic—regularizers.

In a slight abuse of notation, we denote by u, s ∈ RN also the discretizations of u and s
on a uniform grid. Furthermore we require a linear operator L ∈ RM×N , a vector b ∈ RM for
some M,N ∈ N, and nonempty bounded closed convex sets C ⊆ RN ,D ⊆ RM . Intuitively,
L discretizes the gradient operator, and D corresponds to Dloc, i.e., specifies Ψ in a dual
formulation. The primal and dual objectives are

(5.2) f(u) := max
v∈D

g (u, v) and fD(v) := min
u∈C

g(u, v) ,

respectively. The dual problem then consists of maximizing fD(v) over D. As C and D are
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bounded, it follows from [56, Cor. 37.6.2] that a saddle point (u∗, v∗) of g exists. With [56,
Lem. 36.2] this implies strong duality, i.e.,

(5.3) min
u∈C

f(u) = f(u∗) = g(u∗, v∗) = fD(v
∗) = max

v∈D
fD(v) .

In our case, C and D exhibit a specific product structure, which allows us to compute fD as
well as the orthogonal projections ΠC and ΠD efficiently, a fact that will prove important in
the algorithmic part. The evaluation of the primal objective f , on the other hand, can be more
difficult, depending on the definition of Dloc and D, but is not required by the optimizer. Note
that in the discrete framework, we may easily substitute inhomogeneous, spatially varying, or
even nonlocal regularizers by choosing L and b appropriately.

5.2. Discretization. We discretize Ω by a regular grid, Ω = {1, . . . , n1}×· · ·×{1, . . . , nd} ⊆
Rd , d ∈ N, consisting of n := |Ω| pixels (x1, . . . , xn) in lexicographical order. We represent u
by its values u = (u1| . . . |ul) ∈ Rn×l at these points, and denote by ux

j ∈ Rl, j = 1, . . . , n,
the jth row of u, corresponding to u(xj). The multidimensional image space Rn×l is equipped
with the Euclidean inner product ⟨·, ·⟩ over the vectorized elements. We identify u ∈ Rn×l

with the vector in Rnl obtained by concatenating the columns.
Let grad := (grad⊤1 | . . . |grad⊤d )⊤ be the d-dimensional forward differences gradient opera-

tor for Neumann boundary conditions. Accordingly, div := −grad⊤ is the backward differences
divergence operator for Dirichlet boundary conditions. These operators extend to Rn×l via
Grad := (Il ⊗ grad), Div := (Il ⊗ div). We define, for some k ! 1 as will be specified below,
the convex sets

C := {u ∈ Rn×l|uxj ∈ ∆l, j = 1, . . . , n} ,(5.4)

D :=
∏

x∈Ω
Dloc ⊆ Rn×d×k .(5.5)

The set Dloc and the operator L depend on the chosen regularizer. Note that for L := Grad,
k = l, and

(5.6) Dloc := DI
loc :=

{
p = (p1| . . . |pl) ∈ Rd×l|∥p∥ " 1

}
,

the primal objective in the saddle point formulation discretizes the classical vector-valued
total variation,

(5.7) TV(u) := σDivD(u) = σD(Gradu) =
n∑

j=1

∥Gxju∥ ,

where each of the Gxj is an (ld) × (nl) matrix composed of rows of (Grad) such that Gxju
constitutes the vectorized discrete Jacobian of u at the point xj .

Projections on the set C are highly separable and can be computed exactly in a finite
number of steps [45, Alg. 4]; see Algorithm 1 for a summary of the pointwise operation. The
dual objective is

(5.8) fD(v) = −⟨b, v⟩+min
u∈C
⟨u,L⊤v + s⟩ .
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Algorithm 1. Projection of y ∈ Rl onto the standard simplex ∆l.

1: Z(0) ← ∅, y(0) ← y ∈ Rl, k ← 0.
2: repeat

3: ỹ(k+1)
i ←

{
0, i ∈ Z(k) ,

y(k)i −
e⊤y(k)−1
l−|Z(k)| otherwise ,

(i = 1, . . . , l) .

4: Z(k+1) ← {i ∈ {1, . . . , l}|i ∈ Z(k) or ỹ(k+1)
i < 0}.

5: y(k+1)
i ← max{ỹ(k+1)

i , 0} (i = 1, . . . , l).
6: k ← k + 1.
7: until ỹ(k+1) ! 0.

Since the minimum decouples spatially and miny∈∆l⟨y, z⟩ = vecmin(z) := mini zi for all
z ∈ Rl, the dual objective can always be evaluated by summing, over all points x ∈ Ω, the
minima over the components of L⊤v+ s corresponding to each point, denoted by (L⊤v+ s)xj ,

(5.9) fD(v) = −⟨b, v⟩ +
n∑

j=1

vecmin
(
(L⊤v + s)xj

)
.

This fact is useful if evaluating the primal objective is costly because the dual set Dloc has a
complicated structure.

5.3. Specialization for the local envelope method. For a metric interaction potential
d : {1, . . . , l}2 → R!0, we set k := l and

L := Grad,

Dloc := Dd
loc =

⋂

i ̸=j

{
v =

(
v1| . . . |vl

)
∈ Rd×l|∥vi − vj∥ " d(i, j)

}
(5.10)

as in (4.35). We arrive at the saddle point form (5.1) with C, D, and L defined as above,
N = nl, M = ndl, and b = 0. However, due to the generality of the regularizer (cf. Proposition
4.5), the primal objective f cannot be easily computed anymore (for the special case of three
labels there is a derivation in [15]). Projections on D can be computed for all x ∈ Ω in parallel,
while projections on the individual sets Dd

loc can be computed by the Dykstra algorithm; cf. [15]
and section 6.4.

5.4. Specialization for the Euclidean metric method. For A ∈ Rk×l as in (4.43), the
Euclidean regularizer can be obtained by setting

L := (Grad)(A⊗ In) ,

Dloc := DI
loc =

{
v = (v1| . . . |vk) ∈ Rd×k|∥v∥ " 1

}
.(5.11)

Departing from the definition (4.44) of DA
loc, A is merged into L, as the optimization method

will rely on projections on Dloc. Including A into Dloc, i.e., by setting

(5.12) Dloc := (A⊗ In)
⊤DI

loc
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and L := Grad, would prevent computing the projection in closed form. Projecting on the
unit ball DI

loc, on the other hand, is trivial. The discretized regularizer can be explicitly
evaluated, since

Ψ(z) = ∥zA⊤∥ .(5.13)

A comparison to (5.7) yields

JA(u) = TV((A⊗ In)u) .(5.14)

We finally arrive at the form (5.1) with C, D, and L defined as above, N = nl, M = ndk, and
b = 0. Projections on D are highly separable and thus can be computed easily. The primal
objective can be evaluated in closed form using (5.14).

5.5. Optimality. If fD and f can be explicitly computed, any v ∈ D provides an optimality
bound on the primal objective, with respect to the optimal value f(u∗), via the numerical
primal-dual gap f(u)− fD(v),

(5.15) 0 " f(u)− f(u∗) " f(u)− fD(v) .

Assuming that f and fD can be evaluated, the gap is a convenient stopping criterion. To
improve the scale invariance, it is often practical to consider the relative gap

(5.16)
f(u)− fD(v)

fD(v)

instead, which gives a similar bound. However, convergence in the objective alone does not
necessarily imply convergence in u, as the minimizer of the original problem (5.1) is generally
not unique. This stands in contrast to the well-known ROF-type problems [58], where the
uniqueness is enforced by the quadratic data term.

For some applications, after solving the relaxed problem an integral solution—or “hard”
labeling—still needs to be recovered; i.e., the relaxed solution needs to be rounded . For the
continuous two-class case with the classical TV regularizer, Chan, Esedoḡlu, and Nikolova
[18] showed that an exact solution can be obtained by thresholding at almost any threshold.
However, their results do not seem to transfer to the multiclass case.

Another difficulty lies in the discretization: in order to apply the thresholding theorem, a
crucial “coarea”-like property must hold for the discretized problem [16], which holds for the
graph-based pairwise ℓ1- (but not the higher-order ℓ2-) discretization of the TV. Thus, even
in the two-class case, simple thresholding may lead to a suboptimal integral solution.

Currently we are not aware of an a priori bound on the error introduced by the rounding
step in the general case (however, see [41] for a very recent probabilistic result). In practice,
any dual feasible point together with (5.15) yields an a posteriori optimality bound: let
u(N), v(N) be a pair of primal and dual feasible iterates, let ū(N) be the result of the rounding
step applied to u(N), and let ū∗ be the optimal integral solution. Then ū(N) is primal feasible,
and its suboptimality with respect to the optimal integral solution is bounded from above by

f(ū(N))− f(ū∗) " f(ū(N))− f(u∗) " f(ū(N))− fD(v
(N)) .(5.17)

Computation of fD, and in many cases also f , is efficient as outlined in section 5.2.
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5.6. Improving the rounding. There seems to be no obvious best choice for the rounding
step. The simplest choice is the first-max approach: the label ℓ(x) is set to the index of
the first maximal component of the relaxed solution ū(N)(x). However, this might lead to
undesired side effects: consider the segmentation of a grayscale image with the three labels
1, 2, 3 corresponding to the gray level intensity, together with the linear distance d(i, j) = |i−j|,
which is exactly representable using the Euclidean distance approach with A = (1 2 3). Assume
there is a region where ū(N) = (1/3 + δ(x), 1/3, 1/3 − δ(x)) for some small noise δ(x) ∈ R.
The most “natural” choice given the interpretation as grayscale values is the constant labeling
ℓ(x) = 2. The first-max approach leads to ℓ(x) ∈ {1, 3}, depending on the sign of δ(x), which
leads to a noisy final segmentation.

On closer inspection, the first-max approach—which works well for the Potts distance—
corresponds to choosing

ℓ(x) = arg min
ℓ∈{1,...,l}

∥u(x) − eℓ∥ ,(5.18)

with the convention of choosing the smallest ℓ in case of ambiguity. We propose to extend
this idea to nonuniform metrics by setting

ℓ(x) = arg min
ℓ∈{1,...,l}

Ψ̄
(
u(x)− eℓ

)
,(5.19)

Ψ̄ : Rl → R, Ψ̄(z) := Ψ
(
e1z⊤

)
.

We therefore select the label corresponding to the nearest unit vector with respect to Ψ̄ (note
that instead of e1 we could choose any normalized vector, as Ψ is assumed to be rotationally
invariant). In fact, for the linear distance example above we have Ψ̄(z) = |− z1 + z3|. Thus

Ψ̄(u(x)− e1) = |1− 2δ(x)| ,(5.20)

Ψ̄(u(x)− e2) = |2δ(x)| ,
Ψ̄(u(x)− e3) = |1 + 2δ(x)| ,

and for small δ we get the stable and semantically correct choice ℓ(x) = 2. This method
proved to work well in practice and considerably reduced the suboptimality introduced by
the rounding step (section 7.5). In case there is no closed form expression of Ψ, it can be
numerically approximated as outlined in section 6.5.

6. Optimization. When optimizing the saddle point problem (5.1), one must take care
of its large-scale nature and the inherent nonsmoothness of the objective. While interior-
point solvers are known to be very fast for small- to medium-sized problems, they are not
particularly well suited for massively parallel computation, such as on the upcoming graphics
processing unit (GPU) platforms, due to the expensive inner iterations.

We will instead focus on first-order methods involving only basic operations that can be
easily parallelized due to their local nature, such as evaluations of L and L⊤ and projections
on C and D. The first two methods are stated here for comparison; the third is new. It
additionally requires evaluating (I+L⊤L)−1, which is potentially nonlocal, but in many cases
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can still be computed fast and explicitly using the discrete cosine transform (DCT) as shown
below.

The following approaches rely on computing projections on the full setD, which requires an
iterative procedure for nontrivial constraint sets Dloc as obtained when using the local envelope
method (section 6.4). We would like to mention that by introducing further auxiliary variables
and a suitable splitting approach, these inner iterations can also be avoided [39]. However,
the number of additional variables grows quadratically in the number of labels; therefore the
approach is feasible only for relatively small numbers of labels, and memory requirements are
usually one to several orders of magnitude higher than for the approaches discussed next.

6.1. Fast primal-dual method. One of the most straightforward approaches for optimiz-
ing (5.1) is to fix small primal and dual step sizes τP and τD and alternatingly apply projected
gradient descent/ascent on the primal-dual variables. This Arrow–Hurwicz approach [3] was
proposed in a PDE framework for solving the two-class labeling problem in [2] and recently
used in [15]. An application to denoising problems can be found in [74]. However it appears
to be nontrivial to derive sufficient conditions for convergence. Therefore in [53] the authors
propose the fast primal-dual (FPD) method, a variant of Popov’s saddle point method [55]
with provable convergence. The algorithm is summarized in Algorithm 2.

Algorithm 2. FPD multiclass labeling.

1: Choose ū(0) ∈ Rn×l, v(0) ∈ Rn×d×l.
2: Choose τP > 0, τD > 0, N ∈ N.
3: for k = 0, . . . , N − 1 do
4: v(k+1) ← ΠD(v(k) + τD(Lū(k) − b)).
5: u(k+1) ← ΠC(u(k) − τP (L⊤v(k+1) + s)).
6: ū(k+1) ← 2u(k+1) − u(k).
7: end for

Due to the explicit steps involved, there is an upper bound condition on the step size to
ensure convergence, which can be shown to be τP τD < 1/∥L∥2 [53]. The operator norm can
be bounded according to

(6.1) ∥L∥ " ∥Grad ∥ " 2
√
d

for the envelope method, and

(6.2) ∥L∥ " ∥Grad ∥∥A∥ " 2
√
d∥A∥

for the Euclidean metric method. As both the primal and dual iterates are always feasible due
to the projections, a stopping criterion based on the primal-dual gap as outlined in section
5.5 can be employed.

6.2. Nesterov method. We provide a short summary of the application of Nesterov’s
method [48] to the saddle point problem (5.1) as proposed in [38]. In contrast to the FPD
method, it treats the nonsmoothness by first applying a smoothing step and then using a
smooth constrained optimization method. The amount of smoothing is balanced in such a way
that the overall number of iterations required for achieving a specific accuracy is minimized.
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Algorithm 3. Nesterov multiclass labeling.

1: Let c1 ∈ C, c2 ∈ D, and r1, r2 ∈ R such that C ⊆ Br1(c1) and D ⊆ Br2(c2); C ! ∥L∥.
2: Choose x(0) ∈ C and N ∈ N.
3: Let µ← 2∥L∥

N+1
r1
r2
.

4: Set G(−1) ← 0, w(−1) ← 0.
5: for k = 0, . . . , N do
6: V ← ΠD

(
c2 +

1
µ

(
Lx(k) − b

))
.

7: w(k) ← w(k−1) + (k + 1)V .
8: v(k) ← 2

(k+1)(k+2)w
(k).

9: G← s+ L⊤V .
10: G(k) ← G(k−1) + k+1

2 G.

11: u(k) ← ΠC
(
x(k) − µ

∥L∥2G
)
.

12: z(k) ← ΠC
(
c1 − µ

∥L∥2G
(k)
)
.

13: x(k+1) ← 2
k+3z

(k) +
(
1− 2

k+3

)
u(k).

14: end for

The algorithm has a theoretical worst-case complexity of O(1/ε) for finding an ε-optimal
solution, i.e., f(u(N))− f(u∗) " ε. It has been shown to give accurate results for denoising [4]
and for general ℓ1-norm–based problems [67, 7]. Besides the desired accuracy, no other pa-
rameters have to be provided. The complete algorithm for our saddle point formulation is
shown in Algorithm 3.

The only expensive operations are the projections ΠC and ΠD, which are efficiently com-
putable as shown above. The algorithm converges in any case and provides explicit subopti-
mality bounds.

Proposition 6.1. In Algorithm 3, the iterates u(k),v(k) are primal-dual feasible, i.e., u(k) ∈ C,
v(k) ∈ D. Moreover, for any solution u∗ of the relaxed problem (5.1), the relation

(6.3) f(u(N))− f(u∗) " f(u(N))− fD(v
(N)) " 2r1r2C

(N + 1)

holds for the final iterates u(N),v(N).

Proof. Apply [48, Thm. 3] with the notation f̂(u) = ⟨u, s⟩, A = L, φ̂(v) = ⟨b, v⟩, d1(u) :=
1
2∥u− c1∥2, d2(v) := 1

2∥v − c2∥2, D1 =
1
2r

2
1, D2 =

1
2r

2
2, σ1 = σ2 = 1, M = 0.

Corollary 6.2. For given ε > 0, applying Algorithm 3 with

N =
⌈
2r1r2Cε−1 − 1

⌉
(6.4)

yields an ε-optimal solution of (5.1), i.e., f(u(N))− f(u∗) " ε.

For the discretization outlined in section 5.2, we choose c1 = 1
l e and r1 =

√
n(l − 1)/l,

which leads to the following complexity bounds to u(N) with respect to the suboptimality ε.

• Envelope method (5.10). From the previous remarks, C := 2
√
d ! ∥L∥. Moreover,
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c2 = 0 and by Proposition A.1 (see the appendix), we have Dd
loc ⊆ Bαd(0) with

αd := min
i

⎛

⎝
∑

j

d(i, j)2

⎞

⎠
1/2

,(6.5)

and thus r2 = αd
√
n. The total complexity in terms of the number of iterations is

O(ε−1n
√
dαd) .(6.6)

• Euclidean metric method (5.11). Here we may set C = 2
√
d∥A∥, c2 = 0, and r2 =

√
n

for a total complexity of

O(ε−1n
√
d∥A∥) .(6.7)

We arrive at a parameter-free algorithm, with the exception of the desired suboptimality
bound ε. From the sequence (u(k), v(k)) we may again compute the current primal-dual gap
at each iteration. As a unique feature, the number of required iterations can be determined
a priori and independently of the variables in the data term, which could prove useful in
real-time applications.

6.3. Douglas–Rachford method. We demonstrate how to apply the Douglas–Rachford
splitting approach [21] to our problem. By introducing auxiliary variables, we can again reduce
the inner steps to projections on the sets C and D. This is in contrast to a more straightforward
splitting approach such as [40], where the inner steps require solving ROF-type problems that
include a quadratic data term.

Minimizing a proper, convex, lower semicontinuous function f : X → R ∪ {±∞} over a
finite-dimensional vector space X := Rn can be regarded as finding a zero of its—necessarily
maximal monotone [57]—subdifferential operator T := ∂f : X → 2X . In the operator splitting
framework, ∂f is assumed to be decomposable into the sum of two “simple” operators, T =
A+B, of which forward and backward steps can be practically computed. Here, we consider
the (tight) Douglas–Rachford splitting iteration [21, 44] with the fixed-point iteration

ū(k+1) = (JτA(2JτB − I) + (I − JτB))(ū
(k)) ,(6.8)

where JτT := (I + τT )−1 is the resolvent of T . Under the very general constraint that A
and B are maximal monotone and A+B has at least one zero, the sequence (ū(k)) is uniquely
defined and converges to a point ū, with the additional property that u := JτB(ū) is a zero
of T [23, Thm. 3.15, Props. 3.20 and 3.19]. In particular, if f = f1 + f2 for proper, convex,
lower semicontinuous fi such that the relative interiors of their domains have a nonempty
intersection,

(6.9) ri(dom f1) ∩ ri(dom f2) ̸= ∅ ,

it can be shown [57, Cor. 10.9] that ∂f = ∂f1 + ∂f2, and A := ∂f1 as well as B := ∂f2
is maximal monotone. Since x ∈ Jτ∂fi(y) ⇔ x = argmin{(2τ)−1∥x − y∥2 + fi(x)}, the
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computation of the resolvents reduces to proximal point optimization problems involving only
the fi. However, for straightforward splittings of (5.1), such as

min
u

max
v∈D

g (u, v)
︸ ︷︷ ︸

f1(u)

+ δC(u)︸ ︷︷ ︸
f2(u)

,(6.10)

evaluating the resolvents requires solving ROF-type problems [40], which is a strongly non-
local operation and requires an iterative procedure, introducing additional parameters and
convergence issues. Instead, we follow the procedure in [24, 61] of adding auxiliary variables
before splitting the objective in order to simplify the individual steps of the algorithm. We
introduce w = Lu and split according to

min
u∈C

max
v∈D
⟨u, s⟩+ ⟨Lu, v⟩ − ⟨b, v⟩(6.11)

= min
u
⟨u, s⟩+ σD(Lu− b) + δC(u)(6.12)

= min
u,w

h(u,w), h(u,w) := δLu=w(u,w)︸ ︷︷ ︸
h1(u,w)

+ ⟨u, s⟩+ δC(u) + σD(w − b)︸ ︷︷ ︸
h2(u,w)

.(6.13)

We apply the tight Douglas–Rachford iteration to this formulation using A = ∂h1 and B =
∂h2: denote

(u(k), w(k)) := JτB(ū
(k), w̄(k)) ,(6.14)

(u′(k), w′(k)) := JτA(2JτB − I)(ū(k), w̄(k))

= JτA(2u
(k) − ū(k), 2w(k) − w̄(k)) .(6.15)

Then, according to (6.8), (ū(k+1), w̄(k+1)) = (ū(k)+u′(k)−u(k), w̄(k)+w′(k)−w(k)). Evaluating
the resolvent JτB is equivalent to a proximal step on h2; moreover, due to the introduction of
the auxiliary variables it decouples,

u(k) = argmin
u

{
1

2
∥u− ū(k) + τs∥2 + δC(u)

}

= ΠC

(
ū(k) − τs

)
,(6.16)

w(k) = argmin
w

{
1

2τ
∥w − w̄(k)∥2 + σD(w − b)

}

= w̄(k) − τΠD

(
1

τ
(w̄(k) − b)

)
.(6.17)

The last equality follows from the identity Jτ∂f ′ = I − τΠD((· − b)/τ) for support functions
f ′(u) = σD(u− b). In a similar manner, JτA (resp., the proximal step on h1) amounts to the
least-squares problem

(u′(k), w′(k)) = arg min
u′,w′

{
δLu′=w′(u′, w′)(6.18)

+
1

2τ

(
∥u′ − (2u(k) − ū(k))∥2 + ∥w′ − (2w(k) − w̄(k))∥2

)}
.(6.19)
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Algorithm 4. Douglas–Rachford multiclass labeling.

1: Choose ū(0) ∈ Rn×l, w̄(0) ∈ Rn×d×l (or set w̄(0) = Lū(0)).
2: Choose τ > 0.
3: k ← 0.
4: while (not converged) do
5: u(k) ← ΠC

(
ū(k) − τs

)
.

6: w′′(k) ← ΠD
(
1
τ (w̄

(k) − b)
)
.

7: u′(k) ← (I + L⊤L)−1
(
(2u(k) − ū(k)) + L⊤(w̄(k) − 2τw′′(k))

)
.

8: w′(k) ← Lu′(k).
9: ū(k+1) ← ū(k) + u′(k) − u(k).

10: w̄(k+1) ← w′(k) + τw′′(k).
11: k ← k + 1.
12: end while

Substituting the constraint w′ = Lu′ yields

u′(k) = argmin
u′

{∥u′ − (2u(k) − ū(k))∥2 + ∥Lu′ − (2w(k) − w̄(k))∥2}

= (I + L⊤L)−1
(
(2u(k) − ū(k)) + L⊤(2w(k) − w̄(k))

)
.(6.20)

Finally, Algorithm 4 is obtained by setting w′′(k) := ΠD(
1
τ (w̄

(k) − b)) and substituting w(k) =

w̄(k) − τw′′(k).
Solving the linear equation system (6.20) can often be greatly accelerated by exploiting

the fact that under the forward difference discretization with Neumann boundary conditions,
grad⊤ grad diagonalizes under the discrete cosine transform (DCT-2) [63, 40]:

(6.21) grad⊤ grad = B−1 diag(c)B ,

where B is the orthogonal transformation matrix of the DCT and c is the vector of eigenvalues
of the discrete Laplacian. In both approaches presented above, L is of the form L = A⊗ grad
for some (possibly identity) matrix A ∈ Rk×l, k " l. First, compute the decomposition
A⊤A = V −1 diag(a)V with a ∈ Rl and an orthogonal matrix V ∈ Rl×l, V −1 = V ⊤. Then

(I + L⊤L)−1 =
(
V ⊤ ⊗ In

) (
Il ⊗B−1

)

· (I + diag(a)⊗ diag(c))−1 (Il ⊗B) (V ⊗ In)(6.22)

(see the appendix for the proof). Thus step (6.20) can be achieved quickly and accurately
through matrix multiplications with V , DCTs, and one O(nl) product for inverting the inner
diagonal matrix.

In addition to convergence of the primal iterates (u(k)), it can be shown that the sequence
(w′′(k)) from Algorithm 4 actually converges to a solution of the dual problem.

Proposition 6.3. Let C, D be nonempty bounded closed convex sets such that ri(C) ̸= ∅ and
ri(D) ̸= ∅. Then Algorithm 4 generates a sequence of primal-dual feasible pairs (u(k), w′′(k)) ∈
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C ×D such that, for any saddle point (u∗, v∗) of the relaxed problem (5.1),

f(u(k))
k→∞→ f(u∗) = fD(v

∗) ,(6.23)

fD(w
′′(k))

k→∞→ fD(v
∗) = f(u∗) .(6.24)

Moreover,

f(u(k))− f(u∗) " f(u(k))− fD(w
′′(k))(6.25)

provides an upper bound for the suboptimality of the current iterate.
Proof. See the appendix.
Thus the Douglas–Rachford approach also allows us to use the primal-dual gap

(6.26) f(u(k))− fD(w
′′(k))

as a stopping criterion.
Very recently, a generalization of the FPD method [53] was proposed [17]. The authors

show that under certain circumstances, their method is equivalent to Douglas–Rachford split-
ting. As a result, it is possible to show that Algorithm 4 can alternatively be interpreted as
an application of the primal-dual method from [17] to the problem formulation (6.13).

6.4. Projection on the dual constraint set. For the Euclidean metric approach, project-
ing on the unit ball DI

loc and thus on D is trivial:

ΠDI
loc
(v) =

{
v, ∥v∥ " 1 ,
v

∥v∥ otherwise .(6.27)

Projection on Dd
loc for the general metric case is more involved. We represent Dd

loc as the
intersection of convex sets,

Dd
loc = R ∩ S R :=

{
v ∈ Rd×l

∣∣∣∣∣
∑

i

vi = 0

}
,(6.28)

S :=
⋂

i<j

Si,j Si,j := {v ∈ Rd×l|∥vi − vj∥ " d(i, j)} .

Since ΠR modifies each row of v only in the direction of the vector e = (1, . . . , 1), and since
S is invariant under such modifications, the projection can be decomposed:

ΠDd
loc
(v) = ΠR(ΠS(v)) .(6.29)

We then follow the idea of [15] to use Dykstra’s method [13] for iteratively computing an
approximation of ΠS using only projections on the individual sets Si,j. However, any recent
multiple-splitting method could be used [19, 27]. In our case, ΠSi,j can be stated in closed
form:

ΠSi,j (v) =

{
v, ∥vi − vj∥ " d(i, j) ,
(w1, . . . , wl) otherwise ,

(6.30)
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Algorithm 5. Dykstra’s method for projecting onto the intersection of convex sets.

1: Associate with each (i, j), i < j, a unique index t ∈ {1, . . . , k}, k := l(l − 1)/2.
2: x← v ∈ Rd×l.
3: y1, . . . , yk ← 0 ∈ Rd×l.
4: while (x not converged) do
5: for t = 1, . . . , k do
6: x′ ← ΠS(it,jt)(x+ yt).
7: yt ← x+ yt − x′.
8: x← x′.
9: end for

10: end while

where

wk =

⎧
⎪⎨

⎪⎩

vk, k ̸∈ {i, j} ,
vi − ∥vi−vj∥−d(i,j)

2
vi−vj

∥vi−vj∥ , k = i ,

vj + ∥vi−vj∥−d(i,j)
2

vi−vj

∥vi−vj∥ , k = j .

(6.31)

The complete Dykstra method for projecting a vector v onto S is outlined in Algorithm 5.
While the sequence of y may be unbounded, x converges to ΠS(v) (cf. [26, 71]).

6.5. Computing the objective. For computing the primal-dual gap and the rounding
step, it is necessary to evaluate the objective for a given u. Unfortunately, in the general case
this is nontrivial, since the objective’s integrand Ψ is defined implicitly as

Ψ(z) = max
v∈Dd

loc

⟨z, v⟩ .(6.32)

We exploit that ΠD can be computed and use an iterative gradient-projection method,

v(k+1) ← ΠD(v
(k) + τz)(6.33)

for some τ > 0, starting with v(0) = z. As the objective in (6.32) is linear, and since Dd
loc is

bounded and thus Ψ is bounded from above, convergence follows [28, 42] for any step size τ
[66]:

(6.34) lim
k→∞
⟨z, v(k)⟩ = Ψ(z) .

There is a trade-off in choosing the step size: large τ lead to a smaller number of outer
iterations but an increased number of nontrivial operations in the projection. We chose τ = 2,
which worked well for all examples. It is also possible to use any of the other nonsmooth
optimization methods presented above.

7. Experiments. Regarding the practical performance of the presented approaches, we
focused on two main issues: convergence speed and tightness of the relaxation. We first
quantitatively compare the presented algorithms in terms of runtime and the number of inner
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iterations, and then provide some results on the effect of the Euclidean metric versus the
envelope regularization.

The algorithms were implemented in MATLAB with some core functions, such as the
computation of the gradient and the projections on the dual sets, implemented in C++. We
used the MATLAB built-in FFTW interface for computing the DCT for the Douglas–Rachford
approach. All experiments were conducted on an Intel Core2 Duo 2.66 GHz with 4 GB of
RAM and 64-bit MATLAB 2009a.

We leave a detailed comparison of parallel GPU-based implementations to be the subject
of further work. As a guideline, we refer the reader to [35, 52], where the authors report a
speed-up of about 30 compared to a sequential implementation. In several cases such extensive
parallelization has allowed us to outperform combinatorial graph cut–based methods and lead
the way to real-time applications [72, 68, 49].

7.1. Relative performance. To compare the convergence speed of the three different ap-
proaches, we computed the relative primal-dual gap at each iteration as outlined in section 6.
As it bounds the suboptimality of the current iterate (see section 5.5), it constitutes a reliable
and convenient criterion for performance comparison.

Unfortunately the gap is not available for the envelope method, as it requires the primal
objective to be evaluable. Using a numerical approximation such as the one in section 6.5
is not an option because these methods can provide only a lower bound for the objective.
This would lead to an underestimation of the gap, which is critical as one is interested in the
behavior when the gap is very close to zero. Therefore we restricted the gap-based performance
tests to the Euclidean metric regularizer.

In order to make a fair comparison we generally analyzed the progression of the gap with
respect to computation time rather than the number of iterations.

For the first tests we used the synthetic 256 × 256 “four colors” input image (Figure 8).
It represents a typical segmentation problem with several objects featuring sharp corners and
round structures above a uniform background. The label set consists of three classes for the
foreground and one class for the background. The image was overlaid with independent and
identically distributed Gaussian noise with σ = 1 and truncated to [0, 1] on all RGB channels.
We used a simple ℓ1 data term, si(x) = ∥g(x) − ci∥1, where g(x) ∈ [0, 1]3 are the RGB color
values of the input image in x and ci is a prototypical color vector for the ith class.

The runtime analysis shows that the FPD and Douglas–Rachford methods perform sim-
ilarly, while the Nesterov method falls behind considerably in both the primal and the dual
objective (Figure 9).

The picture changes when considering the gap with respect to the number of iterations
rather than time, eliminating influences of the implementation and system architecture. To
achieve the same accuracy, Douglas–Rachford requires only one-third of the iterations com-
pared to FPD (Figure 10). This advantage does not fully translate to the time-based analysis
as the DCT steps significantly increase the per-step computational cost. However, in this
example the projections on the sets C and D are relatively cheap compared to the DCT. In
situations where the projections dominate the time per step, the reduced iteration count can
be expected to lead to an almost equal reduction in computation time.

One could ask if these relations are typical for the synthetic data used. However, we
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Figure 8. Synthetic four colors input image for the performance tests. Left to right: Input image with
Gaussian noise, σ = 1; local labeling without regularizer; result with the Potts regularizer and Douglas–Rachford
optimization; ground truth.
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Figure 9. Convergence speed for the four colors image in Figure 8. Left: Primal (upper) and dual (lower)
objectives versus computation time for the (from top to bottom) Nesterov, FPD, and Douglas–Rachford (DR)
methods. Right: Detailed view of the FPD and DR methods. The primal and dual objectives provide upper and
lower bounds for the objective of the true optimum. DR and FPD perform equally, while the Nesterov method
falls behind.
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Figure 10. Primal-dual gap for Figure 9 with respect to time and number of iterations. Left: Primal-dual
gap versus time and number of iterations. The Nesterov method (top) again falls behind, while FPD (center)
and DR (bottom) are equally fast. Right: Primal-dual gap versus number of iterations. The DR method requires
only one-third of the FPD iterations, which makes it suitable for problems with expensive inner steps.
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Figure 11. Objectives and primal-dual gap for the real-world leaf image in Figure 4 with 12 classes and Potts
potential. Left: Primal (upper) and dual (lower) objectives versus time. The Nesterov method (top) falls behind
the FPD (center) and DR (bottom) methods. Right: Gap versus number of iterations. As with the synthetic
four colors image (Figure 10), the DR approach reduces the number of required iterations by approximately a
factor of 3.

found them confirmed in a large majority of the problems tested. As one example of a real-
world example, consider the “leaf” image (Figure 4). We computed a segmentation into 12
classes with the Potts regularizer, again based on the ℓ1 distances for the data term, with a
performance very similar to that of the four colors image (Figure 11).

7.2. Number of variables. To examine how the presented methods scale with increasing
image size, we evaluated the four colors image at 20 different scales ranging from 16 × 16
to 512 × 512 pixels. Note that if the grid spacing is held constant, the regularizer weights
must be scaled proportionally to the image width and height in order to obtain structurally
comparable results and not mix up effects of the problem size and the regularization strength.

In order to compensate for the increasing number of variables, the stopping criterion was
based on the relative gap (5.16). The algorithms were terminated as soon as the relative
gap fell below 10−4. The Nesterov method consistently produced gaps in the 10−3 range and
never achieved the threshold within the limit of 2000 iterations. Douglas–Rachford and FPD
scale only slightly superlinearly with the problem size, which is quite a good result for such
comparatively simple first-order methods (Figure 12).

7.3. Breaking points. We have no clear explanation for why the Nesterov method appears
to almost always fall behind. However, it is possible to compare its behavior with the a priori
bound from Proposition 6.1. By inspecting the derivations in the original work [48], it can be
seen that exactly one-half of the final bound comes from the smoothing step, while the other
half is caused by the finite number of iterations:

(7.1) δtotal = δsmooth + δiter, where δsmooth = δiter .

Moreover, δiter decreases with 1/(k + 1)2, which gives an a priori per-iteration suboptimality
bound of

(7.2) δ(k)total = δsmooth +

(
N + 1

k + 1

)2

δiter .
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Figure 12. Computation time for increasing problem size for the DR (top, dark) and FPD (bottom, light)
methods. Shown is the time in seconds required to achieve a relative gap of 10−4. The computational effort
scales slightly superlinearly with the number of pixels. The Nesterov method never converged to the required
accuracy within the limit of 2000 iterations.
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Figure 13. Theoretical versus practical performance of the Nesterov method for Figure 9. As expected, the
method stays below the theoretical per-iteration bound δ(k)total (dashed). At the final iteration, the worst-case total
bound δtotal (dotted, top) is outperformed by a factor of 7, which implies that the error introduced by smoothing
is also well below its worst-case bound δsmooth (dotted, bottom).

On the four colors image, the actual gap stays just below δ(k)total in the beginning (Figure
13). This implies that the theoretical suboptimality bound can hardly be improved, e.g.,
by choosing constants more precisely. Unfortunately, the bound is generally rather large, in
this case δtotal = 256.8476 for 2000 iterations. While the Nesterov method outperforms the
theoretical bound δtotal by a factor of 2–10 and even drops well below the worst-case smoothing
error δsmooth, it still cannot compete with the other methods, which achieve a gap of 0.3052
(FPD) and 0.0754 (Douglas–Rachford ).

There is an interesting extreme case where the Nesterov method seems to come to full
strength. Consider the noise-free “triple point” inpainting problem (Figure 14). The triple
junction in the center can be reconstructed only by the (Potts) regularizer, as the ℓ1 data
term has been zeroed out around the center. By reversing the sign of the data term, one
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Figure 14. Primal and dual objectives for the triple point (top) and inverse triple point (bottom) inpainting
problems. Left to right: Input image with zeroed-out region around the center; relaxed solution; rounded solution;
primal (upper) and dual (lower) energies versus time. The triple junction in the center has to be reconstructed
solely by the Potts regularizer. The inverse triple point problem exhibits a strictly nonintegral relaxed solution.
For the inverse triple point, DR (bottom) and FPD (center) show an oscillatory behavior which slows down
convergence. The Nesterov approach (top) does not suffer from oscillation due to the inherent averaging, and
it surpasses FPD on the inverse problem.

obtains the “inverse triple point” problem, an extreme case that has also been studied in [15]
and shown to be an example where the relaxation leads to a strictly nonintegral solution.

On the inverse problem, the Nesterov method catches up to and even surpasses FPD. This
stands in contrast with the regular triple point problem, where all methods perform as usual.
We conjecture that this sudden strength comes from the inherent averaging over all previous
gradients (step 7 in Algorithm 3): in fact, on the inverse problem Douglas–Rachford and FPD
display a pronounced oscillation in the primal and dual objectives, which is accompanied
by slow convergence. In contrast, the Nesterov method consistently shows a monotone and
smooth convergence.

7.4. Performance for the envelope relaxation. Undoubtedly, the difficulty when using
the envelope-based regularizer comes from the slow and inexact projection steps which have to
be approximated iteratively. Therefore we re-evaluated the four colors benchmark image with
the envelope regularizer. The iterative Dykstra projection (Algorithm 5) was stopped when
the iterates differed by at most δ = 10−2, with an additional limit of 50 iterations. While the
gap cannot be computed in this case, the dual objective can still be evaluated and provides
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Figure 15. Performance on the four colors image with Potts interaction potential and the envelope regular-
izer. Left: Dual objectives for DR (top) and FPD (bottom) versus time. The reduced iteration count of the DR
method becomes more apparent in the time plot as the time per iteration is now dominated by the projection
rather than the DCT. Right: Time per iteration for Nesterov (top), DR (center), and FPD (bottom). The
Nesterov method fails to converge as it accumulates errors from the approximate projections, which in turn
leads to slower and more inexact projections.

an approximate indicator for the convergence speed.
We found that in comparison to the Euclidean metric regularizer from the previous exam-

ples, the margin between FPD and Douglas–Rachford increases significantly. This is consistent
with the remarks in section 7.1: the lower iteration count of the Douglas–Rachford method
becomes more important, as the projections dominate the per-iteration runtime (Figure 15).

Surprisingly the Nesterov method did not converge at all. On inspecting the per-iteration
runtime, we found that after the first few outer iterations, the iterative projections became
very slow and eventually exceeded the limit of 50 iterations, with δ remaining between 2 and
5. In contrast, 20 Dykstra iterations were usually sufficient to obtain δ = 10−9 (Douglas–
Rachford ) and δ = 10−11 (FPD).

We again attribute this to the averaging property of the Nesterov method: as it ac-
cumulates the results of the previous projections, errors from the inexact projections build
up. This is accelerated by the dual variables quickly becoming infeasible with increasing
distance to the dual feasible set, which in turn puts higher demands on the iterative projec-
tions. Douglas–Rachford and FPD did not display this behavior and consistently required 5–6
Dykstra iterations from the first to the last iteration.

7.5. Tightness of the relaxations. Besides the properties of the optimization methods,
it is interesting to study the effect of the relaxation, i.e., Euclidean metric or envelope-type,
on the relaxed and rounded solutions.

To get an insight into the tightness of the different relaxations, we used the Douglas–
Rachford method to repeat the triple point inpainting experiment from [15] with both re-
laxations (Figure 16). Despite the inaccuracies in the projections, the envelope regularizer
generates an almost integral solution: 97.6% of all pixels were assigned “almost integral” la-
bels with an ℓ∞ distance of less than 0.05 to one of the unit vectors {e1, . . . , el}. For the
Euclidean metric method, this constraint was satisfied at only 88.6% of the pixels. The result
for the envelope relaxation is very close to the sharp triple junction one would expect from the
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Figure 16. Tightness of the relaxation. Top row: In the input (left), the data term was zeroed out in a
quadratic region. All structure within the region is generated purely by the regularizer with a standard Potts
interface potential. The envelope relaxation is tighter and generates a much more “integral” solution (center)
than the Euclidean metric method (right). Bottom row: After rounding the relaxed solutions, the envelope (left)
and Euclidean metric (center) methods generate essentially the same solution, as can be seen in the difference
image (right). The Euclidean metric method performed more than four times faster due to the inexpensive
projections.

continuous formulation and shows that the envelope relaxation is tighter than the Euclidean
metric method.

However, after rounding, both approaches generate almost identical integral results. The
Euclidean metric method was more than four times faster, with 41.1 seconds per 1000 iter-
ations versus 172.16 seconds for the envelope relaxation, which required 8–11 Dykstra steps
per outer iteration.

Although the triple point is a problem specifically designed to challenge the regularizer,
real-world images usually contain more structure as well as noise, while the data term is
available for most or all of the image. To see if the above results also hold under these
conditions, we repeated the previous experiment with the “sailing” image and four classes
(Figure 17). The improved tightness of the envelope relaxation was also noticeable, with
96.2% versus 90.6% of almost integral pixels. However, due to the larger number of labels and
the larger image size of 360×240, runtimes increased to 4253 (envelope) versus 420 (Euclidean
metric) seconds.

The relaxed as well as the rounded solutions show some differences but are hard to dis-
tinguish visually. It is difficult to pinpoint whether these differences are caused by the tighter
relaxation or by numerical issues: while the Douglas–Rachford method applied to the Eu-
clidean metric relaxation converged to a final relative gap of 1.5 · 10−6, no such bound is
available to estimate the accuracy of the solution for the envelope relaxation due to the inex-
act projections and the intractable primal objective.

7.6. Rounding and global optimality. As an example of a problem with a large number
of classes, we analyzed the “penguin” inpainting problem from [64]. We chose 64 labels
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Figure 17. Effect of the choice of relaxation method on the real-world “sailing” image (image courtesy of
F. Becker, Image & Pattern Analysis/HCI, University of Heidelberg). Top row: Four-class segmentation using
envelope (left) and Euclidean metric (right) methods. Shown are the solutions of the relaxed problem. Bottom
row: Original image (left); difference image of the discretized solutions (right). While the envelope relaxation
leads to substantially more almost integral values in the relaxed solution, it also runs more than 10 times slower
and does not provide a suboptimality bound. The generated solutions are visually almost identical.

corresponding to 64 equally spaced gray values. The input image contains a region where the
image must be inpainted in addition to removing the considerable noise. Again the data term
was generated by the ℓ1 distance, which reduces here to the absolute difference of the gray
values. In order to remove noise but not overly penalize hard contrasts, such as between the
black wing and the white front, we chose a regularizer based on the truncated linear potential
as introduced in section 4.4.

Due to the large number of labels, this problem constitutes an example where the Eu-
clidean metric approach is very useful. As the complexity of the projections for the envelope
relaxation grows quadratically with the number of labels, computation time becomes pro-
hibitively long even for only a moderate number of classes. In contrast, the Euclidean metric
method requires considerably less computational effort and still approximates the potential
function to a reasonable accuracy (Figure 7).

In the practical evaluation, the Douglas–Rachford method converged in 1000 iterations to
a relative gap of 8.3 · 10−4 and recovered both smooth details near the beak and hard edges
in the inpainting region (Figure 18). This example also clearly demonstrates the superiority
of the improved rounding scheme proposed in section 5.6. In comparison to the first-max
scheme, the improved scheme generated considerably less noise. The energy increased only
by 2.78% compared to 15.78% for the first-max approach.

The low energy increase is directly related to global optimality for the original combi-
natorial problem: as the relaxed solution is provably nearly optimal, we conclude that the
energy of the rounded solution must lie within 2.78% of the optimal energy for the original
combinatorial problem (1.1). Similar results were obtained for the other images: 5.64% for
the four colors demo, 1.02% for the leaf image, and 0.98% for the triple point problem.
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Figure 18. Denoising/inpainting problem with 64 classes and the nontrivial truncated linear potential
approximated by a Euclidean metric. Left to right: Noisy input image with inpainting region marked black
[64]; result with first-max rounding; result with the proposed rounding scheme (5.19). The first-max method
introduces noticeable noise in the rounding step. The proposed method takes into account the nonuniformity
of the used “truncated linear” potential (Figure 7), resulting in a clean labeling and an energy increase of
only 2.78% versus 15.78% for the first-max method. This shows that the obtained solution solves the original
combinatorial multiclass labeling problem to a suboptimality of 2.78%.

These numbers indicate that the relaxation seems to be quite tight in many cases and
allows us to recover good approximations for the solution of the discrete combinatorial labeling
problem by solving the convex relaxed problem.

8. Conclusion and further work. The present work provides a reference and framework
for continuous multilabeling approaches. Existence of solutions can be established in the
framework of functions of bounded variation, and possible regularizers can be characterized
using metric interaction potentials and specially designed convex relaxations.

The presented algorithms are robust and fast and belong to the class of first-order methods
which is particularly suitable for massive parallelization. We summarize the most important
observations with respect to the numerical results:

• The Nesterov method has good theoretical worst-case convergence but seems to require
further modifications in order to achieve satisfying practical performance. Moreover,
inexact projections as required for the tighter relaxation may cause the method to
diverge.

• The FPD method works well with inexact projections and has satisfying practical
performance. In situations with a lot of uncertainty the method may oscillate and
consume even more time than the Nesterov approach.

• The proposed Douglas–Rachford method shares the advantages of the FPD method;
however, it converges quite quickly even in such special situations. It consistently
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requires one-third of the iterations of FPD, which is slightly compensated for by the
need for the more expensive DCT operation. Therefore it is particularly recommended
for problems where the projections dominate the runtime costs, resulting in a speed-
up of 2–3 with respect to FPD. Both FPD and Douglas–Rachford scale only slightly
superlinearly.

Overall, the proposed Douglas–Rachford method approach appears to be a solid all-round
method that also handles extreme cases well. Concerning the regularizer we considered two
different relaxations:

• The tight envelope regularizer is based on the ideas in [15] and requires the least
amount of postprocessing in order to obtain an integral solution. However, it requires
suitable numerical methods since the projections can only be approximated and does
not permit us to compute the primal-dual gap as a stopping criterion or for perfor-
mance evaluation.

• The Euclidean metric regularizer requires approximating non-Euclidean metrics but is
much less problematic from a numerical viewpoint, and about one order of magnitude
faster to solve. The results tend to be less integral. After rounding they are hardly
distinguishable from the results obtained using the tighter relaxation.

For nonuniform metrics, the quality of the rounded solution can be further improved by
applying the proposed modified rounding scheme. Generally it seems that solving the convex
relaxed problem often allows us to recover very good solutions for the original combinatorial
problem.

Concerning further work, we did not specifically consider the effect of choosing different
step sizes for the Douglas–Rachford method. Also, it seems that the smooth optimization step
in the Nesterov method usually performs much better than its theoretical bound. Adjusting
the strategy for choosing the smoothing parameter could yield a faster overall convergence
and possibly render the method competitive. In this regard, it would also be interesting
to include the inexactness of the projections in the convergence analysis. There are also
several theoretical questions left, such as how to include nonmetric distances in the continuous
formulation. We would also like to mention the very recent work [41], where the authors
derived explicit a priori optimality bounds for the proposed framework with a customized
rounding technique.

In our opinion the present framework unites continuous and discrete worlds in an appealing
way, and we hope that it contributes to reducing the popularity gap compared to purely grid-
based, graph cut methods.

Appendix.
Proposition A.1. Let v = (v1, . . . , vl) ∈ Dd

loc; then

(A.1) ∥v∥ " min
i

⎛

⎝
∑

j

d(i, j)2

⎞

⎠

1
2

.

Proof of Proposition A.1. From the constraint
∑l

j=1 v
j = 0 in (4.35) we deduce, for
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arbitrary but fixed i ∈ {1, . . . , l}, that

l∑

j=1

∥vj∥2 "

⎛

⎝
l∑

j=1

∥vj∥2
⎞

⎠− 0 + l∥vi∥2 =

⎛

⎝
l∑

j=1

∥vj∥2
⎞

⎠− 2

〈

vi,
l∑

j=1

vj
〉

+ l∥vi∥2

=
l∑

j=1

(
∥vj∥2 − 2⟨vi, vj⟩+ ∥vi∥2

)
=

l∑

j=1

∥vj − vi∥2 "
l∑

j=1

d(i, j)2.(A.2)

As i was arbitrary, this proves the assertion.

Proof of (6.22). We mainly use the fact that (P ⊗Q)(R⊗S) = (PR)⊗ (QS) for matrices
P,Q,R, S with compatible dimensions:

(I + L⊤L)−1 =
(
I + (A⊗ grad)⊤ (A⊗ grad)

)−1
(A.3)

=
(
I +

(
A⊤A

)
⊗
(
grad⊤ grad

))−1
(A.4)

=
(
I +

(
V −1 diag(a)V

)
⊗
(
B−1 diag(c)B

))−1
(A.5)

=
(
I +

(
V −1 ⊗B−1

)
(diag(a)⊗ diag(c)) (V ⊗B)

)−1
(A.6)

=
((
V −1 ⊗B−1

)
(I + diag(a)⊗ diag(c)) (V ⊗B)

)−1
(A.7)

=
(
V −1 ⊗B−1

)
(I + diag(a)⊗ diag(c))−1 (V ⊗B) .(A.8)

Using V −1 = V ⊤, (6.22) follows.

Proof of Proposition 6.3. The idea of the proof is to show that the sequence (w′′(k))
is exactly the minimizing sequence produced by the algorithm applied to the dual problem
(5.2), with step size 1/τ . Thus, if the dual algorithm converges, (w′′(k)) converges to a solution
of the dual problem, which proves the assertion. To show the equivalency, first note that the
formulation of the primal problem from (5.1),

min
u∈C

max
v∈D
⟨u, s⟩+ ⟨Lu, v⟩ − ⟨b, v⟩,(A.9)

already covers the dual problem

max
v∈D

min
u∈C
⟨u, s⟩+ ⟨Lu, v⟩ − ⟨b, v⟩ = −min

v∈D
max
u∈C
⟨b, v⟩ + ⟨u,−L⊤v⟩ − ⟨u, s⟩(A.10)

by the substitutions

v ↔ u, C ↔ D, b↔ s, L↔ −L⊤ .(A.11)

The dual problem can thus be solved by applying the above substitutions to Algorithm 4.
Additionally substituting w ↔ z in Algorithm 4, in order to avoid confusion with iterates of
the primal method, leads to the dual algorithm, Algorithm 6. We first show convergence of
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Algorithm 6. Dual Douglas–Rachford for multiclass labeling.

1: Choose v̄(0) ∈ Rn×d×l, z̄(0) ∈ Rn×l.
2: Choose τD > 0.
3: k ← 0.
4: while (not converged) do
5: v(k) ← ΠD

(
v̄(k) − τDb

)
.

6: z′′(k) ← ΠC(
1
τD

(z̄(k) − s)).

7: v′(k) ← (I + LL⊤)−1
(
(2v(k) − v̄(k)) + (−L)(z̄(k) − 2τDz′′(k))

)
.

8: z′(k) ← (−L⊤)v′(k).
9: v̄(k+1) ← v̄(k) + v′(k) − v(k).

10: z̄(k+1) ← z′(k) + τDz′′(k).
11: k ← k + 1.
12: end while

Algorithms 4 and 6. By construction, these amount to applying Douglas–Rachford splitting
to the primal and dual formulations

min
u,w

δLu=w(u,w)︸ ︷︷ ︸
=:h1(u,w)

+ ⟨u, s⟩+ δC(u) + σD(w − b)︸ ︷︷ ︸
=:h2(u,w)

,(A.12)

min
v,z

δ−L⊤v=z(v, z)︸ ︷︷ ︸
=:hD,1(v,z)

+ ⟨v, b⟩+ δD(v) + σC(z − s)︸ ︷︷ ︸
=:hD,2(v,z)

.(A.13)

As both parts of the objectives are proper, convex and lower semicontinuous, it suffices to show
additivity of the subdifferentials [57, Cor. 10.9], [23, Thm. 3.15], [23, Props. 3.20 and 3.19],
[24]. Due to the boundedness of C and D,

ri (domh2) ∩ ri (domh1) =
(
ri (C)× Rndl

)
∩ {Lu = w}

= {(u,Lu)|u ∈ ri(C)} ,(A.14)

ri (domhD,2) ∩ ri (domhD,1) =
(
ri(D)× Rnl

)
∩ {−L⊤v = z}

= {(v,−L⊤v)|v ∈ ri(D)} .(A.15)

Both of these sets are nonempty as ri(C) ̸= ∅ ̸= ri(D). This implies additivity of the subdif-
ferentials for the proposed objective [57, Cor. 10.9] and thus convergence (in the iterates as
well as the objective) of the tight Douglas–Rachford iteration (cf. [23, Thm. 3.15]).

We now show that the primal and dual algorithms essentially generate the same iterates;
i.e., from τ := τP = 1/τD, ū(k) = τ z̄(k), and w̄(k) = τ v̄(k), it follows that ū(k+1) = τ z̄(k+1),
w̄(k+1) = τ v̄(k+1) and u(k) = z′′(k), v(k) = w′′(k). The last two equalities follow immediately



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONTINUOUS MULTICLASS LABELING 1093

from the previous ones by definition of the algorithms. Furthermore,

v̄(k+1) = v̄(k) + v′(k) − v(k)

= v̄(k) + (I + LL⊤)−1

·((2v(k) − v̄(k)) + (−L)(z̄(k) − 2τ−1z′′(k)))− v(k)(A.16)

= τ−1w̄(k) + (I + LL⊤)−1((2w′′(k) − τ−1w̄(k))

+ (−L)(τ−1ū(k) − 2τ−1u(k)))− w′′(k)(A.17)

= τ−1w̄(k) + (I + LL⊤)−1(2w′′(k) − τ−1w̄(k))− w′′(k)

− (I + LL⊤)−1L(τ−1ū(k) − 2τ−1u(k)) .(A.18)

By the Woodbury identity, (I + LL⊤)−1 = I − L(I + L⊤L)−1L⊤, and in particular (I +
LL⊤)−1L = L(I + L⊤L)−1; therefore

v̄(k+1) = τ−1w̄(k) + 2w′′(k) − τ−1w̄(k)

−L(I + L⊤L)−1L⊤(2w′′(k) − τ−1w̄(k))− w′′(k)

−L(I + L⊤L)−1(τ−1ū(k) − 2τ−1u(k))(A.19)

= w′′(k) − L(I + L⊤L)−1

·(L⊤(2w′′(k) − τ−1w̄(k)) + (τ−1ū(k) − 2τ−1u(k)))(A.20)

= τ−1L(I + L⊤L)−1

·((2u(k) − ū(k)) + L⊤(w̄(k) − 2τw′′(k))) + w′′(k)(A.21)

= τ−1(Lu′(k) + τw′′(k)) = τ−1w̄(k+1) .(A.22)

By primal-dual symmetry, the same proof shows that ū(k+1) = τ z̄(k+1). To conclude, we have
shown that w′′(k) = v(k) for τD = 1/τ and suitable initialization of the dual method. As the
dual method was shown to converge, (w′′(k)) must be a maximizing sequence for fD. Together
with the convergence of u(k) to a minimizer of f , this proves the first part of the proposition.
Equation (6.25) follows, since for any saddle point (u∗, v∗),

fD(w
′′(k)) " fD(v

∗) = f(u∗) " f(u(k))(A.23)

holds, and therefore f(u(k))− f(u∗) ! 0 and f(u∗) ! fD
(
w′′(k)).
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