
Reliable Low-Level Image Analysis

Ullrich Köthe

September 21, 2007

Contents

1 Introduction and Motivation 7

2 The Low-Level Segmentation Problem 19

2.1 De�nition of the Problem . 19
2.2 Measures of Success . 25

2.2.1 Similarity between Plane Partitions and their Reconstructions . . . 25
2.2.2 Ground-Truth De�nition and Matching 36

2.2.2.1 Generated Test Images 37
2.2.2.2 Test Objects and Scenes 40
Algorithm 2.1: Consensus ground truth 42
2.2.2.3 Manual Ground Truth . 43

3 Analysis of the Image Acquisition Process 47

3.1 The Linear Model of the Image Acquisition Process 47
3.2 The Linear Model in Digital Cameras and the Human Eye 51

3.2.1 The Di�raction Limited System . 51
3.2.2 The Human Eye . 56
3.2.3 Digital Cameras . 61

3.3 Reconstruction of the Analog Camera Image 68
3.3.1 Spline Interpolation . 68
3.3.2 Experiment: Detection of Extrema and Saddle Points in Spline-

Interpolated Images . 75
Algorithm 3.1: Iterative critical point detection in a 2D spline . . . 78

3.4 Noise Normalization and Noise Filtering 82
3.4.1 Noise in CCD Cameras . 82

Algorithm 3.2: Non-parametric noise normalization 87
3.4.2 Speckle Noise . 90

Algorithm 3.3: Normalization of speckle noise 91
3.4.3 Experiment: Critical Point Detection in Real Images 92

4 The Representation of Segmentation Results 95

4.1 Topology for Segmentation . 95
4.2 Combining Topology and Geometry in the GeoMap 103
4.3 GeoMap Realizations . 107

4.3.1 Polygonal GeoMaps . 107
4.3.2 Grid-Based GeoMaps . 108

Algorithm 4.1: Crack Insertion Algorithm 111

3

Contents

Algorithm 4.2: Thinning with Priority 113

4.4 Manipulation of a GeoMap . 118

4.4.1 Euler Operators and Contraction Kernels 118

Algorithm 4.3: Merge faces . 119

Algorithm 4.4: Remove bridge . 120

Algorithm 4.5: Contract edge . 121

4.4.2 Topology-preserving Manipulations 122

Algorithm 4.6: Polygon simpli�cation 123

Algorithm 4.7: Digital Straight Line Detection 124

Algorithm 4.8: Topology preservation under geometric manipula-
tion of a polygonal GeoMap 126

4.4.3 Interactive Segmentation in the GeoMap Framework 127

5 Algorithms for GeoMap Creation 131

5.1 Analog Boundary De�nitions . 132

5.1.1 Subpixel-Accurate Tracing of the Zero-Contour 133

Algorithm 5.1: Predictor-Corrector Method for Contour Tracing . . 135

Algorithm 5.2: Spline-Based Zero-Crossing Detection 136

Algorithm 5.3: Zero-Crossing GeoMap 138

5.1.2 Subpixel-Accurate Watershed Tracing 139

Algorithm 5.4: Sub-Pixel Watershed Algorithm 142

Algorithm 5.5: Watershed σ-Ordering 143

5.2 Grid-Based Boundary De�nitions . 146

Algorithm 5.6: Crack Insertion by Thresholding 146

Algorithm 5.7: Crack Insertion with Constraint 147

Algorithm 5.8: Union-�nd Algorithm for Watershed Detection . . . 148

Algorithm 5.9: Region Growing Algorithm for Watershed Detection 150

Algorithm 5.10: GeoMap creation by Canny's algorithm 152

Algorithm 5.11: GeoMap creation by Rothwell's algorithm 155

5.3 GeoMap Creation by Triangulation . 155

Algorithm 5.12: (α, β)-boundary reconstruction 157

Algorithm 5.13: Minimal boundary reconstruction 160

Algorithm 5.14: Contour completion by constrained Delaunay tri-
angulation . 161

Algorithm 5.15: Conforming (α, β)-reconstruction 162

6 Geometric Sampling Theorems 165

6.1 Sampling Analysis of Grid-Based Region Representations 165

6.1.1 Sampling without Blurring . 167

6.1.2 Sampling of Blurred Images . 173

6.2 Sampling Analysis of Boundary Representations 178

6.2.1 Application to Grid-Based Boundary Digitization Schemes 185

6.2.2 Geometric Limitations of Pixel-Accurate Edges 188

4

Contents

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator 191

7.1 Sampling Analysis of the Gradient Magnitude 191
7.2 Analysis of Isolated Straight Step Edges 195

7.2.1 Noise-Free Straight Edges . 196
7.2.2 Noisy Images . 200

7.2.2.1 E�ects of Aliasing Noise 201
7.2.2.2 Probability Distributions of Noisy Gradient Magnitudes

and Optimal Thresholds 203
7.2.2.3 Error Propagation for Edge Position and Orientation . . 207
7.2.2.4 Error Correlation along the Edge 210
7.2.2.5 Experimental Validation in Arti�cial Images 212

7.3 Deviations from the Model of Isolated Straight Step Edges 214
7.3.1 Shaded Regions . 214
7.3.2 Parallel and Approximately Parallel Edges 217

Algorithm 7.1: Subpixel watershed algorithm with ladder removal . 221
7.3.3 Curved Edges . 223

7.3.3.1 Noise-Free Curved Edges 223
7.3.3.2 Experimental Validation with Arti�cially Created Curved

Edges . 225
7.4 Experimental Validation in Natural Images 228
7.5 Corners and Junctions . 232
7.6 Measurement Errors and the Boundary Sampling Theorem 239
7.7 Examples . 243

8 Tangent Direction Estimation 249

8.1 Introduction . 249
8.2 Direct Tangent Estimation from Polygon Segment Directions 250
8.3 Filter-Based Tangent Estimation . 252
8.4 Model-Based Tangent Estimation . 256
8.5 Experimental Comparison . 260

9 Improving the Junction Response 269

9.1 Tensors . 269
9.2 Tensor De�nition by Spatial Integration of Gradients 272
9.3 Tensor De�nition by Combination of Even and Odd Filters 278

9.3.1 Analysis of the Boundary Tensor as a Quadratic Filter 281
9.3.2 E�cient Computation of the Boundary Tensor 284

9.4 Experimental Evaluation . 288

10 Conclusions and Outlook 293

11 Acknowledgments 299

Bibliography 301

5

Contents

6

1 Introduction and Motivation

You must be able to walk �rmly on the ground before you start walking on a tightrope.

Henri Matisse

Vision is the most versatile among all human senses. It can be used for tasks as diverse
as object and shape recognition, self-localization and motion control, reading a text or a
musical score, and graphical data analysis, to name just a few. It works equally well in
various contexts, from natural to arti�cial surroundings. But this versatility comes at a
price: an individual measurement (i.e. the intensity at a particular wave length, time and
retina location) has no meaning in itself. Only a collection of connected measurements
(i.e. an image or image sequence) makes sense, but its interpretation is extremely dif-
�cult. This phenomenon is often called the semantic gap of image analysis. Traditional
technical systems avoid the semantic gap by assigning a well-de�ned meaning to every
measurement. For example, a speedometer tells us the velocity of a car at a particular
time, a thermometer indicates the temperature of the surrounding air, and so on. Current
vision systems employ the same strategy: they are always tailored to a particular, very
narrow application.

Yet, a universal arti�cial vision system would be highly desirable. First, such a system
would be much more robust against variations in the input data or modi�cations of the
task. When the environment cannot be tightly controlled, the system must be able to deal
with unexpected situations or unusual structures. In fact, detection of the unexpected
is the main point of many vision applications. By de�nition, the unexpected cannot be
exactly described beforehand, so robustness is a necessity. Second, solutions for narrow
domains are often one-of-a-kind systems that must be developed from scratch or at
least adapted by an image analysis expert. The lack of reusable, generic solutions for
common tasks appears exceedingly frustrating for user and developers alike. Universal
vision systems will eventually be much more satisfactory and cheaper. While such systems
are unlikely to appear in the near future, any progress toward genericity will simplify the
development of successful vision applications.

All non-trivial vision systems consist of a large number of modules. Today, these mod-
ules are mainly selected on the basis of the developer's experience and preferences, and
expensive custom-build modules are common. There is no systematic way for deciding
which modules are the most appropriate in a given task, and how module parameters
should be adjusted. While experimental validation of complete vision systems on rep-
resentative application data has become state-of-the-art during the last decade, this so
called �black-box� approach to testing is insu�cient for optimizing modularization: When

7

1 Introduction and Motivation

?

blurred curve

sampling and reconstruction

sampling and reconstruction

original curve

Figure 1.1: Top: When a piecewise constant function is sampled, it is impossible to locate the
jump to sub-pixel accuracy in the reconstructed function. Bottom: If the function is blurred
before sampling, the in�ection point of the reconstructed function (gray star) is a good estimate
of the original jump (dashed). Figure adapted from [Jähne 97].

a black-box test �nds that system A fails in 10% of the trials, while system B fails in only
3%, one will prefer system B, but one doesn't gain any deeper insight into the reasons
of the di�erence. Figures on overall system performance are insu�cient for pinpointing
which modules are causing problems and why.

However, it is likewise insu�cient to look at individual modules in isolation, as the
following example demonstrates. Edges in digital images are never perfectly sharp, but
always somewhat blurry. In general, sharper edges are preferable because their location
can be estimated with higher accuracy, and several authors suggest to apply sharpen-
ing methods (e.g. total variation minimization [Dibos & Knop�er 00, Rudin et al. 92] or
robust estimation [Boomgaard & Weijer 03]) in order to reduce blurring prior to edge de-
tection. However, depending on the subsequent edge detector, this suggestion may have
quite the opposite e�ect. Consider �gure 1.1 top, where a perfect step edge is sampled
without any blurring. It can be seen that the step can easily be detected in the digital
representation, but its exact position can only be reconstructed with pixel accuracy � the
transition could have occurred at any location between the two pixels on either side of the
step. The maximum error of pixel-accurate edge detectors cannot drop below the pixel
size, no matter how sharp the transition is. In contrast, a blurry edge (�gure 1.1 bottom)
can potentially be reconstructed almost exactly from its samples, and the position of the
original transition may be estimated with sub-pixel accuracy (e.g. at the in�ection point
of the reconstructed curve) � localization errors as low as 0.01 pixels are possible. From
a signal theoretic point of view, too sharp edge transitions violate Shannon's sampling
theorem and su�er from aliasing (see chapter 3). Thus, a module creating sharp edge
transitions is not a value in and of itself � it has to be considered in context.

In this work, properties of individual modules and module interactions in larger systems
will receive equally careful treatment. Indeed, we will follow the holistic approach taken
by the emerging �eld of algorithm engineering1 which suggests to consider real world
modeling, algorithm development, coding, and validation as equally important aspects of
a successful problem solution. In the �eld of image analysis, this means that realistic scene

1see http://www.algorithm-engineering.de

8

http://www.algorithm-engineering.de

models, properties of image acquisition devices, experimental evaluation of modules and
systems, analysis of the di�erence between continuous and discrete theories etc. have to
be considered with equal care. Interestingly, this wider point of view also leads to better
understanding of the details: It leads to a modularization where each module is making
realistic assumptions about its input, and produces outputs with well-de�ned properties
and for well-de�ned receivers. In an (as yet Utopian) optimal system, each module can
be characterized and optimized individually, but the modularization is designed in such
a way that the performance of the whole system can be predicted from the properties of
the modules it is comprised of.

Of course, a single work cannot realize this vision in its entirety. Instead, we restrict
our attention to low-level image analysis. This decision has been taken for the following
reasons:

• Image interpretation cannot be based directly on the pixel data (except in very
restricted contexts). It is necessary to �rst transform the raw iconic information
into more meaningful primitives. This is precisely the purpose of low-level image
analysis which is therefore an intrinsic part of more or less any image analysis
solution, including the human visual system (whose processing starts with local,
orientation dependent operators). Improvements in reliability and generality of low-
level modules will have an immediate impact.

• Guarantees on a module's behavior can only be given relative to dependable proper-
ties of the module's input. As long as proofs about the output of low-level modules
are not available, guarantees on higher level modules (which use low-level results as
input) are out of reach. In contrast, low-level image analysis works directly on the
image data, which can be constrained so as to facilitate such proofs, provided the
constraints remain su�ciently realistic for the conclusions to be useful in practice.
Thus, it is necessary to understand the possibilities and limitations of low-level
algorithms before moving on to higher-level modules.

In our attempt to formally understand the limitations of low-level image analysis, the
concept of an ideal geometric image plays a key role. We think of the ideal geometric
image as a perfect 2-dimensional projection of a 3-dimensional scene, at in�nite resolution
and without blurring and noise. No real imaging device can observe the ideal geometric
image � blurring by the lens, digitization, noise and other e�ects cause the real image to
di�er signi�cantly from the ideal one. In fact, an in�nite amount of information is lost
since the real image is a discrete function on the digital plane, whereas the ideal image
is an analog function on the continuous plane. Nonetheless, we know from experience
that many important properties of the ideal image can still be recovered. Thus, we de�ne
low-level image analysis as the task of reconstructing interesting properties of the ideal
geometric image from the actually observed digital image2. Knowledge of the ideal image's
properties is highly desirable because these properties are independent of the speci�cs of

2It should be noted that both ideal and real images reside in 2-dimensional space, so our de�nition
implies that low-level image analysis is not concerned with the 3-dimensional world.

9

1 Introduction and Motivation

a particular image acquisition device and are thus suitable starting points for higher-level
analysis (e.g. 3D scene reconstruction). The present work will investigate to what extend
and with what accuracy this reconstruction is possible, in spite of the information loss.
Another distinction we are interested in is the one between bottom-up and top-down

processing. Bottom-up strategies are characterized by the fact that they solely rely on
information contained in the stimulus to be processed (i.e. the pixel data), whereas top-
down strategies are based on additional information outside the stimulus. If a system
overemphasizes top-down strategies, it will only be able to see what it is supposed to
see: Constraints and assumptions override the information coming from the data. In con-
trast, when there is too little top-down guidance, the system may be unable to correctly
interpret images with high noise or with occlusions, ending up at random conclusions.
Obviously, the two strategies have to be balanced in the right way for a system to perform
optimally. The optimal trade-o� can only be found if the capabilities and limitations of
the modules realizing the two strategies are precisely known. In most of this work, we con-
centrate on bottom-up strategies, but top-down strategies should eventually be analyzed
with the same care.
At this point of the discussion, people sometimes question the value of reliable low-

level bottom-up processing in vision. After all, the human visual system can correctly
handle input of very low quality, where higher-level top-down analysis apparently takes
precedence. When the high-level system can tolerate bad low-level input, work on optimal
low-level modules might be considered a waste of resources. In our opinion, this point
of view severely underestimates the importance of low-level vision. First, image analysis
is clearly much easier with better input data, even in the very robust human visual
system. Otherwise, you wouldn't see so many people wearing eye glasses! Second, raw
image data are highly ambiguous. Dealing with these ambiguities is a major (perhaps the
major) challenge in automated image interpretation. Less-than-optimal low-level modules
(as are common today) will often increase data ambiguity instead of reducing it, for
example by creating artifacts such as spurious edges. Since these artifacts make an already
di�cult problem even more di�cult, we would like to avoid them whenever possible.
Third, recent psychological experiments suggest that bottom-up processing plays a much
more important role in human vision than was previously believed. In these experiments,
unknown images are presented to subjects for very short periods of time (20 to about 100
ms). Given the measured response times of the subjects to these stimuli and the known
length of the visual and motoric pathways, there is only little opportunity for top-down
processing and feedback to kick in. Yet, subjects are able to solve many basic recognition
tasks (e.g. whether the image contains an indoor or outdoor scene, or whether or not
it contains an animal) with very low error rates (see [Serre et al. 05] for an overview).
Therefore, we are convinced that e�orts put into reliable low-level vision will highly pay-
o�. In addition, several of our �ndings (e.g. the geometric sampling theorems, chapter 6)
apply to top-down methods as well.
Within the realm of low-level analysis we have chosen a segmentation approach. In

other words, we attempt to reconstruct region boundaries de�ned in the ideal geometric
image. The question whether these boundaries correspond to actual object boundaries in
the 3-dimensional world is (by our de�nition) beyond the scope of low-level segmentation.

10

The performance of a low-level segmentation algorithm is de�ned by how well it recon-
structs the boundaries present in the ideal geometric image, regardless of their meaning
in the 3D world. We favor the segmentation approach due to the following reasons:

• There is a number of applications where segmentation itself is a major analysis goal,
most notably in medical and scienti�c imaging. Even when low-level segmentation
alone is not su�cient, subsequent higher-level algorithms or interactive procedures
will pro�t from more accurate low-level results.

• Segmentation aims for a complete (i.e. dense) description of the image: every point
of the plane is classi�ed as belonging to an edge, to a corner/junction, or to the
interior of a homogeneous region. When a dense description is available, it is rela-
tively easy to derive a sparse description (e.g. a set of isolated interest points) from
it, but not vice versa.

• If an algorithm fails to compute the correct segmentation in some areas, this will
immediately become visible in the results. In contrast, such problems may go un-
noticed when we only aim at a sparse image description, where algorithm failures
may be indistinguishable from feature-less areas. In this sense, segmentation forces
one to precisely analyze where and why errors occur � it is impossible to simply
sweep failures under the carpet. Thus, even when segmentation is not the ultimate
solution, it is an important tool for studying the problem.

Low-level image segmentation has received a lot of attention over the years, being one
of the oldest ideas in image analysis. Yet, there are many indications that its theoretical
limits are not nearly reached by today's algorithms, and are, in general, not even known
with a satisfactory degree of precision. A number of examples shall illustrate this fact.

Consider �gure 1.2, where we want to recognize the characters on the license plate of
a car which are easily readable for a human. When we try standard methods such as the
edge detectors proposed by Canny [Canny 86], Shen and Castan [Shen & Castan 92], or
the watershed transform [Vincent & Soille 91], the results are pretty bad (especially for
the more complicated characters 4, 9, G, and W) and subsequent high level algorithms
will have a hard time interpreting these responses correctly. Edges computed by means of
thresholding happen to be the best, but this is only a coincidence because this particular
image does not su�er from a shading gradient which would destroy the e�ectiveness of
thresholding.

The usual conclusion at this point is that bottom-up approaches are unsuitable in
this application. Instead, one would typically consider an approach based on pattern
recognition and machine learning, since the number of possible characters is limited to
36 or so (depending on the country), and their possible shapes are predetermined by
law. However, while we might quickly arrive at a practical solution in this manner, we
will not learn anything about why bottom-up methods performed so poorly. Are there
fundamental limits in the sense that no purely data-driven algorithm can ever achieve
signi�cantly better results, or did we just try an unfortunate selection of algorithms?

11

1 Introduction and Motivation

Figure 1.2: Original image and license plate region. Although the resolution is quite low (width
of the characters' lines is less than 2 pixels), a human can easily recognize the characters in the
original image. In contrast, segmentations with the Canny algorithm, Shen-Castan algorithm,
watershed algorithm, and thresholding are not very accurate.

Figure 1.3: Segmentation of the license plate with the subpixel watershed algorithm (left)
and the subpixel zero-crossing algorithm (right) after twofold oversampling. See chapter 5 for a
description of these methods.

Figure 1.4: Improved segmentation on up-sampled images: original (left), Canny edges at orig-
inal (center) and doubled (right) resolution. Bi-cubic interpolation was used for twofold up-
sampling in both dimensions.

12

Figure 1.5: Improved segmentation on up-sampled images: Canny sub-pixel edgels at original
(left) and doubled (right) resolution. Bi-cubic interpolation was used for twofold up-sampling in
both dimensions.

In this particular example, we can de�nitely achieve much better results with bottom-
up methods, as �gure 1.3 shows. These segmentations have been obtained from exactly
the same data, without using prior knowledge about the characters, and indeed without
making any assumptions beyond a basic edge de�nition. The accuracy of the result
becomes especially apparent when one observes that the algorithm correctly detected the
di�erence between the straight upper bar of the number �5� and the curved upper bar of
the letter �S�. Clearly, there is much more information in the data than the traditional
algorithms were able to extract. But why do traditional algorithms fail? What can be
done to avoid loosing information? And how do our �ndings on this particular example
apply to a larger class of images? These are some of the questions we are going to deal
with in this work.

Traditionally, low-level image analysis tries to quickly reduce the amount of data. In
view of the small computer memories in the early days of image analysis, this was a
necessity, but it may not be adequate today, where memory is no longer the primary
concern. Look at �gure 1.4. It shows a text fragment with relatively low resolution (left)
and the edges detected by means of the standard Canny algorithm (center). While the
original text is fairly easy to read, it is almost unreadable in the edge image. Again,
most people would conclude that edge detection wasn't the right approach. However,
if we repeat edge detection after interpolating the original image to twice the original
resolution (i.e. after increasing the image size instead of reducing it), text readability is
signi�cantly improved (�gure 1.4 right). To the best of my knowledge, this phenomenon
was �rst reported by [Overington 92], but anecdotal evidence has also been provided by
others. The improvement appears surprising at �rst since interpolation does not increase
the information content of the image. The only possible explanation is that information
gets lost when we perform edge detection at the original resolution.

One could put forward the objection that improvements on interpolated images might
just be artifacts of pixel-accurate edge representations. After all, a pixel-based edge repre-
sentation can store at most one edge point per pixel, and any edge pair must be separated
by at least one non-edge pixel. Figure 1.5 left demonstrates that a subpixel edge detector
can indeed detect edges with higher accuracy than its pixel-accurate counterpart at the
same resolution (compare �gure 1.2 top right). But �gure 1.5 right shows that the results
improve even further when we work on an interpolated image, in agreement with what
we had already observed for pixel-accurate methods.

For the sake of a �rst, intuitive understanding of this phenomenon, suppose we are

13

1 Introduction and Motivation

Figure 1.6: Top: Original low-resolution gray-value image of a text. Center: Binarisation at
original resolution. Bottom: Binarisation after threefold oversampling. The geometric accuracy
of the oversampled binary image (while far from perfect) is much better.

segmenting an idealized printed document that contains only pure black and white (letters
and paper respectively) with perfectly sharp edges. That is, the ideal geometric image has
1 bit per point, but in�nite resolution. When a digital image of this document is taken,
some blurring by the optical system and sensor of the camera is unavoidable (and, in
fact, is required in order for Shannon's sampling theorem to be ful�lled). Thus, the pixels
of the digital image contain gray-values at, say, 8 bits per pixel. Since the original image
was purely black and white, these gray-values are expressing the subpixel geometry of
the depicted letters by measuring how much foreground and background was contained
in the receptive �eld of the blurring kernel centered at each pixel. Now, when we binarise
the digital image at the given resolution, we return to a representation with 1 bit per
pixel, and the geometric information contained in the other 7 bits is lost. In contrast,
when we interpolate the gray-value image threefold in each direction before binarisation,
we transform each 8-bit pixel into nine 1-bit pixels, i.e. the overall information content
is roughly preserved, see �gure 1.6. Even better results are possible with a subpixel-
accurate, polygonal edge representation, as seen in �gure 1.3.

One may still object that these low-resolution situations are not very typical for the
images we encounter in practice. After all, one tries to adjust the camera's resolution
and �eld of view so that the objects of interest are clearly visible. However, in certain
situations this may be impossible, for example in microscopy, where the objects of interest
are often barely resolvable. Moreover, even when the objects themselves are large with
respect to the pixel grid, the correct image interpretation may depend on very small
details (cf. 1.7 left), or the boundaries of neighboring objects may almost touch each
other (cf. �gure 1.7 right). Similar e�ects can result from foreshortening and partial
occlusion. In all these cases, one cannot circumvent the necessity of dealing with �ne

14

Figure 1.7: Left: The street bump sign is well resolved, but the point of the picture depends
on two tiny details. Right: While both the tumor and enclosing liver are large objects in this
CT image, their boundaries almost touch, and care is required to prevent unintentional region
merging.

detail (possibly with subpixel accuracy) despite the objects themselves being big. Yet
another nice example for the importance of image detail is depicted in �gure 1.8: Coarse
and �ne scale interpretations of this (deliberately constructed) illusion are completely
di�erent.

Another source of di�culties is the fact that we use discrete devices to look at the con-
tinuous world. Unfortunately, the consequences of this mismatch are often not explicitly
considered. For example, it is common to derive the theory of an image analysis module
in the continuous domain. But when the theory is later realized on a discrete computer,
there is often no formal proof that the discrete results are indeed close (i.e. within given
error bounds) to the desired continuous ones. While such proofs are common in other
�elds like physics, they are not directly applicable to image analysis: Traditional discreti-
sation analysis is typically conducted in the form of asymptotic convergence theorems
and assumes that the resolution of the discretization can be re�ned as needed. In contrast,
once an image of a scene has been taken, its resolution is �xed and cannot be re�ned
arbitrarily. At best, one can take a new image at higher, but still �nite resolution. Thus,
a discretization analysis providing absolute error bounds for �xed resolution is needed.
Since this is di�cult, it has been suggested that discretization problems could be avoided
when the module's theory were directly formulated in the discrete domain. Making sure
that the module's computations conform to theory is then much easier. However, a new
di�culty arises here: it is now unclear how computed results relate to phenomena in the
real world, because the relationship between the discrete and continuous domains has
not been dealt with. In order to really understand the performance of image analysis
modules, we must analyze them in both the continuous and discrete domains, much like
what Shannon did in his famous sampling theorem to connect continuous and discrete

15

1 Introduction and Motivation

Figure 1.8: At coarse resolution, the image appears to depict a skull, whereas the detailed
view reveals that we are looking at a woman in a mirror. While the illusion was constructed
deliberately in this image, similar phenomena occur in real images as well.

signal representations.

This work is structured as follows: In chapter 2 we revisit the problems discussed here
in a more formal way. We introduce our de�nition of low-level segmentation and review
possible measures of success in this task.

Chapter 3 is devoted to a detailed analysis of the image acquisition process in cameras
and the human eye. In particular, we investigate to what degree Shannon's sampling
theorem is ful�lled by these devices, and how well the analog image function can be
reconstructed from a given digital image. Spline interpolation and noise-normalization
are introduced as key tools in this reconstruction process.

Chapter 4 introduces basic concepts of topology and discusses their consequences for
image segmentation. In particular, it is shown that any su�ciently powerful represen-
tation for 2-dimensional segmentation results must deal with three feature types simul-
taneously, namely vertices, edges, and regions. Image analysis algorithms need explicit
access to these features, and to the geometry of their embedding into the image plane.
We introduce the GeoMap as a suitable abstract data type for these requirements, and
propose several e�cient implementation strategies.

Chapter 5 presents algorithms for GeoMap creation. Many of them are modi�cations of
well-known segmentation algorithms, which are adapted to the new GeoMap framework.

16

Others, including variants of subpixel-accurate contour tracing and methods on the basis
of Delaunay triangulations, have not previously been applied to image segmentation
problems. These methods o�er a wide choice of boundary detection options for application
developers and can easily be exchanged because they are all based on the uni�ed GeoMap
framework.
In chapter 6 we analyze how the resolution of the sampling grid and the accuracy of

edge detection methods in�uences the validity of segmentation results with respect to a
given ground truth. We derive a number of geometric sampling theorems that state con-
ditions under which important topological properties (such as number and neighborhood
of regions) will be preserved despite the inherent information loss of digitization. For the
�rst time, we are also able to give such guarantees for noisy and blurred images. This
boundary sampling theorem may be considered as one of the central results of this work.
Chapter 7 investigates the accuracy of a number of gradient-based segmentation meth-

ods (e.g. Canny's algorithm, watershed transform) in both their pixel-accurate and
subpixel-accurate versions. Formulas for systematic and statistical errors of edge, corner,
and junction position and orientation, and for the likelihood of over- and undersegmenta-
tion are derived. Subsequent experimental evaluation shows remarkable consistency with
theoretical predictions. Inserting the error bounds thus determined into the boundary
sampling theorem derived in the previous chapter, one can predict whether or not the
objects of interest can be reliably segmented in a given imaging situation.
In chapter 8, we apply the error analysis of the previous chapter to the problem of

boundary tangent estimation. Several tangent estimators are analyzed both theoretically
and experimentally, and it is found that in most situations the simplest algorithms are
preferable.
Chapter 9 introduces a number of alternative boundary de�nitions on the basis of

tensors, including anisotropic structure tensors and the boundary tensor. These methods
are of interest because they carry the promise to improve the boundary accuracy near
corners and junctions, which turned out to be a weak point of gradient-based algorithms
in chapter 7. However, careful experimental evaluation of these algorithms shows that
none of the alternative algorithms consistently outperforms the gradient. This �nding
is in line with the practical experience of many application developers, and puts the
corner/junction problem as a high priority on the future research agenda.

17

1 Introduction and Motivation

18

2 The Low-Level Segmentation Problem

Abstract

Segmentation is usually de�ned as partitioning the image into meaningful regions. What
is considered as �meaningful� depends on the application, but the term mainly refers to
the correct delineation of certain scene objects of interest. We argue that one cannot rea-
sonably expect that low-level segmentation (i.e. data-driven, bottom-up algorithms) will
produce correct application-dependent boundaries, because this problem does in general
require higher level information and feedback (i.e. top-down strategies). Therefore, we
propose another, application independent de�nition of low-level segmentation: Its goal
is the reconstruction of properties of an ideal geometric image from the information ob-
tained from the real digital image. In this chapter, we investigate the implications of this
new de�nition and analyze how one can objectively measure whether or not the goal has
been achieved. We discuss the de�nition of ground truth and the problem of comparing
a computed segmentation with the ground truth. In particular, we de�ne the key notions
of structure preserving reconstructions and of r-similar reconstructions.

2.1 De�nition of the Problem

This work will be concerned with low-level image segmentation � but exactly what does
that mean? It is clear that our goal of creating well-characterized modules for low-level
image analysis can only be achieved when we are able to precisely de�ne what these
modules are supposed to do. Lack of precision in the de�nition of module behavior is a
major reason for the di�culties in creating reliable computer vision systems. Vagueness
already begins with the term low-level : obviously, the term refers to the �rst stages of
image processing and analysis, but where exactly does low-level processing end?

In order to answer this question, we need to understand how information is transformed
during the image acquisition process. Image acquisition creates a discrete 2-dimensional
representation of a 3-dimensional scene. The relationship between the two domains is
immensely complicated, because it depends on a large number of variables. In order
to understand image acquisition, it must be split into several subprocesses, and it is
not unreasonable to expect that image analysis � its inverse process � can be split into
corresponding subproblems. A tremendously successful model for the �rst part of image
acquisition is the notion of a pinhole camera: It performs a perfect perspective projection
of the scene onto a plane which we call the ideal geometric image, see �gure 2.1. The prop-
erties of this projection, the information loss involved, and the task of reconstructing 3D
information from a set of projections are quite well understood and have received in-depth
treatment in various monographs, e.g. [Faugeras & Luong 01, Hartley & Zisserman 04].

19

2 The Low-Level Segmentation Problem

Figure 2.1: Observation of a scene by a camera. The ideal geometric image is created by the
geometric rays passing through a virtual image plane in front of the camera (for clarity, only
the objects' outlines are shown). It corresponds to perspective projection of the 3D scene onto a
continuous 2-dimensional domain, as realized by a perfect pinhole camera.

The most important characteristic of the ideal geometric image is that it still resides in
the continuous domain and has in�nite resolution. However, the geometric image cannot
be observed by any real device. Therefore, the second part of a realistic image acquisition
model must describe how the ideal geometric image is transformed into the digital image
which we actually get from a camera. The present work is based on the observation that
the information loss incurring during the transition from the analog to the digital domain
is as dramatic as the one due to projection from 3D to 2D. It is necessary to understand
this information loss in order to build reliable image analysis systems. Therefore, we
de�ne the task of low-level image analysis as follows:

De�nition 2.1. The purpose of low-level image analysis is to recover information about
the ideal geometric image from the corresponding digital image.

According to this de�nition, low-level image analysis is not concerned with 3-dimensional
objects � as soon as 3D information is required or has to be recovered, we are no longer
speaking of low-level processing. It follows that the reconstruction of true object bound-
aries cannot be the goal of low-level analysis because it requires knowledge beyond what
is available in purely 2D representations. We shall see that many interesting results can
be obtained despite (or perhaps because of) restricting our attention to 2D1.

From the point of view of low-level image analysis, the main advantage of introducing
an ideal geometric image is the possibility to de�ne �ground truth�: by assuming that
the ideal geometric image is given, we can create digital test images which reproduce,
as well as possible, the corresponding output of real cameras. Low-level image analysis
modules can than be characterized by comparing their results with the known ground
truth. These comparisons realistically predict module behavior in real imaging situations

1Others put the borderline of low-level processing at the transition from a pixel-based representation
to an initial symbolic (e.g. polygonal) representation. We prefer our de�nition because it is based on
the goal of processing rather than its means.

20

2.1 De�nition of the Problem

if and only if the ideal geometric images and their transformations into digital images
are modeled with su�cient realism.
Unfortunately, our understanding of the relationship between analog and digital repre-

sentations in multi-dimensional spaces is not yet satisfactory. We provided some evidence
for this fact in chapter 1. We are convinced that any realistic theory has to consider ana-
log and digital representations with equal care. It is insu�cient to rely on pure analog
theories (e.g. di�erential equations), where digitization is merely treated as an imple-
mentation detail, and it is likewise insu�cient to merely work in the digital domain (like
in mathematical morphology) and ignore how the digital image was created in the �rst
place. The �rst approach may be plagued with artifacts arising from the fact that the
digital system is not a su�ciently accurate realization of the analog theory. In contrast,
theory and implementation may match perfectly in the second approach, but the rela-
tionship between computed results and phenomena in the continuous real world remains
unknown.
In the remainder of the present chapter we will look into the questions of how ideal

geometric images can be modeled and how they can be compared with the output of
image segmentation algorithms. In order to describe the structure of an ideal geometric
image, we use the concept of plane partitions:

De�nition 2.2. A partition P of the plane R2 is de�ned by a �nite set of points V =
v1, v2, ... called vertices and a set of pairwise disjoint arcs A = ai ⊂ R2 such that every
arc is a mapping of the open interval (0, 1) onto the plane, the start and end points ai(0)
and ai(1) are in V (but not in ai). Start and end points need not be distinct. The union
of the vertices and arcs is the boundary of the partition: B = V ∪ A, and the regions
R = ri are the connected components (i.e. maximal connected sets) of the complement of
B. Since B is a closed set, all regions are open. Vertices, arcs, and regions are also called
0-, 1-, and 2-cells according to their dimensions.

Since arcs are subsets of R2, the boundary is bounded and no arc runs to in�nity.
Consequently, there exists a single region containing the point at in�nity called the
in�nite region of the plane partition. It describes the area outside of the actual �eld
of view, and its interior is of no interest for image analysis. It should be noted that
region boundaries form an explicit part of the representation. As we will see later, this is
necessary for consistent topological interpretation of the partition, and allows edge- and
region-based segmentation methods to complement rather than exclude one another.
Many image analysis tasks are simpli�ed when the scene can be described by only

two region types: �foreground� and �background�. In the terminology of plane partitions,
this means that there exists a labeling of the regions with two labels such that every
arc is in the closure of exactly one foreground and one background region. Such a plane
partition is called binary. Many image segmentation algorithms produce binary image
partitions, e.g. thresholding, snakes [Kass et al. 88] and most variants of the level-set
method [Osher & Paragios 03], but all these methods share a big restriction: While it
is possible for the fore- and background to consist of several connected components,
the boundary cannot form junctions of odd degrees in a binary plane partition. Since
junctions of degree 3 are very common in real images (especially T-junctions resulting

21

2 The Low-Level Segmentation Problem

from occlusion), binary partitions are not su�cient in many situations, so we will not
restrict ourselves to binary partitions if possible.

Plane partitions are the basis of our de�nition of an ideal geometric image's content:

De�nition 2.3. Let P be a plane partition with boundary B and regions ri, and let
bij = ∂ri ∩ ∂rj ⊆ B the common boundary of regions i and j. The indicator function of
region ri is de�ned as ρi : R2 → [0, 1] with the properties (i) ρi(x, y) = 1 in the interior
of ri, (ii) ρi(x, y) = 0 in the interior of rCi and (iii) 0 ≤ ρi(x, y) ≤ 1 on the boundary ∂ri
such that

∑
i ρi(x, y) ≡ 1 holds in the entire plane. Furthermore, let fi(x, y) be bounded,

continuous and possibly vector valued functions de�ned at least within the closure r̄i of
region i, such that fi(x, y) 6= fj(x, y) holds for almost all points in the common boundary
bij. Then the function:

fgeometric(x, y) =
∑
i

ρi(x, y) fi(x, y) (2.1)

is called an ideal geometric image.

Since the functions fi and fj are distinct on the common boundary bij , the geometric
image is a piece-wise smooth function whose discontinuities occur on the boundary B.
This piece-wise smooth image model was also employed by [Förstner 99]. It should be
noted that the behavior of the function fgeometric on the boundary B is largely irrelevant
in practice because B is a set of measure zero. Since discontinuity between regions is only
required almost everywhere, contrast inversion along an arc is explicitly allowed as long
as the gray-levels are only equal in a single point. In practice, we want the functions fi
to be simple functions. When all fi are constant, we arrive at the well-established step
edge model.

While equation (2.1) is clearly a simpli�cation of reality, it is more general than what
may be apparent on �rst sight. Let us look at a number of possible objections:

• One may argue that some boundaries in the ideal geometric image will lack contrast
(e.g. due to shading) and will not show up as discontinuities. This is true, but
according to de�nition 2.1, the detection of these boundaries is outside the realm
of low-level image analysis. It turns out that truly zero-contrast boundaries are
actually rare in practice. Even if the contrast is very low, it is usually non-zero
and detection of the boundary remains possible, see �gure 2.2. The real di�culty
lies in the distinction of weak, but important boundaries from slightly stronger,
unimportant ones. This problem may or may not be solvable by low-level means.

• Shading and shadows can also cause the opposite kind of errors: true regions can be
split up into several smaller ones. However, this is not a problem in the geometric
image because it has in�nite resolution. No matter how small the resulting regions
are, they can be correctly represented here. The real problem is that the detection
of small regions becomes more di�cult in digital images, because the region size
decreases relative to the sampling rate.

22

2.1 De�nition of the Problem

Figure 2.2: Left: The arrow marks a portion of the building's edge with very low con-
trast. Right: Edge detectors (here the subpixel watershed algorithm, see section 5.1.2) are
still able to detect this edge with good accuracy. The real di�culty is to distinguish an
important weak edge from irrelevant edges with similar contrast (e.g. from edges that are
caused by noise).

• When regions in the geometric image are arbitrarily small (relative to the sampling
rate of the digital image), their detection becomes impossible. So one may argue
that our model raises an unsolvable problem. This is again true. But it is equally
true that su�ciently large regions can be reconstructed correctly. Finding precise
limits of reconstructability is one of the key questions in this work. Our distinction
between geometric and digital images facilitates the search for these limits and
allows us to investigate the artifacts occurring under insu�cient resolutions.

• Another objection is that boundaries are not really discontinuous, but fuzzy. This
is certainly true as soon as one arrives at atomic scales, but it can happen at much
coarser scales due to di�raction at shadow edges or simply due to a fuzzy transition
between neighboring objects (e.g. the edge of a cloud). However, in most cases these
fuzzy transitions are very narrow in comparison to the size of the camera's point
spread function and are, therefore, indistinguishable from true discontinuities in
the digital image. Many of the detection methods discussed in this work will be
applicable even if the scale of the transition is similar to the scale of the point
spread function. Eventually, the geometric image model should be generalized to
explicitly incorporate blurry edges, but the model yields su�ciently interesting
results without this generalization.

23

2 The Low-Level Segmentation Problem

• The restriction to simple functions fi within each region may raise concerns whether
textures can be treated in our model. To respond to this objection, we distinguish
three kinds of texture: (i) Consider an area with many similar regions which are
clearly separated at an in�nite resolution, e.g. the leaves of a tree or the grains
of sand. When the distance from the observer is large, these regions are no longer
separable at the resolution of the digital image, but may still exhibit some regularity.
These geometric textures are thus a way of dealing with objects that are too small to
be resolved individually2. Clearly, geometric textures are covered by our framework.
(ii) Some textures arise from noise introduced in the process of image acquisition.
These textures are not a property of the geometric image, but must be modeled as
part of the digitization process and are thus also covered by our framework. (iii)
Finally, some textures arise because the surface re�ectance of a 3-dimensional object
is governed by a random process which cannot be explained in terms of constituting
regions, even at an in�nite resolution. These surfaces are rare in practice and can
be handled by choosing appropriate fi.

In conclusion, the property of in�nite resolution makes the geometric image a su�ciently
general model for the analysis of low-level image analysis. Generalizations concerning the
complexity of the region functions fi and of their discontinuities at the boundary can
easily be incorporated when the present version (2.1) of the model becomes su�ciently
understood. The problems of scale and �nite resolution can already be studied without
these generalizations because they arise when the geometric image is subjected to blurring
and digitization in the camera and are not primarily properties of the geometric image
itself.

Most boundaries in an ideal geometric image are closely related to the 3D boundaries
of real world objects, because the projection of a 3D boundary usually gives rise to a 2D
boundary. But there is no 1-to-1 correspondence, and we do not believe that perfect re-
construction of object boundaries is possible without explicit reference to 3-dimensional
concepts. However, de�nition 2.1 restricts low-level processing to the 2-dimensional do-
main. We de�ne low-level image segmentation accordingly:

De�nition 2.4. Low-level image segmentation is the task of recovering, as well as pos-
sible, the plane partition of ideal geometric images from the observed digital images by
means of 2-dimensional bottom-up processing.

While we concentrate on segmentation in this work, it should be stressed that it is
not the only worthwhile goal of low-level image analysis. One may also base subsequent
analysis on incompletely detected boundaries (as most authors do), isolated interest
points [Mikolajczyk & Schmid 04, Lowe 04], or con�gurations of duplet/triplet features

2The human visual system can even observe geometric textures when the individual elements are still
visible, e.g. the bricks of a wall, or the textons in Julesz' experiments [Julesz 81]. In this case, texture
and textons are visible simultaneously, showing that human vision is a multi-scale process where the
texture interpretation arises at coarser resolutions. This still �ts in our de�nition by assuming that
the texture interpretation is computed at the scale where individual elements become too small to
be resolvable.

24

2.2 Measures of Success

[Granlund & Moe 04, Johansson & Moe 05], to name just a few possibilities. The main
di�erence between these approaches and segmentation is that they only provide sparse
descriptions of the geometric image's properties, whereas segmentation produces a dense
representation: every point in the plane is assigned to one subset of the partition. Segmen-
tation plays a special role because sparse descriptions can always be derived from dense
ones, but not vice versa. On the other hand, segmentation is a much more ambitious
goal, and precise knowledge of its possibilities and limitations is highly desirable.

If ideal geometric images were directly observable, low-level segmentation would be
trivial: one could simply look for discontinuities. But the digital camera image is a blurred
and sampled version of the geometric image, and information about regions and their
boundaries is no longer explicitly accessible. Due to the information loss, it is rarely
possible to recover the original partition exactly. We investigate how well it can be ap-
proximated without using knowledge about the 3-dimensional nature of the problem. In
other words, we attempt to give a precise meaning to the formulation �as well as possible�
by investigating the theoretical limits of various approaches to low-level segmentation.

It is interesting to contrast our notion of low-level segmentation with that of traditional
de�nitions. Most frequently, segmentation has been de�ned as a maximal partition of the
pixel plane such that each region is homogeneous according to some criterion. Similarly,
edge detection has been de�ned as the process of marking local maxima in the rate of
change of some criterion. These de�nitions are based on the means employed in the solu-
tion (homogeneity or inhomogeneity of a criterion). In contrast, our de�nition states the
goal of the module's action (reconstruction of the geometric image). We prefer this def-
inition because it implies a method of performance evaluation (quantitative comparison
of the module's output with a known correct solution), whereas the traditional de�ni-
tions fail to suggest methods which compare the performance of di�erent criteria. In the
remainder of the present chapter, we will discuss how a segmentation process's success
according to de�nition 2.4 can be measured, and why some apparently good measures of
correctness may not in practice be su�cient.

2.2 Measures of Success

2.2.1 Similarity between Plane Partitions and their Reconstructions

Due to information loss during digitization, the reconstructed shape is almost never
identical to its continuous original. Therefore, we must �rst de�ne precisely how we are
going to quantify how well the reconstruction algorithm performed. To make the de�ni-
tion useful in image analysis, it should correspond closely to human perception of shape
similarity. In the sequel we discuss a number of common possibilities and analyze their
advantages and limitations. Many important properties of shape reconstruction can be
understood by investigating whether the relationship between a region and its comple-
ment changes under the reconstruction. Therefore, we illustrate most of our arguments
with binary partitions, but they are equally valid for non-binary partitions.

When we ask if the shapes in a partition have been preserved, we must look at two fun-
damentally di�erent properties: topological similarity and geometric similarity. Topology

25

2 The Low-Level Segmentation Problem

answers qualitative questions like �Has the number of regions changed?�, �Are neighbor-
hood relations between regions preserved?�, �Has a reconstructed region as many holes
as the corresponding original?�. In contrast, geometry provides quantitative measures of
similarity such as �How much has a reconstructed region been distorted relative to the
corresponding original?�. Topology describes relations between sets as a whole, whereas
geometry describes the relation between individual corresponding points.
Correspondence between shapes is easily established when the shapes are topologically

equivalent:

De�nition 2.5. Two sets A and A′ are topologically equivalent if there exists a homeo-
morphism f : A→ A′. A homeomorphism is a bijective mapping between A and A′ such
that both f and f−1 are continuous.

In 2D, this implies that the number of connected components and the number of holes
in each component must be preserved. Moreover, open and closed sets must remain open
or closed respectively. Consider, for example, �gure 2.3. The gray region in sub�gure (b)
may be considered the reconstruction of the gray shape in �gure (a) on the depicted
square grid. 3 In this case, the reconstruction is obviously topologically equivalent to the
original. However, the same is true in sub�gures (c) and (d): although we do not perceive
the reconstruction on the coarser square grid as correct, the two sets are topologically
equivalent. This happens because topological equivalence is de�ned independently of any
embedding space, and the blob within the hole of the original shape can be mapped onto
the upper blob of the reconstruction. When the shapes in �gure 2.3(c) and (d) are em-
bedded in R3 (i.e. the images represent slices through the 3-dimensional space), it is easy
to imagine a continuous transformation moving the small black blob from the hole to the
outside. But human perception implicitly assumes a 2-dimensional embedding. Then, not
only the topology of the shapes, but also the topology of their 2D complements (i.e. the
white background regions) must be preserved. The homeomorphism must therefore be
extended to the entire embedding plane into an R2-homeomorphism. Intuitively, an R2-
homeomorphism acts as if the plane were a rubber membrane that can be stretched in
arbitrary ways, but may not be cut or folded. The concept is also known as a morphing
transformation. Under this stronger requirement, only the shapes in �gure 2.3(a) and (b)
are topologically equivalent, because no R2-homeomorphism can possibly move the small
blob out of the enclosing hole. Generalizing this to arbitrary partitions, we arrive at the
following de�nition:

De�nition 2.6. Two plane partitions P1and P2 are topologically equivalent, when there
exists a homeomorphism f : R2 → R2 that maps every cell of P1 onto a cell of P2.

Note that all cells are mapped simultaneously by a single homeomorphism. The home-
omorphism establishes a 1-to-1 correspondence between the cells of P1 and P2. Obviously,
the dimensions and neighborhood relations of all cells are preserved in this mapping.

3The illustrations in this section are mostly taken from [Stelldinger & Köthe 05]. In that paper, the
reconstruction is de�ned as the union of all pixels whose sampling point is within the original set.
A pixel on an arbitrary (even irregular) grid is de�ned as the Voronoi region around a sampling
point, see our de�nition 4.9. However, the problems illustrated in this section are not speci�c to this
particular reconstruction method.

26

2.2 Measures of Success

(a) (b) (c) (d)

Figure 2.3: (a) and (b): The reconstruction on a high-resolution grid is topologically equivalent
to the original and perceived as correct; (c) and (d): At lower resolution, the reconstruction is
incorrect because the black blob in the large black region's hole disappears, while a new blob
appears in the exterior region. However, the gray sets are still topologically equivalent, because
the embedding space is irrelevant in de�nition 2.5. The reconstruction error is only captured by
considering homeomorphisms of the entire plane R2 (de�nition 2.6), i.e. by requiring topological
equivalence of the background as well.

(a) (b)

Figure 2.4: Examples where the digitization of Euclidean lines does not preserve topology:
a) a junction of degree 4 is split into a pair of junctions of degree 3 (the lines are digitized
into interpixel edges); b) the reconstructed arcs and vertices have non-zero area (the lines are
digitized into 8-connected pixel chains). A formal de�nition of these digitization methods is given
in section 4.3.2.

Unfortunately, it is very di�cult to guarantee complete topological equivalence in low-
level segmentation. A common problem is that 4-junctions often get split up into two 3-
junctions, see �gure 2.4a. The digitized lines are no longer homeomorphic to the original.
The same happens when the digitized lines have non-zero area, whereas the original
lines formed a set of measure zero, �gure 2.4b. This �gure illustrates the problem with
pixel-based digitization methods, but it can also occur in alternative approaches, e.g.
shape reconstruction by means of Delaunay triangulation (see section 5.3). Our intuition
considers the digitizations in �gure 2.4 as correct, although they are not homeomorphic
to the original. We should therefore relax the notion of shape similarity to include these
cases. This can be achieved by means of homotopy :

De�nition 2.7. Two mappings f, g : A → A′ are called homotopic, when there exists
a continuous mapping F : A × [0, 1] → A′ such that F (a, 0) = f(a) and F (a, 1) = g(a)
for all a ∈ A. Two sets A and A′ are of the same homotopy type when there exists
two mappings f : A → A′ and g : A′ → A such that the composition g ◦ f : A → A
is homotopic to the identity map iA : A → A, and the composition f ◦ g : A′ → A′ is
homotopic to the identity map iA′ : A′ → A′.

27

2 The Low-Level Segmentation Problem

In the 2-dimensional domain, the relation between homotopy and plane partitions is
most easily understood by building the homotopy tree introduced in [Serra 82]. Serra's
original de�nition applies to a given set in the plane and its complement. We can apply
this concept to plane partitions by identifying the boundary B with the given set, and
the regions with the complement set. This leads to the following algorithmic de�nition:

De�nition 2.8. Let P be a plane partition with regions R = {ri, i = 1, ...} and boundary
B, and denote by bj the connected components of the boundary. The homotopy tree of
P is created as follows: take the in�nite region r0 as the root of the tree. Let B0 be the
set of boundary components that intersect the closure of r0. The members of B0 become
the children of node r0. Then for every bj ∈ B0 �nd the set Rj ⊂ R\ {r0} of regions
whose closure intersects bj. The members of Rj become children of bj. Repeat this process
recursively until all elements of P have been added to the tree.

In other words, the tree is built by tracing the incidence relation between regions
and boundary components from the exterior of the image toward the interior. Starting
with a root node representing the in�nite region, the tree consists of alternating levels
of boundary and region nodes. The creation procedure works just as well when the
boundaries have non-zero area. Homotopy trees are signi�cant in our context due to the
following fundamental property:

Theorem 2.1. Let P be a plane partition and P̂ its reconstruction. P and P̂ are of the
same homotopy type if and only if their homotopy trees are isomorphic.

The original proof in [Serra 82] is again easily adapted to plane partitions by consider-
ing boundaries and open regions as complementing sets. When the homotopy trees of P
and P̂ are isomorphic, there exists a 1-to-1 mapping between their regions and boundary
components such that all corresponding entities are of the same homotopy type. Now,
the di�erences between the original and reconstructed boundaries depicted in �gure 2.4
are explicitly permitted. However, it is also permitted that reconstructed regions exhibit
�isthmuses�, i.e. they may only be connected through a single point, see �gure 2.5. This
is impossible in the original partition because regions are required to be open sets. It
can happen in the reconstruction when more than three pixels meet at a single pixel
corner (i.e. it can happen in a square grid, but not in a hexagonal one). Such con�g-
urations are undesirable because they give raise to the infamous connectivity paradox
[Rosenfeld 70]. To avoid this, we require topological equivalence between regions in order
for the reconstruction to be considered successful:

De�nition 2.9. Let P = B
⋃
∪iri be a plane partition with boundary B and regions

ri, and let P̂ = B̂
⋃
∪j r̂j a reconstruction of P with boundary B̂ and regions r̂j. The

reconstruction is called structure preserving when the homotopy trees of P and P̂are
isomorphic, and corresponding regions are homeomorphic.

The points in a structure preserving reconstruction can be mapped onto the points of
the original partition, and the mapping is 1-to-1 for points within regions, and possibly 1-
to-many for points in the boundary. This mapping ensures that (i) reconstructed regions

28

2.2 Measures of Success

correct

wrong

Figure 2.5: When the reconstructed region is represented as the union of pixels whose centers
are in the original region, the shape of the reconstruction depends on the relative position between
the pixels and the original region. It may happen that the reconstructed set is only 8-connected,
i.e. only connected through a single point of the plane (an �isthmus�). This reconstruction is not
homeomorphic to the original region, although the homotopy type is preserved.

are open sets (i.e. have no isthmuses), (ii) the number of regions, the number of holes
in every region, and the inclusion tree between regions are all preserved, and (iii) the
reconstructed boundary is of the same homotopy type as the original boundary. The
de�nition also allows a topological classi�cation of various reconstruction errors:

De�nition 2.10. Let the homotopy trees of P and P̂ be di�erent. Create a new partition
P ′ by adding a single arc a′ to P (when the start and end points of a′ coincide, adding
a new vertex there is also permitted). When the homotopy tree of P ′ is isomorphic to
the one of P̂ , we say that P̂ contains a spurious or false positive boundary (namely the
part of B̂ that is mapped onto a′ by the homotopy). Likewise, create P ′′ by removing
an arc (and possibly an isolated vertex) from P . If the homotopy trees of P ′′ and P̂ are
isomorphic, the removed arc is missing in P̂or a false negative.

In practice, P and P̂ will often di�er by more than a single arc. Then, the transfor-
mation of P will involve several arc additions and/or removals. In the most general case,
this may amount to isomorphic subgraph matching, which is a known NP-hard problem.
We will come back to the issue how to determine false positives/negative at the end of
this chapter. Here, we just assume that we can somehow determine their numbers. These
numbers are usually dependent on the parameters of the reconstruction algorithm: when
the sensitivity of the algorithm is increased, the number of false negatives (missed bound-
ary parts) will decrease, but the number of false positives (spurious boundary parts) will
increase, and vice versa. The optimal trade-o� depends on the application. However, it
is still possible to obtain an application-independent characterization of reconstruction
performance by means of the receiver operating characteristic (ROC). Let TP , FP , TN ,
and FN be the numbers of true and false positives, and true and false negatives respec-
tively, measured with a particular choice of algorithm parameters on a particular set of
test images. To be comparable, these numbers must be normalized. Sensitivity or recall
of the reconstruction algorithm is de�ned as

recall =
TP

TP + FN

29

2 The Low-Level Segmentation Problem

Its miss rate is

miss rate = 1− recall =
FN

TP + FN

the speci�ty

speci�ty =
TN

TN + FP

and the false alarm rate is

false alarm rate = 1− speci�ty =
FP

TN + FP

All four characteristics are between zero and one. When we adjust the algorithm parame-
ters so that the reconstruction doesn't contain any boundary at all, TP and FP are zero,
and therefore recall and false alarm rate are zero as well. Similarly, when the algorithm
assigns all possible points to the boundary, TN and FN are zero, and recall and false
alarm rate assume a value of one. For other choices of algorithm parameters, one obtains
(recall, false alarm rate) pairs between these extremes. Every pair de�nes a point in the
so called ROC diagram, where recall is associated with the abscissa, and false alarm
rate with the ordinate. A reconstruction algorithm that just guesses will produce pairs
on the straight line where recall and false alarm rate are equal. Points above this line
indicate better-than-chance performance. The upper convex hull of all points is a mono-
tonically increasing curve from (0, 0) to (1, 1) called the receiver operating curve (ROC
curve). The area AROC under this curve is a useful characterization of the reconstruction
algorithm in a single, parameter-independent number. AROC = 0.5 for a reconstruction
algorithm that just guesses, and AROC = 1 for a perfect algorithm. Some authors prefer
equivalent ROC-diagrams where the false alarm rate is drawn against the miss rate. This
is just the previous diagram rotated by 90◦ counter-clockwise. Now, the lower convex
hull running from (0, 1) to (1, 0) is the curve of interest (lower curves are better), and
A′ROC = 1−AROC should be small.
Alternatively, one can compute a precision-recall curve, where recall is plotted along

the abscissa, and precision = TP
TP+FP along the ordinate. The upper convex hull again

characterizes algorithm performance, and higher curves are preferable. Unfortunately, the
PR curve becomes unstable at low recall due to the small total number of responses under
this condition (when there is only one response, it can either be a true or false positive,
resulting in precision values of 1 and 0 respectively), and approaches the fraction of true
positives among all possible responses at high recall (which is undesirable because it is
a sample-dependent quantity). Unlike AROC, the area under the PR curve doesn't have
a clear interpretation in terms of chance vs. perfect performance. On the other hand,
di�erences between algorithms on the same data set are sometimes more pronounced in
the precision-recall curves than in the ROC.
Another value summarizing the overall performance of an algorithm is the cross-entropy

loss. It can be computed when a set of candidate boundary parts is given and the al-
gorithm analyzes whether each candidate actually represents a boundary piece of the
ground-truth partition. This is a common approach to reducing oversegmentation. The
algorithm to be evaluated must estimate the probability pi for candidate i to be a part

30

2.2 Measures of Success

(a) (b)

Figure 2.6: a) At low resolution, the reconstruction is topological equivalent (and therefore
structure preserving) to the original plane partition, but the geometric similarity (as measured by
the Hausdor� distance) is not very high because one of the holes is too small in the reconstruction.
b) The Hausdor� distance between original and reconstruction is small at higher resolution.

of the true boundary instead of performing a hard classi�cation. Then the cross-entropy
loss is de�ned as

L = − 1
|IP ∪ IN |

∑
i∈IP

log pi +
∑
i∈IN

log (1− pi)

where IP and IN denote the sets of true positives and true negatives respectively. L
vanishes when the reconstruction is perfect, i.e. when pi = 1 for all true positives and
pi = 0 for all true negatives.

Even when the reconstruction is structure preserving or topologically equivalent to the
original partition, this does not automatically mean that the two partitions are perceived
as similar. Frequently, two topological reconstruction errors compensate each other. But
this usually requires to map some points of the reconstruction onto relatively distant
points of the original. Consider, for example, �gure 2.6a: the black region has two holes
in both the original partition and the reconstruction. Yet, due to sampling problems,
one hole is much too small in the reconstruction, so that any morphing transformation
between the two shapes necessarily requires signi�cant displacements. Shape comparison
should therefore include a measure of �nearness�, i.e. geometric similarity. The simplest
such measure is the Hausdor� distance:

De�nition 2.11. The Hausdor� distance dH between two sets A and A′is de�ned as

dH(A,A′) = max
(

max
a∈A

d
(
a,A′

)
, max
a′∈A′

d
(
a′, A

))
where d(a,A′) = supa′∈A′ d (a, a′) is the distance between point a and set A′, and d(a, a′)
is the Euclidean distance between points a and a′.

The Hausdor� distance is a metric. In the context of shape similarity, it is most useful
to measure the Hausdor� distance between the boundaries B and B̂ of the original

31

2 The Low-Level Segmentation Problem

and reconstruction respectively. On a square raster, this can be e�ciently computed by
means of the distance transform of the boundary pixels, whose computation takes only
linear time in the total number of pixels. The examples in �gure 2.6a and b can now be
distinguished by their Hausdor� distance. However, the Hausdor� distance is extremely
sensitive to outliers: a single wrong point can lead to a very big value of the Hausdor�
distance, even if the sets to be compared are otherwise identical. In contrast, when the
two sets are distorted everywhere, but only by a small maximum amount, this situation
cannot be distinguished from the case where there is only a single localized distortion.
Therefore, [Baddeley 92] proposed another distance that averages displacements over an
entire set C of points:

De�nition 2.12. Let C be a domain such that A ⊂ C and A′ ⊂ C. Than the family of
Baddeley distances with p ∈ [1,∞) is de�ned as

dB,p(A,A′) =
(

1
|C|

∫
C

∣∣d(c, A)− d(c, A′)
∣∣p dc)1/p

This is a metric for all p ∈ [1,∞). Baddeley uses p = 2 in his experiments. The domain
C can be the entire image or a subset of it. When the distance between the boundaries
B and B̂ is to be computed, it is useful to choose C as a strip of width µ around the

two boundaries: C = (B ⊕ Bµ)∪
(
B̂ ⊕ Bµ

)
where ⊕ denotes dilation, and Bµ is the open

ball with radius µ (µ = 5 in Baddeley's experiments). Restricting C to this strip reduces
the in�uence of topological errors (false positives and false negatives) and thus increases
the sensitivity of dB,p to geometric accuracy. In a discrete domain, the integral over C
is replaced with a sum over the pixels in C. Like the Hausdor� distance, Baddeley's
distance can be e�ciently computed on a raster by means of the distance transform,
which takes linear time in the number of pixels. Figure 2.7 demonstrates the di�erence
between the two distances. We observe that Baddeley's distance is more informative than
the Hausdor� distance, although it seems that the penalty given to a series of many small
gaps (third image) is somewhat too small.

Geometric distances cannot directly signal topological errors. Nevertheless, they can be
used to get an approximate idea of topological accuracy by replacing the topological error
de�nition 2.10 with a geometric one, e.g. [Heath et al. 97]: a point is considered an outlier
(false positive) if its distance from the correct boundary exceeds a certain value. A piece
of the correct boundary is considered missing (false negative) when its distance to the
reconstructed boundary exceeds a certain value. The thresholds for these decisions should
be slightly higher than the expected maximum geometric error on correctly detected
boundaries (see section 7.2.2.3). The geometric de�nitions lead to simpler descriptions of
the similarity between original and reconstruction, because geometric errors are relatively
easy to compute.

High geometric similarity (i.e. small geometric distance) is not su�cient to ensure that
reconstructions are perceived as being similar to the original. Figure 2.8 demonstrates
this. It is necessary to require both: preservation of topology and high geometric similar-
ity. In [Stelldinger & Köthe 05], we proposed the notion of weak r-similarity to describe

32

2.2 Measures of Success

dH = 1 dH = 1 dH = 1 dH = 1 dH = 1
dB,2 = 0.07 dB,2 = 0.19 dB,2 = 0.22 dB,2 = 0.56 dB,2 = 0.54

dH = 1 dH = 2 dH = 5 dH = 5 dH = 5
dB,2 = 0.52 dB,2 = 0.82 dB,2 = 0.89 dB,2 = 0.59 dB,2 = 1.13

Figure 2.7: Comparison between the Hausdor� distance dH and Baddeley's distance dB,2 (with
µ = 5). The distorted images di�er from the ground truth (shown at the top) by 1 or 10 false
positives and/or false negatives.

(a) (b)

Figure 2.8: a) At high resolution, the letter S is reconstructed correctly. b) At lower resolution,
the two shapes are not topologically equivalent and are not perceived as similar, although both
the Hausdor� and Baddeley distances between original and reconstruction remain small.

33

2 The Low-Level Segmentation Problem

Figure 2.9: Even when the original and reconstructed shapes are topologically equivalent and
have small Hausdor� distance, perceptual similarity is not guaranteed: the s may turn into an ε
at low resolution.

this requirement for binary plane partitions. The de�nition is generalized to arbitrary
partitions as follows:

De�nition 2.13. A partition P and its reconstruction P̂ are weakly r-similar when the
reconstruction is structure preserving, and the Hausdor� distance between the boundaries
B and B̂ is at most r.

Unfortunately, not even weak r-similarity (with some small r) is always su�cient. Fig-
ure 2.9 gives an example where the sampling grid di�ers only minimally from the one in
�gure 2.8b. Now, the two shapes are topologically equivalent and have small Hausdor�
distance, but are still perceived as di�erent. This can be explained as follows: the supre-
mum operations in the Hausdor� distance map every point of A to the nearest point in
A′ and vice versa. In general, these two mappings are di�erent, and they also di�er from
the mappings that ensure topology preservation: since many points can be mapped to
the same nearest point, the former mappings do not usually de�ne a homeomorphism
and are not even structure preserving. This problem can be avoided when we force the
mappings for topological and geometric comparisons to be the same. A homeomorphism
implies geometric similarity when it doesn't displace the points very much:

De�nition 2.14. A homeomorphism f : A → A′ with A,A′ ⊆ R2 is called an r-
homeomorphism, if |f(a)− a| ≤ r for all a ∈ A.

A thus restricted homeomorphism de�nes a morphing distance dM (A,A′) = r be-
tween the sets A and A′. The morphing distance is a metric because the concatenation
of an r-homeomorphism and a s-homeomorphism is at least an (r+ s)-homeomorphism.
[Stelldinger & Köthe 05] introduced the term strong r-similarity when the morphing dis-
tance between a binary plane partition and its reconstruction does not exceed r. We again
generalize the de�nition to arbitrary plane partitions:

De�nition 2.15. A partition P and its reconstruction P̂ are strongly r-similar when the
reconstruction is structure preserving, and the homeomorphisms fi between corresponding
regions ri and r̂i are r-homeomorphisms.

34

2.2 Measures of Success

When the reconstruction is not only structure preserving, but even topologically equiv-
alent to the original (i.e. there is also a homeomorphism between the boundaries), strong
r-similarity implies that a single r-homeomorphism exists which maps the entire recon-
struction onto the original. Then the topology is not only preserved globally, but also
locally in the following sense: Pick any open subregion of R2 that is partitioned by the
boundary B in a certain way (including junctions, holes etc.). Then the existence of a
homeomorphism ensures that a corresponding open region exists which gets partitioned
in the same way by the reconstructed boundary B̂. Existence of an r-homeomorphism
tightens this property so that the corresponding region is not just somewhere in the
plane, but is at most at distance r from the original region, i.e. in a localized neigh-
borhood. Since dM is an upper bound on the Hausdor� distance, strong r-similarity
implies weak r-similarity. The undesirable reconstructions shown in the previous �gures
are not strongly r-similar to their original for reasonably small r (i.e. dH � dM). Strong
r-similarity requires su�ciently high resolution in these examples.

Unfortunately, computing the morphing distance between two regions is very di�cult,
because an uncountable number of transformations must be considered. In practice, it is
often only possible to derive upper bounds for the morphing distance, e.g. by direct proof
(see for example section 6.1.1), or by restricting the permissible class of homeomorphisms,
e.g. to thin-plate-spline transformations (see for example [Belongie et al. 02]). Often, we
must settle on weak r-similarity, despite its shortcomings.

A possible break-through methodology that avoids many complications discussed above
may be the Normalized Probabilistic Rand Index (NPR index) recently introduced by
[Unnikrishnan et al. 07]. Instead of evaluating the correctness of every point in the re-
construction separately, these authors propose to look at all point pairs. Then the question
is no longer whether a point is correctly assigned to a particular region or boundary, but
whether its relation to all other points is preserved with respect to the ground truth
segmentation. This approach has two advantages:

• It can handle incomplete or weak ground truth. This is especially important when
algorithms are tested against manual ground truth from human observers, because
segmentations of di�erent persons (or of the same person at di�erent times) will
rarely be in exact agreement.

• It avoids the di�cult matching problem of measured features against ground truth
features.

The NPR index approach assumes that the probability pij that points i and j belong
to the same feature can be estimated from the ground truth. For example, if a set of G
manual ground truth segmentations is available, and all agree that the two points belong
to the same feature (i.e. to the same region), then pij = 1. If all agree that they do belong
to di�erent features, pij = 0. In general, pij = count(li = lj)/G (where count(li = lj)
is the number of observers that assigned i and j to the same feature), so that values
pij between 0 and 1 signal disagreement between observers. Now let cij ∈ {0, 1} be the
decision of the segmentation algorithm to be evaluated whether i and j belong to the

35

2 The Low-Level Segmentation Problem

same feature. Then the probabilistic rand index of a test segmentation Stest relative to a
set {SGT} of ground truth segmentations is de�ned as

PR (Stest, {SGT}) =
1(
N
2

) ∑
i,j>i

[
p
cij
ij (1− pij)1−cij

]

In order to be comparable across images, this index has to be normalized. Thus, the NPR
index is de�ned as

NPR =
PR− E [PR]
1− E [PR]

where E [PR] is the expectation of the probabilistic rand index across the entire set of test
images. NPR values above zero indicate that an algorithm performs better than chance.
[Unnikrishnan et al. 07] report very promising results for this performance measure on
the Berkeley Segmentation Dataset (cf. section 2.2.2.3 below). Further details and an
algorithm for e�cient computation of the NPR index can be found in that paper.

2.2.2 Ground-Truth De�nition and Matching

The comparison methods described in the previous section critically depend on two re-
quirements: (i) We need realistic digital images together with the associated ground-truth
partition. (ii) We must be able to �nd best matches between the cells of the ground-truth
partition and its reconstruction. These are very di�cult problems, and no completely
satisfying solutions exist so far. Three basic approaches can be distinguished for ground-
truth de�nition:

Simulation of the camera: An arti�cial geometric image is de�ned in the continuous
domain, e.g. as a polygonal plane partition with constant intensities fi in every
region ri. A digital image is then created computationally, by applying a suitable
image acquisition model to the geometric image. This method yields very accurate
correspondences between geometric and digital images. It can make good predic-
tions of real algorithm behavior when the model matches the real situation. Un-
fortunately, this is often not the case. Test images are frequently lacking geometric
con�gurations which are notoriously di�cult to analyze, for example small or nar-
row regions, complex junctions, contrast inversions, occlusion, or non-constant fi.
The simulated digitization process often employs unrealistic camera models. There-
fore, the simulation approach earned a reputation of making unreliable performance
predictions.

Better simulated images can in principle be obtained by ray tracing of a geometric
scene model. However, this technique may not be as realistic as necessary because
existing ray tracing algorithms approximate real image acquisition only to the point
where the results appear convincing for a human observer, and will take arbitrary
shortcuts when humans cannot see the di�erence. Further research is necessary to
turn ray tracing into a valid simulation tool for the evaluation of image segmenta-
tion algorithms.

36

2.2 Measures of Success

Manual ground-truth: Lack of realism can be avoided when actual camera images are
used instead of simulated ones. This poses the problem of how to �nd the origi-
nal geometric image. Marking the ground-truth partition manually is still the best
and most common method. However, even when experts are performing the man-
ual segmentation there is considerable disagreement: Exactly where is the correct
boundary? Does a particular boundary belong to the ground truth or not? One
reason is the subjectivity of human judgments, which should be reduced by creat-
ing �consensus ground-truth� from the responses of many uncorrelated observers.
Recently, this approach was extended to a set of algorithms whose errors are un-
correlated [Yitzhaky & Peli 03]. Automatic consensus ground-truth, while still in
its infancy, may eventually solve the subjectivity problem, and will provide much
larger test image collections than are possible with human labor.

Another factor might be even more important for the success of manual ground-
truthing: the human experts are working on the same digital image as the segmen-
tation algorithm to be tested. This contradicts our requirement that ground-truth
must be de�ned in the geometric image, i.e. at in�nite resolution. Although this
is impossible, it can be approximated: the ground-truth should be de�ned at a
considerably higher resolution than the digital image to be processed. This can be
achieved in two ways: either one takes two images of the same scene at di�erent res-
olution (this requires a powerful registration algorithm to align the ground-truth
with the low-res image), or one creates the low-res image from the high-res one
by means of a subsampling procedure which realistically models a digital camera
(similar to the simulation approach).

Images of test objects: De�nition of the geometric image can be simpli�ed by using 3-
dimensional test objects with known properties (in some contexts, e.g. medicine, the
objects are called �phantoms�). These objects are then imaged with real cameras.
Common object types include resolution test charts for 2-D imaging, or custom-
built models of human organs for 3-D imaging (e.g. computer tomography). The
test objects must possess certain properties which can be easily veri�ed in the seg-
mentation result, in spite of possible distortions during projection and digitization,
e.g. the number and neighborhood of connected regions, or collinearity, parallelity,
intersection, length ratios and angles between edges. It is also possible to measure
these properties in the 3-dimensional world by an independent measurement modal-
ity, e.g. traditional geodesy of photogrammetry. However, it is di�cult to create
large collections of test objects and scenes, and they often lack the complexity of
real scenes. Their main purpose is the veri�cation of simulations � when the re-
sults match, simulation can be used to perform much larger test series with equally
reliable results.

2.2.2.1 Generated Test Images

Let us �rst look at generated test images which simulate the process of image acqui-
sition in the computer. Arti�cially created images have been used for edge detector

37

2 The Low-Level Segmentation Problem

Figure 2.10: Left: Popular test image for edge and corner detectors, from [Smith & Brady 97].
However, it was directly sampled from the geometric image and lacks a simulated PSF. Note the
staircasing artifacts at slanted edges. Right: Reproduction of the same test image with Gaussian
PSF at σ = 0.5 and σ = 0.85 respectively.

evaluation since its beginnings, and are also frequently applied in testing corner de-
tector performance. Figure 2.10 left shows a popular example that �rst appeared in
[Smith & Brady 97]. It presents a reasonable collection of edge, corner, and junction fea-
tures for a quick overview of algorithm performance, although the number of di�erent
angles is quite limited. Since the distance between neighboring features is not very big, it
can also be used to study if and when the responses of nearby features start to interfere
with each other. However, in anticipation of our detailed discussion in chapter 3 we can
already state that results on this test image will not realistically predict performance on
real images, because the simulation lacks a realistic camera model: the geometric image
must be smoothed by a simulated camera point spread function (PSF) before sampling.
Since many edges are aligned with the coordinate axes, this is perhaps not readily visible,
but note the strong staircasing artifacts at slanted edges.

A straightforward method avoiding these artifacts is to render the test image at a much
higher resolution (we use 8-fold oversampling), then smooth with a suitably scaled PSF
�lter, and �nally downsample to the desired resolution. We are showing in section 3.2.3
that Gaussian �lters are reasonable approximations of the PSF of real digital cameras.
Figure 2.10 right depicts reproductions of the same test image with Gaussian PSFs at
σ = 0.5 and σ = 0.85. At the latter value, the resulting image can be considered as
e�ectively band-limited (cf. section 3.2) and artifact-free. The former value represents a
typical PSF of real cameras, where some aliasing is tolerated (note the residual staircasing
at slanted edges) for the sake of improved subjective image sharpness. It goes without
saying that �ltering of �gure 2.10 left after sampling will not make the simulation any
more realistic.

38

2.2 Measures of Success

The advantage of the oversampling-smoothing-downsampling technique is that it can
be applied to arbitrary input images. However, applying a digital �lter to an oversampled
image is still an approximation of what's really going on in the camera. It would be prefer-
able to compute test images by exact numerical integration of the analytic convolution
integrals PSF ?f (where f is the test image at in�nite resolution and without blurring).
This is actually possible in case of test images containing a single corner or junction, and
corresponding models have been proposed by [Rohr 92, Deriche & Giraudon 93]. Assum-
ing constant gray levels within the adjacent regions, a junction with arbitrary degree and
arbitrary angles can be constructed from a suitable superposition of simple corners. A
corner whose apex is at the coordinate origin, one arm is parallel to the x-axis, and the
other encloses an angle α with the x-axis can be written as:

cα(x, y) =

{
Θ (tan(α)x− y) Θ(y) if α 6= ±π

2

Θ (x) Θ(y) otherwise

where Θ denotes the unit step function. The convolution of such a corner with a Gaussian
PSF at scale σPSF can be expressed as

fα,σPSF(x, y) = (2.2)
ΦσPSF(x) ΦσPSF(y)−

∫ x
ξ=−∞ gσPSF(x) ΦσPSF (y − tan(α) (x− ξ)) dξ if α 6= ±π

2

ΦσPSF(x) ΦσPSF(y) otherwise

where gσPSF(.) and ΦσPSF(.) denote the Gaussian and its integral at scale σPSF:

gσ(x) =
1√
2πσ

e−
x2

2σ2

Φσ(x) =
∫ x

−∞
gσ(x′) dx′ =

1
2

(
1 + erf

(
x√
2σ

))
When the corner is formed by edges at two arbitrary angles α1, α2 (α1 < α2) and the
enclosed region has intensity v, we get

v (fα2,σPSF − fα1,σPSF)

An arbitrary junction (with arbitrary many segments, arbitrary edge angles and intensi-
ties) can be composed by adding the constituting corner segments:

f =
∑
k

vk
(
fαk+1,σPSF − fαk,σPSF

)
(2.3)

In order to create example junctions quickly, we pre-computed the integrals (2.2) with
α running from 0◦ to 360◦ in increments of 15◦, and with an image size of 401 × 401
at σPSF = 10. Arbitrary junctions are computed as weighted sums of the appropriate
corners, followed by subsampling to the desired resolution. This subsampling does not

39

2 The Low-Level Segmentation Problem

Figure 2.11: Example junctions generated by means of (2.3) for σPSF = 1.

require additional smoothing because this was already included in the numeric solution
of (2.2). In most experiments we use σPSF = 1, so that we have to subsample 10-fold. In
addition, sub-pixel junction locations with 0.1 pixel shifts can be simulated by translating
the upper-left image corner within a 10 × 10 window before downsampling. Since all
pixel values have been computed by direct numerical evaluation of the analytic model,
approximation errors are avoided up to the numeric precision of the integration routine.
Figure 2.11 shows example test images representative of the ones we are using in this
work.
Since the ground-truth of simulated images is usually relatively simple (a few geometric

objects represented by polygons and elliptic arcs), matching of the resulting segmenta-
tions against the original plane partition is relatively straightforward. We assume that
the segmentation consists of regions, arcs, and vertices. Then we compute the asymmetric
Hausdor� distance of every arc âi in the segmentation to the ground-truth boundary B

d (âi, B) = max
q∈âi

d(q,B)

where d(q,B) = minb∈B d(q, b) is the distance from point q to set B, and d(q, b) is the
Euclidean distance between points. The points of âi will usually be the edgels representing
the arc. Then we consider all âi as successful matches, when d (âi, B) is below a threshold.
This simple heuristic works well for arti�cial test images because false positive arcs almost
always contain at least one point that is su�ciently far away from the true boundary to
be rejected by the threshold.

2.2.2.2 Test Objects and Scenes

Baker and Nayar created simple test objects and used them to create images very similar
to the generated test images described in the previous section [Baker & Nayar 99]. They
used accurately manufactured cuboids and cylinders as phantom objects. Sequences of
several hundred images were taken from these objects by a robot that automatically
varied object pose and illumination. Due to the properties of perspective projection,
straight lines in 3D remain straight lines in 2D, and circles (the cylinders' bottoms)
become ellipses. The image series is publicly available4, and �gure 2.12 depicts three

4http://www1.cs.columbia.edu/CAVE/

40

http://www1.cs.columbia.edu/CAVE/

2.2 Measures of Success

Figure 2.12: Images benchmark2-sn7 (left), benchmark5-t8 (center), and benchmark7-a2 (right)
from [Baker & Nayar 99], with consensus ground truth according to algorithm 2.1 shown in red.
Edge detectors used for ground truth estimation: subpixel watershed algorithm on the Gaus-
sian gradient magnitude and on the structure tensor trace, Canny algorithm with spline-based
subpixel correction, and Haralick algorithm with subpixel-accurate zero-crossing detection. All
operators were applied with σ�lter = 2.

example images. In addition to using a real camera, these images have natural shading
gradients rather than constant gray-value within each region. However, the gray-level
quantization is somewhat coarse (only about 30 to 60 gray levels), and noise seems to be
correlated between horizontally neighboring pixels.

Since the ground-truth for these images is not directly available, [Baker & Nayar 99]
propose to compare algorithms by how well they reproduce the known invariant of
each image. They assume that every algorithm returns edgels which are points sup-
posedly lying on the desired edge and having the correct tangent direction θ. Then
it is measured how well these edgels align on a straight line or ellipse, or whether
they de�ne a common point of intersection. Predicates measuring these properties are
called global measures of coherence. As an example, we explain GMC1, a predicate
that measures edgel collinearity. Let ei = (xi, yi, θi, ci) be the coordinates, angle, and
con�dence of edgel i, and assume that all edgels returned by a given algorithm on a
given image are sorted by decreasing con�dence. Each edgel de�nes a projective line
λi = (l1,i = − sin θi, l2,i = cos θi, l3,i = xi sin θi − yi cos θi). Then GMC1 is de�ned as

GMC1 (n) =
1

En(x)En(y)

(
(En(x))2 V arn (l1) + (En(y))2 V arn (l2) + V arn (l3)

)
where En(.) and V arn(.) denote the expectation and variance of a quantity over the
�rst n edgels in the sorted list. The resulting functions GMC1(n) are averaged over many
images. To compare two detectors j and k, the relative measure of coherence is computed:

RGMCj,k1 (n) =
GMCj1(n)−GMCk1(n)

GMCj1(n) + GMCk1(n)

This measure is always in the range [−1, 1], and positive values indicate that algorithm
j is superior to algorithm k. Unfortunately, the GMC approach has a number of disad-
vantages:

41

2 The Low-Level Segmentation Problem

• The GMC approach implicitly assumes that the edgel density along an edge is
constant for all algorithms. In [Baker & Nayar 99], this is ensured by comparing
only algorithms which detect at most one edgel per pixel, but this doesn't work for
the algorithms we are analyzing in this work. For example, the sub-pixel watershed
algorithm (section 5.1.2) creates edgels whose spacing along the edge is only about
0.1 pixel. Then, �choosing the n strongest edgels� means very di�erent things for
di�erent algorithms, and computation of RGMC is meaningless.

• The proposed formulas for computing edgel properties such as collinearity and com-
mon point of intersection are not optimal. Points far from the coordinate origin may
have stronger in�uence, measurement errors in the edgel parameters are not con-
sidered, and results may be unstable (especially the ones for parallel edges and edge
intersection). Improved estimation algorithms for these properties can be found in
[Utcke 06], and the GMC approach can in principle be modi�ed accordingly.

• The distinction between geometric and topological errors is only implicit: the
strongest edgels are usually close to the true edge, so that GMC1 is dominated
by geometric errors for small n. When all �good� edgels are used up, false positives
will increasingly in�uence the GMC values. We would rather like clear distinctions
between the error classes, and �gures of merit should respect the distinction.

We do not use the GMC approach for these reasons. Instead, we estimate the ground-
truth in each image by a technique inspired by [Yitzhaky & Peli 03] called consensus
ground truth. Since we know the number and type of features (edges or ellipses) in each
test image, this approach works very well here:

Algorithm 2.1: Consensus ground truth

Input: Test image containing a number of objects bounded by a known number of straight
lines or ellipses.

1. Compute edgels with a number of di�erent algorithms and take the union of the n
strongest edgels from every algorithm.

2. Perform a robust �t (using, for example, the RANSACmethod [Fischler & Bolles 81])
of a straight line or an ellipse.

3. Perform a least-squares �t using only the inliers determined in step 2.

4. If there are several features in the image, remove the inliers from the edgel set, and
goto step 2.

The edge detectors used in consensus ground-truthing should have high accuracy and
uncorrelated errors. According to our �ndings later in this work, the following four detec-
tors are the most suitable: the sub-pixel watershed algorithm (section 5.1.2) on the basis
of both the Gaussian gradient magnitude and the structure tensor trace, the sub-pixel

42

2.2 Measures of Success

version of Haralick's second derivative detector (section 5.1.1), and Canny's algorithm
with sub-pixel correction (section 5.2). The ground-truth we computed by means of this
method for the Baker/Nayar images is shown in red in �gure 2.12. Subsequent edge
detector evaluation is done in the same way as with simulated images.

2.2.2.3 Manual Ground Truth

The most common method for ground-truth de�nition in natural images is manual la-
beling by a human or a group of humans. This has the advantage that image inter-
pretation ambiguities are resolved by the superior human visual system. Since manual
labeling is expensive (especially when one attempts to collect many images in order to
improve statistical reliability) these databases are rare. One of the largest and most pop-
ular is �Berkeley Segmentation Dataset� developed by Malik's group and described in
[Martin et al. 01]. Its public version comprises 300 images with segmentations by about
5 to 7 subjects each5. This data set is of great help in the evaluation of segmentation
algorithms, but it is not optimal in the context of our de�nition of low-level segmentation
(cf. de�nition 2.4) on two reasons:

• Subjects were allowed to judge edge relevance according to subjective criteria. Thus,
individual segmentations di�er signi�cantly from each other. Moreover, subjects
largely employed high-level rules in their decisions, which means that mainly edges
of salient objects have been marked, whereas equally strong edges in the background
or around less important objects are missing, see �gure 2.13. Moreover, there is
signi�cant disagreement between subjects exactly which edges are salient in this
sense. According to our understanding, it is not the task of low-level image analysis
to distinguish between important and unimportant boundaries � this distinction is
performed by later analysis stages. High boundary strength (as measured by low-
level algorithms) and high boundary importance (as labeled by human subjects)
are considerably di�erent concepts. This becomes especially apparent when Malik's
segmentations are used to train classi�ers for low-level boundary strength: there
is high overlap between the positive and negative categories in the training data,
resulting in an unnecessarily high error rate of the classi�cation [Boetius 06].

• The manual segmentations are not very accurate in terms of localization. Some
edges are 2 pixels and more to the side of the true edge. When we match accu-
rate edges from low-level segmentation algorithms against inaccurate ground truth
edges, the evaluation will signi�cantly over-estimate the errors of the edge detec-
tors, see �gure 2.14. Very accurate edge detectors are especially su�ering from this
e�ect. In a learning framework, this again leads to signi�cant overlap between the
positive and negative categories [Boetius 06].

Another openly accessible image set with manual ground truth is provided at the Uni-
versity of South Florida6 and described in [Heath et al. 97]. Its outstanding characteristic

5see http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
6see http://figment.csee.usf.edu/edge/roc/ and http://marathon.csee.usf.edu/edge/edge_

detection.html

43

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://figment.csee.usf.edu/edge/roc/
http://marathon.csee.usf.edu/edge/edge_detection.html
http://marathon.csee.usf.edu/edge/edge_detection.html

2 The Low-Level Segmentation Problem

Figure 2.13: Image 187029 from the Berkeley Segmentation Dataset along with manual seg-
mentations by three subjects. Which one should we test segmentation algorithms against? What
about edges in the background region (stones in the wall and pavement) ?

Figure 2.14: Image 113016 from the Berkeley Segmentation Dataset. The distance between the
true edge and the manual segmentation is 3 pixels near the horse's leg (right).

44

2.2 Measures of Success

Figure 2.15: Image 50 (left) from the University of South Florida edge detector evaluation data
set and the corresponding ground truth image (right) with �no edge� (gray), �edge� (black), and
�don't care� (white) labels.

is that the ground truth labeling is three valued: �edge�, �no edge�, and �don't care�, see
�gure 2.15. The �don't care� class accounts for structures which no low-level edge detector
is supposed to handle reliably, such as textures. The detected edgel points are matched
against the edge points in the �edge� class which are not farther away than a distance
d (typically, d = 2 . . . 3 pixels). Matched edge points are counted as true positives, un-
matched points from the ground truth are false positives, and unmatched points from
the detector (including those located in the �no edge� region) are false positives. The
numbers are used to compute the receiver operator characteristic of an edge detector
(cf. previous section).

While the idea of multi-valued ground truth is very interesting, the assignment of image
points to the di�erent classes is still problematic. Consider, for example, the image in
�gure 2.15. The re�ections in the door of the oven are labeled as �no edge�, although they
contain clearly visible edges that many low-level algorithms would certainly detect. In
contrast, the areas close to true edges are marked as �don't care�, and edge detectors which
produce false positives near true edges wouldn't be penalized. Similarly, most �ne detail
(e.g. pieces of small text) is assigned to the �don't care� class, so that experiments can
never identify edge detectors which are particularly good at handling detail. Obviously,
it is very di�cult to achieve agreement upon criteria for correct ground-truth labeling,
even if multiple labels are permitted.

In order to improve the quality of manual ground truth for low-level segmentation, we
believe that two issues need to be considered:

1. Manual segmentation should be based on �rm statements of the goal of the al-
gorithms being tested. �Mark important object boundaries� is too vague in the
context of low-level segmentation. Our de�nition 2.4 is an attempt towards a for-
mal de�nition of correct low-level segmentation results: the boundaries of the ideal
geometric image (all its boundaries) should be recovered.

2. Ground truth de�nition should make use of additional data which is not available
to the algorithms being tested.

45

2 The Low-Level Segmentation Problem

To understand the second statement, recall the original meaning of the term �ground
truth�: It designates measurements taken on the ground in order to verify hypotheses
formulated on the basis of remote sensing data. The point of this kind of ground truth
is that veri�cation measurements are taken independently of the remote sensing data.
In contrast, the manual ground truth for image analysis algorithms is always de�ned
on the very image that is also the input of the algorithms to be tested. Since human
subjects are not given additional independent data (other than their prior knowledge),
the ground truth may not be as accurate as it should be. However, it is very di�cult
to obtain reliable segmentation ground truth from other measurement modalities (e.g.
geodesic measurements) because it is impossible to include important image acquisition
phenomena such as occlusion and shadows.
Therefore, we propose a compromise method: manual ground truth should be de�ned

in a high-resolution image, whereas image analysis is performed at lower resolutions.
The original high-resolution image can be transformed into the lower resolution one by a
realistic simulated camera (including point spread function and noise). The ground truth
data has to be transformed as well, and this naturally leads to multi-valued ground truth
labeling: Certain boundaries should still be visible at the low resolution, and these form
the �edge� class. Likewise, certain homogeneous regions should remain in the �no edge�
class. The same may be true for weakly textured regions: at low resolution the texture
may have been smoothed away, so that these regions will also belong to the �no edge�. The
same applies to weak edges � they may or may not be detectable at low resolution and
should be assigned to a �may be edge� class. In other cases, objects close to each other
(e.g. individual letters) may get merged into one (a text block), and the ground truth
boundary should be adapted accordingly. Yet other boundaries may be too strong to be
smoothed away, but no longer be reliably resolvable at the low resolution, so these might
be assigned to a �don't care� class or perhaps to a �texture� class. At the same time, we
also get subpixel accurate boundary locations, even if the ground truth was only marked
with pixel accuracy. Unfortunately, the de�nition of an algorithm that transforms the
ground truth from high to low resolution is an open problem. However, we are convinced
that this transition is in principle possible, for example by means of (α, β)-reconstruction
(algorithm 5.12).

46

3 Analysis of the Image Acquisition

Process

Abstract

The ideal geometric image is noise-free and has in�nite resolution, whereas the real dig-
ital image is distorted by noise and blurring, and contains only a �nite amount of data.
The relationship between ideal and real images is a key characteristic of any image ac-
quisition device, and it is of fundamental importance to understand this relationship
when one wants to reconstruct features of the ideal image from the real one. In this
chapter, we analyze how real camera systems blur the ideal image (by their point spread
function), whether this blurring together with the sensor resolution conforms to Shan-
non's sampling theorem, and how much the result is degraded by noise. On the basis of
this analysis, we show that spline interpolation and noise normalization are important
practical preprocessing steps that reduce the di�erence between the real and ideal images.

3.1 The Linear Model of the Image Acquisition Process

Image analysis can only produce reliable results if it is based on a realistic model of
the image acquisition process. The model has to describe how information is altered
by the components of an imaging device, and how the information in the image is
related to the real world. The model then serves as a starting point for determining
suitable image analysis methods. To yield relevant results, the model must describe
the behavior of actual image acquisition devices with su�cient realism. On the other
hand, it must remain tractable to be of any practical value. Currently the best com-
promise between realism and tractability is achieved by �rst introducing the ideal geo-
metric image (see chapter 2), and then treating cameras as linear shift-invariant sys-
tems that transform the ideal image into the actual digital image by a convolution
operation. This approach was pioneered by [Du�eux 46, Schade 48]. A good motiva-
tion of this approach from a physics perspective can be found in [Goodman 05], discus-
sions in the speci�c context of image analysis and �delity are, for example, given by
[Granlund & Knutsson 95, Jähne 97, Park & Rahman 99, Förstner 99]. In other words,
image acquisition is split into three steps:

• The 3D scene is �rst projected onto an idealized image plane by a perfect geometric
projection, e.g. a perspective or �sh-eye projection. The resulting ideal geometric
image is continuous and has in�nite resolution, but it is not directly observable.

47

3 Analysis of the Image Acquisition Process

• Under the in�uence of real optics and real sensors, the ideal image is blurred by
the system transfer function of the imaging device. The resulting image is still
continuous and will be referred to as the analog camera image.

• The analog camera image is sampled and quantized by the camera sensor. Discreti-
sation also introduces noise into the image. The resulting image is the digital image
we are actually going to analyze.

Figure 3.1 illustrates this image acquisition model. As far as low-level image analysis is
concerned, the ideal geometric image fgeometric(x, y) is considered as �xed, but unknown.
Blurring of the geometric image by the optics of the camera can be described as a
convolution with the optical point spread function (PSF):

foptical(x, y) = PSFoptical(x, y) ? fgeometric(x, y)

This is an approximation, albeit a good one: The amount of blurring actually increases
slightly towards the image periphery in real optical systems, and it varies with focus
(i.e. object distance) and light wavelength (chromatic aberration). The error of the ap-
proximation is small when the lens is color corrected and the depth of sharpness covers
the objects of interest entirely. We assume that this is the case throughout this work
since the theoretical treatment of those e�ects is very complicated.
The optically blurred image is then digitized by the camera's receptor array. Photons

are not only absorbed at the exact location of the sampling points, but in a certain area
around them. The sensitivity pro�le of each receptor can be modeled by another PSF.
The analog camera image f̆(x, y) is the result of convolving the optically blurred image
with the sensor PSF:

f̆(x, y) = PSFsensor(x, y) ? foptical(x, y)

The e�ects of both PSFs are conveniently combined into a single system PSF:

PSFsystem(x, y) = PSFsensor(x, y) ? PSFoptical(x, y)

f̆(x, y) = PSFsystem(x, y) ? fgeometric(x, y)

In some cameras, an additional optical low-pass �lter is placed between the lens and
the sensor plane. Its PSF can be convolved into the system PSF in the same way. The
Fourier transform of the PSF is called the system transfer function, and its magnitude is
the magnitude transfer function (MTF).
Spatial discretization is mathematically modeled by multiplication with a superposition

of delta functions located at the sampling points. In case of a square grid with sampling
distance h, we get

f̂ (x, y) =
∑
i,j

δ (x− h i, y − h j) f̆(h i, l j)

f̂kl = f̆(h k, h l)

48

3.1 The Linear Model of the Image Acquisition Process

Figure 3.1: The image acquisition model employed in this work (compare �gure 2.1).

49

3 Analysis of the Image Acquisition Process

Finally, noise n̂kl is added to the sampled image, and the colors or intensities are quantized

fkl = bf̂kl + n̂klc

fkl is the digital image we actually observe. The round-o� error of quantization is best
handled as just another source of noise. It is uniformly distributed between −1

2 and 1
2 and

has thus a variance of 1
12 gray levels. The number of quantization levels should be chosen

so that other noise sources have signi�cantly larger variance (otherwise, the camera's
capabilities would be wasted). Since the sensor noise standard deviation of modern cam-
eras usually exceeds one gray level, this is generally ful�lled. However, assuming additive
noise is clearly a simpli�cation, because noise can actually depend on the data (e.g. on
the local intensity). We will discuss this problem in section 3.4.
The point of a linear camera model is that the analog camera image can be exactly

reconstructed from the sampled image provided the former is band-limited:

F [f̆](u, v) = 0 if |u| < νN and |v| < νN

where νn = 1
2h is the Nyquist frequency of a grid with sampling distance h1. This is the

result of Shannon's famous sampling theorem (see for example [Poularikas 96, section
1.6]). Due to noise and �nite image size, the reconstruction can never be perfect in
practice, but it will be very accurate when noise levels are low. The sampling theorem
can be best understood in the Fourier domain, where spatial discretization corresponds
to a convolution of the spectrum of the analog image f̆ with a sum of delta functions:

F [f̂] = F [f̆] ?

∑
i,j

δ

(
u− i

h
, v − j

h

)
The spectrum of f̆ is replicated an in�nite number of times at intervals equal to the
sampling frequency. The square (−νN , νN)2 containing the replication at the origin is
called the sampling pass-band, whereas the other replications are referred to as the sam-
pling side-bands. If F [f̆] is zero beyond the Nyquist frequency, as the sampling theorem
requires, replications do not overlap, and the spectrum of f̆ can be recovered from the
spectrum of f̂ by applying a suitable low-pass �lter (e.g. the ideal interpolator, see section
3.3) which removes all spectrum replications in the sampling side-bands.
It is important that the analog camera image is indeed band-limited, because aliasing

artifacts cannot be prevented otherwise. These artifacts are very undesirable, because

1In the context of optical systems, it is most convenient to de�ne the Fourier transform as

F (u, v) = F [f(x, y)] =

∫∫
f(x, y) e−2π i(xu+y v)dx dy

and its inverse as

f(x, y) = F−1[F (u, v)] =

∫∫
F (u, v) e2π i(ux+v y)du dv

Under these de�nitions, length and spatial frequency are direct inverses of each other, without the
necessity to adjust units.

50

3.2 The Linear Model in Digital Cameras and the Human Eye

they cannot in general be distinguished from genuine features of the depicted scene. Er-
roneous feature measurements arising from aliasing can only be removed by additional
assumptions about the image content, making image interpretation more di�cult and
less general. Since the geometric image cannot be band-limited due to its discontinuities,
blurring with a band-limited PSF is necessary to turn an otherwise unpredictable sam-
pling operation into a well-de�ned and reversible process. While this blurring deteriorates
the geometric image, it is nevertheless a necessary prerequisite for successful image anal-
ysis. In the next two sections, we will look at how well this requirement is ful�lled in real
optical systems and how the analog image can be reconstructed in practice.

3.2 The Linear Model in Digital Cameras and the Human

Eye

3.2.1 The Di�raction Limited System

According to our linear image acquisition model, the analog camera image must be band-
limited so that reconstruction from a sampled representation becomes possible. To justify
this model, we investigate how well the underlying assumptions are ful�lled in real optical
systems. It turns out that any real optical system is indeed band-limited. Consider a
perfect lens. It is characterized by the property that all rays from a single object point
are perfectly focused on a single image point. But even if a lens is extremely close to
perfection, it must have a �nite size. A lens of �nite size is modeled by combining the
perfect lens model with an aperture that is placed in the image-side principle plane of the
lens. The light wave emitted at a given object point leaves the lens as a perfectly spherical
wave which converges exactly onto the geometric image point. But as this spherical wave
passes through the lens aperture, it is di�racted. The resulting di�raction pattern on the
image plane at distance b behind the aperture is determined by the Fourier transform of
the aperture shape [Goodman 05, Jähne 97]. In case of a circular aperture with diameter
d we get (in polar coordinates)

p(r) = I0

J1

(
π r
f# λ

)
r

where J1 is the �rst-order modi�ed Bessel function, f# = b/d is the relative aperture
(also known as the f-stop number), and λ is the wavelength and I0 the amplitude of
the wave function before di�raction. In case of incoherent illumination, the intensity of
the perceived di�raction image is proportional to the square of the di�raction pattern
amplitude. The resulting function is called Airy function:

I(r) ∼ p(r)2 ∼ airy(r) =
J1

(
πr
f# λ

)2

πr2

The Airy function can be interpreted as the point spread function of a circular aperture,
provided that it is normalized to unit integral over its domain R2 in order to preserve

51

3 Analysis of the Image Acquisition Process

signal energy. It consists of a central, Gaussian-like peak that contains over 80% of
the energy, surrounded by a series of dark and light rings. Its Fourier transform can
be interpreted as the optical transfer function (OTF) of the pinhole camera with �nite
aperture size. It is equal to the convolution of the d-disk with itself and reads

Pdi�raction(ν, ν0) =

2
π

(
cos−1

(
ν
ν0

)
− ν

ν0

√
1−

(
ν
ν0

)2
)

if ν ≤ ν0

0 otherwise

(3.1)

where ν0 = 1
f# λ (in cycles per µm) or ν0 = π d

180◦ λ (in cycles per degree, with aperture

diameter d) is the band-limit of the system. This OTF s depicted in �gures 3.3 and 3.6.
Since this OTF cannot be exceeded by any real optical system it is known as the OTF
of the ideal di�raction-limited system2. The band limit depends on the wavelength of the
light. When the formula is applied to white light, the average wave length of the visible
spectrum λ = 0.55µm is usually used. Two important characteristics of optical systems
can be directly derived from the ideal OTF:

1. The Rayleigh criterion is an estimate of the optical resolution. It states that the
images of two point sources can be distinguished when the peak of the Airy pattern
of one source is located in the �rst dark ring of the other. This means that the dis-
tance between the two peaks must be rR = 1.22 f#λ, and the height of the trough
between the peaks is 74% of the peaks' height. This corresponds to a Michelson
contrast

contrast =
Ipeak − Itrough
Ipeak + Itrough

of 15%. This old rule of thumb is still widely used for comparing the resolution
of two optical systems, although more recent measurements have shown that it
is somewhat pessimistic: New estimates of the minimal required contrast for a
pattern to be distinguishable are between 3% and 5% [Williams 85b]. In terms of
the Rayleigh criterion, this means that two spots remain discernible at 0.86 rR, or
that their intensities may di�er by 50% when the distance is rR.

2. The Strehl ratio estimates the perceived sharpness of an image. It is the ratio
between the areas under the actual OTF of the system and under the ideal OTF of
the di�raction limited system. According to Fourier theory, this is equivalent to the
ratio of the center heights of the corresponding point spread functions. The higher
the Strehl ratio (i.e. the better it approaches unity), the closer is the real system
to the di�raction limited system.

A discrete optical system would perfectly conform to Shannon's sampling theorem when
the sampling frequency were at least twice the limit frequency of the di�raction limited

2The optimality of the di�raction limited system stems from the fact that the OTF of any system is the
product of the di�raction limited OTF with the OTFs of all additional e�ects. The OTFs of passive
optical elements can never have attenuation above unity, so the product cannot exceed the di�raction
limited OTF. See for example [Goodman 05] for a more detailed discussion.

52

3.2 The Linear Model in Digital Cameras and the Human Eye

system νsampling >
2

f# λ . This corresponds to a minimal sample spacing of h < 0.41 rR,
e.g. slightly less than what follows from the updated Rayleigh criterion. However, sam-
pling at this rate would be overkill in most practical situations, because the ideal OTF
is never achieved exactly. Instead, one chooses the sampling density according to the
e�ective band-width of the real optical system.

To get a more formal understanding of the concept of an e�ective band-width, we
follow the proposal of [Park & Rahman 99, Rahman & Jobson 03] to treat aliasing as
just another kind of noise, albeit a scene-dependent one. Recall that the spectrum before
sampling is the product of the spectrum of the ideal geometric image and the system
transfer function

F̆ (ν1, ν2) = Fg(ν1, ν2)PMTF(ν1, ν2)

The spectrum F̂ after sampling is the superposition of in�nitely many replications of the
spectrum F̆ plus sensor noise:

F̂ (ν1, ν2) =
∞∑

k=−∞

∞∑
l=−∞

F̆ (ν1 − k, ν2 − l) + F̂noise(ν1, ν2)

where the sensor noise F̂noise is band-limited within
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
. The sum can be

split up into the contribution from the sampling pass-band F̂0 (i.e. the replication at
the origin), and the aliasing contributions from the sampling side-bands F̂alias (all other
replications):

F̂ (ν1, ν2) = F̂0(ν1, ν2) + F̂alias(ν1, ν2) + F̂noise(ν1, ν2)

with

F̂0(ν1, ν2) = F̆ (ν1, ν2)

F̂alias(ν1, ν2) =
∑

k,l 6=(0,0)

F̆ (ν1 − k, ν2 − l) (3.2)

Note that the aliasing noise F̂alias is additive. The spectrum of the reconstructed signal
F̃ is obtained by multiplying F̂ with the transfer function of the ideal interpolator, i.e.
the box function over the interval

[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
. If the system MTF is band-limited

within
[
−1

2 ,
1
2

]
×
[
−1

2 ,
1
2

]
, and the noise is zero, the reconstructed spectrum F̃ideal will be

equal to the spectrum F̆ before sampling. Otherwise, the reconstruction contains errors
that can be quanti�ed. According to [Huck et al. 99, Rahman & Jobson 03], a suitable
�gure of merit is the mutual information between the actual spectrum and the ideal
spectrum

H = E
[
F̃
]
− E

[
F̃ |F̃ideal

]
where E

[
F̃
]
is the entropy of the reconstructed spectrum, and E

[
F̃ |F̃ideal

]
is the con-

ditional entropy of the reconstructed spectrum given the ideal spectrum. The mutual
information is maximized if the second term is zero, i.e. if the actual and ideal spectra

53

3 Analysis of the Image Acquisition Process

are identical. Under realistic assumptions discussed in [Huck et al. 99], this is equal to
the entropy of the reconstructed signal minus the entropy of aliasing and noise

H = E
[
F̃
]
− E

[
F̃alias + F̃noise

]
which can be expressed as

H =
1
2

1
2∫

− 1
2

1
2∫
− 1

2

log2

1 +

∣∣∣F̂0(ν1, ν2)
∣∣∣2∣∣∣F̂alias(ν1, ν2)

∣∣∣2 +
∣∣∣F̂noise(ν1, ν2)

∣∣∣2
 dν1 dν2

To simplify the expression further, it is assumed that the autocorrelation of the geometric
image is proportional to e−r/µ, where r is the distance from the origin, and µ is the mean
spatial detail, i.e. the average size of image regions relative to the sampling distance of the
camera. This autocorrelation describes natural images well because it re�ects their self-
similarity : the general form of the autocorrelation is independent of the viewing distance,
and only the parameter µ changes. Then the power spectrum of the ideal geometric image
becomes

|Fg(ν1, ν2)|2 =
K2(

1 + (2πµ)2 (ν2
1 + ν2

2

))3/2
(3.3)

The noise shall be white with zero mean and standard deviation σN. The noise power
spectrum equals σ2

N in the sampling passband, and zero elsewhere. The ratio K/σN is
the signal-to-noise ratio. Furthermore, it is assumed that the spectrum replications due
to sampling are uncorrelated, so that the contributions of mixed terms in the square of
the aliasing spectrum vanish. Then we get

H =
1
2

1
2∫

− 1
2

1
2∫
− 1

2

log2

(
1 +

|Fg(ν1, ν2)PMTF(ν1, ν2)|2∑
k,l 6=(0,0) |Fg(ν1 − k, ν2 − l)PMTF(ν1 − k, ν2 − l)|2 + σ2

N

)
dν1 dν2

We can analyze how the information content H of the reconstructed image changes when
the spatial detail µ, the signal-to-noise ratio and the MTF are varied. We compare three
MTFs � the di�raction limited MTF, a Gaussian and an exponential MTF � and express
H as a function of the MTF's spatial scale (in case of the di�raction limited MTF, this
is the ratio between the grid's Nyquist frequency and the MTF's cuto�). Computation
of H with di�erent parameters con�rms, �rst of all, a number of obvious facts: (i) The
information content of the digital image decreases with increasing noise. (ii) If there were
no aliasing, the information content would monotonically decrease with increasing MTF
scale, i.e. with increasing smoothing. (iii) When the scene doesn't contain much detail,
i.e. µ is big, the in�uence of the MTF is small � it only attenuates frequencies that are
not present in the data anyway.
Interesting results are obtained when the scene indeed contains signi�cant detail, i.e.

when µ becomes smaller than approximately 3. Then the information content does not

54

3.2 The Linear Model in Digital Cameras and the Human Eye

0.5 1 1.5 2

1

2

3

4

m
ut

ua
l i

nf
or

m
at

io
n

Nyquist frequency
filter cutoff freq.

0.5 1 1.5 2

1

2

3

4

m
ut

ua
l i

nf
or

m
at

io
n SNR = 2

SNR = 20
SNR = 200

filter scale

0.5 1 1.5 2

0.5

1

1.5

2

2.5

m
ut

ua
l i

nf
or

m
at

io
n

 filter scale

Figure 3.2: The mutual information between the sampled and original images as a function
of the �lter size σ (SNR = 2: solid, SNR = 20: dotted, SNR = 200: dashed; µ = 1: black, µ =
0.1: gray). Left: di�raction limited MTF, center: Gaussian MTF PMTF(ν1, ν2) = e−2π2σ2(ν2

1+ν2
2);

right: exponential MTF PMTF(ν1, ν2) = e−2π σ
√
ν2
1+ν2

2 .

only decrease for large scale MTFs (excessive blur), but also for very small ones (strong
aliasing), see �gure 3.2. A clear optimum exists between these extremes: the information
content is maximized by the MTF which optimally balances these two sources of infor-
mation loss3. The precise scale of the optimum depends on the signal-to-noise ratio and
the mean spatial detail. A very detailed geometric image requires more smoothing to
suppress aliasing. But when the noise standard deviation σN increases, more aliasing can
be tolerated because it will be masked by the statistical noise. The mutual information
at the optimum is always higher for the Gaussian MTF. Very similar results are reported
in [Park & Rahman 99], who use the image �delity

F = 1− E
[∣∣∣F̆ − F̆ideal∣∣∣2] /E [∣∣∣F̆ideal∣∣∣2]

(where E is the expectation) as another plausible �gure of merit for the comparison
between ideal and real reconstructions.
In digital images with 256 gray-levels, signal-to-noise ratios between 20 and 200 are

quite realistic: typically, the noise standard deviation is at most a few gray-levels, and
the edge contrast a few tens of gray-levels, up to perhaps 200. Under these conditions,
the optimal di�raction limited and Gaussian MTFs have scales between σ ≈ 0.4 and
σ ≈ 0.85, whereas the scale of the optimal exponential lies between σ ≈ 0.3 and σ ≈ 1.1.
The corresponding attenuations at the Nyquist frequency are between 40% and 3% for
either MTF type. Therefore, these MTFs can be considered as e�ectively band-limited
under suitable imaging conditions.
Since the MTF cannot easily be changed for a given lens and sensor, the MTF of a

multi-purpose optical device should be designed to work well under all expected imaging
conditions. To be on the safe side with respect to aliasing, the MTF scale should be
on the upper end of the useful range, so that the attenuation at the Nyquist frequency
becomes approximately 4%. If one allows for some aliasing in order to improve perceived
image sharpness, σ ≈ 0.5 might be used, with an attenuation of only 30% at the Nyquist

3We note in passing that this method can also be used to determine optimal �lter scales for image
pyramid construction.

55

3 Analysis of the Image Acquisition Process

frequency. We will see below that the human eye roughly realizes the �rst possibility
(although with an exponential-like MTF), whereas digital cameras follow the second
strategy.

3.2.2 The Human Eye

By looking at the human visual system, we can gain additional insight into where the
e�ective band limit should be placed in practice. The eye is remarkable in that the
sampling density in the center of the fovea (the area of the retina with highest sensor
density) seems to match exactly the resolution of the optical system of the eye. This can
be concluded from experiments that compare the threshold contrasts for detection vs.
recognition of a grating pattern. In the detection mode, subjects have to signal whether
or not a pattern is present in the stimulus, irrespective of if it is seen correctly or just
as any pattern. In the recognition mode, the subjects must correctly identify the spatial
frequency of the pattern. If subjects were able to detect the presence of a high frequency
pattern without being able to recognizing it correctly, this would suggest that they in
fact perceived a lower frequency Moiré pattern, and not the true stimulus. However, this
has not been observed in experiments: In the fovea, the thresholds for both detection
and recognition are equal, and the highest observable frequency is about 60 cycles per
degree of visual angle [Hirsch & Curcio 89, Thibos et al. 87, Williams & Hofer 03]. The
possibility that Moiré e�ects are somehow �ltered out by neural processes was excluded
by two control experiments: First, when the same experiment is repeated at peripheral
locations in the retina, Moiré patterns can occur, and the recognition threshold is well
below the detection threshold . Second, it is possible to create Moiré patterns in foveal
vision, when high frequency gratings are created directly in the retinal plane (by means
of laser interferometry), so that they are not subjected to the optical blurring of the
cornea and lens [Williams 85a].

These results suggest that the sampling density of the human fovea is indeed just as
high as the e�ective bandwidth of the optical transfer function requires. But exactly what
does this mean? Which attenuation depth must not be exceeded in order to consider an
optical system as e�ectively band-limited? To answer this question, we must compare
measurements of the optical properties and sampling density of the human eye. Up to
until very recently, the foveal cone density could not be measured in-vivo, but only in
anatomical preparations. This is unfortunate because it means we cannot correlate the
optical performance with the sensor density of one and the same person. We must rely on
averages, although there is considerable variation among individuals. The most compre-
hensive measurements of human foveal cone density were conducted by [Curcio et al. 90].
The average center-to-center cone spacing for 18 individuals described in that paper was
hcone = 2.55µm, with a minimum of 1.9µm and a maximum of 3.4µm. Since cones
are, to good approximation, ordered in a hexagonal raster, the corresponding Nyquist
frequency is

νNyquist, human =
1√

3hcone
= 0.226 cycles per µm

To compare this number with other optical systems, we must express it in terms of the

56

3.2 The Linear Model in Digital Cameras and the Human Eye

size of actually observable objects, e.g. as the subtended visual angle on the object side
(in degrees). The conversion factor can be computed as follows: Since the lens is immersed
in �uid, not air, the focal lengths fo on the object side and fi on the image side of the
eye di�er, and the lens equation becomes

fo
bo

+
fi
bi

= 1 (3.4)

where bo and bi are the distances of the object and image from the principle planes of
the cornea/lens system. The magni�cation is given by

Bi
Bo

=
fo
fi

bi
bo

where Bo and Bi are the sizes of the object and its image. If we assume that the object
distance is large with respect to the focal length (i.e. fo � bo), it follows from (3.4) that
bi ≈ fi and we get

Bi = fo
Bo
bo

= fo tanβo

where βo is the visual angle subtended by the object. Note that the image side focal
length drops out of the equation. If we further assume that the object size is much less
than its distance, the tangent is almost equal to the angle (in radians), and we get

βo ≈
Bi
fo

The average object-side focal length of the eye is 16.7 mm. Therefore, the Nyquist fre-
quency of the foveal cone raster becomes

νNyquist, human =
fo√

3hcone

π

180◦
= 66 cycles per degree

This number is slightly higher than the detection and recognition acuity of 60 cycles per
degree according to the measurements described above. It supports the hypothesis that
the eye's optical resolution is matched well to the sensor distance: Frequencies above the
Nyquist frequency are indeed suppressed thanks to optical blurring by the cornea/lens
system and the sensitivity pro�le of the cones. To �nd out how much attenuation is
required in order to suppress aliasing, we must look at measurements of the optical
transfer function of the eye. These measurements cannot be performed by means of
psychological experiments because the observer's response would not only depend on the
eye's optical properties, but also on the neural processing in the retina and the brain4.
We need the transfer function without neural contributions, because aliasing is a purely
physical e�ect that occurs in the process of sampling by discrete receptors, i.e. before
any neural processing can take place.

4Not all publications clearly distinguish the �contrast sensitivity function� (describing the combined ef-
fect of the eye's optics and the brain's neural processing) from the optical transfer function (describing
the optics alone), although these functions di�er considerably.

57

3 Analysis of the Image Acquisition Process

In order to isolate the in�uence of the optical system, an objective, purely optical
measurement strategy is required. Three methods are in common use: the double-pass
method [Campbell & Gubisch 66, Westheimer 86, Artal & Navarro 94], laser interferom-
etry [Campbell & Green 65, Williams et al. 94], and aberrometry [Liang & Williams 97,
Marcos 03]. The latter method is the most involved, but allows to estimate the complete
wave aberration of the eye, i.e. the optical path length as a function of the ray's entry
point into the eye. The optical transfer function (including phase) can be calculated from
the wave aberration data. The other two methods only allow to measure the modulation
transfer function (the magnitude of the OTF), and give 1-dimensional slices or circular
averages of it. In the double-pass method, a point source is projected onto the retina, and
the light that is re�ected out of the eye is imaged. Since the light passes through the eye
twice, the intensity of this image is proportional to the autocorrelation of the PSF, and
its Fourier transform is the square of the MTF. In the interferometric approach, a pair of
coherent laser beams are directed into the eye so that they form an interference pattern
(in the form of a sine wave grating) directly in the foveal plane. The spatial frequency
of the grating depends only on the wave length of the laser light and on the distance
of the two beams as they enter the eye � frequencies up to 200 cycles per degree (well
beyond the eye's Nyquist frequency) are possible. Under normal circumstances, frequen-
cies above 60 cycles per degree would be suppressed by the optical system, but in case
of interferometric stimulation, di�raction and aberrations only cause a phase shift in the
resulting interference pattern. The interference pattern can be used in two ways: First,
one can measure how the (known) contrast of the pattern is attenuated when the pat-
tern is viewed through the eye's optical system from the outside. This gives an objective
measurement of the optical transfer function. Second, one can measure detection thresh-
olds of the brain for the interference patterns resulting from neural processing plus cone
sensitivity alone, independently of the eye's optics.
At present, the best available measurements seem to be those of Williams and his

collaborators [Williams et al. 94, Liang & Williams 97, Williams & Hofer 03]. In a series
of experiments with several subjects, they determined the MTF and OTF as functions
of pupil size, using all three methods mentioned, partly on the same subjects. The most
interesting �ndings with respect to our discussion were

• For pupil sizes at and below 2 mm, the eye's optics are well described by the
model of a di�raction limited system. Interestingly, the band-limit of the di�raction
limited system for a 2 mm pupil (i.e. at a relative aperture f# = 8.35) is 63 cycles
per degree. That is, the eye achieves theoretically optimal performance as long as
the optical band-limit is below the Nyquist frequency of the cone raster.

• As the pupil size increases, the OTF is exceedingly limited by aberrations. The best
balance between di�raction and aberrations, and consequentially the best optical
performance, is achieved at a pupil size of about 3 mm. At larger pupil sizes, the
PSF becomes rather anisotropic. The shape of the PSF varies strongly between
individuals, but is almost mirror symmetric in the two eyes of a single person.

• Interestingly, above 3 mm pupil size, the attenuation depth at 60 cycles per degree

58

3.2 The Linear Model in Digital Cameras and the Human Eye

remains almost constant at 3 to 5%. In other words, aberrations cause just enough
blurring to avoid aliasing, but not more (as this would waste sensor resolution).

For our present discussion, a pupil diameter around 3 mm (f# = 5.6) is of highest interest
because it corresponds to normal viewing conditions, where the eye's performance is
optimal. [Williams et al. 94] found that the following MTF function gives a very good �t
to the data at 3mm pupil diameter:

Poptical,human(ν) = Pdi�raction(ν, ν0)
(

0.3481 + 0.6519 e−0.1212◦ ν
)

(3.5)

where ν0 = 82.7 cycles per degree because they used laser light with a wave length of
633 nm. The attenuation depth of this function at the Nyquist frequency is 3.7%. Their
measurements of the eye MTF using the double-pass method were slightly, but consis-
tently lower: Above ≈ 20 cycles per degree, the double-pass MTF stayed at about 60%
of the interferometric MTF [Williams et al. 94]. The reasons seem to be unclear.
An alternative functional approximation of the PSF on the basis of double-pass mea-

surements at a 3 mm pupil was given by [Westheimer 86]

poptical, human(r) = 0.925 e−2.59|r|1.36 + 0.048 e−2.43|r|1.74

where r is the radial distance in minutes of arc. Although this function is often cited (e.g.
[Beckmann & Legge 02, Cormack 05, Pattanaik et al. 98, Vimal et al. 89, Winkler 99]),
it appears to be wrong, as was pointed out by [Wachtler et al. 96]. They found that the
function was inconsistent with the tabulated raw data reported alongside the formula
and concluded that a numerical error must have been made during the transformation
of the measured line spread data into the desired point spread function. They calculated
a corrected PSF from the original data as

poptical, human(r) = 0.108 e−1.15 r2 + 0.050 e−0.67|r|

(in contrast to [Wachtler et al. 96], we normalized the PSF to have unit integral). The
corresponding MTF is

Poptical, human(ν) = 0.295 e−0.000657 ν2
+

0.705

(1 + 0.00680 ν2)3/2
(3.6)

with ν in cycles per degree. The corrected function is not only a good �t for the measured
double-pass data of [Westheimer 86], but also corresponds to the results of other authors.
For example, it reaches 60% of the interferometric MTF at high frequencies, in accor-
dance to the observations reported by [Williams et al. 94]. The MTFs (3.5) and (3.6)
have almost identical Strehl ratios (38.7% and 38.3%). Figure 3.3 shows these functions
together with the di�raction limited MTF for a 3 mm pupil.
In another series of experiments, [Williams 85a] measured the neural contrast sensitiv-

ity for interferometric gratings created directly in the foveal plane. Frequencies between
10 and 200 cycles per degree were presented to the subjects. At frequencies beyond the
eye's Nyquist frequency, subjects perceived the expected Moiré patterns (instead of the

59

3 Analysis of the Image Acquisition Process

20 40 60 80

0.2

0.4

0.6

0.8

1

diffraction limited

double−pass

interferometric

frequency (cycles/degree)

at
te

nu
at

io
n

Figure 3.3: Functional approximation of the
eye's optical MTF over frequency. Solid: de-
termined by interferometric method (3.5);
dotted: determined by double-pass method
(3.6), dashed: di�raction limited system for
comparison. The Nyquist frequency of the
cone raster is 66 cycles per degree.

actual gratings). These patterns remained detectable up to an actual frequency of 200
cycles per degree, albeit with decreasing contrast. This shows that the absence of Moiré
patterns in normal viewing is indeed a consequence of optical �ltering and not due to
some hypothetical neural mechanism.

To get the total attenuation before sampling, the optical MTF must be multiplied with
the MTF corresponding to the sensitivity pro�le of an individual cone. Any subsequent
�ltering will then occur on sampled data where the fundamental and aliasing energies
can no longer be distinguished. The �rst attempt at an objective measurement of the
cone sensitivity pro�le seems to be [MacLoad et al. 92]. The experimental technique is a
re�nement of the just mentioned investigation of Moiré patterns caused by interferometric
gratings. In this experiment, two high frequency gratings were presented simultaneously.
Since human neural processing includes non-linear processing steps, theory predicts that
the superposition of these gratings should look like a Moiré pattern that arose from a
rotated low-frequency grating. This expected pattern was indeed seen by the subjects.
According to theory, the threshold contrast for its detection is proportional to the square
of the MTF of all linear �ltering steps occurring before the �rst non-linear computation.
The data could be �tted very well to a Gaussian aperture function with full width at
half height of 1.1µm, which is less than half of the cone spacing. In a recent publication
[Hofer et al. 05a], an improved estimate derived from newer measurements was given as
61.5% of the cone spacing, i.e. 1.57µm. It corresponds to the following Gaussian MTF

Pcone(ν) = e−
(0.014 ν)2

2

(ν in cycles per degree). Its attenuation depth at the Nyquist frequency is 64%. Since
this aperture is very narrow, the authors of [MacLoad et al. 92] conclude that it probably
arises solely from the cone sensitivity pro�le and does not include contributions of neural
linear �ltering prior to the �rst non-linearity. That is, the �rst non-linear computation
occurs quite early in the retinal processing chain. The combined attenuation depth of
the optical and cone MTFs is 2.4% at the Nyquist frequency, and 4% at 60 cycles per
degree, in very good agreement with the observation that 4% is the lowest contrast, and
60 cycles per degree the highest frequency humans can perceive under optimal viewing
conditions [Williams 85b].

So far, we have treated the fovea as if it only contained one receptor type. But actu-
ally, there are three: S-, M-, and L-cones corresponding to maximum spectral sensitivities

60

3.2 The Linear Model in Digital Cameras and the Human Eye

at short, medium, and long wave lengths. However, these receptors are not equally dis-
tributed in the fovea. In fact, S-cones are quite rare (3.9% to 6.6% of the total population)
because short wavelengths are severely out of focus (as much as 2 diopters) due to the
eye's chromatic aberrations. Hence, denser sampling of the blue end of the spectrum
wouldn't make sense. Since the spectral sensitivity peaks of M- and L-cones di�er by
only 30 nm, chromatic aberrations can be neglected for these cone types. Thanks to
adaptive mirror optics which compensate for the eye's aberrations, it has recently be-
come possible to take images of the fovea where individual cones are resolved and can
be classi�ed [Roorda & Williams 99, Hofer et al. 05b]. These investigations found that
the L/M cone ratios exhibit enormous variability between individuals � from 0.37 (70%
M-cones) to 16.5 (almost no M-cones)! Moreover, the two cone types are not distributed
at random, but tend to form clusters of like type. Except for extreme cases, the L/M
ratio has apparently no in�uence on visual performance. In light of these and other recent
�ndings, the question of how foveal color perception works has again become an active
area of research. With regard to the luminance channel, there is consensus that the brain
can interpolate an accurate luminance image at full resolution from the responses of L-
and M-cones because their spectral sensitivities are so similar. [Osorio et al. 98] estimate
the worst-case luminance error to be comparable to adding a sinusoidal grating with 1%
contrast to the image.

In summary, we are led to the conclusion that the human eye can be considered as an
e�ectively band limited system, and the band limit corresponds to the Nyquist frequency
of the cone raster, or is even lower (at pupil diameters below 2mm). The fraction of the
MTF that falls outside the sampling passband is ≈ 3.7%.

3.2.3 Digital Cameras

Now we want to compare these measurements with the situation in digital cameras. On
the one hand, cameras are simpler to analyze because they lend themselves easily to
experimentation. On the other hand, matters are complicated by the huge variability of
the available designs. Moreover, manufacturers don't disclose many vital details. So it is
necessary to measure the MTF of the particular camera to be used. But before doing
that, we will discuss a few general principles.

In contrast to the eye, which evolved according to the image analysis requirements
of the brain, cameras are not usually optimized with image analysis in mind. Typically,
camera images are meant to be printed or displayed for human viewing, and the repro-
duction should look as similar as possible to the original scene, as judged by human
observers. Under these conditions, the image data have to pass through three di�erent
PSFs (when the processing chain is approximated by a linear system): the camera PSF,
the display PSF, and the PSF of the human eye. It is evident that the �nal image will
only be similar to what the viewer would see by looking directly on the scene if the
camera and display PSFs have only minor attenuation relative to the eye PSF. The key
property to be optimized is thus the perceived sharpness of the image. If the image is
attenuated to below 5% at the Nyquist frequency before it arrives at the eye, it will look
blurry. The standard trade-o� is to accept a certain amount of aliasing in order to keep

61

3 Analysis of the Image Acquisition Process

Figure 3.4: The spectral sensitivity pattern
(Bayer �lter) of the pixels in most single chip
color cameras.

the camera MTF at 10 to 35% at the Nyquist frequency [Williams & Burns 01]. When
the attenuation depth is above 35%, aliasing reaches unacceptable levels.

Like the human eye, the camera MTF is bounded by the MTF of the ideal di�ractive
system (3.1). In the context of camera properties, the band limit is usually expressed in
line pairs per millimeter. For f-stop f# = 8 and green light at λ = 550 nm, we get an
ideal band-limit of 227 lp/mm (line pairs per millimeter, same as cycles per millimeter).
When a di�raction limited lens is used, the sensor Nyquist frequency must lie between 60
an 80 percent of this value to obtain the desired 10-30% attenuation. This can indeed be
achieved with modern sensor arrays with 2.5 to 3µm pixel pitch. However, this design will
not lead to very high picture quality because the PSF lacks uniformity over the operating
range of the lens: The contrast worsens dramatically as one moves to the periphery of
the �eld of view (proportional to cosα for radial lines, and to cos3 α for tangential ones,
where α is the angle of eccentricity [Fiete 04]), and it varies with aperture setting and
zoom (if available).

A further complication is introduced by the fact that in most color cameras a single chip
is responsible for reproducing all three color channels (with the exception of professional
video cameras, which use three separate chips). In most cameras5, every pixel is covered
by a speci�c color �lter (red, green, or blue), and these �lters are arranged according to
the Bayer �lter pattern depicted in �gure 3.4. It consists of three rectangular subgrids at
half (red and blue) and

√
2/2 times the resolution (green) of the raw pixel grid. The green

subgrid is rotated by 45◦. When the Bayer pattern is used, the Nyquist frequency is no
longer determined by the raw pixel pitch, but at best corresponds to the pixel pitch of the
green subgrid. The color image at full resolution must be interpolated from the responses
of the color subgrids. This is similar to the human eye, where a full resolution image is
reconstructed from the S-, M- and L-cone responses. However, the spectral sensitivity
of the M- and L-cones is very similar, so that the eye is able to interpolate as if the
luminance image were available at full pixel resolution. This is in general not the case
with camera interpolation: The spectral sensitivities of the channels di�er signi�cantly,
and the resulting luminance image will only have the e�ective resolution of the green
channel (which dominates recovery of luminance information with a ratio of 6:3:1 over
the red and blue channels). This means in particular that frequencies beyond the Nyquist

5A notable exception to this interlaced design is the Foveon X3 chip [Lyon & Hubel 02] where red,
green, and blue sensors are stacked on top of each other in every pixel, so that full color resolution
is retained at the expense of reduced signal-to-noise ratio.

62

3.2 The Linear Model in Digital Cameras and the Human Eye

frequency of the green subgrid will give rise to aliasing artifacts that cannot be removed
in the interpolation step. Thus, a Bayer grid with 3µm raw pixel pitch has a Nyquist
frequency (in the green subgrid) of 118 lp/mm.
Like in the human eye, the aperture of the individual sensor elements also contributes

to the total system MTF. In a full frame or frame transfer CCD chip, the sensor aperture
is almost equal to the pixel square, i.e. a �ll factor close to 100% is achieved. To good
approximation, the sensor MTF is the Fourier transform of a box, i.e. the product of two
sinc-functions:

Psensor(ν1, ν2) =
sin(π ν1) sin(π ν2)

π2ν1ν2
(3.7)

where ν1, ν2 are the horizontal and vertical spatial frequency coordinates. At the Nyquist
frequency of the raw grid, this MTF has an attenuation depth of 64%, whereas this value
is 81% at the Nyquist frequency of the green subgrid. Other sensor types, such as inter-
line transfer CCD and CMOS chips, have much lower �ll-factors. The �ll-factor can be
improved by placing a micro lens on top of each pixel which collects photons from a larger
fraction of the pixel square onto the sensitive portion of the sensor [Erhardt et al. 84].
Exact numbers are rarely disclosed, but in general the resulting �ll factors are in the
order of 70%, i.e. the e�ective side length s0 of the sensitive area is 0.84 times the pixel
spacing. The MTF of these sensors attenuates less:

Psensor(ν1, ν2) =
sin(s0 π ν1) sin(s0π ν2)

s2
0π

2ν1ν2

For the given value s0 = 0.84, the attenuation depth at the Nyquist frequencies of the
raw grid and green subgrid are 73% and 86% respectively. Taking the di�raction limited
MTF and sensor MTF together, we arrive at an attenuation depth of 32% at Nyquist
frequency for the green subgrid of a 3µm chip. This provides for subjectively very sharp
images (at least in the image center) at the price of signi�cant aliasing.
In high quality cameras, the MTF of the optical system is optimized for being as

uniform as possible over the entire �eld of view and being almost free of various kinds
of aberrations (spherical and chromatic aberrations, koma, vignetting etc.). This is in
general achieved by sacri�cing some resolution at the image center, so that the lens is no
longer di�raction limited. Figure 3.5 shows MTF data for a typical high-quality lens we
are going to use in experiments. It can be seen that the MTF is more uniform over the �eld
of view and over various zoom settings than would be expected for a nearly di�raction
limited system. Since high-quality lenses have lower resolution than low-quality ones, they
are used with larger sensors: typical pixel pitches are 4 to 6µm for professional digital
video cameras, and 7 to 12µm for digital single lens re�ex (SLR) cameras. While larger
sensors are more expensive, they also contribute to image improvement because their
signal-to-noise ratio is better than that of smaller sensors. This is especially important
for CMOS sensors which su�er from higher noise than CCD sensors.
Even if the lens MTF is lower than the di�raction limit, it may still be too high to

prevent aliasing at the pixel spacing of the sensor. In that case, an additional optical low-
pass �lter must be placed in front of the sensor array. Another motivation for using such a
�lter is the �ll factor with respect to the Bayer �lter pattern: Even if the raw pixels had a

63

3 Analysis of the Image Acquisition Process

Figure 3.5: The MTF for the Canon EF 28-70/2.8 zoom lens we are going to use in experiments.
The graphs show attenuation depth (in %) vs. distance from the image center (in mm). Solid
lines represent the contrast of sagittal gratings (aligned like spokes in a wheel), dashed ones
meridional (tangential) gratings, where measurements were taken (from top to bottom) at 10,
20, and 40 lp/mm in the image plane. Graphs from left to right are for focal lengths 28mm,
40mm, and 70mm, all at f# = 8. Data measured and made available by Photodo AB, Lund,
Sweden, www.photodo.com.

�ll factor of 100%, the green subgrid's �ll factor would only be 50%, and the red and blue
ones' 25%. An optical lowpass �lter can modify the point spread function so that a �ll
factor close to 100% is recovered in the green subgrid. The most common optical lowpass
�lter design takes advantage of the double-refraction e�ect of certain crystalline materials
such as quartz [Pritchard 73, Greivenkamp 90]. When depolarized light passes through
such a crystal at a particular orientation (namely at 45◦ of the crystal's principal axis),
two polarized output rays emerge at a certain distance from each other. The distance can
be controlled by the thickness of the crystal. A pair of rotated crystals, together with a
polarization retarder in between, can split each incoming ray into four subrays located
at the corners of a square. The corresponding transfer function is

Ppre�lter(ν1, ν2) = cos (πν1so) cos (πν2so)

where so is the side length of the square. It is even possible to achieve di�erent amounts
of blurring for di�erent colors [Greivenkamp 90], as would be appropriate for a Bayer
�lter camera.
Since exact measurements of the properties of the lens, optical pre�lters and sensor

apertures of our cameras don't seem to be publicly available, we must measure the MTF
on our own. There are several approaches to MTF measurement. The most convenient
is to take images of a resolution test chart, e.g. the Siemens star [Jähne 97]. However,
this gives only rough estimates of the camera properties, especially at frequencies near
and beyond the Nyquist frequency. The most accurate results can be achieved by taking
images of sinusoid or rectangle gratings at one spatial frequency at a time. Since only
one known grating is present in the target, one can always assign the measured contrast

64

3.2 The Linear Model in Digital Cameras and the Human Eye

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

at
te

nu
at

io
n

diffraction limited MTF

frequency in image plane (lp / mm)

lens MTF
measured total MTF

 60 80 100 120 140

at
te

nu
at

io
n

frequency in image plane (lp / mm)

MTF for 100% fill factor
measured total MTF

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40

Figure 3.6: Left: Transfer functions of the Canon EOS D60 with lens EF 28-70/2.8 at focal
length f = 28mm and aperture f# = 8. The lens MTF is a �t to data points taken from �gure
3.5 (indicated by ×). Measurements were taken in the green subgrid, whose Nyquist frequency
is 48 lp/mm. Right: Comparison of the measured MTF with the expected MTF for square pixels
with 100% �ll factor at the resolution of the green subgrid (i.e. the product of the lens MTF and
a sinc-function according to (3.7)).

to the correct frequency, even when a high-frequency grating is only observed as a Moiré
pattern. Moreover, since the contrast can be measured over several periods of the grating,
measurements have a good signal-to-noise ratio even at low contrast. Figure 3.6 shows the
MTF measured in this way for the Canon EOS D60 digital SLR camera with zoom lens
EF 28-70/2.8 at a focal length of 28mm and a relative aperture of f# = 8 (these are the
settings with minimal attenuation). This camera has a CMOS sensor with 7.4µm pixel
pitch and a Bayer �lter according to �gure 3.4. The Nyquist frequency of the raw grid is
68 lp/mm, and of the green subgrid 48 lp/mm. An optical pre�lter, whose properties are
not publicly speci�ed, is mounted on top of the chip. The measured total MTF can be
well approximated by a Gaussian with standard deviation σ = 4.65µm, which is 63% of
the raw pixel pitch, and 44% of the pixel pitch in the green subgrid. For comparison, we
also show an approximate lens MTF that is �tted to measurements taken from �gure 3.5
(precisely, this curve is the product of the di�raction limited MTF and a Gaussian with
σ = 1.27µm). The attenuation depth of the total MTF at the Nyquist frequency of the
green subgrid is 37%. Figure 3.6 right shows that the optical pre�lter has approximately
the same e�ect as if the green subgrid had a �ll factor of 100%.

Unfortunately, the method illustrated above is rather expensive. A much simpler
method that still gives reasonably accurate MTF measurements is the slanted edge tech-
nique standardized in [ISO 12233:2000]. In this approach a high-contrast step edge is
imaged, and the MTF can be recovered as the Fourier transform of the image's derivative
perpendicular to the edge. To improve the method's signal-to-noise ratio and accuracy,
the resolution of the edge is �rst enhanced by means of a simple super-resolution al-
gorithm which computes a four-fold oversampled 1-D edge by taking averages of many
scanlines of the 2-D image. Before averaging, each scanline is shifted according to the
edge's subpixel location in that line. Super-resolution is only achieved when these subpixel
locations di�er slightly from line to line, i.e. when the edge is slightly slanted (typically
by about 5◦). This gives the method its name. Figure 3.7 shows some MTFs we measured

65

3 Analysis of the Image Acquisition Process

industrial imaging camera

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

at
te

nu
at

io
n

de
pt

h

normalized frequency

Canon 28mm
Canon 28mm
Canon 70mm
Canon 70mm

 0

Figure 3.7: MTFs measured by the slanted
edge technique for Canon EOS D60 at 28mm
and 70mm focal length, and a typical indus-
trial imaging camera (curves). For compari-
son, measurements with the grating technique
are also presented (crosses). The frequency co-
ordinate is normalized so that the Nyquist fre-
quency is 0.5 cycles per pixel for all cameras.

typical camera MTF

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6

at
te

nu
at

io
n

normalized frequency

eye MTF
Gaussian MTF with same attenuation at Nyquist frequency

 0

Figure 3.8: Comparison of the eye MTF ac-
cording to (3.5) with the camera MTF accord-
ing to �gure 3.6 and with the Gaussian MTF
(3.8) that has the same e�ective band limit
as the eye MTF. The frequency coordinate is
normalized to a Nyquist frequency of 0.5.

this way. It can be seen that the slanted edge technique somewhat underestimates the
MTF.
The normalized transfer functions for the eye, the real camera and a hypothetical

�band-limited camera� are compared in �gure 3.3. The MTF of this band-limited camera
is a Gaussian that has the same attenuation at the Nyquist frequency as the MTF of the
human eye:

Pband-limited camera(ν) = e−
(2π ν)20.8652

2 (3.8)

It is evident that the eye MTF has the strongest attenuation at all frequencies. The
band-limited camera has approximately the same behavior near and beyond the Nyquist
frequency, but attenuates low frequencies less. In contrast, the real camera MTF allows
signi�cant aliasing. We can compare the e�ect of the three MTFs by means of a sim-
ulated image acquisition process [Park & Rahman 99]: We �rst take an image at high
resolution, and then downsample it to 1/4 of its linear resolution, using the three MTFs
(normalized to the Nyquist frequency of the new resolution) as pre�lters. The aliasing
noise is computed from the contributions of the appropriate spectrum replications ac-
cording to (3.2). The results can be seen in �gure 3.9. The signal-to-aliasing-noise ratios
for the real camera, band-limited camera, and the eye are 40, 920, and 423 respectively.
In other words, the SNR of the band-limited camera is 23 times higher than that of the
real camera. One could ask what happened if we applied an additional post-�lter to the
image of the real camera. When the image has an exponential autocorrelation, i.e. its
power spectrum conforms to (3.3), aliasing is concentrated at high frequencies, and a
post-�lter could successfully reduce aliasing noise. When the post-�lter is a Gaussian
with σ = 0.71, the total amount of smoothing is equivalent to the band-limited pre�lter.
However, the resulting signal-to-aliasing-noise ratio is 250, i.e. only 25% of what we get

66

3.2 The Linear Model in Digital Cameras and the Human Eye

Figure 3.9: Left column from top to bottom: Simulated image acquisition with camera MTF,
e�ectively band-limited Gaussian, and eye MTF. Right column: Corresponding aliasing noise
(the second and third aliasing images have been ampli�ed by a factor of 20 relative to the �rst
one to make the noise visible at all).

67

3 Analysis of the Image Acquisition Process

with the band-limited pre-�lter. To achieve the same SNR as the latter, the post-�lter
must have σ = 1.1, i.e. the image has to be smoothed more. As far as aliasing is con-
cerned, using a band-limited camera is preferable. The consequences of aliasing noise will
be considered in detail in section 7.2.2.1.

3.3 Reconstruction of the Analog Camera Image

Even if the PSF were perfectly band-limited, this wouldn't buy us anything if we weren't
able to reconstruct the analog image from the actual digital image. In theory, a band-
limited image can be reconstructed from the (noise-free) sampled image by convolution
with the ideal interpolator

f̃(x, y) =
∑
k,l

fkl sinc(x− k) sinc(y − l) (3.9)

where sinc(x) = sin(πx)
πx . This is always true when the MTF is band-limited: the ideal

interpolator suppresses the spectrum repetitions caused by sampling, independent of how
the camera MTF is shaped below the band limit. Unfortunately, the ideal interpolator
cannot be realized in practice because it decays much too slowly (only as O(x−1)) so
that unacceptable cut-o� errors occur when the �lter is restricted to a �nite window of
reasonable size. Interpolating splines are a natural approximation because they can be
easily and e�ciently implemented and converge to the ideal interpolator as their order
increases.

3.3.1 Spline Interpolation

B-spline interpolation is de�ned similarly to the ideal interpolator:

f̃(x, y) =
∑
k,l

ckl bn(x− k)bn(y − l) (3.10)

where bn(x) are nth-order B-spline basis functions, i.e. piecewise 1D polynomials of de-
gree n, but the weights ckl must now di�er from the samples fkl in order to guarantee
interpolation.6 Fortunately, the ckl can be easily computed by means of recursive �lters
pn:

ckl = pn,horizontal ? pn,vertical ? fkl (3.11)

The recursive �lters pn will be explained below. B-splines of order n are de�ned by the
n-fold convolution of the 0th-order B-spline with itself:

bn(x) = b0(x) ? · · · ? b0(x)︸ ︷︷ ︸
(n+1) terms

(3.12)

6Surprisingly, this is overlooked in some books and papers describing �spline interpolation�, e.g.
[Eberly 96, Pratt 01, Allebach 05]. These authors apply equation (3.10) directly to the samples
(i.e. ckl = fkl) and consequently end up with an approximation instead of an interpolation.

68

3.3 Reconstruction of the Analog Camera Image

 0

 0.2

 0.4

 0.6

 0.8

 1

-3 -2 -1 0 1 2 3

order 0
order 1
order 2
order 3
order 5

Figure 3.10: The �rst few B-spline functions.

where b0(x) is simply the unit rectangle function

b0(x) = rect(x) =

{
1 if − 1

2 ≤ x <
1
2

0 otherwise
(3.13)

The �rst few B-spline functions are depicted in �gure 3.10. Equation (3.12) is equivalent
to the recursion relation

bn(x) =

(
n+1

2 + x
)
bn−1

(
x+ 1

2

)
+
(
n+1

2 − x
)
bn−1

(
x− 1

2

)
n

However, computing spline values via this recursion is quite slow, so in practice we
prefer the explicit expressions given in table 3.1. Zero order spline interpolation is equiv-
alent with nearest-neighbor interpolation (every pixel is �lled with the value of its center
point), and �rst order is equivalent to bilinear interpolation.
Since splines are piecewise polynomial functions, the polynomial's coe�cients remain

constant within certain regions. These regions have the same size as the pixels and are

called facets. When ~s is a grid point, the corresponding facets extend from ~s −
(

1
2 ,

1
2

)T
to ~s+

(
1
2 ,

1
2

)T
for even order splines, and from ~s to ~s+ (1, 1)T for odd order ones.

The transfer functions of the B-splines are powers of the sinc-function

Bn(u) =
(

sin(π u)
π u

)n+1

= sinc (u)n+1

B-splines have a number of important properties:

1. They are (n− 1)-times continuously di�erentiable.

2. The support of a B-spline is the smallest possible for a spline function of the given
order. B-splines are only non-zero for |x| < (n + 1)/2 and therefore e�ciently
computable.

3. The B-splines converge towards Gaussians as n → ∞, and spline interpolation
according to (3.10) approaches sinc interpolation.

69

3 Analysis of the Image Acquisition Process

order expressions

1 b1(x) =

{
1− |x| |x| ≤ 1
0 else

2 b2(x) =

3
4 − |x|

2 |x| ≤ 1
2

1
2

(
3
2 − |x|

)2 1
2 ≤ |x| ≤

3
2

0 else

3 b3(x) =

2
3 − |x|

2 + 1
2 |x|

3 |x| ≤ 1
1
6 (2− |x|)3 1 ≤ |x| ≤ 2
0 else

4 b4(x) =

115
192 −

5
8 |x|

2 + 1
4 |x|

4 |x| ≤ 1
2

55
96 + 5

24 |x| −
5
4 |x|

2 + 5
6 |x|

3 − 1
6 |x|

4 1
2 ≤ |x| ≤

3
2

1
24

(
5
2 − |x|

)4 3
2 ≤ |x| ≤

5
2

0 else

5 b5(x) =

11
20 −

1
2 |x|

2 + 1
4 |x|

4 − 1
12 |x|

5 |x| ≤ 1
17
40 + 5

8 |x| −
7
4 |x|

2 + 5
4 |x|

3 − 3
8 |x|

4 + 1
24 |x|

5 1 ≤ |x| ≤ 2
1

120 (3− |x|)5 2 ≤ |x| ≤ 3
0 else

Table 3.1: Explicit expressions for the B-splines up to order 5.

At this point a comparison of splines with the facet model of [Haralick & Shapiro 92]
may be of interest. Both approaches reconstruct the image function by means of piecewise
polynomial functions. Haralick obtains these functions by a least squares �t to the samples
in every n × n window, where n2 must at least equal the number of coe�cients, but
can be greater if smoothing is desired. However, since these functions are computed
independently in every facet, the resulting analog image will be discontinuous across
facet borders. Consequently, it is impossible to guarantee feature (e.g. edge) continuity
between neighboring pixels. This is in contrast to property 1 of spline interpolation. Since
the computational e�ort for the facet model and spline interpolation are comparable, and
smoothing can be achieved in the latter approach by a suitable pre�lter, splines should
be preferred.

The coe�cients ckl for B-spline interpolation can be computed very e�ciently by the
pre�lters pn. Since the B-splines themselves are bell-shaped and act as smoothing �lters,
the interpolation condition can only be ful�lled if the ckl represent a sharpened version
of the image fkl. At the sampling points, the amount of sharpening must exactly counter

70

3.3 Reconstruction of the Analog Camera Image

spline order 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ideal interpolator
spline order 5
spline order 4
spline order 3
spline order 2
spline order 1

 0

Figure 3.11: As the spline order increases,
the transfer functions Bn(u)Pn(u) of spline in-
terpolation converge towards the ideal inter-
polator.

the e�ect of B-spline smoothing. Therefore, the transfer function Pn of the pre�lters pn(i)
must be the inverse of the transfer function of the sampled B-splines bn(i). For orders 0
and 1, P0 and P1 are just identity �lters, whereas the 1-dimensional transfer functions
for higher orders are

P2(u) =
4

3 + cos(2π u)

P3(u) =
3

2 + cos(2π u)

P4(u) =
192

115 + 76 cos(2π u) + cos(4π u)

P5(u) =
60

33 + 26 cos(2π u) + cos(4π u)

Pn(u) =

bn/2c∑
k=0

bn(k) cos(2kπ u)

−1

In 2D, these pre�lters can be expressed as sets of bn/2c �rst-order recursive �lters. Each
of them must be applied in the four major directions of the image (left to right, right
to left, top to bottom, bottom to top). Table 3.2 lists the �lter coe�cients for the �rst
few spline orders. Figure 3.11 compares the transfer functions of spline interpolation
Bn(u)Pn(u) with the ideal interpolator.
Only one addition and multiplication per pixel are required for each run of a �rst-

order recursive �lter. The algorithmic complexity for the computation of the coe�cients
ckl is therefore 4bn/2cO(w · h), i.e. linear in the number of pixels, with a very small
constant factor. Once the coe�cients ckl have been computed, we can calculate function

spline order n 0 1 2 3 4 5

p1 - - 2
√

2− 3
√

3− 2 −0.3613412259 −0.4305753471

p2 - - - - −0.0137254293 −0.0430962882

Table 3.2: The coe�cients of the recursive pre�lters to compute the spline coe�cients cij from
the image samples fij .

71

3 Analysis of the Image Acquisition Process

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Catmull-Rom spline

cubic spline

Figure 3.12: The transfer functions of cu-
bic spline and Catmull-Rom interpolation.
Cubic spline interpolation approximates the
ideal interpolator better, with only marginally
greater computationally e�ort.

values f̃(x, y) at arbitrary real valued coordinates by evaluating (3.10). The required
e�ort increases with the degree of the spline. For example, we need 44 multiplications
per evaluation for a 3rd-order spline, and 102 for a 5th-order one (these numbers include
the e�ort for computing the required B-spline values and for evaluating the convolution
sum). In practice, this translates into roughly 2 million evaluations per second for the
3rd-order spline and half as many for the 5th-order one, both measured on a 3GHz Linux
machine using the GNU C++ compiler version 3.3. When the sample positions are not
entirely random, so that only a few di�erent facet coordinates are actually needed, the B-
spline values can be pre-computed, and the e�ort reduces to that of standard convolution.
If the new points are located on a grid, the computational burden can be further reduced
by taking advantage of the separability of the 2-dimensional B-spline functions.

It is also instructive to compare the quality and computational e�ort of spline inter-
polation with other interpolation methods. One popular alternative is the Catmull-Rom
function [Catmull & Rom 74] which is de�ned in 1D by

CatmullRom(x) =

1− 5

2 |x|
2 + 3

2 |x|
3 if |x| ≤ 1

2− 4 |x|+ 5
2 |x|

2 − 1
2 |x|

3 if 1 < |x| < 2
0 otherwise

This de�nition can be inserted in (3.10) instead of the cubic B-spline b3(.) to interpolate
function values at arbitrary real-valued coordinates. Since the Catmull-Rom function is
a cardinal function (i.e. it evaluates to 1 at x = 0 and to 0 at all other integers), the coef-
�cients ckl are equal to the discrete image values fkl, so that pre�ltering is not necessary.
Apart from this, the computational e�ort for Catmull-Rom and cubic spline interpola-
tion is the same, because both basis functions are piecewise cubic polynomials supported
between -2 and 2. The performance advantage of Catmull-Rom interpolation is small
when many points must be interpolated, so that the pre�ltering e�ort can be amortized
over a large number of spline evaluations. On the other hand, the quality of cubic spline
interpolation is signi�cantly higher � its transfer function approximates the ideal inter-
polator much better (see �gure 3.12), and the resulting interpolant is twice continuously
di�erentiable, whereas the Catmull-Rom interpolant has only one continuous derivative.
Unless the pre�ltering e�ort cannot be tolerated at all, spline interpolation is always
preferable. Similar arguments can be put forward for other alternative interpolators.

The quality of spline interpolation can be demonstrated in a simple experiment: Rotate
a given image by a small angle (e.g. 10◦) and compute the gray values of the rotated image
by means of spline interpolation. Then rotate the resulting image by 10◦ again, and repeat

72

3.3 Reconstruction of the Analog Camera Image

this process until a full revolution of 360◦ is achieved after 36 steps. If the interpolation
of the intermediate images worked perfectly, the �nal image would be identical to the
original, so that their root mean square (RMS) di�erence would be zero. Since spline
interpolation approximates the ideal interpolator, we expect the RMS to decrease as the
spline order increases, and that the error is already quite small for 5th-order splines. Figure
3.13 shows some results. It can be seen that nearest-neighbor interpolation completely
destroys the image, and linear interpolation results in signi�cant blurring. In contrast,
the result of 5th-order interpolation is still very close to the original after 36 interpolation
steps.
It is often useful to write (3.10) in an alternative form that makes the polynomial in

each facet explicitly accessible. For example, this is necessary when one wants to apply
algorithms that only work on polynomials, such as polynomial root �nders. It also stresses
the similarity of spline interpolation to Haralick's facet model � the two models only di�er
in the way how coe�cients are calculated and in the consequential fact that splines are
di�erentiable across facet borders. To derive the polynomial form of the interpolation
formula, we �rst de�ne the facet index (if , jf) of the coordinate (x, y)

(if , jf) =

{
(bxc, byc) if n odd(
bx+ 1

2c, by + 1
2c
)

if n even

where n is the order of the spline, and b.c denotes the �oor operation. Then we de�ne
local facet coordinates

(u, v) = (x− if , y − jf)

The domain of the facet coordinates is de�ned by u, v ∈ [0, 1) if n is odd, and u, v ∈[
−1

2 ,
1
2

)
if n is even. Then we can express f̃(x, y) as

f̃(x, y) = vTB u (3.14)

where B = B (if , jf) is the coe�cient matrix for the current facet and u and v are
vectors of monomials of the local facet coordinates

u =
(
1, u, u2, ..., un

)T
v =

(
1, v, v2, ..., vn

)T
To compute B we de�ne a matrix C = C (if , jf) containing the spline coe�cients cij
from a window around the current facet index according to the following rule

Ckl = cif−bn/2c+k, jf−bn/2c+l k, l = 0, ..., n

with re�ective boundary conditions. Then B is given by

B = W C WT

where W is a position-independent matrix characterizing the B-spline of order n

Wij =
1
i!

di

d xi
bn (bn/2c − j) i, j = 0, ..., n

73

3 Analysis of the Image Acquisition Process

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.13: Image rotation by spline interpolation (36 consecutive rotations of 10◦): (a) original
image (range is 0...255); (b) result using 0th-order spline (nearest-neighbor interpolation); (c) re-
sult and (d) di�erence to original for 1st-order spline (linear interpolation), RMS = 17 gray levels;
(e) result and (f) di�erence for 3rd-order spline, RMS = 4.4 gray levels; (g) result and (h) di�er-
ence for 5th-order spline, RMS = 2.3 gray levels.

74

3.3 Reconstruction of the Analog Camera Image

order expressions

1 W =
(

1 0
−1 1

)

2 W =

 1
8

3
4

1
8

−1
2 0 1

2
1
2 −1 1

2

3 W =

1
6

2
3

1
6 0

−1
2 0 1

2 0
1
2 −1 1

2 0
−1

6
1
2 −1

2
1
6

4 W =

1

384
19
96

115
192

19
96

1
384

− 1
48 −11

24 0 11
24

1
48

1
16

1
4 −5

8
1
4

1
16

− 1
12

1
6 0 −1

6
1
12

1
24 −1

6
1
4 −1

6
1
24

5 W =

1
120

13
60

11
20

13
60

1
120 0

− 1
24 − 5

12 0 5
12

1
24 0

1
12

1
6 −1

2
1
6

1
12 0

− 1
12

1
6 0 −1

6
1
12 0

1
24 −1

6
1
4 −1

6
1
24 0

− 1
120

1
24 − 1

12
1
12 − 1

24
1

120

Table 3.3: Matrices needed for the explicit computation of the spline polynomials within each
facet.

The B-spline derivatives in this expression must be computed according to the recursion

d

d x
bn (x) = bn−1

(
x+

1
2

)
− bn−1

(
x− 1

2

)
(3.15)

Note that the nth derivative of bn(x) is discontinuous. The recursion (3.15), together with
(3.13), ensures that correct limits are taken at discontinuities. Table 3.3 lists explicit
expressions for the matrices W for the �rst few spline orders. Much more detail about
spline interpolation can be found in [Unser et al. 93].

3.3.2 Experiment: Detection of Extrema and Saddle Points in
Spline-Interpolated Images

The number and location of extrema and saddle points are the simplest geometric features
we can measure in an analog function. Therefore, we construct a band-limited image

75

3 Analysis of the Image Acquisition Process

0
0.2

0.4
0.6

0.8
10

0.2

0.4

0.6

0.8

1

0.001
0.0015
0.002

0.0025

0
0.2

0.4
0.6

0.8
1 0.2 0.4 0.6 0.8 1

-0.045

-0.04

-0.035

-0.03

Figure 3.14: Our test function f for critical point detection (left) is the Euclidean product of
the function s3 (right).

where 9 such points are located at known positions. Such a function can easily be obtained
as a linear combination of integer-translated sinc-functions. For our experiments, we
choose the function

f(~x) = s3(x1)s3(x2) (3.16)

with s1(x, k) = sinc(x+ k) +
4
5

sinc(x− k − 1)

s2(x, k) = s1(x, k)/s1(0.5, k)
s3(x) = s2(x, 1)− s2(x, 2)− 0.05

As can be seen in �gure 3.14 this function has 9 critical points in the unit square
[0, 1]× [0, 1] � four minima, four saddles, and one maximum. Since the function is band-
limited with a Nyquist frequency of 1

2 , sampling at unit distance would be su�cient
provided the image were in�nitely large and we actually used exact sinc interpolation.
Since neither condition can be ful�lled in practice, we must sample at smaller steps. More-
over, we allow the grid to be rotated and translated arbitrarily, i.e. ~x = hRT (α)(~x′ − ~d)
where h is the sample distance, R(α) a rotation matrix, ~x′ a grid point and ~d a (sub-
pixel) shift (detailed parameter settings are given below). Figure 3.15 shows an example
reconstructions obtained at h = 1/2.6 (which turns out to be the lowest sampling rate
where we can reasonably approximate exact reconstruction) with splines up to order 5.
The 5th-order spline reconstruction is almost indistinguishable from the original at this
sample distance, whereas the nearest neighbor and linear reconstructions (orders 0 and
1) hardly resemble it at all.
When we want to detect extrema and saddle points in a spline reconstruction of the

test image, we must distinguish di�erentiable splines (order 2 and higher) and non-
di�erentiable ones (orders 0 and 1). In the latter case we use the following discrete
de�nitions:

• 0th-order spline, 4-neighborhood: a minimum (maximum) is a point whose 4-neighbors
are lower (higher) than the center. A saddle has two opposite neighbors that are
higher and two that are lower.

• 0th-order spline, 8-neighborhood: a minimum (maximum) is a point whose 8-neighbors
are lower (higher) than the center. A saddle point is characterized by the property

76

3.3 Reconstruction of the Analog Camera Image

f 0 1

2 3 5

Figure 3.15: Reconstruction of the test function (sample distance 0.39, α = −22.5◦, d1 = 0.3,
d2 = −0.2) by various splines. Left to right, top to bottom: Location of the sampling points
(red) on the test function f , reconstruction by spline orders 0, 1, 2, 3, 5 (the region used for
reconstruction was four times larger than the region depicted).

that the di�erence between the center and its neighbors changes sign more than
two times while one walks over the 8 neighbors in counter-clockwise order.

• 1st-order spline: minima, maxima, and saddles are de�ned as in the previous case. In
addition, there may be saddles in the interior of a facet, when the bilinear function
is hyperbolic in this facet (i.e. has a point with vanishing gradient).

One could extend these de�nitions for the case that neighbors have the same value
as the center, but this is non-trivial and not necessary for the present experiment. In
case of di�erentiable splines, the extrema and saddles are exactly the points where the
gradient vanishes. In the present experiment, these are always isolated points. Since
a spline is a piecewise polynomial function, we can in principle solve the localization
problem directly: use (3.14) to compute an explicit expression for the gradient in every
facet (pixel) and set it to zero. This gives us a polynomial system with two equations
in two variables. After eliminating one of the variables, we can �nd the roots of the
remaining polynomial by standard methods. Among these roots, we keep only those
whose corresponding coordinates are actually located in the current facet. Unfortunately,
the order of the polynomial to be solved increases as 2n(n − 1) + 1, where n is the
spline order. This quickly becomes very ine�cient and prone to numerical instabilities,
especially considering that one rarely �nds more than two critical points per facet in
practice. We only employ the direct method for 2nd-order splines.
For higher order splines, it is more appropriate to use an iterative approach. Consider

77

3 Analysis of the Image Acquisition Process

the second order Taylor series expansion of the function f̃(~x):

f̃(~x0 + ∆~x) = f̃(~x0) +∇f̃(~x0)∆~x+
1
2

(∆~x)TH(~x0) ∆~x

where H(~x0) is the Hessian matrix at point ~x0. If ~x0 +∆~x is a critical point, the gradient
with respect to ∆~x of this expression must be zero. Solving ∂f̃/∂(∆~x) = 0 for ∆~x gives
∆~x = H−1 (~x0)∇f̃ (~x0), which can be used to de�ne a sequence of iterative corrections
that quickly converge to a critical point. In order to �nd all critical points, we have
determined experimentally that four di�erent starting points per pixel are required for
typical natural images containing signi�cant detail. Since the total number of critical
points is always much less, many points will be detected several times, so that e�cient
duplicate removal is also required. This gives the following algorithm:

Algorithm 3.1: Iterative critical point detection in a 2D spline

Input: A spline function f̃ (~x) of order n ≥ 3 over the domain [0, w]× [0, h]. The desired
accuracy ε of the algorithm.

1. For x = 0, 1
2 , 1,

3
2 ..., w and y = 0, 1

2 , 1,
3
2 , ...h:

a) Choose ~x(0) = (x, y)T as iteration starting point and compute

~x(k+1) = ~x(k) + ∆~x(k) = ~x(k) +H−1
(
~x(k)

)
∇f̃

(
~x(k)

)
(3.17)

until
∣∣∆~x(k)

∣∣ ≤ ε. Let the point of convergence be ~s.
b) Check whether the resulting critical point ~s is already known (this can be done

quickly by means of an e�cient data structure for nearest neighbor queries, e.g.
a kD-tree [Wendland 05]). If not, store ~s as a new critical point and determine
its type by means of the eigenvalues of the Hessian at ~s: if both eigenvalues
are positive, ~s is a minimum, if both are negative, it is a maximum, and if
their signs di�er, we found a saddle point.

It is remarkable that this algorithm even works for splines of order 2, where the Hessian is
constant within every facet, but discontinuous across the facet borders. In theory, critical
point detection could fail here because the iterations may oscillate between neighboring
facets. But in practice, we have never actually encountered convergence problems for
n = 2.
To study critical point detection systematically, we created 1620 test images from

the function f , namely at sample distances h ∈ { 1
2.6 ,

1
3 ,

1
5 ,

1
8 ,

1
32}, rotation angles α ∈

{−45◦,−40◦,−22.5◦,−10◦, 0◦, 12◦, 22.5◦, 30◦, 45◦}, and shifts d1, d2 ∈ {−0.4, −0.2, 0.0,
0.1, 0.3, 0.5}. Critical points were detected by looking in the 4- or 8-neighborhood at the
given resolutions, and by means of adaptive sampling on the basis of spline interpolation
of various orders. The most striking �nding was that even at the highest resolution h = 1

32
it is insu�cient to only look in the 4- or 8-neighborhood: When the function is not aligned

78

3.3 Reconstruction of the Analog Camera Image

4-n 8-n 1

2 3 5

4-n 8-n 1

2 3 5

Figure 3.16: Critical point detection at h = 1
32 (upper rows) and h = 1

2.6 (lower rows) (α =
−22.5◦, d1 = 0.3, d2 = −0.2). Results of 4- and 8-neighborhood methods, spline methods of
order 1, 2, 3 and 5 (all overlayed over the nearest-neighbor interpolation). Minima, maxima,
saddles, and false positives are marked green, blue, red, and magenta respectively.

with the coordinate axes, these non-adaptive methods frequently result in missing points
or mis-detections. The upper rows of �gures 3.16 and 3.17 show two representative cases.
These failures are due to the fact that a 3 × 3 neighborhood does not contain enough
shape information for reliable decisions about critical points. Di�erent kinds of errors are
typical: Nearest-neighbor interpolation with 4-neighborhood classi�cation usually misses
critical points, whereas 8-neighborhood classi�cation �nds too many (error rates in both
cases are over 85% when α 6= 0◦, and saddles are the point type with most errors).

79

3 Analysis of the Image Acquisition Process

4-n 8-n 1

2 3 5

4-n 8-n 1

2 3 5

Figure 3.17: Critical point detection at h = 1
32 (upper rows) and h = 1

2.6 (lower rows) (α = 12◦,
d1 = 0.3, d2 = 0.5). Results of 4- and 8-neighborhood methods, spline methods of order 1, 2,
3 and 5 (all overlayed over the nearest-neighbor interpolation). Minima, maxima, saddles, and
false positives are marked green, blue, red, and magenta respectively.

Linear interpolation behaves similar to the 8-neighborhood case (it also depends only on
the 3×3 neighborhood and applies the exact same rules at minima and maxima), but has
fewer false positives at saddles (40% total error rate when α 6= 0◦). In contrast, higher
order splines work perfectly at this resolution, with maximum localization errors of 0.027
pixels for the second-order spline and below 10−4 pixels for the order 3 and 5 ones. At
this resolution, one starting point per pixel is su�cient for the Newton iterations to �nd
all critical points.

80

3.3 Reconstruction of the Analog Camera Image

When the resolution is reduced, the performance of the simple methods further deterio-
rates, whereas the higher-order methods perform still properly at h = 1

5 . Their maximum
localization errors are now 0.21, 0.065 and 0.009 pixels for the splines of order 2, 3 and
5 respectively, and in a few cases four iteration starting points per pixel are required in
order to �nd all critical points. At h = 1

3 , the second-order spline misses a maximum
in 2 of the 324 test images, whereas the higher orders still �nd all points, and maxi-
mum localization errors are 0.72, 0.32, and 0.17 pixels respectively. The sample distance
h = 1

2.6 is the coarsest resolution where the �fth-order spline reliably detects all critical
points, orders 2 and 3 fail in 10% and 5% of the images respectively. The maximum errors
are 1.9, 0.82 and 0.26 pixels. The lower rows in �gures 3.16 and 3.17 show results for
this resolution. The minimum sampling distance where a 5th-order spline represents the
function well enough to reliably detect all 9 critical points under all parameter choices is
h = 1/2.6, which means that on average there are 1.3 critical points per pixel. A similar
experiment on real image data is described in section 3.4.3.
Our experiment shows that the reliable detection of extrema and saddle points is not

at all trivial, even without any noise. Simple comparison of pixel values in a 4- or 8-
neighborhood works surprisingly badly, in striking contrast to popular belief. We would
like to point out that this is a fundamental problem that cannot be solved by going to
higher resolution: a 3×3 set of pixels is simply to small to decide whether the center is a
special point. One must look at larger neighborhoods and use subpixel detectors, as the
following experiment illustrates once again. Consider an anisotropic Gaussian blob

255 e
− r

2

2

(
cos2(α)

σ2
1

+
sin2(α)

σ2
2

)

with σ1 = 30 and σ2 = 2, rotated by an angle α = 22.5◦. This function has only a single
maximum at the center of the blob. However, when we sample this function, a large
number of false critical points are detected along the ridge, as �gure 3.18(b,c) shows. In
�gure 3.19, the pixel values from a subregion of this image are shown. It can be clearly
seen how these sampling artifacts arise: Consider a sampling point located near the true
ridge of the Gaussian hill (e.g. the central pixel in �gure 3.19). The level line through that
point is a narrow ellipse, with the point located near the ellipse's tip. Since all �uphill�
points are con�ned to the interior of the ellipse, i.e. to a small sector of the point's
neighborhood, it is quite likely that none of the neighboring sampling points falls within
this sector. Consequently, there is no higher neighbor in the grid, and the center point
is falsely classi�ed as a maximum. Similar arguments hold for minima in narrow valleys
and for saddle points. Obviously, this problem cannot be solved by higher sampling rates:
No matter how small a sampling step we take, there will always be locations where the
�uphill� part of a ridge will be lost between two sampling points, giving rise to a false
maximum. In contrast, when we use higher order splines, the correct maximum and only
the correct maximum is detected (�gure 3.18d).

81

3 Analysis of the Image Acquisition Process

(a) (b)

(c) (d)

Figure 3.18: (a) Anisotropic Gaussian blob with its true maximum marked. The red square
indicates the ROI for �gure 3.19; (b) Maximum detection in the 4-neighborhood produces many
false positives; (c) In the 8-neighborhood, there are still several false positive maxima (blue) and
a large number of false positive saddle points (red); (d) The correct result can be recovered by
algorithm 3.1 with splines of order 2 and above.

level line
through the
central pixel
of the ROI

123 147 171 190

163 187 206 218 223

220 230 232 225 210

238 228 211 187 160

208 183 155 126

98

99

Figure 3.19: Illustration of false positive de-
tection. The table shows the gray levels in
the red region of 3.18(a). The central pixel
of this region is a false maximum in either the
4- or 8-neighborhood because the uphill point
on the ridge is lost between pixels �230� and
�228�. On the same reason, pixels �230� and
�225� are falsely marked as saddles by the 8-
neighborhood method.

3.4 Noise Normalization and Noise Filtering

According to the image acquisition model, noise is added to the image during or after
sampling. We can therefore consider the noise spectrum to be band limited. It can be
shown (see e.g. [Goudail & Réfrégier 04]) that linear �lter techniques are statistically
optimal when noise is additive and Gaussian distributed with constant mean and variance
throughout the image plane. However, noise in real imaging devices is not in general
Gaussian distributed. We will analyze the noise and describe ways to transform it into
Gaussian white noise.

3.4.1 Noise in CCD Cameras

There are three main sources of noise in a CCD camera: photon counting noise, quan-
tization noise, and electronic noise [Healey & Kondepudy 94, Jähne 02, Förstner 99]. If

82

3.4 Noise Normalization and Noise Filtering

the measured intensity is proportional to the number of photons detected by the sensor,
photon counting noise is Poisson distributed:

p(Ĩ | I) =
e−II Ĩ

Ĩ!
where Ĩ ≥ 0 and I ≥ 0 are the measured and true intensities respectively. Mean and
variance of this distribution are equal to I. When I is not very small (i.e. I > 20), the
Poisson distribution can be well approximated by a Gaussian with mean and variance
equal to I. Therefore, photon counting noise can be realistically modeled by a Gaussian
whose variance increases linearly with intensity I:

σ2
P (I) = a I + b (3.18)

The parameters a and b account for the possibility that the actually reported gray-levels
are linear functions of the originally measured intensities.
Quantization noise models the round-o� error when real-valued intensities are trans-

formed into integers. The round-o� error is uniformly distributed between −1
2 and 1

2 .
Hence, its variance is

σ2
Q =

∫ 1
2

− 1
2

x2 dx =
1
12

If gray levels are represented with 8 bits per pixel or more, this is generally much less than
the contribution of other noise sources (otherwise, camera capabilities would be wasted
by too coarse quantization). Finally, electronic noise depends on the details of the sensor
and subsequent processing and is not easily modeled without intimate knowledge of the
sensor. It is relatively small in most modern sensors. For example, the noise standard
deviation of a uniform black image in the Canon EOS D60 is 0.2% of the maximum white
intensity (see below), i.e. in the same order as the round-o� error. We further assume
that noise does not depend on the position of the sensor in the sensor array, and that the
noise of neighboring samples is uncorrelated (according to [Förstner 99], the correlation
coe�cient is less than 50%). Therefore, photon counting noise is the main noise source
we have to consider.
Noise depending on the image intensity is problematic because it is incompatible with

the assumption of statistical independence between signal and noise. If this assumption
is violated, the decision of whether a particular feature measurement represents a scene
property or is caused by noise depends on the intensities of all pixels in the operating
window and requires non-linear processing techniques. To avoid these complications,
[Förstner 99] proposes a noise normalization transform that equalizes the noise variance
by means of a non-linear scaling of the image intensities. After the transformation, the
assumption of additive Gaussian noise is ful�lled reasonably well. Suppose the dependence
of the noise variance on intensity is given by a function σ2

N = s(I). After transforming

intensities according to a function Î = t(I) to be determined, the noise variance shall be
constant σ̂2

N = σ2
0:

σ2
0 = const. =

∫ (
t(Ĩ)− t(I)

)2
p(Ĩ | I) dĨ for all I

83

3 Analysis of the Image Acquisition Process

Figure 3.20: Part of the target pattern used
to determine how the noise variance depends
upon image intensity.

where p(Ĩ | I) is again the probability of measuring intensity Ĩ when the true intensity was
I. When t(Ĩ) is expanded into a Taylor series around I, we get t(Ĩ) ≈ t(I)+ d

dI t(I)(Ĩ−I).
Then, the variance after the transformation can be approximated as

σ2
0 ≈

(
d

dI
t(I)

)2 ∫ (
Ĩ − I

)2
p(Ĩ | I) dĨ =

(
d

dI
t(I)

)2

s(I)

Taking the square root and re-arranging, we �nd

d t(I) = σ0
dI√
s(I)

with general solution

t(I) = σ0

∫ I

Imin

dI√
s(I)

+ C (3.19)

where the constants σ0 and C can be chosen freely, for example so that the variance
becomes unity and the minimal intensity Îmin = t (Imin) is zero. In case of the linear
relationship (3.18) between variance and intensity (e.g. Poisson noise), the integral can
be solved analytically, and we get

t(I) =
2σ0

a

√
a I + b+ C (3.20)

To determine the noise normalization transform of real cameras, we took images of the
gray tone target depicted in �gure 3.20. We computed the variance in Gaussian-weighted
windows of size σ = 8 around each pixel, but discarded all measurements where the local
gradient at scale 8 was bigger than 0.1% of the contrast between the gray regions. In this
way, variance measurements were not contaminated by edge artifacts. Figure 3.21 shows
the noise variance as a function of intensity for the two cameras tested. In case of the
Canon EOS D60, the intensities are taken from the raw image before white-point nor-
malization and Bayer-grid interpolation. It can be seen that the dependencies are indeed
nearly linear � the variance grows only slightly faster (in the Canon camera) or slower
(in the industrial camera) than linearly for high intensities. Since we are going to use the
green subgrid of the Canon camera as a gray-level image, we need the corresponding noise

84

3.4 Noise Normalization and Noise Filtering

intensity

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 50 100 150 200 250

va
ri

an
ce

 0.5

intensity

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 5000 10000 15000 20000 25000 30000 35000 40000

va
ri

an
ce

 0

Figure 3.21: Dependence of the noise variance upon the intensity for an industrial camera (left)
and the Canon EOS D60 (right). In the right graphs, the upper clusters represent the red channel,
the lower ones the green and blue channels. Camera settings were: f-stop 8, chip sensitivity ISO
100.

normalization transform. The noise variance can be expressed as a function of intensity
by means of a least squares �t to a parabola:

σ2
N (I) = c2 I

2 + c1 I + c0 = 10−4 I2 + 1.22 I + 5300

The solution to (3.19) for positive c2 is:

Ĩ =
1
√
c2

(
log
(

2c2I + c1√
c2

+ 2
√
c2 I2 + c1 I + c0

)
− log

(
c1√
c2

+ 2
√
c0

))
(3.21)

The integration constant was chosen so that a zero gray level is mapped onto zero.
The maximum intensity is mapped onto a gray level of approximately 190. Although
the formula is somewhat complex, this is not a problem in practice because I is quan-
tized, and we can use a look-up table to speed up computations. Figure 3.22 shows this
transform. It turns out that it is very similar to the standard gamma correction Ĩ =(

I
Imax

)0.4545
that is routinely applied in many cameras and scanners to transform RGB

data into the perceptually more uniform R'G'B' or sRGB color spaces [Poynton 96]. A
similar nonlinearity is believed to be the �rst step in human vision [Graham & Hood 92,
Georgeson & Freeman 96]. Noise normalization and perceptual uniformity are achieved
by essentially the same transformation. It can be speculated whether this is a coincidence.

When we want to analyze full color data from the Canon camera, we must �rst inter-
polate the Bayer pattern to a full color image, and the color channels must be normalized
for correct white balance. In principle, we could do this on our own, which would have
the advantage that all intermediate steps were known and could be analyzed. But it
is di�cult to achieve good results without detailed knowledge of the properties of the
various camera components. Since these data are not publicly available, we prefer to rely
on Canon's proprietary conversion algorithm. Therefore, we repeated the noise analysis
after conversion to full RGB. The results are shown in �gure 3.23 left. It can be seen that
Canon's algorithm performs too much gamma correction: The noise variance does now

85

3 Analysis of the Image Acquisition Process

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1~
Imax

~
I

max

I
I

Figure 3.22: Comparison of the noise nor-
malization transform according to (3.21)
(solid line) with the standard gamma correc-
tion with γ = 0.4545 (dotted). The axes de-

pict normalized intensity, i.e. Ĩ
Ĩmax

vs. I
Imax

. It

should be noted that the two transforms are
almost equal for high intensities, but gamma
correction brightens low intensities too much.

intensity

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 55000 60000

va
ri

an
ce

 0

intensity

 0.5

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

va
ri

an
ce

 0

Figure 3.23: Dependence of the noise variance upon the intensity for the Canon EOS D60 after
Bayer �lter interpolation and white balance adjustment (left). The same after noise normalization
(right). Squares: red channel, crosses: green channel, circles: blue channel (hard to distinguish
because the noise distributions are very similar in all channels).

decrease with intensity. This observation is in line with the steeper ascent of the gamma
curve at low intensities in �gure 3.22. Noise in the red channel is still somewhat higher
than in the other channels, but the di�erence is not as big as in the raw data. A linear
least-squares �t to the data is

σ2
N (I) = −1.638 I + 107347

The corresponding noise normalization transform is

Ĩ = −
√
−1.638 I + 107347

0.819
+ 390

where the constant is chosen so that the zero intensity is preserved. Note that the same
transformation is applied to all color channels, because white balance would be destroyed
otherwise which may or may not be a problem, depending on the application. Figure 3.23
right shows the result of this transformation. Except at low intensities, the average noise
variance is indeed unity. Higher values at low intensity are mostly in the red channel.
In practice, it is not always possible to calibrate the camera noise with a calibration

target such as �gure 3.20. In that case, the calibration must be performed with a real
image, where we don't know the homogeneous regions beforehand. Therefore, a robust
noise estimation procedure must be employed, which excludes regions with signi�cant

86

3.4 Noise Normalization and Noise Filtering

variation of the noise-free image information. Furthermore, it is not always possible to
access the raw image data. After a number of unknown pre-processing steps, e.g. in the
camera, the noise variance is often no longer described by a simple function like a linear
or quadratic one. This calls for a non-parametric estimation method. A method that
meets both requirements was implemented by Förstner et al. and partly described in
[Förstner 99]. We give a complete description of the algorithm by combining information
from the paper and the original implementation.

First, suppose that the image consists of a single region with uniform gray-level and
additive Gaussian noise with variance σ2

N . Then the response of the symmetric di�erence
�lter (0.5, 0,−0.5) to this image is a Gaussian random variable with zero mean and
variance σ2

N/2. The gradient squared magnitude g2 = g2
x + g2

y resulting from applying
the symmetric di�erence in x− and y−direction is the sum of two squares of Gaussian
random variables, hence follows a χ2-law with 2 degrees of freedom. Its distribution is
an exponential

p(g2) =
1
µ
e−g

2/µ

with parameter µ = σ2
N . Consequently, we can determine the variance of the original

image values by estimating the mean of the gradient squared magnitude. Now suppose
that the image contains some outliers. They will give raise to gradient magnitudes that
are much higher than the expected value µ of the exponential law. A robust estimate
of µ should exclude these outliers. When we already have a good guess µ0 for µ, we
can obtain an improved estimate from just the lower part of the distribution up to λ2µ0

(0 < λ <∞), which is supposedly not contaminated by outliers:

µ̃0 =
1− e−λ2

1− (1 + λ2)e−λ2

∫ λ2µ0

h=0 h p(h) dh∫ λ2µ0

h=0 p(h) dh
(3.22)

where p(h) = p(g2) is the histogram of gradient squared magnitudes, and the factor
1−e−λ2

1−(1+λ2)e−λ2 adjusts the estimate for the fact that only part of the histogram was used

to compute the mean. When this procedure is iterated (starting with a �xed µ0 whose
choice is uncritical), it quickly converges to a robust estimate of µ = σ2

N .

Finally, consider a real image. We require it to contain several homogeneous regions
at di�erent gray-levels in order for the noise estimation to be possible. The homoge-
neous regions are separated by edges and possibly textures, which will be considered as
outliers with respect to the noise estimation model. The following algorithm was reverse-
engineered from Förstner's original implementation:

Algorithm 3.2: Non-parametric noise normalization

Input: An image f with the following two properties: (i) The conditional probabilities of
observed intensities, given the true intensity, are spatially uncorrelated Gaussian
random variables with intensity-dependent variance, and (ii) there exist su�ciently
many homogeneous regions for estimating true intensities and variances within

87

3 Analysis of the Image Acquisition Process

circular windows of radius r. This radius must be large enough to yield accurate
estimates, but small enough for condition (ii) to hold. Förstner suggests r = 6 for
standard images.

1. Compute the squared gradient magnitude g2 of f by means of the symmetric dif-
ference �lter.

2. Mask inhomogeneous regions:

a) Mask pixels were g2 is higher than the maximum expected noise gradient
under worst-case assumptions. This threshold is uncritical, and Förstner uses
a value of 2000 for standard 256-graylevel images.

b) Enlarge the masked region by dilation with a disc of radius r.

3. At all unmasked pixels, use a window of radius r to estimate the average gray-
value and the noise variance according to the iterative procedure described above
(equation (3.22)).

4. Sort the estimated [grayvalue, variance] pairs by increasing grayvalue and group
the pairs into n clusters of equal size (n is again uncritical, Förstner uses n = 20).
Compute a cluster representative by assigning the average noise variance within
the cluster to the cluster's midpoint grayvalue.

5. Linearly interpolate between the cluster representatives to obtain the function
σ2
N (I) (use constant extrapolation outside the range of the cluster centers). Com-

pute the transformation t(I) by numeric integration of (3.19) according to

t(I) = t(I − 1) +
1√
σ2
N (I)

In general, any image analysis algorithm that is explicitly or implicitly based on the
assumption of additive Gaussian noise (and these are the majority) will pro�t from noise
normalization. Noise normalization is usually much cheaper than the development of a
new analysis algorithm adapted to a speci�c kind of noise. For example, consider edge
detection and let edge strength be estimated by means of Gaussian derivative �lters.
When the noise is not normalized, the strength of spurious edges caused by noise will
depend on the image intensity, so that di�erent thresholds are required in di�erent parts
of the image. In contrast, a uniform threshold on the gradient magnitude is su�cient
after noise normalization, and it can be derived analytically. Using Parseval's identity,
the expected value of the square of a 2-dimensional Gaussian �rst derivative along the
x-direction, applied to a Gaussian white noise image with variance σ2

N , can be computed
as

E
[
g2
x

]
=
σ2
N

4π2

∫∫ (
2π x e−2π2(ν2

1+ν2
2)s2

)2
dν1 dν2 =

σ2
N

8πs4

where s is the standard deviation of the Gaussian �lter. The gradient squared magnitude

g2 = g2
x+g2

y is thus exponentially distributed with parameter µ = σ2
N

4πs4
. Since we apply the

88

3.4 Noise Normalization and Noise Filtering

�lter to an already noise-normalized image, we have σ2
N = 1. Hence, we can compute the

gradient magnitude above which the probability that the observed gradient was caused
by noise becomes less than ε:

|gs,ε| ≥
√
− ln ε
4π s4

For example, when we set a threshold of 0.5/s2, the probability of false positives is 5%, at
0.6/s2 it drops to 1%, and at 0.75/s2, we already achieve 0.1%. Similar thresholds can be
derived for a color gradient, when the noise in each color channel is independent and has
been normalized. If the color gradient is computed by adding the squared gradients of
the three colors channels, a χ2-distribution with 6 degrees of freedom (instead of 2) must

be used: p(g2) = 27 g4

3µ′3 e
−3g2/µ′ with mean µ′ = 3µ = 3σ2

N
4πs4

. Then the gradient magnitudes

for 5%, 1% and 0.1% probability of false positives are 0.72/s2, 0.81/s2, and 0.95/s2

respectively. A more detailed analysis of optimal threshold estimation will be performed
in section 7.2.2.2.
In most images, the e�ect of noise normalization is not very spectacular. This is easily

understood when we look at it as a two-step process: First, noise normalization performs
a transformation similar to γ-correction which equalizes the noise variance over the en-
tire image by a non-linear brightness increase. Second, the image intensity is divided
by the standard deviation of the resulting noise distribution in order to achieve unit
noise variance. Since the variance before intensity scaling is usually above unity, noise
normalization has the e�ect of reducing the edge contrast in terms of absolute intensity
(usually to values between 1/4 and 3/4 of the contrast in the original image). However,
this transformation does not deteriorate the signal-to-noise ratio, as long as image inten-
sities are represented with �oating point accuracy. Figure 3.24 shows the result of noise
normalization in two example images.

89

3 Analysis of the Image Acquisition Process

Figure 3.24: Non-parametric noise normalization according to algorithm 3.2 for two example
images. The normalized images look worse than the originals, but this is just a consequence of
the fact that these images have been optimized for image analysis, not printing.

3.4.2 Speckle Noise

The non-parametric noise normalization algorithm described above requires the con-
ditional probabilities to be Gaussian distributed. This requirement is not always ful-
�lled. An important exception are images su�ering from speckle noise. Speckle noise is
formed by self-interference of the re�ected waves under coherent illumination, for ex-
ample in radar, laser, and ultrasound imaging. Our presentation follows the analysis
of [Michailovich & Tannenbaum 06] who reviewed the properties of speckle noise and
proposed a suitable noise normalization transform. Speckle noise has three important
properties: (i) it is non-Gaussian, (ii) it is combined with the signal by multiplication,
not addition7, and (iii) it is spatially correlated because it is subjected to smoothing
by the system PSF. The precise form of the noise distribution depends on the imaging

7There is also an additive noise component, but it is usually much smaller than the speckle and can be
neglected.

90

3.4 Noise Normalization and Noise Filtering

modality, but it can usually be described by a generalized gamma distribution

p(z) =
γ zγν−1

αγνΓ(ν)
exp

(
−
(z
α

)γ)
with z ≥ 0 and α, γ, ν > 0

where Γ(ν) is the Gamma function. By selecting certain values for the parameters γ
and ν, a number of important distributions arise as special cases, for example Rayleigh
(γ = 2, ν = 1), exponential (γ = 1, ν = 1), Weibull (ν = 1) and log-normal (ν →∞).
Multiplicative noise can be turned into additive noise by taking the logarithm of the

variable: ln(s z) = ln(s) + ln(z), where s is the noise-free signal. When z follows a gener-
alized gamma distribution, the distribution of its logarithm is

p (ln(z)) =
γ

Γ(ν)
exp [γν (ln(z)− ln(α))− exp [γ (ln(z)− ln(α))]]

For a wide range of parameters, this distribution is similar to a Gaussian distribution,
but has longer tails, so that ln(z) will contain outliers. [Michailovich & Tannenbaum 06]
derived the following noise normalization algorithm from their analysis of the speckle
problem:

Algorithm 3.3: Normalization of speckle noise

Input: An image with multiplicative, spatially correlated speckle noise.

1. Decorrelate the noise by a deconvolution �lter de�ned in the Fourier domain as

H(ν1, ν2) =
1√

|PMTF(ν1, ν2)|2 + σ2
N

σ2
S

where PMTF is the magnitude transfer function of the sensor, and σ2
N/σ

2
S is the ratio

of the noise and signal variances. [Michailovich & Tannenbaum 06] recommend to
treat this quotient simply as a tuning parameter controlling how much decorrelation
is applied to frequencies that have been highly damped by the action of the MTF.

2. Take the logarithm of the decorrelated signal to turn multiplicative into additive
noise.

3. Perform outlier shrinkage: Apply a 3× 3 or 5× 5 median �lter to the logarithmic
image. Whenever the absolute di�erence between the un�ltered image value and the
median exceeds a threshold λ, replace the value with (median± λ), where the sign
depends on whether the un�ltered value was larger or smaller than the median,
otherwise retain the un�ltered value. The threshold λ should be chosen so that
5− 7% of the pixels are classi�ed as outliers.

The positive e�ect of this noise normalization on the results of subsequent wavelet de-
noising, total variation �lters, and anisotropic di�usion is convincingly demonstrated by
[Michailovich & Tannenbaum 06], see �gure 3.25. Yet another noise normalization algo-
rithm suitable for phase contrast imaging was reported by [Goudail & Réfrégier 04] with
equally convincing results.

91

3 Analysis of the Image Acquisition Process

Figure 3.25: Top row: ultrasound image before and after noise normalization. Bottom row: orig-
inal image (left), anisotropic di�usion without noise normalization (center), anisotropic di�usion
after noise normalization (right). Images from [Michailovich & Tannenbaum 06].

3.4.3 Experiment: Critical Point Detection in Real Images

After noise normalization the question arises how much noise reduction we need in order
to be able to reliably detect image features. To get an experimental intuition, we repeat
the experiment on critical point detection (section 3.3.2) with a real camera. We displayed
the picture computed from the logarithm of equation (3.16) on a LCD screen, see �gure
3.26 left (taking the logarithm was necessary because the dynamic range of the target
would otherwise exceed the capabilities of the display and camera). This picture was then
photographed with the Canon EOS D60 with f-stop f# = 8 and focal length 28mm, �gure
3.26 right. The viewing distance was adjusted so that a 10 × 10 square of pixels on the
screen was imaged onto a single camera pixel, so that the sampling of the target pattern
was invisible to the camera. The fact that the camera does not produce band-limited
images was no problem in this experiment because the target image itself is e�ectively
band-limited.

The camera image was then analyzed in the interpolated RGB image as well as in
the red, green, and blue subgrids of the Bayer raster: The images were �rst smoothed
by a Gaussian �lter, and critical points were then detected in a spline reconstruction
of the smoothed image by means of algorithm 3.1 explained in section 3.3.2. It turned
out that we were able to detect exactly the desired critical points in all four cases after
smoothing with a Gaussian with standard deviation σ = 1 and spline interpolation
of any order between 2 and 5. Figure 3.27 shows the detected critical points for �fth
order spline interpolation. The red and blue subgrids represent the lowest resolution
where we were able to reliably detect all critical points. It should be noted that the
asymmetric placement of the central maximum was correctly recovered. In the red and
blue subgrids, the average distance between the four central minima was 3.95 ± 0.15
pixel, the average distance between the four critical points closest to each other (the

92

3.4 Noise Normalization and Noise Filtering

Figure 3.26: Left: The target pattern for the experiment. It has a size of 895 × 895, and the
distance between the four central minima is 90 pixels. Right: Camera image of the target (Bayer
�lter image interpolated to full resolution color image). The camera was rotated by 45◦ to align
the target with the green subgrid. The depicted ROI has size 160 × 160, the distance between
the four central minima is ≈ 8 pixels.

central maximum and the adjacent saddles and minimum) was 1.42 ± 0.02 pixel. The
ratio between the two lengths is 2.78, whereas the theoretically correct value would have
been 2.25. Apparently, the various blurring �lters in the processing chain introduce a
bias that ampli�es the asymmetry of the central maximum. But we still regard this as a
remarkable result, especially considering that no false positives or negatives occurred in
critical point detection. When the resolution was reduced by half an octave, the minimum
with lowest contrast was lost. Thus, the red and blue subgrid results in �gure 3.27
represent approximately the lowest resolution where correct detection was possible. They
correspond to a 5.6-fold oversampling relative to the theoretical limit (where the two
distances would have been 0.7 and 0.31 respectively). This should be compared with the
2.6-fold oversampling required in the simulations (section 3.3.2) where no blurring and
no noise degraded the image quality.

93

3 Analysis of the Image Acquisition Process

(1) (2)

(3) (4)

Figure 3.27: Left to right: detected critical points (green: minima, red: saddles, blue: maxima)
in the red (1), green (2), and blue (3) subgrids of the Bayer raster, and in the the interpolated full
color image (4). The second image is rotated because the green subraster of the Bayer is oriented
diagonally. The resolution of the green subgrid is half an octave higher than the resolution of the
red and blue subgrids, and the resolution of the interpolated image is a full octave higher.

94

4 The Representation of Segmentation

Results

Abstract

No image segmentation method can be more powerful than what is supported by the
underlying data representation. In this chapter, we analyze the requirements posed on
this data representation by typical segmentation algorithms on the one hand, and the
requirements posed by the concepts of topology on the other hand. Conformance to the
requirements of topology is of fundamental importance for the de�nition of basic shape
properties like connectedness and neighborhood. We introduce the GeoMap as an e�cient
and easy-to-use representation that ful�lls all requirements and can be implemented in
many interesting ways. We discuss GeoMap implementation by polygonal and by grid-
based data structures and demonstrate some basic GeoMap applications.

4.1 Topology for Segmentation

Single pixels don't tell much about the image content1. It is necessary to consider sets
of pixels and their relations. Some of the most fundamental relations are topological
in nature, for example connectedness, neighborhood, and boundary. These relations are
implicitly de�ned by the geometric plane partitions we discussed in chapter 2 (de�nition
2.2), but there are a number of good reasons to make topology explicit:

• Valuable cues for the interpretation of image structure can be derived from topolog-
ical information, for example whether a region has holes, which arcs its boundary
is composed of, or which other regions are neighbors of it. Therefore, topological
information should be readily available to algorithms.

• Topological criteria are important for the evaluation and comparison of segmenta-
tion algorithms, as became apparent in section 2.2. Many statements about geomet-
ric shape similarity include implicit statements about topology. If made explicit,
these topological properties serve as powerful shape comparison criteria in their
own right.

• The combination of explicit geometric and topological information leads to very
powerful data representations (so called GeoMaps, see section 4.2) which facilitate
the uni�cation and integration of hitherto incompatible algorithms, such as edge-
and region-based segmentation methods.

1Multi-spectral images with dozens or hundreds of channels per pixel are notable exceptions.

95

4 The Representation of Segmentation Results

Figure 4.1: Illustration of the connectivity
paradox (see text for explanations).

• By taking advantage of topological information, these data representations provide
simple operations for orderly (consistency preserving) manipulation of a segmenta-
tion, e.g. for removing undesired edges from an over-segmentation.

• Dealing with topology explicitly prevents us from considering topological errors as
minor problems � gaps in edges (as are common in e.g. Canny's algorithm) are no
longer something that can be ignored or handled by some simple heuristics.

The importance of topology for image analysis was �rst recognized by [Rosenfeld 70] who
analyzed the so-called connectivity paradox : When the 8-neighborhood is used for both
the foreground and the background, there is no guarantee that a simple closed curve
splits the pixel plane into an interior and an exterior part. Similarly, if 4-neighborhood
is used, the plane can be split by a curve that is not closed, see �gure 4.1. [Rosenfeld 70]
pointed out that these problems can be avoided on the square raster when di�erent
neighborhoods are used for the foreground and background (i.e. 4-neighborhood for the
foreground and 8-neighborhood for the background, or vice versa). It is also well-known
that the hexagonal grid does not su�er from these problems because only three pixels
meet at every pixel corner.

The �rst analysis of topological issues independent of a particular grid layout was
conducted by [Kovalevsky 89] who introduced the notion of cell complexes into the
�eld of image analysis. Later it became apparent that the concept of combinatorial
maps provides even more powerful tools for the representation and analysis of im-
age topology. Combinatorial maps were originally introduced by [Tutte 84] and have
been well-established for a long time in computer graphics and geometric modeling
[Mäntylä 88, Kettner 98, Duford & Puitg 00]. In the context of irregular image pyramids,
[Kropatsch 95] was the �rst to introduce dual-graph representations which later turned
out to be equivalent to combinatorial maps [Brun & Kropatsch 01], but are signi�cantly
more complicated. Several other authors were lead to combinatorial maps as a natural rep-
resentation for interpixel boundaries (cf. section 4.3.2), e.g. [Braquelaire & Domenger 99,
Winter 95]. Interestingly, the interpixel boundary representation was already discovered
by [Brice & Fennema 70], but was probably not practical at the time due to its large
memory requirements. Additional theoretical justi�cation of the interpixel approach is
given by [Khalimsky et al. 90] who introduced a topology for a square raster that treats
points with even and odd coordinates di�erently, and [Ahronovitz et al. 95] who de�ned
�nite topological spaces by regular subdivisions of R2 into convex polytopes.

96

4.1 Topology for Segmentation

A good review of the basic ideas of combinatorial maps and their realization by means
of interpixel boundaries can be found in [Braquelaire 05]. [Köthe 03b] demonstrated that
combinatorial maps can also be constructed from thin 8-connected edge images, which,
for example, result from Canny's algorithm and some variants of the watershed trans-
form. Later, the concept of topological data representations was generalized to include
plane partitions whose boundaries do not form a single connected set, e.g. the topological
graph of frontiers [Fiorio 96] and the border map [Bertrand et al. 99]. This is important
in practice because regions with holes and inclusions are very common, for example in
pictures showing a wall with windows, or a biological cell with nucleus and organelles. An
integrated treatment of many di�erent approaches in the uni�ed framework of XPMaps
was given in [Köthe 02]. In the sequel, we will review and further develop these ideas.
In particular we will show how geometric information can be combined with topologi-
cal information in both pixel-based and polygon-based representations, and how these
representations can be derived from image data.

The mathematical theory of topological spaces describes the minimal requirements that
must be met in order to allow topological relations to be established. These requirements
are formulated in the following axioms:

De�nition 4.1. A tuple (E,O) consisting of a set E of abstract entities and a set O of
subsets of E (called the open subsets) is called a topological space if the following axioms
are ful�lled:

(1) The empty set and E are both open: ∅ ∈ O, E ∈ O.
(2) The union of arbitrary many open sets is an open set: o1 . . . , ok ∈ O ⇒

⋃
k

ok ∈ O.

(3) The intersection of two open sets is an open set: o1, o2 ∈ O ⇒ o1 ∩ o2 ∈ O.

If E is a continuous space, the elements e of E are called points. In �nite spaces they
are often called cells. Topological relations can now be de�ned solely on the basis of the
axioms: The boundary ∂S of a subset S of E is the set of all points (or cells) such that
every open set containing one of these points (cells) intersects both S and its complement
Sc = E\S. The closure of a set is the union of the set and its boundary: S̄ = S ∪ ∂S.
The interior of a set is the di�erence between the set and its boundary: S0 = S\∂S. Two
non-intersecting sets are neighbors when their boundaries intersect. A set is connected if
it cannot be partitioned into two subsets that are not neighbors of each other. A set S
is simply connected if both S and Sc are connected.

To simplify working with a topological space, it is useful to de�ne a topological basis.
A basis is a set of open sets such that all open subsets of E can be written as unions and
�nite intersections of sets from the basis. In case of the n-dimensional Euclidean space
Rn, the most common basis is the set of open balls Bε(~x) = {~y ∈ Rn : |~x− ~y| < ε} with
all possible centers ~x ∈ Rn and all possible radii ε > 0. In a �nite topological space, the
most natural basis is formed by the set of open stars, where the open star of a cell is
de�ned as the smallest open set containing the cell (see de�nition 4.2 below).

If the axioms of a topological space are not ful�lled, it is impossible to establish con-
sistent de�nitions for the relations mentioned. For example, when naive neighborhood
de�nitions are used, it is impossible to come up with a satisfactory de�nition for the

97

4 The Representation of Segmentation Results

Figure 4.2: The open stars of a vertex, arc,
and region (from left to right) in a square tes-
sellation of the plane. If the in�nite region is
contained in an open star, the pictures must
be modi�ed in obvious ways.

boundary of a region [Pavlidis 82]. Another well-known problem is the connectivity para-
dox we discussed above. Obviously, inconsistent intermediate data will cause errors and
contradictions in subsequent processing steps. They may result in artifacts whose detec-
tion and correction during high-level processing is very di�cult. Therefore, it is preferable
to solve these problems at their root, and image segmentation methods conforming to
the requirements of topology make an important contribution towards this goal.
It is easy to prove that a plane partition according to de�nition 2.2 does indeed ful�ll

the topological axioms when we consider the vertices, arcs, and regions as three kinds of
cells with dimension z = 0, 1, 2 respectively. Then the Euclidean topology of the plane
induces a neighborhood relation between the cells, which is used to de�ne the smallest
open neighborhood (the open star) of each cell:

De�nition 4.2. Let T be a partition of the Euclidean plane into cells (regions, arcs,
vertices) according to de�nition 2.2. Then the open star (smallest open neighborhood) of
a cell z is de�ned as the set of cells z′ that intersect with every Euclidean neighborhood
of the points in z:

open-star(z ∈ T) = {z′ ∈ T : ∀~x ∈ z,∀ε > 0 : Bε(~x) ∩ z′ 6= ∅}

where Bε(~x) denotes the open ball of radius ε around the point ~x.

The cell z itself is always a member of its open star. All other members have a higher
dimension than z. The set of open stars forms a basis for the �nite topological space
de�ned by the cells of the plane partition, i.e. one can create all possible open sets as
unions of the open stars. The interpretation of plane partitions in terms of open stars
and �nite topological spaces suggests an alternative de�nition of topological equivalence:

De�nition 4.3. Two partitions of the plane are topologically equivalent if there exists a
1-to-1 mapping between the cells of the division such that the open stars are preserved.

It can be shown that this de�nition is equivalent to de�nition 2.6 (topological equiv-
alence due to existence of a homeomorphism), but it is easier to work with because it
is based on a �nite set of cells instead of an in�nite set of points. Some authors, e.g.
[Ahronovitz et al. 95], further require that all regions be convex polytopes, i.e. do not
contain holes. We will not do this in this work. The simplest example for a star topol-
ogy is obtained by tessellating the plane into equal squares. Then the open stars of the
vertices, arcs, and regions look as depicted in �gure 4.2, and one can establish a 1-to-1
relation between the partition's regions and the pixels of an appropriately sized image.
The fact that vertices, arcs, and regions partition the plane induces a very important

relationship between their numbers � Euler's equation. In its most common form, Euler's

98

4.1 Topology for Segmentation

equation requires the boundary (i.e. the union of arcs and vertices) to consist of a single
connected component. Then it holds that

n− e+ f = 2 (4.1)

where n, e, f denote the number of vertices, arcs, and regions respectively, see e.g. [Tutte 84].
When the boundary set is not connected, the relationship must be slightly modi�ed in
order to take the number of connected boundary components k into account:

n− e+ f − k = 1 (4.2)

Proof. Since the proof is rarely found in books, we include it here. The claim is easy to
prove by induction. The trivial �partition� that only consists of the in�nite region has
f = 1 and n = e = k = 0, the partition consisting of a single vertex has n = f = k = 1,
e = 0, and a partition with connected boundary has k = 1 and n − e + f = 2, so the
formula is valid for these cases. Suppose we have proved the formula for some k, i.e.
n(k)−e(k) +f (k)−k = 1. Now we add new vertices and arcs which form a new connected
boundary component. For this component alone the relation n(1) − e(1) + f (1) − 1 = 1
holds. By adding the two equations we get n(k) +n(1)−e(k)−e(1) +f (k) +f (1)−k−1 = 2.
It holds that n(k) +n(1) = n(k+1), e(k) +e(1) = e(k+1), but f (k) +f (1) = f (k+1) +1, because
the surrounding region of the newly added component is a region that already existed
in the k-component partition and must not be counted twice. Thus, n(k+1) − e(k+1) +
f (k+1) − (k + 1) = 1 as claimed.

While a plane partition according to de�nition 2.2 implicitly contains the topological
information necessary to de�ne neighborhoods and boundaries, this information is not
explicitly accessible in a data structure that implements the geometric de�nition: We
cannot answer questions like �Which arcs belong to the boundary of a certain region?�,
or �Does a sequence of arcs enclose a hole in a region?� (to name just two examples)
without invoking nontrivial geometric computations. In fact, we cannot even directly
identify the regions themselves because they are only de�ned by a negative property �
regions are connected sets of points that are not vertices and do not belong to arcs.
The �rst topological data representation that made regions explicit was the region

adjacency graph (RAG) introduced by [Pavlidis 77]. It contains a node for each region,
and two nodes are connected by an edge when the corresponding regions are neighbors.
However, it turned out that this representation is too weak for encoding complete topo-
logical information, as is demonstrated in �gure 4.3 where two quite di�erent images
are described by isomorphic region adjacency graphs. As [Kovalevsky 89] pointed out for
the �rst time, it is necessary to consider not only regions, but entities of all dimensions
(i.e. regions, arcs, and vertices) together. To this end, he introduced the notion of cell
complexes into the �eld of image analysis:

De�nition 4.4. A cell complex is a triple (Z, dim, B) where Z is a set of cells, dim is a
function that associates a non-negative integer dimension to each cell, and B ⊂ Z × Z
is the bounding relation that describes which cells bound which other cells. A cell may
bound only cells of larger dimension, and the bounding relation must be transitive. If the
largest dimension is k, we speak of a k-complex.

99

4 The Representation of Segmentation Results

Figure 4.3: Two di�erent images may have the same region adjacency graph (i.e. there is a one-
to-one mapping between the nodes of the two graphs so that edges are preserved). Illustration
from [Meine 03].

The di�erent feature types have been transformed into abstract cells that are distin-
guished by their dimensions. A cell complex becomes a topological space by additionally
de�ning the open sets as follows: A set of cells is called open if, whenever cell z belongs
to the set, all cells bound by z do also belong to the set. Kovalevsky proved that these
de�nitions indeed guarantee that the axioms of a topological space are ful�lled, and that
any discrete topological space can be described in terms of a cell complex of appropriate
dimension.

In image analysis, we want to represent the topological structure of 2-dimensional
images, so we are naturally interested in cell complexes whose largest cell dimension is 2,
and whose bounding relation is consistent with a plane partition according to de�nition
2.2. We call those planar cell complexes. Given a plane partition, it is easy to de�ne
an associated cell complex: Create a 0-, 1-, and 2-cell for every vertex, arc, and region
respectively, and de�ne the bounding relation so that a cell bounds all cells (except itself)
belonging to the corresponding open star. This bounding relation is indeed transitive since
de�nition 4.2 guarantees that whenever z1's open star contains z2, it also contains all
members of z2's open star.

Unfortunately, we may still loose information by converting a plane partition into a
cell complex. That is, plane partitions may have identical cell complex representations
even if they are not homeomorphic. Figure 4.4 shows an example. It should be noted
that the three plane partitions in this �gure di�er mainly in the ordering of the arcs
around the central vertex. This ordering information is lost in the cell complex. It could
be recovered by standard graph drawing algorithms [Di Battista et al. 99] (with a slight
simpli�cation because 2-cells are already known and need not be constructed), but the
result is not always unique: When the boundary graph is only 1-connected (i.e. would
become disconnected if one vertex and all adjacent arcs were removed), several orderings
will be consistent with the bounding relation. This is precisely what happens in �gure
4.4.

100

4.1 Topology for Segmentation

Figure 4.4: Three plane divisions that are not topologically equivalent but have the same cell
complex representation.

A unique ordering could be enforced by associating additional geometric information
with the cells, but this counters our goal of making topological properties explicit. We
have to encode the ordering of the arcs around vertices and regions in an abstract way.
This can be achieved by means of combinatorial maps [Tutte 84, Duford & Puitg 00].
Combinatorial maps are based on permutations of darts. A permutation of a set is a
bijective mapping of the set onto itself. In e�ect, a permutation assigns unique successors
and predecessors to every member of the set. When the set contains only �nitely many
elements, we can successively move from an element to its successor until we return to
the element where we started, and this will only take a �nite number of steps. The set of
elements reachable by means of a successor chain starting at element e is called the orbit of
e in the permutation. Orbits form equivalence classes, because the same set of elements is
reachable from every member of an orbit. For example, consider the set S = {1, 2, 3, 4, 5}
and the permutation P = {1 → 2, 2 → 5, 5 → 1, 3 → 4, 4 → 3}. Its orbits are the sets
S1 = {1, 2, 5} and S2 = {3, 4}. In a combinatorial map, the permutations are de�ned over
a set of darts. Darts are also known as half-edges because every edge of a plane partition
is represented by a pair of opposite darts:

De�nition 4.5. A combinatorial map is a quadruple (D,σ, α, φ) where D is a set of
darts (or half-edges) and σ, α, φ are permutations over the darts: Each of them assigns
a unique successor α(d), σ(d), φ(d) to every dart. The cycles of these permutations (their
orbits) are called nodes, edges, and faces respectively. The α-orbits must have length two,
and the φ-permutation must be related to the others by

φ(d) = σ−1(α(d)) (4.3)

where σ−1(d) is the σ-predecessor of d. Moreover, we require the map to be connected: each
dart must be reachable from every other one by a suitable sequence of σ- and α-steps.2

2Combinatorial maps can also be de�ned by using four darts per edge (�quad-edges� or �crosses�), e.g.
[Tutte 84]. This allows the representation of non-orientable manifolds and the de�nition of generalized
maps (G-maps) which are easy to extend into arbitrary dimensions [Lienhardt 91]. However, these
extensions are not needed in 2D image segmentation, so we prefer the simpler and more e�cient
half-edge de�nition.

101

4 The Representation of Segmentation Results

−3

−8
8

−6

6

9

−7
−1

7
1

−5

−4

5

4 −2

2−9

3

Figure 4.5: The combinatorial map represen-
tation of the house example. Darts are indi-
cated by a bold arrow and an associated label.
Edges (α-orbits) are formed by pairing darts
with labels n and −n. The σ-orbit (1,-5,7) is
indicated by dashed arrows, the other σ-orbits
are (-1,-7,-8,2), (-6,-9,8), (6,9), (-3,5,-4), and
(-2,3,4). Illustration adapted from [Meine 03].

The notation α∗(d), σ∗(d), φ∗(d) will be used to indicate the orbits where d is a member
of. A combinatorial map is planar if the numbers of nodes, edges, and faces in it ful�ll
Euler's equation (4.1). A planar map can be embedded on a sphere or in the Euclidean
plane. In the latter case, it is necessary to designate one face as the exterior face, i.e. as
the one which contains the point at in�nity. Figure 4.5 shows an example.
Every planar combinatorial map has a unique dual map that is obtained by reversing

the roles of the σ and φ permutations (i.e. σ-orbits become faces, φ-orbits nodes). There
are two important ways to create planar combinatorial maps. First, one can start with
a map that is known to be planar and transform it to the desired map by a sequence of
topological operators that preserve planarity. We will discuss these operators in section
4.4.1. Second, one can create a combinatorial map from a plane partition (which is
speci�ed geometrically) by turning each arc into two darts and de�ning the permutations
according to the counter-clockwise ordering of the arcs around their vertices. Chapter 5
will be devoted to this approach.
We de�ne open sets by associating a combinatorial map with a cell complex:

De�nition 4.6. The associated cell complex of a combinatorial map is de�ned as follows:
Interpret every node, edge, and face of the map as a 0-, 1-, or 2-cell, respectively. Let a
cell bound another one of higher dimension whenever the orbits corresponding to the two
cells have a dart in common. Call a set of cells open if, whenever cell z belongs to the
set, all cells bounded by z also belong to the set.

These de�nitions imply the following theorem:

Theorem 4.1. Every combinatorial map with open sets de�ned according to de�nition
4.6 is a �nite topological space.

Proof. First, observe that the bounding relation de�ned by de�nition 4.6 indeed meets
the requirements of de�nition 4.4. In particular, it is transitive because the underlying
relation �orbits have a dart in common� is transitive, as can be seen as follows: Consider
an edge orbit, say α∗1, that contains darts d1 and d2, who also belong to face orbits φ

∗
1 and

102

4.2 Combining Topology and Geometry in the GeoMap

φ∗2 respectively. Suppose further that node orbit σ∗1 contains dart d1. For transitivity to
hold, σ∗1 must share a dart with both φ∗1 and φ

∗
2. This is immediately true for φ∗1 because

of d1. In case of φ
∗
2, consider the φ-successor of d2. Due to the condition φ(d) = σ−1(α(d)),

dart d3 = φ(d2) is identical to the σ-predecessor of d1. Thus, d3 is both in σ∗1 and φ∗2.
Second, observe that the open sets of a combinatorial map are exactly the open sets of

the associated cell complex. Therefore, the theorem stating that cell complexes ful�ll the
axioms of a topological space (cf. [Kovalevsky 89]) implies the same for combinatorial
maps.

It is interesting to note that [Kovalevsky 01a] augments the original cell complex (def-
inition 4.4) with ordered adjacency lists that represent the embedding of a cell complex
in the plane. The ordering of these lists is not part of the original cell complex de�nition
and is, in fact, equivalent to the permutations and orbits of combinatorial maps. Another
alternative was introduced by [Kropatsch 95], who resolves the ambiguities in the region
adjacency graph by always considering the RAG together with its dual graph, and per-
form all manipulations simultaneously in both graphs. This approach is also equivalent
to combinatorial maps, but the bookkeeping is much more complicated.

4.2 Combining Topology and Geometry in the GeoMap

Combinatorial maps allow to represent the complete topological structure of a plane par-
tition, but they lack geometric content. Since we need both geometric and topological
descriptions in image analysis, [Meine & Köthe 05a] introduced the GeoMap as a data
representation that combines both. It also deals with a problem that was not addressed
in the de�nition of combinatorial maps: Regions in real images may have holes, i.e. the
boundary graph of the partition may be disconnected. We cannot simply solve this prob-
lem by dropping the restriction that a combinatorial map be connected: The de�nition of
combinatorial maps does not provide a way to tell which component forms the surround-
ing part and which one the hole, or which face contains the hole. The standard solution
to this problem is the introduction of auxiliary edges which connect the hole with its
surroundings, see for example edge (8,−8) in �gure 4.5. However, auxiliary edges must
be inserted between two speci�c nodes, and this requirement breaks the natural symme-
try of the representation: why should two nodes be singled out by bounding an auxiliary
edge that wasn't in the data? Moreover, in pixel-based representations of a GeoMap, it
may not even be possible to �nd a legal place for an auxiliary edge due to the �nite grid
resolution.
Therefore, we prefer to introduce an additional relation �contains� to encode contain-

ment. This decision has an important consequence: when a region has holes, its boundary
is not a connected set. Consequently, there is no longer a 1-to-1 correspondence between
φ-orbits and faces � a face can now be bounded by several φ-orbits. In order to han-
dle this, we introduce the notion of contours: Each φ-orbit now represents a contour,
and a face may be bounded by many contours. In this respect, GeoMaps are extensions
of the border maps proposed by [Bertrand et al. 99] and the XPMaps introduced by
[Köthe 02]. However, these maps encode only the combinatorial (topological) structure

103

4 The Representation of Segmentation Results

1

main contour 1

8

of face

exterior
contours

f

3−3

−5

1

7 −7

−1

2
9
−9

−4 4 −2

5

−6

f

f

6

Figure 4.6: Illustration of the GeoMap con-
cept. In contrast to the combinatorial map of
the house example (�gure 4.5), the auxiliary
edge (8,-8) has been removed. Instead, the φ-
orbit (6,-9) has become the exterior contour
of the window and is contained in face f1.
Orbit (9,-6) is the main contour of the re-
gion �lling the window, and orbit (-2,-7,-5,-
3) is the main contour of face f1. The exte-
rior contour of the house as a whole is orbit
(1,2,4,5), which is contained in the in�nite face
f∞. Note that the two exterior φ-orbits are
traversed in clockwise orientation, whereas all
other φ-orbits are traversed counter-clockwise.

of a plane partition, whereas GeoMaps encode a consistent combination of topological
and geometric information:

De�nition 4.7. A GeoMap is a tuple (V,A, F,D, σ, α, φ, exterior, contains), where

• V , A and F are sets of vertices, arcs, and regions forming a plane partition accord-
ing to de�nition 2.2. The in�nite face is denoted f∞. For every arc ak ∈ A de�ne
the inverse arc as a−k(t) = ak(1− t).

• D is a set of darts. σ, α, and φ are permutations of the darts whose orbits σ∗, α∗,
and φ∗ represent the nodes, edges, and contours of the map respectively. Darts are
labeled so that label(α (d)) = −label(d) holds for all darts. For brevity, this will also
be written as α (d) = −d.

• exterior is a function φ∗ → {true, false}, and contains is a binary relation between
regions and contours.

The GeoMap's entities must have the following properties (compare �gure 4.6):

1. Every α-orbit (d,−d) is uniquely associated with a pair (ak, a−k) such that label(d) =
k.

2. There is a 1-to-1 correspondence between the vertices and the σ-orbits (nodes)3. Let
Aj be the set containing all arcs and inverse arcs whose starting vertex is vj (i.e.
for all ak ∈ Aj we have ak(0) = vj). Then the σ-orbit associated with vj contains
exactly the darts associated with the members of Aj, and the σ-permutation orders
these darts according to the angle of incidence of the associated arcs at vj, i.e.
according to the tangent direction of ak at t = 0.

3. The φ-permutation is derived from the other two permutations according to φ(d) =
σ−1(α(d)). When the arcs and inverse arcs associated with the darts in contour φ∗m
are traversed according to their φ-order, they form a closed curve Γm.

3Therefore, we will often use the terms �vertex� and �node� as synonyms in the sequel.

104

4.2 Combining Topology and Geometry in the GeoMap

4. The function exterior(φ∗m) = false if and only if φ∗m has mathematically positive
orientation. This condition can be checked as follows: exterior(φ∗m) = false holds if
and only if the path integral

Pm =
1
2

∫
Γm

x dy − y dx (4.4)

measuring the enclosed area of the curve Γm has positive sign (provided that x and y
are de�ned in a right-handed coordinate system). When Pm < 0 (i.e. exterior(φ∗m) =
true), the contour φ∗m is the exterior contour of a map component which forms a
hole in some region.

5. Every region fn is associated with the set Φn of all contours that contain a dart
whose associated arc is adjacent to region fn. With the exception of Φ∞, the set
Φn contains exactly one contour with exterior(φ∗n) = false. This is the outer or
main contour of fn (i.e. the one enclosing the region). Thus, there is a 1-to-1
relation between regions and non-exterior contours. Furthermore, Φn may contain
an arbitrary number of contours where exterior(φ∗l) = true. For every such contour
there must be an entry contains(fn, φ∗l) in the contains relation, whereas no such
entry must exist for any main contour. The set of contained contours can be found
as follows: Evaluate the path integral4

Wn,l =
∫

Γn

−(y − yl)
(x− xl)2 + (y − yl)2

dx+
(x− xl)

(x− xl)2 + (y − yl)2
dy (4.5)

where Γn is the curve of the main contour of region fn, and (xl, yl) is an arbitrary
point within φ∗l . When (xl, yl) is in the interior of Γn, Wn,l = 2π, otherwise Wn,l =
0. When Wn,l = 2π holds for several candidate regions n, the one with smallest
Pn > 0 must be chosen. If Wn,l 6= 2 for all n, although Pl < 0, the contour is
contained in the in�nite region, and an entry contains(f∞, φ∗l) must be inserted
into the contains relation.

Conditions (1) to (5) essentially de�ne a general (but not very e�cient) algorithm that
transforms a given plane partition into a GeoMap by making its topological properties ex-
plicit. In practice we can often take advantage of special properties of the plane partition
that lead to signi�cant simpli�cations and speed-ups, especially in the construction of
the exterior function and contains relation. Details of these possibilities will be discussed
below. By construction, GeoMaps are planar. They ful�ll the generalized Euler formula
v−e+f−k = 1, where v, e, f , and k are the number of vertices, arcs, faces, and exterior
φ-orbits respectively. The GeoMap is the most general representation for 2-dimensional
segmentation problems with �nitely many cells, and the geometry and topology of any
�nite plane partition can be expressed in terms of a GeoMap.

The GeoMap can be implemented as a powerful abstract data type, see [Meine 03,
Meine & Köthe 05a] for details. It provides the following types of operations:

4The integral follows from Cauchy's integral formula for analytic functions of complex arguments.

105

4 The Representation of Segmentation Results

• Query the entities of the GeoMap, i.e. ask for a list of darts, nodes, edges, and
faces, or a list of contours of a given face.

• Inspect the topology of the GeoMap by asking for the labels of the start and end
node of a dart, its edge and its left and right faces, or by navigating on the set of
darts according to the order de�ned by the permutations.

• Inspect the geometry of the GeoMap by asking for representative points of every
entity.

• Modify the structure of the GeoMap by elementary Euler operators (see section
4.4.1) that can be composed to achieved any desired modi�cation.

These operations form a standardized, easy-to-use interface to the GeoMap data type,
which can thus form the common basis of many di�erent algorithms. The interface encap-
sulates a number of potentially complicated algorithms that realize the required GeoMap
functionality in an implementation-speci�c way. The encapsulated algorithms may vary
widely between implementations, but the interface stays always the same. In spite of the
simplicity of the interface, GeoMaps data structures and associated algorithms can be
implemented very e�ciently, and certain implementations are fast enough for interactive
work on very large images. All segmentation methods to be discussed in this work are
realized in terms of GeoMaps.
The most important element of the GeoMap interface is the DartTraverser. It

represents a dart and provides all functionality directly related to darts:

query: startNode: DartTraverser -> Node

endNode: DartTraverser -> Node

leftFace: DartTraverser -> Face

rightFace: DartTraverser -> Face

edge: DartTraverser -> Edge

navigation: nextAlpha: DartTraverser -> DartTraverser (alpha successor)

prevAlpha: DartTraverser -> DartTraverser (alpha predecessor)

nextSigma: DartTraverser -> DartTraverser (sigma successor)

prevSigma: DartTraverser -> DartTraverser (sigma predecessor)

nextPhi: DartTraverser -> DartTraverser (phi successor)

prevPhi: DartTraverser -> DartTraverser (phi predecessor)

Every σ-orbit (node), every α-orbit (edge) and every φ-orbit (contour) has one distin-
guished dart, its anchor. In principle, the anchor can be chosen arbitrarily among the
darts in the orbit. But a reproducible rule is desirable from a computational point of
view, so that the anchors of two isomorphic GeoMaps don't di�er: We always choose the
dart associated with the forward arc in every α-orbit, and the one with smallest label in
the other two orbit types. The following functions are therefore available:

anchor: Edge -> DartTraverser

anchor: Node -> DartTraverser

contours: Face -> sequence_of(DartTraverser)

106

4.3 GeoMap Realizations

The latter returns all anchors associated with a given face. By convention, the �rst
anchor in the sequence always belongs to the outer contour of the face, whereas the
others represent embedded holes according to the contains relation. The Euler operators
to be described in section 4.4.1 are also parametrized in terms of DartTraversers.
One key advantage of the combination of geometry and topology in the GeoMap is

that it becomes possible, even easy, to compute many kinds of attributes and properties
for the cells and to use them to improve the capabilities of segmentation algorithms. We
already mentioned that topological properties like the number of holes or the number
of corners may be important cues for object recognition. These properties are easily
obtainable from a GeoMap. Similarly useful are geometric properties like the area of a
region, the length and curvature of an edge, the distance between two vertices or the
angle between two edges. Since the cells of the GeoMap have a geometric representation,
these are equally easy to compute. The same is true for perceptual criteria (�Gestalt�
properties) such as proximity and good continuation, which are also geometric in nature.
In addition, it is very important to make use of the statistical properties of gray-

levels or colors. Therefore, the GeoMap provides facilities to compute and store these
properties if desired. For example, one may be interested in the minimal or average
gradient magnitude (of the original image) along a given edge, or the mean and variance
of the color distribution in a region. Since it depends on the application, which statistics
are of interest and how they should be determined, the GeoMap supports these facilities
in the form of callbacks: whenever the GeoMap receives a call to retrieve or update some
application property, it forwards this call to the appropriate application-provided callback
function, along with all relevant data describing the cell(s) involved. In particular, the
GeoMap o�ers a set of representative points for each cell that can be used to sample an
image function in order to collect the desired statistics. Given a cell, these points are
passed to the callback function in form of an iterator that returns the points successively.
The machinery to �nd the appropriate points is completely hidden behind the GeoMap
interface. This solution is another example how the use of GeoMap data structure helps in
the simpli�cation and uni�cation of algorithms. Much more detail about these concepts
will be provided in [Meine 08].

4.3 GeoMap Realizations

4.3.1 Polygonal GeoMaps

The obvious realization of the GeoMap is by means of a polygonal plane partition:

De�nition 4.8. A polygonal GeoMap is a GeoMap whose arcs are polygonal lines. The
points de�ning a polygonal arc are called knots.5

Each arc is uniquely de�ned by an ordered sequence of knots and their connections by
straight lines. The start and end knots of the polygon do not themselves belong to the arc,

5One could also require the arcs to be straight lines. The expressiveness of the two de�nitions is the
same, because all interior knots of a polygonal arc could be turned into vertices of the GeoMap. In
practice, we found de�nition 4.8 easier to work with.

107

4 The Representation of Segmentation Results

Figure 4.7: A polygonal GeoMap that en-
codes the partition of the image shown in the
background (red: arcs, blue: vertices).

but must be vertices of the GeoMap. The σ-order of the GeoMap is realized by doubly
linked cyclic lists of arcs around each vertex. Arbitrary arc geometries can be represented
with any desired accuracy by placing intermediate knots su�ciently densely. Knots may
have arbitrary coordinates in the plane, as long as the requirements of de�nition 2.2 are
ful�lled, i.e. arcs do not intersect. The contains relation can be established e�ciently by
means of a fast polygon containment test, see e.g. [Heckbert 94]. The main task in the
polygonal GeoMap approach is the creation of a suitable polygonal plane partition to
begin with. We will deal with this problem in section 5.1, where we introduce algorithms
that derive subpixel-accurate polygonal arcs from a given boundary indicator. Figure 4.7
shows an example.

Representative points for each cell (to be used for computing cell statistics) are de�ned
as follows: Vertices are single points, and polygonal arcs are sequences of knots, so these
points can be used directly to sample the contents of the respective cells. A polygonal
arc can be resampled if a higher knot density is required for the computation of reliable
statistics. In order to get points for the regions, we overlay the polygonal map with a
square grid of adjustable pixel pitch. The grid points lying within a given region rep-
resent that region. These points can be e�ciently determined by means of a connected
components algorithm.

4.3.2 Grid-Based GeoMaps

Alternatively, one can de�ne GeoMaps on top of a sampling grid. This approach builds
upon low-level segmentation algorithms people are most familiar with, e.g. region la-
beling or edge detectors that mark pixels as boundary pixels. However, to make these
methods applicable in the GeoMap framework it is necessary to develop provably correct
algorithms that transform grid-based representations into GeoMaps. This is not a trivial
problem, because naive de�nitions of neighborhood and connectivity in a grid easily lead

108

4.3 GeoMap Realizations

Figure 4.8: Left: Subset digitization P̂ (gray) of a region P with a hole (indicated by solid
contours). Center: The interpixel boundary (or crack edge) is the Euclidean boundary ∂P̂ of
the digitization P̂ . It consists of polygons whose knots are located at pixel corners. Right: The
mid-crack boundary of P̂ is a set of polygons whose knots are located at the center points of the
cracks.

to topological contradictions (cf. the connectivity paradox in section 4.1) which prevent
the construction of consistent GeoMaps. In order to avoid these problems, we start with
a number of formal de�nitions of relevant terms:

De�nition 4.9. A countable set S ⊂ R2 of points is called a grid on R2 when the
intersection S ∩A with any bounded subset A ⊂ R2 contains only �nitely many sampling
points. The Voronoi regions associated with each sampling point ~s ∈ S are called pixels:

pixelS(~s) := {~x : ∀~s′ ∈ S\{~s} : |~x− ~s| ≤ |~x− ~s′|}

Two sampling points are called directly adjacent (or adjacent, without quali�cation) if
their corresponding pixels share an edge. The shared edge of two directly adjacent pixels
is called a crack. Two sampling points are indirectly adjacent if their pixels share only a
corner. A discrete path in the grid is a sequence of directly adjacent sampling points.

In this section, we will only apply this de�nition to square grids, where direct and
indirect adjacency refer to the familiar 4- and 8-neighborhood. Moreover, we simplify the
camera model by assuming that the point spread function is a δ-function and there is no
noise. In other words, the regions and boundaries of the ideal geometric image are now
directly digitized, similar to the rasterization of geometric models in computer graphics.
The analysis of digitization models provides useful insight into what pixel con�gurations
occur in grid-based shape representations, and how they are best treated from a topolog-
ical point of view. The discretization of a region is most commonly described by means
of subset digitization:

De�nition 4.10. The subset digitization P̂ of a a set P ⊂ R2 is de�ned as the union
of all pixels whose sampling points are located within P .

If the grid is a square grid, subset digitization is also known as Gauss digitization, see
�gure 4.8 left. It should be noted that any region image whose connected components
have been labeled according to the 4-neighborhood can be interpreted as the subset
digitization of some (possibly unknown) plane partition. There are two common ways of
de�ning the boundary of a subset digitization:

109

4 The Representation of Segmentation Results

De�nition 4.11. Let P be a plane partition and P̂ its subset digitization on a square
grid. The Euclidean boundary ∂P̂ of P̂ is called the interpixel boundary or crack edge
of P̂ (�gure 4.8 center). It consists of polygons whose segments are cracks, and whose
knots are located at pixel corners. Alternatively, the mid-crack edge of P̂ is de�ned as the
set of polygons whose knots are at the cracks' center points (�gure 4.8 right). Precisely,
the mid-crack edge is obtained from the crack edge as follows: (a) Split all segments of
the crack edge polygons at their center points. (b) Remove all knots from the resulting
polygons that are located at pixel corners and whose degree is 2 (knots with other degrees,
representing line endings and junctions, must remain in the mid-crack polygons).

Mid-crack edges are important because they have higher geometric accuracy (in a sense
to be made precise in section 6.2.1) than crack edges due to the reduced staircasing of
diagonal lines.

Crack edges and mid-crack edges are indirectly de�ned digital boundaries, because
they are derived from the subset digitization of a region. Alternatively, we can de�ne
digital boundaries directly on the basis of Euclidean arcs. One common representative of
this approach is the grid-intersection digitization:

De�nition 4.12. Let a : [0, 1]→ R2 be a planar arc and S an axis-aligned square grid.
The grid lines are the horizontal and vertical lines through the points of S. Let G be
the set of intersection points between a and the grid lines. Then the grid-intersection
digitization of a is the set of all pixels that contain a point of G (points in G that are
exactly on a crack are arbitrarily assigned to one of the adjacent pixels).

This digitization model is illustrated in �gure 4.9 left. It results in a topologically thin
digital arc, i.e. it is impossible to remove pixels without destroying the arc's connectivity
(in the 8-neighbor sense). This model is, for example, realized by the well-known Bre-
senham algorithm for straight line drawing. It is also the typical result of region growing
algorithms which leave explicit boundaries between regions, e.g. some versions of the wa-
tershed algorithm to be discussed later. Alternatively, one can digitize arcs by marking
all pixels that it touches:

De�nition 4.13. The supercover digitization of a planar arc a : [0, 1]→ R2 is the union
of all pixels whose intersection with the arc is non-empty.

This kind of digital curve is shown in 4.9 right. It is always a superset of the grid
intersection digitization, and typically results when edge pixels are marked by means
of Canny's algorithm [Canny 86]. To enable uniform treatment of all types of digital
boundaries, we �rst transform crack edges and mid-crack edges into an equivalent rep-
resentation where boundaries are represented by marked pixels rather than polygons. In
case of crack edges derived from a labeled region image, this can be done by means of
the crack insertion algorithm which produces an image with twice the size of the original
image by inserting extra rows and columns between the original pixels. These additional
pixels are marked with a boundary label where appropriate:

110

4.3 GeoMap Realizations

Figure 4.9: Left: Grid-intersection digitization of a straight line. The dashed lines are the
relevant parts of the grid lines that contain intersection points. Right: Supercover digitization of
a straight line.

Algorithm 4.1: Crack Insertion Algorithm

Input: A discrete region image IRegion on the integer domain [0, ..., w− 1]× [0, ..., h− 1],
whose connected components are labeled according to the 4-neighborhood.

1. Create an image ICrack on the integer domain [−1, ..., 2w− 1]× [−1, ..., 2h− 1] and
label it as follows:

a) Map all labels from IRegion(i, j) onto the corresponding points ICrack(2i, 2j).

b) For all points of the form ICrack(2i+1, 2j): If its horizontal neighbors ICrack(2i, 2j)
and ICrack(2i + 2, 2j) have di�erent labels, or one is outside the image, label
ICrack(2i + 1, 2j) as a boundary point. Otherwise, copy the (unique) region
label of the two neighbors.

c) For all points of the form ICrack(2i, 2j+1): If its vertical neighbors ICrack(2i, 2j)
and ICrack(2i, 2j + 2) have di�erent labels, or one is outside the image, label
ICrack(2i, 2j + 1) as a boundary point. Otherwise, copy the (unique) region
label of the two neighbors.

d) For all points of the form ICrack(2i+ 1, 2j+ 1): If none of the direct neighbors
ICrack(2i, 2j+ 1), ICrack(2i, 2j− 1), ICrack(2i+ 1, 2j), ICrack(2i− 1, 2j) (where
points outside the image are ignored) is marked as boundary, they necessarily
belong all to the same region. In this case, copy their region label to the current
point. Otherwise, mark ICrack(2i+ 1, 2j + 1) as a boundary point.

Figure 4.10a illustrates the action of this algorithm6. We call the result of the crack
insertion algorithm an image with explicit inter-pixel boundaries or a crack-edge image.
The corresponding mid-crack image (�gure 4.10b) can be computed from the crack-edge
image by means of topology-preserving thinning, see below. It is easy to prove that both
the explicit crack edges and the regions in the crack-edge image are 4-connected. In fact,
they are even well-composed [Latecki 98]:

6It should be noted that the explicit execution of this transformation (which results in four times as
many pixels as the original label image) can be avoided when the GeoMap is implemented in a
clever way, see for example [Braquelaire & Domenger 99]. However, explicit crack edges lead to great
simpli�cations in the subsequent algorithms and proofs.

111

4 The Representation of Segmentation Results

(a) (b)

Figure 4.10: (a) A region image labeled according to the 4-neighborhood and the corresponding
image with explicit interpixel boundaries resulting from the crack insertion algorithm (boundaries
are marked in black). (b) The mid-crack image resulting from thinning the boundary of the crack-
edge image.

De�nition 4.14. A set in a square grid is called well-composed when its connected
components are identical under 4- and 8-connectivity. A binary image partition is well-
composed if both the foreground and the background are well-composed.

[Latecki 98] proved that this condition is equivalent to the condition that there is no
2× 2 pixel block where foreground and background are arranged in a checkerboard-like
pattern, i.e. where two diagonally opposite pixels are foreground, and the other two are
background. In our case, the boundaries can be interpreted as foreground and the union of
all regions as background, and non-existence of checkerboard con�gurations is guaranteed
by the construction of the boundary in the crack insertion algorithm. Well-composedness
ensures that topological inconsistencies such as the connectivity paradox cannot occur.

In contrast, the boundaries created by grid-intersection digitization are only 8-connected,
and the resulting edge images are not well-composed. To achieve topological consistency
here, it is necessary to use di�erent neighborhood de�nitions for the foreground and
background: We require the boundary to be 8-connected, and regions to be 4-connected
[Rosenfeld 70]. Then, checkerboard con�gurations are always resolved so that the bound-
ary is connected. Furthermore, we require 8-connected boundaries to be topologically thin:

De�nition 4.15. A set in a square grid is topologically thin when it is impossible to
take a pixel from the set and assign it to the set's complement without changing the
connected components of either the set or the complement. If a set is not topologically
thin, it contains so called simple pixels whose removal will not change connectivity.

Arbitrary boundaries can be made thin by means of the following thinning algorithm
which recursively removes all simple pixels. A pixel can be classi�ed as being simple or
not by applying de�nition 4.15 in its 3 × 3 neighborhood only. In general, the result of
thinning depends on the order in which simple pixels are considered, see �gure 4.11a.
Instead of using an arbitrary order (e.g. scan order), we prefer a thinning algorithm with
explicit priority. The priority can be determined by some measure of con�dence that

112

4.3 GeoMap Realizations

(a) (b) (c)

Figure 4.11: (a) Illustration of why priorities are useful. Either of the gray pixels can be
removed, but not both. The one with higher con�dence of belonging to the true edge should be
kept. (b) Special thinning rules for terminations: Three edge termination con�gurations (modulo
rotation and re�ection) must be excluded from thinning although their center is a simple point.
(c) Special thinning rules for T-junctions: The center point of this con�guration is also simple
but should be kept.

a pixel actually belongs to the boundary. Pixels with low con�dence (e.g. small local
gradient magnitude) are then removed �rst:

Algorithm 4.2: Thinning with Priority

Input: An image with a non-thin boundary, and additional information (e.g. the gradient
magnitude) to compute priorities.

1. For every boundary pixel that is a 4-neighbor of the background: If it is a simple
pixel, compute its priority and put it into a priority queue.

2. While the priority queue is not empty:

a) Remove the pixel at the top of the queue and check whether it is still simple
(this property may have changed due to relabeling of a neighbor). If yes,
relabel it into background. Check whether pixels in the 4-neighborhood have
become simple after the relabeling. If so, put them into the priority queue.

Since many edge detection algorithms do not produce closed boundaries, we must be
careful to avoid removal of the terminations of edges during thinning. Since edge ter-
minations are simple points, this has to be done by an exception to the rule of simple
points: In the con�gurations shown in �gure 4.11b, the center is not removed, despite its
being simple. Another useful exception is to leave T-junctions untouched, �gure 4.11c.
The region topology is independent of whether or not we remove the center pixel of this
con�guration, but we found empirically that the geometric accuracy of the segmentation
is almost always improved by leaving the T-junction intact. These exceptions to the rules
of de�nition 4.15 are possible because the rules of de�nition 4.16 below correctly classify
boundary pixels into nodes and edges even if these simple points remain in the boundary.

When the thinning algorithm (with special rules for terminations and T-junctions) is
applied to a crack-edge image we obtain the corresponding mid-crack image, see �gure
4.10b. Thinning is simpli�ed here because no priorities are needed: Two simple pixels can
never be neighbors in a crack-edge image, so that the result of thinning is independent

113

4 The Representation of Segmentation Results

1613 14 15

1 2 3 4 5 6 7 8

9 10 11 12

Figure 4.12: All possible con�gurations (up to re�ection and rotation) in a pixel-based boundary
representation where the center pixel is classi�ed as an edge pixel. The continuation of the edge
to either side is marked with an arrow. In all other con�gurations, the center is marked as a node
pixel.

of the processing order. It is easily seen that the boundary pixels of the mid-crack image
correspond to the knots of the midcrack polygons: When {~xi} denotes the set of knot
positions in the midcrack polygons, exactly the pixels at coordinates 2~xi are marked as
boundary pixels in the mid-crack image.
We have now introduced various types of images where certain pixels are marked in a

well-de�ned way as belonging to the boundary. The next step is to classify these boundary
pixels into either edge or node pixels. Interestingly, this classi�cation can be done by
only considering 3×3 blocks of pixels. The basic idea of the classi�cation algorithm is to
consider a boundary pixel as an edge pixel whenever it has two uniquely de�ned neighbors
that can be interpreted as its predecessor and successor in an arc. In the simplest case,
this requirement is ful�lled when exactly two neighbors (which must not themselves be
neighbors of each other) of the current pixel are marked as boundary. But this de�nition
does not cover all cases that one intuitively considers as edge candidates, see for example
con�guration 7 in �gure 4.12. A more general de�nition is obtained by preferring 4-
neighbors over 8-neighbors whenever there is a choice between several candidates. This
rule can be formalized as follows:

De�nition 4.16. A boundary pixel is classi�ed as either an edge or a node pixel ac-
cording to the following rules: Traverse the pixel's 8-neighborhood counter-clockwise and
identify connected sectors of boundary pixels. If there are not exactly two such sectors, the
center is a node pixel. Otherwise, check whether each of the two sectors contains at most
one 4-neighbor. If this is not true, the center is again a node pixel, otherwise an edge pixel.
In the latter case, one pixel from either sector is designated as the edge's continuation:
the 4-neighbor, if the sector contains one, and the (unique) 8-neighbor otherwise.

Figure 4.12 shows all possible con�gurations (up to rotation and re�ection) that are
classi�ed as edge pixels according to this de�nition. The continuation of the edge to either
side is marked by arrows. These neighbors are not necessarily themselves edge pixels, they
can also belong to the node where the edge starts or ends. Not all con�gurations can
actually occur in all types of boundary images: By construction, corners and junctions
of an explicit inter-pixel boundary can only occur at pixels whose coordinates are both
odd numbers. Therefore, only con�gurations 1, 3, 7, 10, 11, 14, 15, and 16 are possible in
these images. In contrast, con�gurations 1, 9, and 12 cannot occur when the boundary is
topologically thin. On �rst sight, it might appear that even more cases are impossible for

114

4.3 GeoMap Realizations

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

Node

Node

Node

Node

NodeNode

NodeNode

NodeNode

Node

Node

773

800 800

807 807

807 807

835 836

835

773

766

Figure 4.13: Classi�cation of boundary pixels (edge pixels are marked red, nodes blue, re-
gions white) of an image with explicit inter-pixel boundaries (left) and with thin 8-connected
boundaries (right). The right example shows that nodes consisting of several pixels are natural
in this kind of boundary image. The σ-orbits around one node in each image are also plotted.
Illustrations from [Meine 03].

thin boundaries, e.g. number 15. But in these cases there exist boundary continuations
outside the depicted 3 × 3 region which make the con�guration indeed thin. It should
be noted that the set of node pixels resulting from an interpixel boundary is identical
to the set resulting from the corresponding mid-crack representation, provided that edge
terminations and T-junctions have been excluded from thinning.
After classi�cation, we compute the 8-connected components of all pixels classi�ed as

node pixels. Each component will become a node of the �nal GeoMap. It may appear
surprising at �rst that nodes resulting from pixel-based boundary representations are
permitted to consist of several pixels, instead of a single point like in polygonal Ge-
oMaps. But permitting spatially extended nodes is the simplest solution that guarantees
topological consistence of the resulting GeoMap. Note that nodes consisting of multiple
pixels cannot occur in images with explicit inter-pixel and mid-crack boundaries, because
corners and junctions in these images are always located at pixels with odd coordinates.
In other image types, we have found that it is always a sign of insu�cient resolution
when nodes with more than four pixels occur frequently. Figure 4.13 depicts examples
for the result of boundary pixel classi�cation.
Nodes consisting of several pixels do not necessarily form simply connected components

� they may have holes. Figure 4.14(a) shows a few examples where this happened. But
with the exception of the �rst example, this problem is extremely rare in practice, except
when the resolution is clearly too low to segment the depicted objects. Therefore, we
do not bother to treat holes within nodes in any sophisticated way, but simply �ll these
holes with a standard �ood-�ll algorithm and add them to the node.
After node labeling we must label the edges. This is done by means of edge tracing7:

We start with an edge pixel that has at least one continuation belonging to a node. Then
we recursively follow along the opposite continuation until we again arrive at a node.

7This edge tracing algorithm already appeared in [Haralick & Shapiro 92]. However, the all-important
classi�cation and continuation rules (our de�nition 4.16) were left open as application-speci�c choices
in that work. Therefore, no correctness proof of the algorithm was possible.

115

4 The Representation of Segmentation Results

(a) (b)

Figure 4.14: (a) Examples for con�gurations where a node (marked black) is not simply con-
nected. Except for the left one, these con�gurations are extremely unlikely and only occur when
the resolution is insu�cient for resolving the depicted objects properly. (b) Undesirable edge con-
�guration. According to the classi�cation rules, the three boundary pixels are interpreted as one
edge (gray) and two connected node pixels. This is topologically a self-loop, which is consistent
but undesirable because the enclosed region does not contain region pixels. Thinning removes
this and similar con�gurations.

All edge pixels along the way belong to the same edge and are labeled accordingly. This
algorithm even works when edge pixels from di�erent edges happen to be 8-neighbors
near a node (compare �gure 4.13 right) � they will never be continuations of each other.
Every thus traced edge is used to construct a dart of the GeoMap to be build. The
opposite dart in the same α-orbit is found by tracing the edge backwards. The σ-orbits
are de�ned by running around each node with a standard left-hand-on-the-wall border
tracing algorithm, and storing the darts in the order they are found. This is illustrated
for two nodes in �gure 4.13.

As always, the φ-orbits are de�ned by the relationship φ(d) = σ−1(α(d)). Determining
the exterior function and contains relation is much easier than for polygonal plane par-
titions because we can take advantage of the grid. We �rst label connected components
of region pixels according to the 4-neighborhood. This labeling is always consistent with
the boundary topology (cf. the theorem below). All φ-orbits whose edge pixels have the
region label n to their left (where �left� is de�ned relative to the traversal direction of the
φ-orbit) belong to the contour set Φn. The main contour among the contours in Φn is
easily identi�ed because it is the �rst contour of region n that one �nds when the image
is traversed in standard scan order. The exterior function and contains relation are readily
constructed from this information.

The following theorem establishes that the algorithms described in this section indeed
result in topologically valid GeoMaps. In the literature, an analogous theorem has only
been available for explicit inter-pixel boundaries, where the proof is simple. A uni�ed
proof covering all kinds of pixel-based boundary representations is given for the �rst
time.

Theorem 4.2. When a boundary image is classi�ed and labeled according to the rules
described above, the result is of the same homotopy type as a suitably chosen polygonal
plane partition and therefore constitutes a valid GeoMap.

Proof. We prove the theorem by explicitly constructing a polygonal plane partition. First,
observe that regions are labeled by using 4-connectivity, whereas the boundary is either
well-composed or 8-connected. It is thus guaranteed that di�erent regions are always

116

4.3 GeoMap Realizations

separated by closed boundaries � the �connectivity paradox� cannot occur.

Second, edges cannot cross without forming a node at the crossing. We see this by
analyzing the con�gurations in �gure 4.12. The claim is obvious for con�gurations 1 to 5
and can be proved by contradiction for the others. Consider, for example, con�guration
11. It can in principle be interpreted as a combination of con�gurations 3 and 5, in which
case two independent edges would cross at its center. For this to happen both the right
and upper right pixels in con�guration 11 must be classi�ed as edge pixels as well, and
must thus have a well-de�ned continuation. It is easy to see that the right neighbor (if it
is an edge pixel) can only have continuations at its left (i.e. to the center of con�guration
11) and its top (the upper right pixel of con�guration 11). Likewise, the edge of the upper
right pixel cannot be continued towards the center pixel, because its 4-neighbor (i.e. the
right pixel in con�guration 11) takes precedence. Therefore, all three pixels belong to the
same edge, contrary to the assumption that two di�erent edges cross. In the same way,
the claim can be proved for all other con�gurations.

We can now construct a polygonal arc for every edge by simply connecting the centers
of successive edge pixels with straight lines. In addition, we draw straight lines from the
enters of the �rst and last points of every edge to the nearest point (in Euclidean sense)
of the adjacent node region. Since nodes are simply connected regions by construction,
we can reduce them in a homotopy-preserving way to single representative points, and
the end points of the arcs can be connected to this point by suitably extending the arcs.
This always results in a valid polygonal plane partition, which can be transformed into
a GeoMap according to de�nition 4.7.

Transforming a pixel-based GeoMap into a polygonal one is not only of academic
interest for the above proof. It is also a useful transition in practice because polygonal
representations lend themselves naturally to geometric analysis and manipulation. The
only practical problem is the de�nition of the representative points of the nodes and their
connection to the start/end points of the incident edges. For nodes consisting of up to
4 pixels (i.e. all nodes in an interpixel or mid-crack representation, and most in a thin-
boundary representation), we determined that it is su�cient to just use the node's center
of mass and connect it to the edges segments by straight lines. In all possible cases of up
to 4 node pixels, the order induced by the angles of these lines is identical to the σ-order
of the corresponding edges. For more complex nodes, this is still being investigated. But
recall that nodes larger than four pixels usually indicate insu�cient resolution.

Instead of just connecting consecutive pixel centers like in the proof, edges can also
be transformed into maximal straight segments by means of digital straight segment
algorithms (see section 4.4.2 for algorithms and example images). These algorithms are
designed so that the polygonal representation is simpli�ed without altering the topology.
The resulting polygonal GeoMaps are not only more compact, but are also geometrically
more accurate because the creation of maximal straight segments acts as a noise �lter.

117

4 The Representation of Segmentation Results

4.4 Manipulation of a GeoMap

The initial result of low-level segmentation is rarely the desired one. It is therefore nec-
essary to provide functions which modify a GeoMap in an orderly way until we arrive at
the desired segmentation. We distinguish three manipulation types:

1. purely geometric ones that only change the position of nodes and edges without
changing topology

2. node and edge removals that don't change the geometry of the remaining cells, and

3. node and edge insertions which necessarily involve both topology and geometry
(the location of the new cell).

Although cell insertions and removals are inverses of each other, there is a fundamental
asymmetry in their computational complexity. Obviously, we can remove at most as many
edges as there are in the GeoMap, but there are O(f n2

f) possibilities for the topological
placement of every newly inserted edge (where f is the number of faces, and nf is the
average number of nodes bounding a face), and even more for its geometric location. For
example, if we assume that the new edge runs from the upper left to the lower right corner
of a square region with p×p pixels, and allow only steps down and to the right, there exist
already 2p−1 di�erent paths. Reducing an initial over-segmentation (by edge removal) is
therefore in general much simpler than closing gaps in an initial under-segmentation (by
edge insertion). When the latter is attempted, a clear and simple decision rule for the
location of new edges is required. To avoid these complications, we will restrict ourselves
to manipulation types (1) and (2), where a number of general statements can be made.

4.4.1 Euler Operators and Contraction Kernels

We �rst consider operations that remove boundary cells without changing the topology
and geometry of the remaining boundary. These operators are called Euler operators
because Euler's equation (4.2) must remain valid after the transformation in order to
preserve the GeoMap's planarity [Mäntylä 88, Köthe 00]8. Arbitrary complex manipu-
lations can be reduced to a small set of elementary Euler operators as shown in �gure
4.15. These operators are elementary in the sense that they change the number of edges
exactly by one. They are complete in the sense that any desired simpli�cation can be
expressed as a sequence of Euler operations. For example, to remove the complete bound-
ary between two neighboring regions (which may consist of several edges) we must �rst
execute one merge faces operation, followed by the appropriate number of remove bridge

operations. Below we present algorithms for the necessary modi�cations of the GeoMaps.
The operation merge faces deletes an edge and merges the two adjacent faces that had

been separated by the edge. Merge edges removes a node of degree two and merges the
two edges it bounds. Contract edge also removes an edge, but instead of the adjacent
faces the two end points are merged into one. This is equivalent to merge faces on the

8Some authors prefer the term �super�cial operators� to the term �Euler operators�.

118

4.4 Manipulation of a GeoMap

(a)

2
N1

1E E 2

F 1

N2
N1

E 2

F 1

F 2

N

(b)

F 21E

F F 11

N1

(c)

N1

F 1

E 1 N2
N1

F 1

N2

(d)

N2

F 1

E 1 N2
N1

F 1

(e)

F

F

2F

1

1N 4F

3

1

4F

3F

2F
1N E 1

2N

F

(f)

2N
F 1

F 2

N1

F 1

F 2

2E
1N

1E E 2

Figure 4.15: The most important elementary Euler operators. (a) and (b) two variants of merge

faces, (c) and (d) two variants of remove bridge, (e) contract edge, (f) merge edges (a variant of
contract edge when one of the end nodes of E1 has degree 2).

dual map (i.e. the one were the roles of nodes and faces have been switched). Finally,
remove bridge deletes an edge that is embedded in only one face, i.e. whose left and right
face are identical. We explain the details of these algorithms in the following algorithms:

Algorithm 4.3: Merge faces

Input: Edge E1 is to be removed. Let d be the dart running form node N1 to node N2

and d′ = α(d) its opposite dart. Let F1 be the face to the left of d which is to survive
after the merge operation. Ensure that the orbit φ∗(d′) is the outer contour of F2

(otherwise, �ip the roles of d and d′ and therefore those of F1/F2 and N1/N2)
9.

Note that degree(N1) > 1 and degree(N2) > 1 because F1 and F2 are distinct faces.

1. Update the contains relation: replace all entries contains (F2, φ
∗
k) with contains (F1, φ

∗
k).

Delete the entry exterior (φ∗(d′)) from the exterior function of the GeoMap.

2. When N1 and N2 are identical (i.e. E1 is a loop) and degree(N1) = 2 (cf. �gure
4.15b):

a) Delete the entries exterior (φ∗(d)) and contains (F1, φ
∗(d)) from the GeoMap.

b) Remove the darts d and d′. This will automatically remove orbits α∗(d) (i.e. edge
E1), σ

∗(d) (i.e. node N1 = N2), φ
∗(d′) (i.e. the face F2), and φ

∗(d) (i.e. the
hole in face F1) because these orbits wouldn't contain any darts after deletion
of d and d′.

9This is always possible because φ∗(d′) and φ∗(d′) cannot both be exterior contours.

119

4 The Representation of Segmentation Results

3. Otherwise (cf. �gure 4.15a):

a) Let dφ 6= d be a dart such that φ∗(dφ) = φ∗(d). If no such dart exists, choose
dφ 6= d′ such that φ∗(dφ) = φ∗(d′) (at least one of these choices is always
possible). Likewise, choose dσ 6= d with σ∗(dσ) = σ∗(d) and d′σ 6= d′ with
σ∗(d′σ) = σ∗(d′).

b) Remove d and d′ from their respective σ-orbits10. Due to the condition φ =
σ−1 ◦ α, this also removes these darts from the φ-orbits. Consequently, the
previously separate orbits φ∗(d) and φ∗(d′) are automatically turned into a
single contour φ∗(dφ) (which bounds the surviving face F1), whereas the orbit
previously bounding face F2 and the face itself are removed. Note that the
preconditions of merge faces are de�ned so that the entries exterior (φ∗(dφ))
and contains (F1, φ

∗(dφ)) can remain untouched.

c) Remove the darts d and d′ and thus the orbit α∗(d) (i.e. edge E:1).

d) Update the anchors of the orbits φ∗(dφ), σ∗(dσ), and σ∗(d′σ) in order to ensure
that d and d′ are no longer used as anchors.

The remove bridge operator is similar to merge faces in that an edge is removed. But this
time, the edge is a bridge, i.e. its left and right face are identical. Remove bridge may
create a new hole within this face, see �gure 4.15c.

Algorithm 4.4: Remove bridge

Input: Edge E1 is a bridge to be removed. Let d be the dart in E1 running form node
N1 to node N2 and d′ = α(d) its opposite dart. Let F1 be the face containing E1.

1. Let ξ = exterior (φ∗(d)) and remove this entry from the exterior function of the Ge-
oMap. Also, remove contains (F1, φ

∗(d)), if this entry exists in the contains relation
of the GeoMap.

2. If degree(N1) = 1 and degree(N2) = 1:

a) Remove the darts d and d′. This will automatically remove orbits α∗(d) (i.e. edge
E1), σ

∗(d) (i.e. node N1), σ
∗(d′) (i.e. node N2), and φ

∗(d) = φ∗(d′) (i.e. the
hole in face F1) because these orbits wouldn't contain any darts after deletion
of d and d′.

3. Otherwise:

a) If degree(N1) > 1 (cf. �gure 4.15c):

i. Let dφ = σ−1(d).

10Formally, removing d from its σ-orbit means the following: Let d+ = σ(d) and d− = σ−1(d) be σ-
successor and predecessor of d. Now, modify the σ-permutation of the GeoMap so that σ(d−) = d+

and remove d from the permutation.

120

4.4 Manipulation of a GeoMap

ii. Remove d from its σ-orbit. This automatically removes d from its φ-orbit
as well and turns φ∗(dφ) into a separate contour which bounds F1. Update
the anchor of φ∗(dφ).

iii. If ξ = true or if φ∗(dφ) is oriented in mathematically negative sense:
Create new entries exterior (φ∗(dφ)) = true and contains (F1, φ

∗(dφ)) in
the GeoMap.

iv. Otherwise create a new entry exterior (φ∗(dφ)) = false in the GeoMap.

b) Otherwise (cf. 4.15d):

i. Remove the orbit σ∗(d) and therefore the node N1.

c) Proceed likewise with dart d′ and node N2.

d) Remove d and d′ and therefore the orbit α(d) (i.e. edge E1).

The operation contract edge provides yet another possibility to remove an edge. Instead of
merging two adjacent faces, it merges the two end nodes of the edge. It is thus equivalent
to a merge face operation in the dual GeoMap. We assume that both end nodes of the
edge to be contracted have a degree of at least 2, because otherwise contract edge is
identical to the variant of remove bridge depicted in �gure 4.15d:

Algorithm 4.5: Contract edge

Input: Edge E1 is the edge to be removed. Let d be the dart in E1 running form node
N1 to node N2 and d

′ = α(d) its opposite dart. make sure that degree(N1) > 1 and
degree(N2) > 1.

1. Let d+ = σ(d) and d− = σ−1(d) be σ-successor and predecessor of d. Likewise, let
d′+ = σ(d′) and d′− = σ−1(d′) be σ-successor and predecessor of d'.

2. Change the σ-permutation such that σ(d′−) = d+ and σ(d−) = d′+. This removes d
and d′ from their respective σ- and φ-orbits.

3. Remove the darts d and d′ and therefore the orbit α∗(d) (i.e. edge E1).

4. Update the anchors of the orbits φ∗(d+), φ∗(d−), and σ∗(d+).

The operation merge edges is just a variant of contract edge where degree(N2) = 2.
It replaces an �edge-node-edge� chain by a single edge. We can check that the above
operators indeed preserve GeoMap planarity by looking at Euler's equation. Let ∆n, ∆e,
∆f , ∆k be the changes in the number of nodes, edges, faces and exterior contours (holes)
caused by an Euler operator. Then any Euler operator must satisfy the condition

∆n−∆e+ ∆f −∆k = 0

In operator merge faces, we have ∆n = 0, ∆e = −1, ∆f = −1, ∆k = 0 (case 3) or
∆n = −1, ∆e = −1, ∆f = −1, ∆k = −1 (case 2). Thus, the condition is always

121

4 The Representation of Segmentation Results

satis�ed. In operator remove bridge, we must distinguish three cases: when both end
nodes of the bridge have degree equal to one, we get ∆n = −2, ∆e = −1, ∆f = 0,
∆k = −1, when one end node has degree one, we get ∆n = −1, ∆e = −1, ∆f = 0,
∆k = 0, and if neither end node has degree one, we get ∆n = 0, ∆e = −1, ∆f = 0,
∆k = 1. The operator contract edge implies ∆n = −1, ∆e = −1, ∆f = 0, ∆k = 0. Again
the required identity holds in all cases.
It is easy to see that this set of Euler operators is complete in the sense that any

GeoMap can be reduced to a single face (the in�nite face F∞): �rst apply merge faces

until the number of faces is reduced to 1. The result is a GeoMap whose only face is
F∞ with a number of holes that do not contain any faces, but only consist of edges and
nodes (which therefore form trees). Note that the number of edges in a tree is one less
than the number of nodes. Thus, we now have f = 1 and, when k is the number of trees,
n = e + k. Now, apply the variant of remove bridge that requires exactly one end node
of the bridge to have degree one until no such bridges remain. Each application of this
operation cuts one leave (i.e. one edge and one node) from one of the trees. We end up
with k trees that just consist of a single edge with two nodes, i.e. e = k and n = 2k.
Finally, use the variant of remove bridge requiring both ends of the bridge to have degree
1. Every application of this operation changes the GeoMap so that ∆n = −2, ∆e = −1,
∆f = 0, ∆k = −1. Thus, we indeed arrive at a GeoMap with just one face. Since all
intermediate GeoMaps are valid, the next step in the processing chain is always a legal
operation.
Another way to understand this is by noting that Euler's equation de�nes a linear,

3-dimensional subspace of Z4, and the modi�cation vectors (∆n, ∆e, ∆f , ∆k) of the op-
erators considered span this space. Thus, if we add the corresponding inverse operators
(split face, insert bridge, split node), we can create any combination of n, e, f , and k that
is permitted by Euler's equation. The set of Euler operators together with their inverses
is complete in the sense that any GeoMap can be transformed in any other by just us-
ing these operators: First, �nd two reduction sequences that remove all cells (except the
in�nite face) from the source and target map. Then reverse this sequence for the target
map and replace every operator with its inverse. The concatenation of the two sequences
source→in�nite face only→target performs the desired transformation, although proba-
bly in an ine�cient way. However, we will not consider the inverse operators in this work
because they are not needed in our context.
Since all Euler operators involve a single edge, we can parametrize the corresponding

functions in the abstract data type of a GeoMap by simply passing a DartTraverser:

mergeFaces: DartTraverser -> nil

removeBridge: DartTraverser -> nil

contractEdge: DartTraverser -> nil

4.4.2 Topology-preserving Manipulations

Since topology is concerned with properties that remain invariant under bending and
morphing transforms, we have a lot of freedom to change a GeoMap's geometry without
changing topology. Geometric modi�cations have generally two goals: we may want to

122

4.4 Manipulation of a GeoMap

simplify the geometric representation of the edges (e.g. use polygons with fewer knots),
or we may want to improve the localization accuracy of the representation (e.g. by going
from a pixel-based to a subpixel representation, as in Canny's algorithm 5.10). Some-
times, both goals can be achieved simultaneously: transforming a pixel chain into a poly-
gon according to algorithm 4.7 below may result in a representation that is both more
compact (fewer knots are required when the original object is representable by a simple
polygon) and more accurate (because the round-o� errors of pixel-based representations
are reduced by averaging over longer edge segments).

Constructing a GeoMap only to simplify it immediately afterward may seem wasteful
on �rst sight. However, there is a major motivation for working in this way: After con-
struction of an initial GeoMap, we can compute non-local properties (such as average
region colors, good continuations of edges across junctions, or global contour salience)
that are not available before regions, edges, and vertices have been de�ned. Thanks to
this additional information, a GeoMap derived indirectly from some initial GeoMap can
potentially have much higher quality than a GeoMap that has been computed directly
from a given boundary indicator. The snake approach to segmentation [Kass et al. 88]
is a good case in point: by placing an initial closed contour (which is a basic kind of
GeoMap) near the boundary of interest, one can adaptively compute statistical proper-
ties of the interior and exterior regions, as well as boundary length and curvature. These
measures are not available without the de�nition of an initial contour, and play key roles
during the iterative determination of the optimal contour. Finding this contour without
the additional non-local information is much more di�cult or impossible.

At this point of the discussion, we shall not be concerned with speci�c criteria and
methods for geometric manipulations, but with two general problems: GeoMap simpli�-
cation and topology preservation. Since the knots in the arcs of an initial GeoMap are
usually placed very densely (with distance in the order of the pixel pitch or less), a
simpli�ed polygonal representation is generally possible:

Algorithm 4.6: Polygon simpli�cation

Input: A polygonal GeoMap with high knot density.

1. For each arc that is not a self-loop perform the following recursive procedure:

a) Compute the chord between the start and end knots of the current polygon
segment and �nd the intermediate knot whose distance d from the chord is
maximum. If d exceeds a threshold d0, split the chord at the intermediate knot
and repeat the procedure with the two sub-chords. The threshold d0 should
be chosen so that knot displacements exceeding d0 are unlikely to be caused
by noise. Noise analysis of edge point accuracy will be performed in section
7.2.2.

2. For each arc that is a self-loop: always split the arc at the knot with largest distance
from the start knot, and continue with the above recursive procedure.

123

4 The Representation of Segmentation Results

Other split criteria are also possible. For example, [Ren et al. 05a] propose to split at the
knot which maximizes the orientation change of the two sub-chords, and stop the recur-
sion when this angle is small enough. This has the advantage of being scale-independent.
However, it is inferior in terms of error propagation: Measurement errors in orientation
are much larger then errors in position, because orientation is essentially the derivative of
position. Another consideration with polygonal GeoMap simpli�cation is that the arcs of
the coarser polygon may intersect, violating the topology constraint of a GeoMap. This
can be checked by the line intersection test below (algorithm 4.8), and the recursion must
possibly be continued until no intersection occurs. However, this rarely happens when
the threshold d0 is chosen according to the measurement error.

In case of a GeoMap that is represented on the grid, a di�erent class of simpli�cation
algorithms can be applied. They create a polygon from a given pixel edge or crack edge,
and preservation of topology is guaranteed. In fact, the original grid-based boundary
can be reconstructed from the resulting polygonal arcs. These algorithms assume that
the given polygon was created by a particular edge digitization method, namely subset
digitization of the adjacent regions (de�nition 4.11) for crack edges, and grid-intersection
digitization (de�nition 4.12) for thin 8-connected pixel boundaries. The set of pixels or
cracks that are marked by the digitization of a single straight line segment is called a
digital straight line. Thus, digital straight line algorithms split a given set of pixels or
cracks into maximal digital straight lines and estimate the corresponding preimages of
the digitization, i.e. the original Euclidean line segments. One can show that the dig-
itization models mentioned imply an important property of digital straight lines: their
convex hulls are always enclosed between two parallel Euclidean lines (called the left
and right supporting lines) whose distance is narrowly bounded. The value of the bound
depends on the line's direction and the digitization model [Andersen & Kim 85]. Accord-
ing to [Kovalevsky 97] (crack edges) and [Debled-Rennesson & Reveilles 95] (8-connected
edges), the bounds can be expressed by the following inequalities:

0 ≤ a x+ b y + c ≤

{
|a|+ |b| − 1 for crack edges

max(|a| , |b|)− 1 for 8-connected edges

where a, b, c are suitably chosen integers that characterize the digital straight line. These
inequalities allow the de�nition of so-called linear online algorithms which trace the pixels
of the contour or line under consideration only once [Debled-Rennesson & Reveilles 95,
Kovalevsky 97]. Starting from a point on the contour or line, the algorithm extends
the current straight line segment as long as there exist a, b, c ful�lling the inequalities.
Otherwise, the current segment is �nished and a new segment initialized. We explain the
algorithm for crack edges. To apply it to 8-connected edges, the expression |a|+ |b| must
simply be replaced with max(|a| , |b|):

Algorithm 4.7: Digital Straight Line Detection

Input: The �rst two points ~p1 and ~p2 of a new line segment. Initialize four points rep-
resenting the convex hull as ~l1 = ~r1 = ~p1 and ~l2 = ~r2 = ~p2 and let the current

124

4.4 Manipulation of a GeoMap

estimate of the line parameters be (−b, a)T = ~p2 − ~p1 and c = −(a, b)~l2. The line
with normal (a, b)T through ~l2 is called the left supporting line, and the parallel
line through ~r2 is the right supporting line. The line running in the middle of the
two supporting lines is the axis of the current segment.

1. Repeat for points ~pn, n = 3, 4, ..., N :

a) Check if the current segment (including point ~pn) contains at most two di�er-
ent increment vectors between consecutive points. If not, goto (h).

b) Compute vn = (a, b) ~pn + c

c) If 0 < vn < |a|+ |b|− 1: The new point lies between the supporting lines. Add
it to the current segment.

d) If vn = 0: The point is on the left supporting line. Update ~l2 = ~pn and add ~pn
to the current segment.

e) If vn = |a|+ |b| − 1: The point is on the right supporting line. Update ~r2 = ~pn
and add ~pn to the current segment.

f) If vn = −1: The point is just outside the left supporting line, but the line can
be adjusted. Update ~l2 = ~pn; ~r1 = ~r2; (−b, a)T = ~l2 − ~l1; c = −(a, b)~l2 and
add ~pn to the current segment.

g) If vn = |a| + |b|: The point is just outside the right supporting line, but the
line can be adjusted. Update ~r2 = ~pn; ~l1 = ~l2; (−b, a)T = ~r2−~r1; c = −(a, b)~l2
and add ~pn to the current segment.

h) Otherwise, the point ~pn cannot belong to the current straight line. Store the

parameters a, b and c = −(a, b) ~l2+~r2
2 for the axis of the segment just �nished.

Initialize a new line segment with ~pn−1 and ~pn as its �rst two points and go
to 1.

2. Assume that step 1 produced the segments s1, ..., sK .

a) When the original polygon was closed (i.e. ~p1 = ~pN), return the point sequence
[intersection(sK , s1), intersection(s1, s2), ..., intersection(sK , s1)], where the
function intersection(.) computes the common point of the two segments' axes.

b) When the original polygon was open (i.e. ~p1 6= ~pN), return the point sequence
[~p1, intersection(s1, s2), ...,intersection(sK−1, sK), ~pN].

The above algorithm constructs a set of intersection points, and the edge is assumed to be
straight between these points. These straight edges are constructed in such a way that
their digitization reproduces the original polygon, when the same digitization method
(subset or grid intersection digitization) is applied [Klette & Rosenfeld 04]. Therefore,
when the original polygons of the GeoMap are replaced with their digital straight line
approximations, the topology of the GeoMap is preserved! The disadvantage of this algo-
rithm is that the resulting polygon depends on the starting point of the tracing. Figure
4.16 illustrates digital straight lines obtained for part of a circle.

125

4 The Representation of Segmentation Results

Figure 4.16: Digital straight line approximations (green) of a circle with radius 20 pixels (red)
produced with algorithm 4.7. Left: Using subset digitization (black) and |a| + |b|. Right: Using
grid intersection digitization (black) and max(|a| , |b|).

Unlike the digital straight line algorithm, many other geometric manipulations (includ-
ing polygon simpli�cation according to algorithm 4.6) run the inherent risk of violating
topology: The modi�ed arcs may have intersections at other points than the GeoMap's
vertices. While it is possible to change the GeoMap's topology by introducing new ver-
tices, this is not always the desired solution. Often, one simply wants to prevent such
manipulations, see for example [Goudail & Réfrégier 04]. Whenever a point is to be trans-
lated, it is checked whether its adjacent lines would cross any of the existing contours
afterward. Since the GeoMap topology was correct before the manipulation, it is su�-
cient to check this property against all contours of the adjacent regions. An interior edge
point is adjacent to at most two di�erent regions, while a vertex can have arbitrary many
adjacent regions (although the number hardly ever exceeds four in practice). In case of
a polygonal GeoMap, the algorithms is as follows:

Algorithm 4.8: Topology preservation under geometric manipulation of a

polygonal GeoMap

Input: A polygonal GeoMap and a vertex or internal knot to be moved to a new location.

1. For each line segment starting at the given point:

a) Compute the bounding box of the line segment for the new point position.

b) For every arc bounding one of the regions adjacent to the point to be moved:

i. Check whether the arc's bounding box intersects the line's bounding box.
If not, the topology cannot be violated.

ii. Otherwise, repeat the same check with the bounding boxes of the arcs
internal line segments. If there is no intersection, the topology cannot be
violated.

126

4.4 Manipulation of a GeoMap

iii. Otherwise, perform a line intersection check. Let the two lines be bounded
by the points ~p, ~q and ~r, ~s respectively. Then, the two lines intersect when
~r is to the left of the line ~p~q, and ~s to its right (or vice versa), and ~p is to
the left of line ~r~s, and ~q to its right (or vice versa). Point ~r is to the left of
line ~p~q, when the sign of angle ~p~q~r is positive, which can be determined
by

sign (∠~p~q~r) = sign (~px(~qy − ~ry) + ~qx(~ry − ~py) + ~rx(~py − ~qy))

When sign (∠~p~q~r) sign (∠~p~q~s) < 0 and sign (∠~r~s~p) sign (∠~r~s~q) < 0, the
lines intersect.

When the translation would cause a topology violation, the operation must not be exe-
cuted or the amount of translation must be reduced. This approach is especially suitable
when the point to be moved and the magnitude of translation are determined by a ran-
domized procedure, because convergence of the overall algorithm can still be ensured
[Goudail & Réfrégier 04]. Instead of the bounding box, any other superset of arcs and
lines can be used to speed up the intersection check. In pixel-based representations, a
natural speed-up is to reject a modi�cation if the new line would intersect or touch a
pixel of an existing edge. This optimization has even proved useful in case of polygo-
nal GeoMaps: Several kinds of queries (e.g. point-in-polygon queries) can be accelerated
when a redundant pixel-based representation is kept in parallel to the polygonal repre-
sentation. Another su�cient criterion for topology preservation can be derived when a
triangulation of the points in a polygonal plane partition is available, for example when
the GeoMap has been constructed by triangulation (see section 5.3). Then, every point
is a corner of a number of triangles. The topology of the GeoMap will not be violated as
long as the point is moved within the interior of the union of these triangles.
Examples for segmentation algorithms that have to check for topology preservation

are snakes [Kass et al. 88] and their relatives. When a given contour is iteratively moved
to optimally �t the given image data, topology violations have to be prohibited or must
be handled by explicit modi�cations of the model (e.g. introduction of a new connected
component). Since these explicit checks are rather expensive, many authors prefer not
to �x the topology of the model during optimization. This is possible in a level-set seg-
mentation framework [Osher & Paragios 03], where the topology is implicitly de�ned by
the zero-contour of an auxiliary embedding function. The topology of the plane partition
is then determined after convergence by simply thresholding the embedding function.
In its original form, this approach is only applicable to binary plane partitions, but its
extension to arbitrary non-binary topologies is an active area of research.

4.4.3 Interactive Segmentation in the GeoMap Framework

An over-segmentation of an image, encoded as a GeoMap, is a very good basis for interac-
tive segmentation methods such as the active paintbrush [Maes 98] and intelligent scissors
/ live-wire [Mortensen & Barrett 98, Mortensen & Barrett 99]. In the active paintbrush
approach, the oversegmentation of the scene is presented to the user. When the user

127

4 The Representation of Segmentation Results

Figure 4.17: Interactive segmentation with the active paintbrush tool. Left: GeoMap with
a number of false edge, which are �painted over� by the mouse cursor movements indicated
by red lines. Right: Improved segmentation after removal of these edges. Illustration from
[Meine & Köthe 05a].

crosses an edge with the mouse pointer while the mouse button is pressed, that edge is
removed, and the adjacent regions are merged. In live-wire segmentation, the user selects
an anchor point on a desired edge, and the system computes online the most salient
edge between the anchor point and the current mouse position. By pressing the mouse
button, the edge is �nalized. Thus, relatively inaccurate mouse movements are su�cient
to mark all important edges of the scene. Active paintbrush and live-wire segmentation
are complementary in the sense that they allow relatively fast interactive segmentation
by deleting and marking edges respectively.
To implement the active paintbrush tool by means of a GeoMap, it is only necessary

to display the current GeoMap on the screen, and to provide an e�cient mapping from
screen coordinates onto darts:

dartCrossed: Line2D -> DartTraverser

The input Line2D is the result of a mouse movement on the screen. The function returns
the �rst dart that is intersected by the straight line between two consecutive mouse
positions. Figure 4.17 shows an example.
The implementation of intelligent scissors is more complicated because all edges must

be augmented with a con�dence that measures their salience. Given an anchor point and
the current mouse position, the program automatically calculates the maximum salience
path between these points by means of Dijkstra's algorithm. Intelligent scissors have
originally been de�ned directly on the pixel grid [Mortensen & Barrett 98], but this im-
plementation was too slow due to the large number of edges in the pixel adjacency graph.
Therefore, the authors proposed an alternative algorithm in [Mortensen & Barrett 99]

128

4.4 Manipulation of a GeoMap

Figure 4.18: Interactive segmentation with intelligent scissors. The current path is drawn in
green. Red paths have been �nalized by double-clicking at a suitable end point. Illustration from
[Meine 03].

which works on an edge graph derived from an oversegmentation of the image. Their
so-called �tobogganing� algorithm for creating the initial oversegmentation is equivalent
to the union-�nd watershed algorithm 5.8 to be introduced in section 5.2. Any other
oversegmentation will do as well provided the true edges form a subset of the initial edge
graph. To implement intelligent scissors on an arbitrary GeoMap, a function that maps
cursor coordinates to the nearest node is required to determine the start and end point
of the current path:

nearestNode: Point2D -> Node

In order to de�ne edge cost measures, we need a method to obtain representative points
along edges and within regions to compute relevant statistics:

scanEdge: Edge -> sequence_of(Point2D) // points along the edge

scanFace: Face -> sequence_of(Point2D) // points within a face

In a pixel based GeoMap representation, the points returned will usually be the pixel
coordinates within these cells. In a polygonal GeoMap, the �rst function returns the
knots of the edge's polygonal line, and the second a regular or randomized set of points
in the region. The coordinates of these points can be used to collect region statistics
(such as the average color) or edge statistics (such as the minimal gradient magnitude)
from the corresponding locations in the original or gradient images. The edge cost may
then be de�ned so that edges with high gradient and large color di�erence between the
adjacent regions will be preferred. Figure 4.18 illustrates this approach using the same
GeoMap as in �gure 4.17.
Interactive segmentation on the basis of a subpixel-accurate initial over-segmentation

is a big help for the de�nition of manual ground-truth, because these algorithms auto-
matically take care of the geometric accuracy of the edges � the human operator only
determines whether an edge is signi�cant or not, which doesn't require very precise mouse
positioning and is therefore quite fast. Geometric corrections are only necessary where
the accuracy of the initial segmentation is unsatisfactory, e.g. near certain junctions.

129

4 The Representation of Segmentation Results

130

5 Algorithms for GeoMap Creation

Abstract

If an ideal geometric image according to (2.1) were available to image analysis programs,
GeoMap creation would be easy: We could simply place arcs along the lines of discontinu-
ity, and vertices at the junctions of these lines. However, in practice we only have access
to a blurred approximation of the ideal geometric image (e.g. a spline interpolation of the
digital image, see section 3.3.1) which does not contain any discontinuities. Therefore,
we must de�ne boundaries by alternative criteria. Over the years, many possible criteria
have been proposed. At the most fundamental level, these criteria can be classi�ed into
three groups: (i) criteria that apply to the analog reconstruction of the digital image, (ii)
criteria that work directly on the digital image, and (iii) criteria that are based on a set
of detected boundary points (and don't make direct use of the analog or digital image).
In this chapter, we introduce important representatives for each of these approaches and
present them in the uni�ed GeoMap framework. Some of the algorithms considered are
adaptations of well-known segmentation algorithms (e.g. the watershed transform and
Canny's algorithm), while others are new. To illustrate the properties of these algorithms,
we use the images in �gure 5.1 as running examples.

Figure 5.1: Two images (�blox� and �sign�) that will be used as running examples in the present
chapter. For the sake of clarity, these images are not too challenging, and experiments will be
restricted to the regions shown.

131

5 Algorithms for GeoMap Creation

5.1 Analog Boundary De�nitions

After analog image reconstruction, we get a continuous image function, e.g. an interpo-
lated spline surface. Our task is to recover the boundaries of the ideal geometric image
from the reconstructed image. We had already seen in �gure 1.1 and in chapter 3 that
blurring of the ideal geometric image works to our advantage: It transforms geometric
information (the location of a discontinuity) into intensity information (shades of gray
that change according to the distance between a pixel and the discontinuity). In principle,
the original discontinuities can be recovered with subpixel accuracy when the geometric
information contained in the blurred intensities is put to good use.1

In order to recover boundaries from a continuous function, we must �rst de�ne how
boundaries are recognized, because the criterion of discontinuity is no longer applicable.
When one looks at how boundary detection methods approach this problem, one �nds
that most of them are based on the notion of a boundary indicator function: The input
image function is �rst transformed into a di�erent function which simpli�es the identi�-
cation of boundaries. We have used the term �boundary indicator� (as opposed to �edge
indicator� or �corner indicator�) to emphasize the fact that, for the sake of topological
consistency, we have to deal with all types of boundary features (i.e. edges, corners,
junctions) simultaneously, and not just with edges or corners in isolation (cf. chapter 4).
There are many possibilities to create boundary indicator functions. But at their root,

these methods rely on either of two fundamental principles:

Zero crossings: Boundaries are de�ned by the zero-level lines (or, by trivial intensity
shifting, arbitrary level lines) of the boundary indicator function. Examples in-
clude thresholding, the Laplacian-of-Gaussian operator and level-set segmenta-
tion (where one looks for the zero crossings of an auxiliary distance function,
cf. [Osher & Paragios 03]).

Ridges or valleys: Boundaries are de�ned as locations were the �boundary-ness� is higher
(or, equivalently, the �non-boundary-ness� is lower) than in a suitably chosen neigh-
borhood. Important examples are the image gradient magnitude and the SUSAN
operator [Smith & Brady 97].

These principles are not completely unrelated: In some cases, it is possible to transform a
ridge-based boundary indicator into a zero-crossing one by di�erentiating the boundary
indicator along a suitably chosen local orientation. However, there are also genuinely
ridge-based de�nitions, most importantly the watershed ridges, which cannot be reduced
to zero-crossing-based descriptions [Koenderink & v. Doorn 93]. In order to objectively
compare the quality of boundaries derived from alternative de�nitions we must implement
these de�nitions with very high accuracy � we want to compare the true performance of

1It should be noted that deconvolution of the digital image (for example by means of Wiener �ltering
or iterative deconvolution, see e.g. [Wallace et al. 01]) improves the resolution of the digital image
by shifting the e�ective band-limit to higher frequencies. But this will not eliminate the fundamental
property of digitization that only a blurred version of the ideal geometric image can be reconstructed
� one can reduce blurring, but never recover true discontinuities.

132

5.1 Analog Boundary De�nitions

the models, not the artifacts created by suboptimal implementations. Therefore, we �rst
concentrate on analog algorithms that indeed take advantage of the continuous nature of
the boundary indicator. To this end, we assume that it is possible to access the values of
the boundary indicator (and all required derivatives) at arbitrary real-valued coordinates.
This is easily achieved by means of spline interpolation of a sampled boundary indicator,
as explained in section 3.3.1. In our implementations, we mainly use splines of order 5
because they o�er a very good trade-o� between speed and accuracy.
The general approach to boundary detection in analog functions is contour following

with adaptive step-size control. That is, starting at a point that is known to belong
to the boundary, and a guess of the boundary's tangent, one iteratively detects new
boundary points until a stopping criterion is met. This is repeated until no more starting
points remain. During boundary tracing, the localization error is monitored and the
step size adjusted so that a pre-de�ned error bound is not exceeded. We can therefore
regard boundary tracing as a class of methods which adaptively sample the boundary at
locations that are determined from the content of the data. This is in contrast to grid
based methods, where the location of sampling points is determined by the sensor layout
instead of the data content. Adaptive sampling can obviously achieve higher accuracy
(signi�cantly below pixel resolution). In addition, since boundary tracing methods work
sequentially along a given contour, individual boundary points are automatically linked
into arcs according to de�nition 2.2. To obtain a plane partition, it only remains to
connect the arcs into a complete GeoMap as explained in section 4.3.1. Therefore, a
separate edgel linking stage like in Canny's algorithm is not needed, and one source of
topological inconsistencies is eliminated.

5.1.1 Subpixel-Accurate Tracing of the Zero-Contour

Suppose we are given a function ψ(~x) whose level-lines at level ψ0 de�ne the desired plane
partition. Without loss of generality, we shall always assume ψ0 = 0. The tangent unit
vector ~t of a level-line is always perpendicular to the gradient direction: ~t = ∇ψ⊥/ |∇ψ|.
Therefore, the points of a level-line can be traced by the following di�erential equation

∂~x(τ)
∂τ

= ±~t(τ) = ±∇ψ(τ)⊥

|∇ψ(τ)|
(5.1)

with initial condition ψ(~x0) = 0 and ∇ψ(~x0) 6= 0. The di�erential equation can be solved
at all points where the gradient exists. Hence, the set {~x : ψ(~x) = 0} must not contain
plateaus (i.e. regions with constant intensity), i.e. it must be a set of measure zero. This
condition is not a problem in practice, because the spline reconstruction of a smoothed,
noisy image function has no regions with exactly constant intensity2. However, it is still
possible for the set ψ(~x) = 0 to contain (isolated) saddle points where the contours
will intersect. The tracing algorithm presented below is robust against this situation due
to its inherent �inertia� (i.e. it traces the continuation with smallest change of tangent
direction across the junction).

2In this context it is important to note that we always store intermediate results (e.g. images after
preprocessing) with �oating-point accuracy.

133

5 Algorithms for GeoMap Creation

Suitable ψ-functions can be derived from the image in many ways. The most common
are the Laplacian of the image (Marr-Hildreth operator [Marr 82])

ψ = fxx + fyy (5.2)

and the second derivative along the gradient direction (Haralick operator [Haralick 84])

ψ =
f2
xfxx + 2fxfyfxy + f2

y fyy

f2
x + f2

y

(5.3)

The derivatives may either be computed directly from the spline representation of f
(which is (n−1)-times continuously di�erentiable, with n denoting the spline order) or by
means of discrete derivative �lters followed by spline interpolation. Not all zero-crossings
of these functions correspond to region boundaries, because both relative maxima and
minima of the boundary strength give rise to zero-crossings. One selects the zero-crossings
corresponding to maxima by additionally requiring the third derivative along the gradient
to be negative

f3
xfxxx + 3f2

xfyfxxy + 3fxf2
y fxyy + f3

y fyyy < 0 (5.4)

In addition, one usually requires the edge strength (gradient magnitude) to be above a
threshold. The problem of threshold selection will be discussed in section 7.2.2.2.

The de�nitions above derive the ψ function directly from the original image. But
in certain situations, only a boundary strength image is available, e.g. the result of the
SUSAN operator [Smith & Brady 97]. Then, one can either apply a ridge-based boundary
de�nition (see section 5.1.2), or one can transform the boundary strength image b into a
zero-crossing image by means of the height ridge concept [Eberly 96]. Height ridges are
the zero-crossings of the �rst derivative of b along the direction of maximum negative
curvature:

ψ =
∂b

∂~u
(5.5)

where ~u is the unit eigenvector associated with the small eigenvalue of the Hessian of
b. However, this expression is insu�cient for computing ψ because only the orientation
of ~u is de�ned, not its direction. Thus, ψ is only determined up to its sign. Therefore,
[Eberly 96] derives an alternative expression that has the same zero-crossings:

ψ = ∇b⊥Hb∇b

where Hb denotes the Hessian of b. Again, an additional constraint is required to select
relative maxima

∇b⊥Hb∇b⊥ < min{0,∇bHb∇b}

or

∇ψHb∇ψ < 0

In practice, the second variant is numerically more stable.

134

5.1 Analog Boundary De�nitions

xk+1xk−1

xk

true contour

detected contour points

predictor step corrector step

Figure 5.2: Principle of the predictor-corrector method for contour tracing (algorithm 5.1).

After computing ψ on a su�ciently dense grid3, we represent it as a spline. If we
use a 1st-order spline (i.e. linear interpolation), the equation ψ(x, y) = 0 can be solved
analytically in every facet. Let the spline polynomial of the current facet be f(u, v) =
a u v + b u+ c v + d . Then the zero crossing curves are given by(

u+
c

a

)(
v +

b

a

)
=
b c− a d
a2

where u and v are restricted to the current facet, i.e. must be between zero and one. For
higher order splines, the solution has to be found numerically. In principle, this can be
done with standard methods (e.g. Runge-Kutta), but this is not the best approach, be-
cause it only uses the tangent direction but does not take advantage of the fact that the
contour corresponds to a particular level-line, i.e. is constrained to a particular intensity.
This constraint is used by a class of algorithms called predictor-corrector methods which
signi�cantly simplify level-line tracing. They use the current tangent (and possibly pre-
vious ones) to extrapolate a new candidate point of the current contour (predictor step),
but these predictions need not be extremely accurate because the level-line constraint is
subsequently used to adjust the new point's position until it lies exactly on the appro-
priate level-line (corrector step). see �gure 5.2. In comparison to other methods, one can
therefore use simpler predictors or larger steps. In addition, this approach allows to trace
the contour over saddle points, where several level-lines cross: Thanks to its �inertia�, the
predictor will select an approximate continuation on the other side of the saddle, and the
corrector will drag the candidate point onto the nearest actual continuation. The basic
algorithm is as follows [Allgower & Georg 97]:

Algorithm 5.1: Predictor-Corrector Method for Contour Tracing

Input: a di�erentiable function ψ(~x) and a starting point ~x0 such that ψ(~x0) = 0. Select
an initial step size h and a bound ε0 that speci�es by how much ψ(~x) may deviate
from the exact zero level along the contour.

1. While stopping criterion not ful�lled:

a) Predict candidate point ~̂x
(0)
i+1 = h~t(~xi) where ~t(~xi) = ∇ψ⊥(~xi)

|∇ψ(~xi)| if ~xi is not a

saddle point of ψ, and ~t(~xi) = ~xi−~xi−1

|~xi−~xi−1| otherwise.

3Since the expressions for ψ involve products of band-limited functions, the band-limit of ψ is in general
higher than that of the original image. To avoid aliasing, a denser grid is required to represent ψ, see
section 7.1 for details

135

5 Algorithms for GeoMap Creation

b) While
∣∣∣ψ (~̂x(k)

i+1

)∣∣∣ > ε0:

i. Correct the candidate point by Newton iterations

~̂x
(k+1)
i+1 = ~̂x

(k)
i+1 −

ψ
(
~̂x

(k)
i+1

)
∣∣∣∇ψ (~̂x(k)

i+1

)∣∣∣2∇ψ
(
~̂x

(k)
i+1

)

c) If the total correction was small, accept ~̂x
(k+1)
i+1 as new point ~xi+1, set i := i+1,

possibly increase h, and go to 2. Otherwise, reduce h and go to (a).

Several possibilities exist for the step size control in step (c). The simplest is to just
bound the number of Newton iterations to 2 or 3: If more iterations are required, the
step size must be reduced, if none or only one is needed, the step can be increased. More
possibilities are described in the literature (e.g. [Allgower & Georg 97]). This article also
describes more sophisticated predictor steps (e.g. by using several previous points on the
contour) which serve to speed up processing by allowing larger step sizes. But in our
application this is not necessarily an advantage, because we want to use the recovered
contour polygons as approximations of the actual smooth contour. That is, we do not just
require the points to lie on the contour, we also want their distance to be small enough
so that the straight lines connecting consecutive knots stay close to the true contour.
To ensure this in highly curved parts of the contour, the step size should not exceed 0.1
or 0.2 pixels. This small step size can already be achieved with the simplest predictor
variant. The number of points in less curved parts of the contour can easily be reduced
later by a standard polygon simpli�cation algorithm (e.g. algorithm 4.6).
The stopping criterion is more problematic. Since level-lines form closed contours, one

wants to stop the algorithm when it returns to the starting point. However, detecting
this is not trivial because it is unlikely that the algorithm exactly hits the starting point
again. Fortunately, there is a simple solution to this problem since ψ(~x) has been de�ned
by spline interpolation. This solution also solves the problem of how to detect starting
points. Consider the explicit polynomial representation (3.14) of a spline in a given facet
and the locus of points where at least one of the local coordinates u or v is zero. These
points form the grid lines, cf. de�nition 4.12. The squares enclosed by the grid lines are
called the dual pixels. Now, by setting either u or v to zero, (3.14) simpli�es to two 1-
dimensional polynomials of order n in every facet. The roots of these polynomials can
easily be computed by standard root �nders. Each root that lies between 0 and 1 (if n
is odd) or between −1/2 and 1/2 (if n is even) corresponds to a point where the zero
level-line crosses the corresponding grid line. This leads to the following algorithm:

Algorithm 5.2: Spline-Based Zero-Crossing Detection

Input: a spline function ψ(~x).

1. For every facet of the spline (i.e. every square [i, i+ 1]× [j, j+ 1] if the spline order
is odd and every square [i − 0.5, i + 0.5] × [j − 0.5, j + 0.5] if the spline order is

136

5.1 Analog Boundary De�nitions

even, where (i, j) are pixel coordinates, and (u, v) = (x, y) − (i, j) are local facet
coordinates, see section 3.3.1):

a) Detect all crossing points between the zero level-lines of ψ and the grid lines
in the current facet:

crossingsij = {(i+ u, j) | fij(u, 0) = 0 ∧ u ∈ facet}
∪ {(i, j + v) | fij(0, v) = 0 ∧ v ∈ facet}

where fij(u, v) is the spline polygon in facet (i, j) according to (3.14), and
u, v ∈ facet means u, v ∈ [0, 1] if the spline order is odd and u, v ∈ [−0.5, 0.5]
if the spline order is even.

2. For each dual pixel (i.e. each square [i, i+ 1]× [j, j + 1]):

a) Determine whether the border of the current dual pixel is crossed by level lines
by selecting the appropriate members of crossingij , crossing(i+1)j , crossingi(j+1),
and crossing(i+1)(j+1). If there are no crossings, skip the current dual pixel.

b) Select one of the crossings as starting point and trace the corresponding level-
line by means of the predictor-corrector method (algorithm 5.1) until it leaves
the current dual pixel at another of the known crossings. Repeat this until all
crossings on this dual pixel's border have been processed (as either start or
end points).

A variant of this algorithm can also be used to replace contour tracing (algorithm 5.1)
entirely by recursive subdivision: Whenever a dual pixel containing part of the level-line
is detected, it is sub-divided into four new squares whose borders are checked for crossing
points in the same way (i.e. by setting u and v equal to 1/2 instead of 0). Subdivisions
are repeated recursively until the squares are so small that the crossing points at their
borders may simply be connected with straight lines. For example, four subdivisions give
an accuracy below 0.1 pixels, which should be su�cient for most applications.

Finally, we have to connect the line segments into a GeoMap. To do so, we �rst connect
the contour pieces from individual dual pixels into complete connected contours. This
is easy because we explicitly know the start and end points of all pieces, thanks to
algorithm 5.2. It remains to identify the vertices. Since edges derived from zero-crossings
always form closed contours, with possible self-intersections at saddle points, there are
two kinds of vertices: If the curve self-intersects, the intersection point is always a vertex.
If the curve does not self-intersect, an arbitrary point on the curve has to be selected
as a vertex, which serves as both start and end point of the present curve (recall that
the start and end points of an arc must not belong to the arc). If a curve leaves the
image domain, a vertex is placed at that point as well. Due to constraint (5.4) which
identi�es zero-crossings corresponding to maxima of the boundary strength (or any other
constraint), parts of the initial contour set will be deleted, resulting in new vertices at
the terminations of the surviving contour segments. The maximally connected contour
segments between vertices then become the arcs of the GeoMap.

137

5 Algorithms for GeoMap Creation

Algorithm 5.3: Zero-Crossing GeoMap

Input: boundary segments according to algorithm 5.2 above.

1. Connect the contour pieces across the dual pixels' borders at the known crossing
points.

2. Remove all contour parts that violate additional constraints, e.g equation (5.4).

3. De�ne vertices:

a) Locate self-intersections and terminations and de�ne vertices there.

b) Identify closed contours without self-intersections and select an arbitrary point
as vertex.

4. De�ne arcs as maximal connected contour pieces between vertices. De�ne darts as
oriented arcs, and pair them into α-orbits.

5. At every vertex, sort the outgoing darts according to their angle of incidence to
de�ne the σ-orbits. De�ne faces according to the relation φ = σ−1α.

6. Every connected component of the resulting graph is a combinatorial map.

a) Identify the exterior face of every map: Perform contour following along each
φ-orbit and compute the enclosed area according to the formula

A =
1
2

∑
i

(xiyi+1 − yixi+1)

where (xi, yi) are the knots of the polygons representing the arcs of the current
φ-orbit. If A ≤ 0, the φ-orbit is an exterior face.

b) Build the contains relation: Select an arbitrary point from every exterior φ-
orbit. Use a standard polygon containment algorithm [Heckbert 94] to deter-
mine the φ-orbit that contains the point.

In practice, on can further speed-up step 6 by using the knowledge about which pixels are
intersected by the boundary, but we won't go into detail here. The result of the algorithm
is a GeoMap, where the topological relations have been made explicit via the α-, σ-, and
φ-orbits and the exterior and contains relations. The geometric structure of the partition
is de�ned by the coordinates of the vertices and by the polygonal lines forming the arcs.
Figure 5.3 shows results of this algorithm.
The big advantage of zero-crossing based contours is the existence of a local criterion

that tells us whether or not a point belongs to the contour. This opens up the possibility to
replace contour following with recursive subdivision algorithms, e.g. [Bertram et al. 00,
Stolte 05]. Subdivision methods are readily generalized to three dimensions, whereas
contour following is not: since contour following requires a linear order of points, it can
only be applied to linear structures, not to surfaces. While there exist generalizations

138

5.1 Analog Boundary De�nitions

Figure 5.3: Left: Result of subpixel thresholding (threshold = 100) for the �sign� example.
Center and right: Result of the subpixel Haralick edge detector without (center) and with (right)
thresholding on the edge strength. That is, the center image contains all zero-crossings according
to (5.3) that are indeed gradient maxima according to (5.4), whereas the right one is restricted to
those where the gradient magnitude is above 32. Note that the boundary in the �blox� examples
has gaps near junctions, which is a well-known property of Haralick's algorithm. Filter scale was
σ�lter = 1.2.

of predictor-corrector methods to higher dimensions, e.g. [Brodzik 98, Henderson 02],
subdivision methods seem to be much more popular in this context due to their simplicity.
On the other hand, zero-crossing contours also have a big disadvantage: Contour junc-

tions can only occur at saddle points which are exactly at level zero (i.e. ψ(x, y) = 0
and ∇ψ(x, y) = 0 must hold simultaneously within the accuracy of the algorithm), so
junctions will be very rare and unstable. Therefore, it is not possible to represent ar-
bitrary plane partitions in terms of zero contours. The method is essentially restricted
to binary partitions (i.e. foreground and background only). Two solutions to this prob-
lem have been proposed: First, one can de�ne several boundary indicator functions and
build the union of their zero-contours. This method has been especially popular with
variational segmentation in the level-set framework [Chan & Vese 01, Vese & Chan 02].
The other possibility is based on the observation that humans already perceive junc-
tions when two contours or a contour and a termination are very close together, without
actually intersecting each other. Algorithms that close these gaps have been proposed
by [Beymer 91, Rothwell et al. 95, Ren et al. 05a]. But these algorithms contain several
heuristics, and it is not clear whether or when they will result in well-de�ned and reliable
solutions. We will come back to this problem in section 5.3.

5.1.2 Subpixel-Accurate Watershed Tracing

Many boundary indicators are based on the idea that boundaries are located at positions
where some measure of boundary strength assumes a relative maximum. In the previous
section, we showed that these boundary indicators can be transformed into descriptions

139

5 Algorithms for GeoMap Creation

in terms of level lines by means of the height ridge concept. Alternatively, one can detect
the ridges constituting boundaries directly in the boundary strength function. A very
useful method to do this is the watershed algorithm. Intuitively, watersheds are the locus
of points where the path of a drop of water that runs downwards along the direction
of steepest decent is not uniquely determined. Instead, the drop may end up in di�er-
ent valleys (also called catchment basins in this context), depending on arbitrary small
�uctuations along the path. Watershed methods constitute a unique approach to bound-
ary detection because watershed boundaries cannot be reduced to descriptions in terms
of level lines [Koenderink & v. Doorn 93]. In general, no local criterion exists to decide
whether a particular point (x, y) belongs to a watershed. Watersheds and height ridges
coincide if and only if the ridge is a straight line. Otherwise, they may still be quite
similar, but [Koenderink & v. Doorn 93] also show examples were the di�erence is big,
and watershed ridges appear to be intuitively more appealing. The exact de�nition of the
watersheds of a continuous function dates back to the 19th century works of A. Cayley
and J.C. Maxwell [Cayley 1859, Maxwell 1870]:

De�nition 5.1. A watershed is a line of steepest ascent running from a saddle point to
a local maximum.

This de�nition requires critical points (saddles and extrema) to be isolated points, and
a unique line of steepest ascent to exist in every non-critical point. This requirement is
always ful�lled if the boundary indicator function b is a Morse function:

De�nition 5.2. A function b : R2 → R is called a Morse function if it is twice di�er-
entiable, and the Hessian matrix has full rank at all critical points (minima, maxima,
saddles), i.e. at all points where the gradient vanishes.

Some authors also require the critical levels (i.e. the function values at the critical
points) to be pairwise distinct, but we don't need this condition for our purposes. Non-
degeneracy of the Hessian ensures that the critical points are isolated, i.e. that no plateaus
and no horizontal ridges or valleys exist. In addition, there are no higher-order saddles
(e.g. monkey saddles). Consequently, exactly two watersheds start at every saddle point,
running in opposite directions along the eigenvector corresponding to the Hessian's pos-
itive eigenvalue.

Requiring boundary indicators to be Morse functions is not as big a constraint as it may
seem because the set of Morse functions is dense in the space of di�erentiable functions.
That is, to every non-Morse function there exists a Morse function with arbitrary small
di�erence (in the L2-norm sense). Moreover, it can be shown that plateaus (extended
regions with degenerate Hessian) cannot occur in band-limited functions. Using spline
interpolation, we have never encountered problems with the Morse function requirements
in natural images, because noise, shading, and relatively complicated objects shapes
make it very unlikely that a point has simultaneously a zero gradient and a degenerated
Hessian. Problems occurred only in arti�cial test images consisting of highly regular
objects without noise. We have found that the best way to turn a degenerate function
into a Morse function is to add a very small amount of noise (with SNR = 100 . . . 200). .

140

5.1 Analog Boundary De�nitions

The watersheds de�ne a plane partition whose vertices are the maxima and saddle
points of the boundary indicator function b. The arcs connecting those vertices can be
determined by means of (inverse) �owline tracing, i.e. by �nding the curves that solve
the di�erential equation (cf. [Najman & Schmitt 94])

∂~x(τ)
∂τ

= ~t(τ) ~t(τ) =
∇b(~x(τ))
|∇b(~x(τ))|

(τ > 0) (5.6)

with initial condition

~x(0) = ~sk, ~t(0) = ±~uk

where ~sk is the kth saddle point and ~uk is the eigenvector of the Hessian matrix corre-
sponding to the positive eigenvalue at ~sk. The choice of ±~uk as initial direction can be
substantiated as follows: The gradient at the saddle point itself is zero, so it contains
no information about the watershed direction. But in an in�nitesimal neighborhood of
the saddle, the shape of b is completely de�ned by a second-order Taylor polynomial.
Therefore, the watershed is locally a straight line and coincides with the height ridge.
The height ridge tangent at a saddle is equal to the eigenvector ~u which is thus the
correct initial direction.

The �owline must be traced upwards because the solution of (5.6) is only stable in the
direction from saddles to maxima: All �owlines in the neighborhood of the watershed
converge to the same maximum, thus small tracing errors will not accumulate. In the
opposite direction, neighboring �owlines do not converge to a saddle but to a minimum,
so we would quickly loose track of the watershed.

Another nice feature of the algorithm is the possibility to check a predicate at each
saddle point before �ow-line tracing starts. In this way, weak boundaries can be recog-
nized beforehand, and the e�ort of tracing can be saved. For example, we often use a
threshold on the gradient magnitude to immediately discard boundaries that are likely
caused by noise only. The selection of appropriate thresholds will be discussed in section
7.2.2.2.

Using splines, [Steger 99] was the �rst to demonstrate that the analog watershed algo-
rithm can actually be implemented so that it runs reasonably fast on 2-dimensional array
data (digital elevation models). When we adapted his algorithm to image segmentation,
we found that his method for the identi�cation of critical points did frequently miss some
of them. Therefore, we replaced critical point detection with algorithm 3.1 described in
section 3.3.2. Moreover, we found that a second-order Runge-Kutta procedure was su�-
cient to solve the di�erential equation (5.6). In comparison to a �fth-order algorithm, it
traces the watersheds with smaller steps. This is desirable because many subsequent im-
age analysis algorithms need very accurate polygonal approximations of the edge, where
step sizes should not be larger than about 0.1 to 0.2 pixels. These step sizes can already
be achieved with the second-order Runge-Kutta method. Subsequent polygon simpli�ca-
tion can be applied when lower accuracy is su�cient in a particular application. Thus,
our analog watershed algorithm works as follows [Meine & Köthe 05b]:

141

5 Algorithms for GeoMap Creation

Algorithm 5.4: Sub-Pixel Watershed Algorithm

Input: The spline reconstruction of a boundary indicator function b(~x). Algorithm pa-
rameters: default step size h0, desired localization accuracy εs

1. Use algorithm 3.1 to �nd all saddles and maxima.

2. For every saddle ~s (optionally only for those that ful�ll some application speci�c
predicate, such as su�cient edge strength):

a) De�ne the starting point ~x0 = ~s, the starting direction ~t0 = ~u as the eigenvec-
tor of the Hessian matrix corresponding to the positive eigenvalue at ~s, and
initial step step size h = h0.

b) While the distance of the current point to the nearest maximum is above h0,
i.e min~m∈Maxima |~xk − ~m| > h0:

i. Compute the candidate point ~x
(1)
k+1 by a single Runge-Kutta step with

step size h, and ~x
(2)
k+1 by two consecutive Runge-Kutta steps with step

size h/2, where a Runge-Kutta step of order 2 and step-size h is de�ned
as

~x ′ = ~xk +
h

2
~tk, ~t ′ =

∇b
|∇b|

∣∣∣∣
~x=~x′

~x ′′ = ~xk + h~t ′, ~t ′′ =
∇b
|∇b|

∣∣∣∣
~x=~x′′

ii. Estimate the step size that would have caused a localization error of at
most εs in the current step

h′ = h

 εs∣∣∣~x(1)
k+1 − ~x

(2)
k+1

∣∣∣
 1

3

iii. If h′ ≥ h/2 accept ~x
(2)
k+1 as new point ~xk+1, set h = h′ and goto (b).

Otherwise retry the current step with h = h′.

c) Repeat the same procedure for the starting point ~x0 = ~s, but with starting
direction ~t0 = −~u

In our experiments, we used h0 = 0.1 and εs = 10−4. Larger values for εs cannot be used
because tracing may then loose the watershed line. Smaller values wouldn't make sense
either due to the noise in the original image data. The average step size selected by the
step size control mechanism was about 0.05 pixels. Figure 5.4 illustrates the principle of
the algorithm.
The result of this algorithm is a set of vertices and arcs, but the arcs must still be

linked into a GeoMap. At a saddle point, this is trivial: the two arcs meeting there
are joined into a single edge, and the two corresponding darts are obtained by tracing

142

5.1 Analog Boundary De�nitions

Figure 5.4: The principle of the subpixel watershed algorithm: The boundary strength function
is depicted as a landscape, and the critical points are marked by cylinders: minima (red), maxima
(blue), and saddle points (green). Starting from a saddle, watersheds are traced upwards along
a �ow-line until a minimum is reached (yellow). It can be seen how the step size of the Runge-
Kutta algorithm varies according to the local properties of the boundary strength function. Image
courtesy of Hans Meine.

the edge in either forward or backward direction. Recovering the σ-orbits at junctions
is more di�cult. In theory, one only needs to sort incoming arcs according to their
tangent angles. However, in practice this is not possible because it would require in�nite
accuracy. This can be understood by observing that watersheds converge tangentially
towards the maximum, cf. �g. 5.5. This is not an artifact of our implementation, but a
well-known watershed property [Steger 99]: The surface in an in�nitesimal neighborhood
of a maximum can be described by −µ1 u

2−µ2 v
2 with µ2 ≥ µ1 > 0 and (u, v)-coordinates

along the eigenvector directions, and it can be shown analytically that all �owlines (except
the one parallel to u = 0) converge to the maximum tangentially to the u-direction
[Koenderink & v. Doorn 93]. If the angle di�erences between incoming watersheds at
distance h0 from the maximum is too small, we cannot readily compute the correct σ-
order. Due to the �nite accuracy of �owline tracing, the computed �owlines may cross
each other in practice (although this is not possible in theory), so the order derived from
small angle di�erences can be incorrect. Therefore, we must follow parallel �owlines until
they eventually diverge. The following algorithm recovers the correct σ-ordering at each
vertex:

Algorithm 5.5: Watershed σ-Ordering

Initialization: To recover the σ-order at junction k located at ~pk: Set the reference point
~pref = ~pk, reference angle ϕref = 0 rad. Let g be the (unordered) set of half-edges
starting at ~pk.

143

5 Algorithms for GeoMap Creation

a b

Figure 5.5: Tangential watershed convergence at a local maximum. Top: illustration; bottom:
actual watersheds on an image � the single maximum of the boundary indicator in the ROI is
marked yellow, and the blue circles mark locations where the half-edges converge (precisely, the
r-circles where the σ-order is eventually found).

1. For each half-edge i in g �nd the intersection ~pi of the corresponding polygonal
arc with an r-circle around ~pref (we use r = 0.5). If there are several intersections,
select the one whose arc length distance from the half-edge's start is maximum. If
there is no intersection, use the half-edge's end point.

2. For each half-edge i in g calculate the angle ϕi between the vector ~pi− ~pref and ϕ0,
measured in the interval −π < ϕi ≤ π. Sort g according to ϕi.

3. Detect tangential half-edges: Compute the di�erence angles ∆ϕi = ϕi+1 − ϕi. If
∆ϕi < ϕtang = 0.5 rad, half-edges i and i+ 1 are considered tangential. Group the
half-edges of g into groups ĝm such that each group contains a maximal sequence of
tangential half-edges. If all groups have only one member, there are no tangential
half-edges, and the algorithm stops. Otherwise repeat the procedure for each group
with several members: Compute a new reference point ~̂pref and reference angle ϕ̂0

as the average of the current group's members, and goto 1. (The choice of r and
ϕtang is not critical.)

The points where converging watersheds �rst meet don't correspond to local maxima
(hence are not represented by nodes of the GeoMap), yet they are clearly perceived as T-
junctions by a human observer, see �gure 5.5b. Therefore, we insert additional GeoMap
nodes at these points.
Finally, the exterior and contains relations of the GeoMap are constructed like in algo-

rithm 5.3 on page 138.4 The advantage of the watershed algorithm is that it can naturally
�nd junctions: Arbitrary many watershed lines can meet at a maximum, and any desired
plane partition can be expressed in terms of the watersheds of a suitably de�ned boundary
indicator function. Figure 5.6 shows results of the subpixel watershed algorithm.
It is also instructive to look at watersheds from an alternative point of view that was

pioneered by [Nguyen et al. 03]. Consider the topographic distance between two points

dtopo(~x1, ~x2) = min
C

∫
C

∣∣∇b(~x′)∣∣ d~x′
where the minimum is taken over all possible paths C that connect ~x1 and ~x2. When the
two points are on the same �owline, this �owline is the optimal path, and the topographic

4In practice, disconnected watershed graphs are encountered very rarely because they occur only under
quite exceptional circumstances, see [Nackman 84, Rieger 97].

144

5.1 Analog Boundary De�nitions

Figure 5.6: Result of the subpixel watershed algorithm 5.4 without (left) and with additional
thresholding on the boundary strength. That is, the left images contain all watersheds, whereas
the right ones only those where the gradient magnitude at the saddle point (i.e. the tracing start
point) exceeds a value of 16 (�sign� example) or 4 (�blox� example). Without the threshold, we
see the well-known oversegmentation of the watershed algorithm. The gradient �lter scale was
σ�lter = 1.

distance between ~x1 and ~x2 is equal to their absolute height di�erence:

dtopo(~x1, ~x2) = |b(~x1)− b(~x2)|

Now consider a boundary indicator where all local minima have the same function value.
This can always be achieved by changing a given boundary indicator so that the function
surface in an arbitrary small neighborhood around each minimum is warped (like a rubber
membrane) to the desired value. When done properly, this does not change the number,
type, and location of the critical points, and the watersheds will remain unaltered. The

145

5 Algorithms for GeoMap Creation

functional

EWatershed[b(~x)] =
∫∫

min
~y∈Minima[b]

dtopo(~x, ~y) d~x (5.7)

is minimized when every point ~x is assigned to its nearest (in the sense of the topographic
distance) minimum. The set of points assigned to the same minimum is called a �dale�
or a �catchment basin�. It has been shown by [Nguyen et al. 03] that the watersheds are
exactly the locus of points that have the same distance from more than one minimum.

This formulation of the watershed transform justi�es the well-known �ooding algorithm
discussed in the next section. The watershed functional (5.7) is formally equivalent to a
Voronoi partition where the Euclidean distance has been replaced with the topographic
distance. In the same sense that pixels on a grid are de�ned as Voronoi regions around
the sampling points (see de�nition 4.9), we may interpret the catchment basins of the
watershed functional, i.e. the Voronoi regions according to topographic distance, as �su-
perpixels�. In contrast to normal pixels, which are imposed on the image by the image
acquisition device, superpixels arise in a natural way from the structure of the image
itself.

5.2 Grid-Based Boundary De�nitions

In image analysis, the original image data are given on a regular grid, and it is natural
to take advantage of the special structure of the grid to simplify the representation
and creation of GeoMaps. Due to the higher speed of these computations, one often
tolerates the inevitable loss of accuracy relative to the analog methods described in the
previous section. In section 4.3.2, we introduced two basic edge representations for raster-
based GeoMap creation: well-composed crack edges and thin 8-connected boundaries
(including mid-crack edges). A large part of the underlying algorithmic aspects have
already been treated there in a general way. Here, we add the missing links between
grid-based GeoMaps and various boundary indicator types.

From a topological point of view, the interpixel approach is the most popular because it
is easy to implement and works in arbitrary dimensions [Ahronovitz et al. 95, Winter 95,
Braquelaire & Brun 98, Braquelaire & Domenger 99, Damiand et al. 04]. A good review
of the related theory and applications can be found in [Braquelaire 05]. It is straight-
forward to derive a GeoMap with inter-pixel edges from any 4-connected region image
by means of the crack-insertion algorithm 4.1. This even works when the boundary is
simply de�ned as a level-line of the image function, i.e. by thresholding:

Algorithm 5.6: Crack Insertion by Thresholding

Input: an image such that foreground and background can be distinguished by compar-
ison with a threshold.

1. Use the threshold to create a binary image and label both the background and
foreground according to 4-connectivity.

146

5.2 Grid-Based Boundary De�nitions

Figure 5.7: Pixel-accurate thresholding of
the �sign� example using the crack-insertion
algorithm 5.6 with threshold = 100. Compare
with the subpixel result in �gure 5.3.

2. Apply the crack insertion algorithm 4.1 to the labeled image and create a GeoMap
as described in section 4.3.2.

An example is shown in �gure 5.7.

A variant of this algorithm is required when the threshold is combined with an ad-
ditional predicate that decides whether a particular transition between foreground and
background is indeed signi�cant. This applies, for example, to the pixel-accurate version
of Haralick's edge detector, were the boundary indicator is the oriented second derivative
of the image, but zero-crossings of this derivative must only be interpreted as edges (i.e.
as local maxima of the contrast) when the third derivative is negative at this location,
cf. equations (5.3) and (5.4). The modi�ed crack insertion algorithm is as follows:

Algorithm 5.7: Crack Insertion with Constraint

Input: a discrete region image Izeros on the integer domain [0, ..., w − 1] × [0, ..., h − 1],
whose zero-crossings signal potential edges, and a predicate that decides for every
zero-crossing whether it is signi�cant.

1. Create an image ICrack on the integer domain [−1, ..., 2w− 1]× [−1, ..., 2h− 1] and
initially mark all pixels as �region�.

a) For all points of the form ICrack(2i+ 1, 2j): If there is a zero-crossing between
the points Izeros(i, j) and Izeros(i + 1, j) and the predicate is true for this
transition, or one of the two points is outside the image, label ICrack(2i+1, 2j)
as a boundary point.

b) For all points of the form ICrack(2i, 2j+ 1): If there is a zero-crossing between
the points Izeros(i, j) and Izeros(i, j + 1) and the predicate is true for this
transition, or one of the two points is outside the image, label ICrack(2i, 2j+1)
as a boundary point.

147

5 Algorithms for GeoMap Creation

Figure 5.8: Pixel-accurate Haralick edges for the �blox� example using algorithm 5.7 without
(left) and with gradient strength threshold (right, threshold = 32), for σ�lter = 1. Compare with
the subpixel results in �gure 5.3.

c) For all points of the form ICrack(2i+ 1, 2j + 1): If any of the direct neighbors
ICrack(2i, 2j+ 1), ICrack(2i, 2j− 1), ICrack(2i+ 1, 2j), ICrack(2i− 1, 2j) (where
points outside the image are ignored) is marked as boundary, mark ICrack(2i+
1, 2j + 1) as a boundary point as well.

2. Create a GeoMap from the resulting boundary image.

An alternative way for computing labeled images suitable for GeoMap creation is by
means of the discrete watershed transform. There are many variants of this algorithm,
for example the popular �ooding algorithm by [Vincent & Soille 91] which produces a
4-connected region image that can be further processed by the standard crack insertion
algorithm. However, the so-called union-�nd algorithm [Roerdink & Meijster 00] is even
more e�cient, and it also helps to understand how discrete watershed transforms relate
to analog ones. In the context of live-wire segmentation, the union-�nd algorithm is also
known as tobogganing [Mortensen & Barrett 99]. Catchment basins can be determined
by looking at where the downward �owline from each point ends. When the associated
minimum of every sampling point is known, the discrete watershed transform is uniquely
de�ned: All �owlines ending in the same point form a tree, and an image partition is
obtained by simply assigning a unique label to the points in each tree. However, it is very
expensive to follow each �owline exactly (i.e. with subpixel accuracy) until it converges.
Therefore, one approximates exact �owline tracing by a discrete recursive procedure: It
is assumed that each sampling point is associated to the same minimum as its lowest
4-neighbor. This leads to the following algorithm:

Algorithm 5.8: Union-�nd Algorithm for Watershed Detection

Input: A boundary indicator image whose watersheds are to be interpreted as boundaries.

148

5.2 Grid-Based Boundary De�nitions

1. For every pixel: Determine the 4-neighbor with lowest edge strength. If the strength
of the current center is higher, remember the direction to that neighbor, otherwise
mark the center as a local minimum.

2. Perform 4-connected components labeling on the thus marked image, where the
equivalence classes are de�ned as follows: Two neighboring pixels belong to the
same region when either is the lowest neighbor of the other.

3. Proceed on the resulting label image with the standard crack insertion algorithm.
Optionally, apply thinning to the resulting crack edges to obtain a mid-crack rep-
resentation.

Results can be seen in �gure 5.9.

Since we used the 4-neighborhood in the de�nition of the �owlines, the algorithm
indeed results in a valid GeoMap whose boundaries correspond to the interpixel or mid-
crack boundary of the labeled image. The discrete GeoMap is topologically equivalent to
a discretization of the corresponding analog watershed partition when two requirements
are met:

1. There must be a 1-to-1 mapping between the root points of the trees and the true
minima of the boundary indicator (as determined by critical point detection in the
spline-interpolated indicator function).

2. The assumption that the lowest neighbor belongs to the same catchment basin
must be true.

It is easy to see that both requirements can be violated: The roots of a �owline tree are
always local minima in the 4-neighbor sense. We have shown in section 3.3.2 that the 4-
neighborhood maxima can deviate dramatically from the true maxima of the continuous
reconstruction of the same image. The same is true for 4-neighborhood minima as needed
here. A condition for spurious minima (and therefore spurious regions) to occur follows
from the geometric sampling theorem 6.2 to be discussed in section 6.1.1: sampled regions
may become disconnected when the curvature of the true boundary exceeds 1/r, where
r is the pixel radius (i.e. r =

√
2/2 in a square grid with pixel distance 1). Therefore,

if the level-line of b going through sampling point ~p has a smaller curvature radius than√
2/2, it may happen that no point in the 4-neighborhood of ~p lies in the lower subset

of the Euclidean neighborhood of ~p, see �gure 5.10a. Then ~p is mistakenly classi�ed as a
minimum, and we end up with an extra root node in the watershed forest, i.e. a spurious
region. Another error can happen when a sampling point is near a true watershed. Then
its lowest 4-neighbor can actually lie in a di�erent catchment basin, so that an entire
subtree may become wrongly connected, �gure 5.10b. This is also more likely to happen
if the level-line through ~p has high curvature.

The union-�nd watershed algorithm always produces interpixel boundaries. A vari-
ant of the �ooding-based watershed transform can be used to create thin 8-connected
pixel boundaries. To guarantee 4-connected regions and thin boundaries, �ooding is best

149

5 Algorithms for GeoMap Creation

Figure 5.9: Result of the union-�nd watershed algorithm 5.8 without (left) and with additional
thresholding on the boundary strength. That is, the left images contain all watersheds, whereas
the right ones only those where the minimal gradient magnitude along the edge is below 16
(�sign� example) or 4 (�blox� example). Without the threshold, we again see oversegmentation.
The gradient �lter scale was σ�lter = 1. Compare with the subpixel results in �gure 5.6.

realized by means of a topological thinning algorithm which starts in a state where all
pixels belong to the boundary, with the exception of the local minima (in 4-neighborhood
sense) that will become the root of the catchment basins. The boundary is then thinned
whereby the boundary strength (value of the boundary indicator function) is used to
prioritize the thinning steps:

Algorithm 5.9: Region Growing Algorithm for Watershed Detection

Input: A boundary indicator image whose watersheds are to be interpreted as boundaries.

1. Find all local minima in the 4-neighborhood sense and label each with a unique

150

5.2 Grid-Based Boundary De�nitions

(a)

−

level line

+

(b)

catchment basin 1

catchment basin 2

true watershed

Figure 5.10: Errors of the pixel-based watershed algorithm: (a)When the level line trough the
central sampling point has high curvature, none of the 4-neighbors may be located in the lower
region of the points Euclidean neighborhood. A false minimum (spurious region) results. (b)
When the lowest 4-neighbor of a point near the true watershed is in another catchment basin,
the subtree belonging to this point will be assigned to the wrong region (black arrows). The
true �owline runs more like the light arrow, but descends too slowly to make the corresponding
neighbor the lowest one.

label. Label all other points with the boundary label.

2. Put all simple points of the current boundary region in a priority queue that is
sorted according to increasing boundary strength. Recall that simple points are the
ones whose removal from the boundary region would not change the number of
4-connected region components and 8-connected boundary components.

3. While the queue is not empty:

a) Remove the �rst point from the queue and check if it is still simple. If yes,
mark it with the unique label of the adjacent region, otherwise leave it in the
boundary. If the point became a region point, look for new simple points in
its 4-neighborhood and put them into the queue.

4. Classify the remaining boundary points into edge and node points according to
de�nition 4.16 and create the GeoMap as explained in section 4.3.2.

Examples for this algorithm are shown in �gure 5.11. This thinning approach obviously
results in an image partition with thin 8-connected boundaries. When the initial seeds
are arbitrary regions instead of the local minima, the algorithm still works and is called
marker-based watershed algorithm.
Instead of the non-local watershed criterion, one can also de�ne ridges by means of local

criteria. In the continuous domain, such criteria can always be transformed into equivalent
zero-crossing criteria, but this is not possible in the discrete domain. Therefore, this
algorithm type deserves special attention, and we show how the most popular algorithm of
this type, Canny's algorithm [Canny 86], is adapted to the GeoMap framework. Canny's
algorithm di�ers from the algorithms mentioned so far in that it needs more input data: In
addition to a boundary indicator encoding scalar boundary strength, the local orientation
of the boundary is needed. The most common choice is the gradient direction, which is
the natural choice when boundary strength is de�ned by the local gradient magnitude.
However, many other possibilities exist, e.g. by using the eigen directions of local feature

151

5 Algorithms for GeoMap Creation

Figure 5.11: Result of the region-growing watershed algorithm 5.9 without additional thresh-
olding on the boundary strength. The gradient �lter scale was σ�lter = 1. Compare with the
subpixel results in �gure 5.6, and the union-�nd results in �gure 5.9.

tensors (see section 9.1). When only a scalar boundary indicator is available (e.g. the
SUSAN measure of local dissimilarity [Smith & Brady 97]), a local direction can still be
de�ned by the direction maximizing the boundary indicator's negative curvature, like in
the height-ridge equation (5.5). By convention, the orientation used in Canny's algorithm
is normal to the boundary.

Algorithm 5.10: GeoMap creation by Canny's algorithm

Input: A scalar boundary indicator b and an orientation �eld ~u = (cos θ, sin θ)T , both
de�ned on a square raster.

1. Mark all pixels as boundary candidates that are local maxima along the local
orientation, that is where

b(~x) > b(~x± ~d)

with

~d =
(⌊

cos θ
2 sin (π/8)

+
1
2

⌋
,

⌊
sin θ

2 sin (π/8)
+

1
2

⌋)T
denoting the vector to the nearest-neighbor pixel of ~x in direction ~u (b.c is the �oor
operation). Optionally apply a threshold t1 on b to remove candidates caused by
noise (see section 7.2.2.2 for selection of appropriate thresholds).

2. Perform topology preserving thinning with priority (algorithm 4.2) such that points
with lower b are removed �rst (use the special rules that keep line endings and T-
junctions).

3. Create a GeoMap from the resulting 8-connected boundary image (de�nitions 4.16
and 4.7). Transform it into a polygonal GeoMap according to theorem 4.2.

152

5.2 Grid-Based Boundary De�nitions

4. Optionally perform hysteresis thresholding: Delete all GeoMap edges where the
maximum gradient magnitude along the edge is below a threshold t2. (This step
is signi�cantly simpli�ed by the GeoMap because �nding edges and computing
maximum gradient magnitudes are provided as standard operations in the GeoMap
abstract data type.)

5. Translate the pixel-accurate GeoMap points to more accurate subpixel locations.

Figure 5.12 shows GeoMaps created by this algorithm. Our main modi�cations of Canny's
original algorithm are the introduction of the thinning step and the use of a GeoMap
representation (instead of the usual edgel chains, which lack the concepts of �region� and
�junction� and may therefore pose topological problems).
The standard method for subpixel edge localization (step 5) is to �t a parabola to the

three points b(~x), b(~x ± ~d) and place the edge point at its apex. Canny originally used
linear interpolation to �nd the boundary strength of the points b(~x ± ~d), but we found
that nearest-neighbor interpolation seems to improve accuracy [Bugl & Heinemeier 04],
see �gure 5.13 left. Alternatively, one can use all points in the 3× 3-neighborhood of ~x:
The boundary indicator values from this neighborhood are orthogonally projected onto
the line ~u(~x), and a least-squares parabola is �tted through all nine points, �gure 5.13
center. Its apex again de�nes the edge. This method is employed in the code available
with [Baker & Nayar 99]5. We show in section 7.2.1 that this method achieves higher
accuracy than the simple 3-point method.
Yet higher accuracy can be achieved by replacing parabola �ts with spline interpolation,

�gure 5.13 right. Let b̃(~x) be a continuous reconstruction of the boundary indicator
according to the spline interpolation formula (3.10). Starting at ~x, we perform Newton
iterations to �nd the nearest local maximum of b̃ on the line ~u(~x):

~x(i+1) = ~x(i) −
~uT ∇b̃

(
~x(i)
)

~uT Hb̃
(
~x(i)
)
~u
~u (5.8)

where Hb̃
(
~x(i)
)
denotes the Hessian of b̃ at ~x(i). Unfortunately, this method occasionally

converges to a local minimum of b̃ instead of a maximum. This problem can be solved by
replacing the simple Newton iteration with a more sophisticated line search algorithm,
for example [Moré & Thuente 94].
It is important to ensure that subpixel point correction does not violate the topology

of the GeoMap by moving a point across another edge. The simplest method to avoid
this is to restrict the subpixel point coordinate to the current pixel. However, the optimal
point according to the 9-point �t or spline interpolation is not always in the current pixel.
Then, the topology check according to algorithm 4.8 should be used. Another alternative
based on triangulation is described in section 5.3.
The main problem with Canny's algorithm is that its edge model breaks down near

junctions: it is assumed that there is a unique boundary normal ~u at each pixel, but
this is not true near junctions, where edges of di�erent orientation meet. Orientation

5http://www1.cs.columbia.edu/CAVE/

153

http://www1.cs.columbia.edu/CAVE/

5 Algorithms for GeoMap Creation

Figure 5.12: Result of Canny's algorithm 5.10 without subpixel correction (left) and with
subpixel correction by means of a 3-point parabola �t. Note that the boundary has gaps near
junctions, which is a well-known property of Canny's algorithm. The gradient �lter scale was
σ�lter = 1, gradient strength thresholds were 16 (�sign� example) and 4 (�blox� examples).

Figure 5.13: Subpixel edgel correction in Canny's algorithm. Left: Projection of three points
onto the gradient line, followed by a parabola �t. Center: Likewise with 9 points. Right: Newton
iterations along the gradient direction using a the spline-interpolated gradient image.

154

5.3 GeoMap Creation by Triangulation

computation at a junction is dominated by the strongest edge. The pixels on weaker
edges receive distorted orientation estimates, so that b(~x) is no longer a local maximum
along ~u(~x). Consequently, edges have gaps there. Several authors proposed heuristics to
close these gaps. As an example, we report the method of [Rothwell et al. 95], another
one is described in algorithm 5.14 in the next section. Rothwell's algorithm �ts very well
into our GeoMap framework � we only need to insert an additional step in our version
of Canny's algorithm6:

Algorithm 5.11: GeoMap creation by Rothwell's algorithm

Perform algorithm 5.10 with the following additional step (to be executed between
steps 1 and 2):

1a. Add more candidate edge pixels by adaptive thresholding of b:

(a) Perform a forward Chamfer distance transform on the non-boundary pixels
(i.e. those that have not been marked in step 1) to �nd the nearest boundary
candidate in the causal neighborhood (i.e. among the pixels above and to the
left). Likewise, perform a backward Chamfer distance transform to �nd the
closest boundary candidate in the anti-causal neighborhood (i.e. among the
pixels below and to the right).

(b) Linearly interpolate the boundary indicator values from the two nearest bound-
ary candidates, weighted according to their distance. Compute the local thresh-
old by reducing the interpolated value to λ% (where 80 ≤ λ ≤ 95).

(c) Choose all pixels as additional boundary candidates where the local boundary
strength exceeds the threshold.

In essence, this algorithm combines Canny's approach along edges with the region-
growing-based watershed transform near junctions.

5.3 GeoMap Creation by Triangulation

So far, we created GeoMaps by means of contour following in the continuous domain,
or by means of pixel linking/labeling on a grid. Another possibility is to start with
a set of isolated points which mark the boundary but are not yet linked in any way.
This approach is inspired by research on laser range scanning. A laser scanner samples
the surface of a 3-dimensional object and returns a set of isolated surface points. It is
necessary to reconstruct a connected surface from this set of points. This problem has
been successfully solved with the concept of α-shapes [Edelsbrunner & Mücke 94]. The
α-shape is essentially de�ned as a subset of the Delaunay triangulation of the points
such that the radii of the Delaunay cells in the subset are below α ∈ R+. Under certain

6Since the description in the paper is incomplete, the algorithm has been reverse engineered from an
implementation available at http://marathon.csee.usf.edu/edge/edge_detection.html.

155

http://marathon.csee.usf.edu/edge/edge_detection.html

5 Algorithms for GeoMap Creation

p

q

true contour

detected edgels

Figure 5.14: Illustration of a (p, q)-sampling: p is the maximum distance from any true contour
point to the nearest edgel, and q is the maximum distance from any edgel to the true contour.

conditions, an α-shape is homeomorphic to the correct object surface, or at least of the
same homotopy type.
To make clear what it means for the given points to �mark the boundary�, we introduce

the notion of a (p, q)-sampling of a plane partition:

De�nition 5.3. Let P be a plane partition with boundary B. A �nite set of points
S =

{
si ∈ R2

}
is called a (p, q)-sampling of the boundary B when the distance of every

boundary point b ∈ B to the nearest point in S is at most p, and the distance of every
point si ∈ S to the nearest point in B is at most q, see �gure 5.14. The points in a
boundary sampling are called edgels. The sampling is said to be strict when all points are
exactly on the boundary, i.e. q = 0.

It should be noted that our de�nition of edgel is slightly more general than the usual
de�nition because we do not require edgels to have any attributes (such as orientation
or con�dence) beyond their coordinates. Non-zero edgel displacements q > 0 are caused
by systematic or statistical measurement errors.
Edgels may be determined in various ways. For example, we can use the points de�ned

by any of the GeoMap algorithms introduced so far, and simply drop the connectivity
information. This may not be the method of choice in practice, but it is very interesting
and useful from a conceptional point of view because it connects these algorithms to the
boundary sampling theorem 6.8 discussed in section 6.2. Another possibility is to detect
candidate points by template matching or by just the �rst step of Canny's algorithm.
Most importantly, the points can come from di�erent sources simultaneously (e.g. edge
and corner detectors), leading to a natural method for method combination. Since the
points are not yet linked, they can also be freely shifted around towards improved subpixel
positions without taking care of whether these coordinate shifts preserve topology. That
is, instead of checking for topology preservation at every step according to algorithm 4.8,
one can allow the points to move more freely and reconstruct the topology afterward.
For our present discussion, the method for computing edgels only matters in so far as

it determines the accuracy of the sampling, i.e. the values of p and q. The �rst step in
recovering a connected boundary from the edgels is Delaunay triangulation:

De�nition 5.4. The Delaunay triangulation D of a set of points S is the set of all
triangles formed by triples t ⊂ S such that the open circumcircle of every triangle does
not contain any point of S. The Delaunay triangles de�ne a simplicial complex, i.e. a
polygonal plane partition where all edges are straight lines and all regions are triangles.
The union of all cells c ∈ D is called the polytope |D| of D.

156

5.3 GeoMap Creation by Triangulation

If the points are in general position (i.e. no four points are on a common circle), the
Delaunay triangulation is unique. It can be e�ciently computed inO(n log n) time, where
n is the number of points in S. Advanced implementations are publicly available7, and
it takes about a second to triangulate 200000 points in a 3GHz Pentium machine. Since
every Delaunay triangulation is a polygonal plane partition, it can be represented as a
GeoMap8. Of course, the triangles are not the regions we want to reconstruct � Delaunay
triangulation produces an even more dramatic over-segmentation than the watershed
algorithm. However, under certain conditions the desired boundaries are a subset of the
Delaunay edges: Since the distance between edgels along true edges is generally much
smaller than the edgel distance across regions, it makes sense to simply remove large
triangles and long edges:

De�nition 5.5. The α-complex Dα of a set S of points is de�ned as the subcomplex of
the Delaunay triangulation D of S which contains all cells c such that

1. the radius of the open circumcircle of c is smaller than α, and this circle contains
no point of S, or

2. an incident cell c′ with higher dimension is already in Dα.

The connected components of the complement DC
α = R2 \ Dα are called α-holes of the

triangulation. When the circumcircle radius of the largest triangle in some α-hole is at
least β ≥ α, we speak of an (α, β)-hole. The polytope |Dα| of Dα (i.e. the union of all
cells in Dα) is called the α-shape of the point set S.

For simplicity, we also use the term �hole" for the component which contains the in�nite
region. It is an (α, β)-hole for arbitrary large β. The idea of the α-complex concept is
that the holes approximate the regions of the original plane partition we are analyzing.
This is indeed true when the (p, q)-boundary sampling ful�lls certain conditions and α is
correctly chosen, as we prove in theorem 6.8 in section 6.2. However, the theorem requires
an additional algorithm step which removes a few spurious holes not corresponding to true
regions. These holes are relatively small and can be recognized by looking at the largest
triangle within each hole, as determined by β. This leads to the following algorithm:

Algorithm 5.12: (α, β)-boundary reconstruction

Input: A (p, q)-boundary sampling S of the plane partition of interest. Choose α such
that p < α ≤ r − q and β = α+ p+ q, where r depends on the size of the ground-
truth regions (detailed reasons for these parameter choices will be given in section
6.2).

1. Perform a Delaunay triangulation of S and represent it as a GeoMap.

7For example the Triangle software by J.R. Shewchuk, http://www.cs.cmu.edu/~quake/triangle.
html.

8In fact, Delaunay triangulation was among the applications that initially motivated the invention of
combinatorial maps, which are in turn the basis of our GeoMaps.

157

http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.cmu.edu/~quake/triangle.html

5 Algorithms for GeoMap Creation

Figure 5.15: Left: Edgels de�ned by Canny's algorithm with subpixel correction (cf. �gure
5.12). Right: Corresponding (α, β)-boundary reconstruction with α = 2.0 and β = 2.2. Edges are
depicted in red, triangles remaining in the thick boundary are green. Note that the gaps near
junctions have been closed.

2. Mark all cells of the GeoMap that do not belong to the α-complex and determine
the α-holes, i.e. the connect components of the marked cells.

3. For all α-holes that are not (α, β)-holes (i.e. do not contain a cell with circumradius
of at least β), remove the mark from the contained cells.

4. Transform all remaining (α, β)-holes into single regions by merging the contained
cells with the appropriate Euler operators.

In other words, spurious holes are simply �painted over" in step 3, and (α, β)-boundary
reconstruction essentially amounts to hysteresis thresholding on the triangle size of a
Delaunay triangulation. We are going to prove in theorem 6.8 that exactly the desired
holes (regions) survive when α and β are chosen as speci�ed. This result can be interpreted
as a new sampling theorem for region boundaries: it guarantees that the reconstruction
is structure preserving according to de�nition 2.9. Figure 5.15 shows the (α, β)-boundary
reconstruction on the basis of subpixel Canny edgels for the �blox� example. It can be
seen that the reconstruction is not everywhere thin: It contains triangles in the areas
where the reconstruction is uncertain, according to the selected α and β, which in turn
depend on the errors p and q. Figure 5.16 illustrates how di�erent values for α a�ect
the reconstruction: it contains more and more triangles, corresponding to increasing
uncertainty. For this self-diagnosis of the algorithm to work properly, precise knowledge
of the values of p and q is required. We will measure p and q for several important edge
detectors in section 7.6.
Another unique feature of (α, β)-boundary reconstruction is its ability to integrate

points from di�erent sources: Since the algorithm treats all points equally and doesn't
assume any relationship between them, the point set can be the union of the results of

158

5.3 GeoMap Creation by Triangulation

0.1 0.7 1.2 1.7

Figure 5.16: Left: Boundary detected for a Chinese character using the subpixel thresholding
algorithm 5.2. Right: As α is increased, the (α, β)-boundary reconstruction becomes thicker,
indicating increasing uncertainty about the true boundary location.

(a) (b)

Figure 5.17: (a) Initial (α, β)-boundary reconstruction (black and gray) and maximum likeli-
hood estimates of junctions points (red). (b) When the new points are included in the (α, β)-
boundary reconstruction the result has signi�cantly higher quality near junctions.

many boundary detectors. One particularly interesting application of this possibility is
the improvement of the segmentation near junctions. We see in �gure 5.17a that the
(α, β)-boundary reconstruction exhibits signi�cant distortions near junctions. Therefore,
we append a second algorithm step that determines a maximum likelihood junction
position from the gradient magnitudes and orientations in the neighborhood of connected
thick areas, resulting in a set of additional edgels. These edgels are added to the original
set, and (α, β)-boundary reconstruction is repeated. It can be seen in �gure 5.17b that
the junction quality is signi�cantly improved in this way.

In many applications, thick boundary reconstructions are undesirable. Then, one can
apply topology preserving thinning (possibly with priority) to the (α, β)-boundary in the
same way as it is applied on a grid (cf. algorithm 4.2). An edge in the (α, β)-boundary is
called simple when its removal does not change the topology of the reconstructed regions.
Simple edges always bound an (α, β)-hole on one side and a triangle within the boundary
on the other. Thinning removes simple edges until none are left:

159

5 Algorithms for GeoMap Creation

Figure 5.18: Left: The result of Canny's algorithm (same image as �gure 5.12 right) has gaps
near junctions. Right: (α, β)-boundary reconstruction closes these gaps (cf. �gure 5.15), and
subsequent thinning according to algorithm 5.13 recovers a thin boundary.

Algorithm 5.13: Minimal boundary reconstruction

Input: An (α, β)-boundary reconstruction.

1. Find all simple edges of the given reconstruction and put them in a priority queue
so that long edges are removed �rst.

2. As long as the queue is not empty: Get the topmost edge from the queue and
remove it from the reconstruction by means of merge faces when it is still simple
(it may have lost this property after removal of other edges). Put the other edges
in the triangle of the removed edge in the queue if they have now become simple.

As far as region topology is concerned, the ordering of the edgels in the priority queue is
arbitrary. Instead of length, we can use any application speci�c importance criterion. For
example, it is useful to measure edge contrast (average image gradient along the edge)
and remove weak edges �rst. Figure 5.18 right shows the result of thinning on the basis
of length.

Often, edgels are determined by an algorithm that already performs edgel linking,
e.g. one of the edge detectors we discussed in the preceding sections. This linking in-
formation is ignored by the (α, β)-algorithm, which instead constructs new links from
scratch. While this approach is well suited for the proof of the boundary sampling theo-
rem, it might not be the optimal algorithmic solution. Instead, we can force the already
known links (edges) to remain in the triangulation by means of constrained Delaunay
triangulation [Chew 87, Bern & Eppstein 92]:

De�nition 5.6. Let P be a polygonal plane partition and G the planar straight line graph
derived from it (i.e. the plane partition where all internal points of the polygonal arcs have

160

5.3 GeoMap Creation by Triangulation

been turned into vertices, so that all arcs become straight lines). A triangulation T of G
is a constrained Delaunay triangulation (CDT) when

1. each edge of G is in T , and

2. for all other edges in T there exists a circle through its end points v1 and v2 which
does not contain any �visible� vertex of G. A vertex v is visible from the line v1v2,
when neither of the two lines v1v and v2v crosses a line of G.

The constrained Delaunay triangulation is as close as possible to the standard Delaunay
triangulation under the requirement that given edges must remain in the triangulation.
When G does not contain any predetermined edges, the two triangulations are equivalent.
The CDT can also be computed in O(n log n) time, and the Triangle software mentioned
above contains an implementation. In the context of image segmentation, use of the
constrained Delaunay triangulation was proposed in [Ren et al. 05a]. Before computing
the triangulation they reduce the number of points by means of polygon simpli�cation:

Algorithm 5.14: Contour completion by constrained Delaunay triangulation

Input: A boundary indicator b(x, y) along with local edge normals θ(x, y).

1. Create a polygonal GeoMap by Canny's algorithm 5.10.

2. Perform polygon simpli�cation by means of algorithm 4.6. In order for the sim-
pli�cation to be scale-invariant, split point selection and recursion termination are
de�ned in terms of the enclosed angle (unfortunately, the exact criteria are not
described in [Ren et al. 05a]). Turn the simpli�ed plane partition into a planar
straight line graph G.

3. Compute a constrained Delaunay triangulation of G.

4. Remove edges from the CDT that are not relevant in terms of perceptual salience.

This algorithm is an alternative to Rothwell's heuristic (algorithm 5.11). The remaining
vertices after polygon simpli�cation are either edge terminations or corners and junctions.
Thus, many edges inserted by the CDT connect an edge termination with the nearest
corner or junction point on another arc. It is shown in [Ren et al. 05a] that good gap
completions are often found among these additional edges.
The topological guarantees of (α, β)-reconstruction are not easily transformed to con-

strained Delaunay triangulation. However, this is not a very big problem because inclusion
of given edgel links into the triangulation can also be enforced in another way, namely
by means of conforming Delaunay triangulation [Bern & Eppstein 92]:

De�nition 5.7. Let G be a planar straight line graph. Then a conforming Delaunay
triangulation is a standard Delaunay triangulation that covers all edges in G, without
requiring any extra rules like in CDT. In general, it is necessary to �nd additional split
points (called Steiner points) on the edges of G to obtain a conforming Delaunay trian-
gulation.

161

5 Algorithms for GeoMap Creation

The number of additional split points can be large when G is an arbitrary planar
straight line graph. But this is not so in the context of segmentation: Here, the distances
between edgels along linked edges are in the order of the pixel diameter or lower, and thus
generally much smaller than the edgel distances across regions (which are mostly above
the pixel distance). The nearest neighbor of an edgel is usually its successor/predecessor
in the same arc. Since nearest neighbor edges are always Delaunay edges, many of the
prede�ned edges in G are automatically preserved. Only relatively few extra points are
needed to ensure preservation of all edges in G.
Actually, we do not only want the original edgel links to be part of the Delaunay trian-

gulation, but they should also remain in the (α, β)-reconstruction. A su�cient condition
for an edge to belong to the (α, β)-reconstruction is that its length is less than 2α, and
its circumcircle does not contain any other edgel. The circle is then called con�ict-free.
This leads to the following algorithm for Steiner point insertion into a polygonal plane
partition:

Algorithm 5.15: Conforming (α, β)-reconstruction

Input: A polygonal plane partition P resulting from any segmentation algorithm de-
scribed in this chapter.

1. Compute the planar straight line graph G by turning the internal knots of all
polygons of P into vertices. Subdivide edges until all remaining edges are shorter
than 2α.

2. For each vertex with degree ≥ 3: Let s be the junction point, and si the end
point of dart i starting at s. Compute the length of the shortest dart starting at
s: δ = mini ‖s si‖. Split all darts starting at s by inserting new vertices at distance
δ/2 from s.

3. Do likewise for each vertex with degree = 2, when the angle between the two
incident darts is less than 90◦.

4. Compute the circumcircle of all edges which are incident to at least one vertex not
yet treated in steps 2 and 3. When the circumcircle contains one or several other
edgels, compute the minimum distance of these edgels from the current edge. Sub-
divide the current edge until all resulting segments are shorter than this minimum
distance.

5. Perform (α, β)-reconstruction on the vertex set of the modi�ed graph G′.

It is easy to see that this algorithm indeed ensures that the edges of the the resulting
(α, β)-reconstruction cover the edges of P . This is immediately obvious for the edge
subdivision in step 4, because edges are explicitly constructed so that their circumcircle
does not contain any vertex. In the steps concerning vertices (steps 2 and 3), observe that
the end points of the modi�ed darts starting at vertex s are all located on a circle with
radius δ/2 around s. The circumcircles of these darts have radius δ/4 and are completely

162

5.3 GeoMap Creation by Triangulation

Figure 5.19: The circumcircles (dotted) of crack edges and mid-crack edges cannot contain any
edgel in their interior. Left: Only one con�guration (modulo rotation) exists in a crack edge.
Right: In a mid-crack edge, there are three con�gurations (modulo rotation): diagonal segments,
straight segments and segments adjacent to a junction.

contained in the δ/2-circle around s. Thus, they cannot contain any other point of G′,
and the claim follows. It should be noted that additional split points are always inserted
on existing edges, so that the geometry of the boundary of G (and therefore of P) is not
modi�ed.
We already mentioned that it is typically not necessary to subdivide many edges when

conforming triangulation is to be performed in the context of segmentation. In fact,
edges derived from subset digitization (i.e. crack edges and mid-crack edges according
to de�nition 4.11) automatically lead to conforming triangulations. Recall that a crack
edge consists of polygons whose knots are located at pixel corners, and a mid-crack edge
consists of polygons whose knots are at the center points of the cracks (plus possibly
junctions vertices at pixel corners), see �gure 4.8. The boundary graph G is thus naturally
de�ned by the knots and segments of these polygons. It is now easy to see that the edges
of G are always contained in a standard Delaunay triangulation of the knots, because no
knot can ever lie in the interior of any polygon segment's circumcircle. Figure 5.19 shows
this for all con�gurations that can occur in a crack edge or mid-crack edge graph.
Conforming triangulations solve two problems simultaneously: They create true De-

launay triangulations where the conclusions of the boundary sampling theorem 6.8 apply,
and they ensure that the original linked boundary remains in the triangulation, without
enforcing this explicitly like in a CDT. Another advantage of conforming triangulations
may be speed: When the boundaries to be kept in the conforming triangulation form
closed contours (for example, because they were computed by a watershed transform),
the triangulation can be computed in every region independently, because no Delaunay
edge can ever cross a region boundary. Instead of a single triangulation problem with
many points, the problem decomposes into a number of independent sub-problems with
much fewer points. Since the complexity of Delaunay triangulation is O(n log n), this
may yield a noticeable speed-up.

163

5 Algorithms for GeoMap Creation

164

6 Geometric Sampling Theorems

Abstract

We have stressed throughout this work that it is important to understand the relationship
between the continuous world and its digital representation in the computer. We already
discussed Shannon's sampling theorem in chapter 3, but it covers only one aspect of the
image acquisition process: it states that a band-limited analog image can be reconstructed
from the corresponding digital camera image. Two important sampling questions are thus
still open:

• The analog camera image is created from the ideal geometric image by smoothing
with the camera's point spread function. How much does this smoothing distort
the geometry, and what remains visible at a given resolution (as determined by the
band-limit of the PSF)?

• The reconstructed geometry must be represented with �nite accuracy in a pixel-
based or polygonal GeoMap. How complex can an original partition be so that a
structure preserving reconstruction according to de�nition 2.9 is still possible?

Since these questions are not answered by Shannon's sampling theorem, we devote this
chapter to a number of new sampling theorems that clarify the topological and geo-
metric relationships between an ideal image and a real segmentation. These theorems
state in a precise sense that the topology of the ground truth partition can be correctly
reconstructed, and the geometric errors of the reconstruction are bounded if the true
regions are su�ciently large (relative to the sampling grid), and the boundary detector
is su�ciently accurate (considering all error sources).

6.1 Sampling Analysis of Grid-Based Region Representations

In this section we look at reconstructions where regions are de�ned as a union of pix-
els. That is, we consider subset digitization (de�nition 4.10) and interpixel boundaries
(de�nition 4.11). It is evident that much of the geometric information in the analog or
digital camera image is disregarded by such a representation, because edgel positions are
restricted to the pixel corners. Nevertheless, enough information survives to make these
representations useful, as was �rst shown by Gauss:

Theorem 6.1. Let Q be a planar convex set and Q̂ its reconstruction by means of subset
digitization on a square grid (cf. de�nition 4.10). Then the area of Q̂ converges linearly

toward the true area of Q as the grid spacing h goes to zero
∣∣∣‖Q‖ − ∥∥∥Q̂∥∥∥∣∣∣ = O(h).

165

6 Geometric Sampling Theorems

2r

Figure 6.1: A r-regular set with some of
the osculating disks shown. Illustration from
[Stelldinger 03].

Area is, of course, only one important shape characteristic. In the context of image
analysis, we are particularly interested in whether the topological structure of a given
plane partition is preserved, i.e. whether the reconstruction is topological equivalent to
the original or at least of the same homotopy type. In addition, we do not want to restrict
ourselves to multigrid convergence statements like in theorem 6.1 � we also need bounds
for given absolute grid spacings because the image resolution cannot be changed once
the image has been taken1.
The analysis in this section will be based on the terms grid, pixel, adjacency, and path

as introduced in de�nition 4.9. Recall that pixels are de�ned as Voronoi regions of grid
points. This is crucial for the following analysis because it implies a number of important
pixel properties (e.g. convexity, neighborhood relations) without resorting to the actual
pixel shape. In contrast to previous authors (e.g. [Serra 82, Pavlidis 82, Latecki et al. 98])
who restricted their attention to speci�c grids such as the square and hexagonal ones, this
general pixel de�nition allows us to extend the analysis to arbitrary �xed grids, including
irregular ones. It is only necessary to specify a bound for the maximum distance from a
grid point to the border of its surrounding pixel:

De�nition 6.1. If the radius of the pixels in a grid S does not exceed r (i.e. ~x ∈
pixelS(~s) ⇒ |~x − ~s| ≤ r), the grid is denoted an r-grid. The number r is also known
as the grid's �ll distance [Wendland 05].

In case of a square grid with pixel distance d, the pixel radius is d/
√

2, hence we speak
of a (d/

√
2)-grid.

In order to facilitate formal proofs, the class of admissible plane partitions must be
restricted to r-regular shapes (this restriction will be relaxed in section 6.2). The funda-
mental importance of this shape class was independently discovered by [Pavlidis 82] and
[Serra 82] and probably others:

De�nition 6.2. A plane partition P with boundary B is called r-regular if at each point
b ∈ B there exist two osculating open disks with radius r that do not intersect B.

An example is depicted in �gure 6.1. The de�nition has three important consequences.

1. It requires the plane partition to be binary, i.e. the regions can be classi�ed into
foreground and background regions so that every point of B is in the closure of

1Unless we have a static scene and an active vision system that can take another image with improved
resolution when necessary.

166

6.1 Sampling Analysis of Grid-Based Region Representations

both the foreground and the background. When the boundary is assigned to the
fore- or background in an arbitrary way, and the union of all foreground points is
denoted as A, the background can be de�ned by the complement AC = R2 \A.

2. The de�nition ensures that the curvature of the boundary B = ∂A = ∂
(
AC
)
is

everywhere at most 1
r , and the partition cannot have corners and junctions.

3. The foreground objects as well as the background have to be wide enough for the
r-disks to �t in, so that narrow isthmuses are prohibited, and objects may not be
placed too close to each other.

The de�nition is equivalent to saying that the objects and background are invariant under
morphological opening and closing with any r′-disk structuring element such that r′ ≤ r.
This variant of the de�nition was used by [Serra 82].

6.1.1 Sampling without Blurring

In this section we simplify the problem further by assuming that the geometric image
is digitized without blurring, i.e. that the camera PSF is a Dirac δ-function. The subset
digitization is then equivalent to a nearest-neighbor interpolation of the digital image:
all pixels whose sampling point is within A are completely �lled with the foreground
color (say, gray-level 1), all others with the background color (say, gray-level 0). The
union of all foreground pixels is the reconstruction of A under this model and will be
denoted Â. The reconstructed boundary ∂Â is the union of all pixel boundaries that
belong to both a fore- and a background pixel. The presentation in this section follows
[Stelldinger & Köthe 05].
We �rst show that the reconstructed set has the same topology as the original both

in the fore- and background when A is r-regular. The claim is established in a series of
lemmas which are formulated and proved for the foreground A, but apply analogously
to the background Ac.

Lemma 6.1. Let A be a r-regular set and Â its reconstruction on an arbitrary r′-grid
such that r′ < r. Then two sampling points lying in di�erent components of A cannot lie
in the same component of Â.

Proof. The Hausdor� distance between any two components of A is at least 2r because
otherwise no r-disk would �t between the components. Since the pixel radius is at most
r′, any component Â′ of the reconstruction is completely contained within the r′-dilation
of some component A′ of the original. The Hausdor� distance between two components
of Â that originate from di�erent components of A is at least 2r − 2r′ > 0. Therefore,
the reconstruction process will never merge two components of A.

Lemma 6.2. Let A′ be a component of the set A, and A′	 = (A′	Br′′)0 the open interior
of the erosion of A′ with a disk structuring element Br′′ of radius r

′′ < r. Further, let S
be an r′-grid with r′ < r′′ and Si := {~s ∈ S : pixel(~s) ∩ A′	 6= ∅} the set of all sampling
points whose pixels intersect A′	. Then at least one sampling point in Si is in A

′.

167

6 Geometric Sampling Theorems

Proof. Since A is r-regular, every component A′ contains at least a disk of radius r. The
center ~m of such a disk is necessarily in A′	. Let P be a pixel that contains ~m (there
can be several such pixels if ~m happens to be on the pixel border), and ~sP the sampling
point of that pixel. Then ~sP is in Si, and the distance |~m−~sP | is at most r′ < r′′. Thus,
~sP lies in A′.

This lemma implies that no component of the original shape gets lost in the reconstruc-
tion. The next two lemmas show that all components of the reconstruction are connected
via direct adjacency.

Lemma 6.3. Let A, A′, A′	, S, and Si be de�ned as in lemma 6.2. Then any pair of
sampling points in Si is connected by a discrete path whose points all belong to Si as well.

Proof. Recall de�nition 4.9 for the meaning of the term discrete path. Let ~s1, ~s2 be
two sampling points in Si and P1, P2 the corresponding pixels. Due to the de�nition of
Si, the interior of the two pixels intersects A′	, and there exist points ~s1

′ ∈ A′	 ∩ P1

and ~s2
′ ∈ A′	 ∩ P2. Due to r-regularity, A′	 is a connected set, so we can connect the

points ~s1
′ and ~s2

′ with a continuous path in the Euclidean plane which runs entirely in
A′	. In fact, there are in�nitely many such paths, and we can choose one that does not
intersect any pixel corner. This path intersects a number of consecutive pixels, and the
corresponding sampling points are all in Si because the path is in A′	. An ordering on
the continuous path induces an ordering of the sampling points, and consecutive points
in this ordering are directly adjacent because the path does not intersect pixel corners.
Hence, these sampling points form a discrete path whose points do all belong to Si.

Lemma 6.4. Let A, A′, A′	, S, and Si be de�ned as in lemma 6.2, and let S′ ⊇ Si be
the set of all sampling points in A′. Then every point in S′ is either also a member of Si,
or is connected to a member of Si by a discrete path whose points all belong to S′.

Proof. Let ~s ∈ S′. Then there exists a disk of radius r that is entirely in A′ and which
contains ~s. Let ~m ∈ A′	 be the center of the disk. The half-line starting at ~s and going
through ~m crosses the border of pixel P (~s) at exactly one point ~c (because pixels are
Voronoi regions and thus convex). If d(~s, ~m) ≤ d(~s,~c), the point ~m lies in P (~s), and ~s ∈ Si.
Otherwise, let G be the pixel edge that contains ~c (if ~c happens to be a pixel corner,
arbitrarily select one of the two edges meeting at that corner). Due to the de�nition of
Voronoi regions, the point ~s ′ constructed by mirroring ~s on G is also a sampling point
of S, and ~s and ~s ′ are directly adjacent. This also implies that the distance from ~c to
both points is equal: s = d(~s,~c) = d(~s ′,~c), so that ~s and ~s ′ are on a circle with radius
s around ~c. Since ~s, ~c and ~m are collinear, ~s has the largest distance from ~m among all
points on that circle, and in particular d(~s ′, ~m) < d(~s, ~m). Thus, ~s ′ is also in S′, and
closer to ~m than ~s. When we repeat this construction iteratively, we eventually end up
at a point ~s ∗ that is in Si because S

′ contains only �nitely many points. The sequence
of directly adjacent points ~s,~s ′, . . . , ~s ∗ is a discrete path that lies entirely in S′.

These lemmas are su�cient to prove if and when the topology of r-regular shapes will
be preserved in the digital reconstruction. Interestingly, by allowing arbitrary (regular
and irregular) grids, the theorem's conditions become both su�cient and necessary.

168

6.1 Sampling Analysis of Grid-Based Region Representations

(a)

r’

(b)

r’

(c)

r" r’

(d)

r’

r"

Figure 6.2: Examples where the topology of the reconstruction by an r′-grid di�ers from the
topology of the original set because the set is not r′-regular. The grid is indicated by sampling
points and pixel borders, whereas the set to be digitized is shown in gray. (a) The original set has
a corner, its reconstruction is disconnected. (b) The original set has a junction, the reconstruction
is again disconnected. (c) The original set is too small and gets lost completely. (d) The original
set is too narrow, the reconstruction has a junction.

Theorem 6.2. [Stelldinger & Köthe 05]: Let A ⊂ R2 be a shape and Â its reconstruction
by an arbitrary r′-grid S. Then A and Â as well as their complements are guaranteed to
be topologically equivalent and have identical homotopy trees if A is r-regular with r > r′

Conversely, if A is not r-regular, there always exists an r′-grid with r′ < r such that A
and Â (or Ac and Âc) are not topologically equivalent.

Proof. Due to lemma 6.2, there is a mapping from the foreground components of A onto
foreground components of Â. Lemma 6.1 implies that the mapping is injective, and from
lemmas 6.3 and 6.4 follows surjectivity. The same holds for the background components
of A and Â. In other words, there is a injective mapping between the components of the
original and the reconstruction. In addition, the lemmas imply that all components of
Â and Âc are connected by direct adjacency. Therefore, there is also a bijective map-
ping between the boundaries ∂A and ∂Â which implies the identity of the homotopy
trees of original and reconstruction. To establish topological equivalence, we must show
that a homeomorphism exist for both the fore- and background. This is indeed the case:
since there is an bijective mapping between the components in A and Â, and all their
boundaries are Jordan curves, a homeomorphism between the boundaries exists. This
homeomorphism can be extended to the interior of the components by standard means,
giving the required R2-homeomorphism. This establishes that r-regularity of A is a suf-
�cient condition.

To show that it is also a necessary condition, we proof that there always exists some
grid which leads to a reconstruction that topologically di�ers from the original. We need
to consider two cases: (1) A is not regular for any r > 0, and (2) A is r′′-regular, but
r′′ ≤ r′.
Case 1 : In this case, the boundary ∂A contains at least one corner or junction. It

is then trivial to place sampling points in a way that causes the reconstruction of a
connected set to be disconnected, see �gure 6.2 (a) and (b).

Case 2 : Let A be r′′-regular with r′′ < r′ < r. Then there exists a maximal inside or
outside circle with radius r′′ and center ~p that touches ∂A in at least two points. Draw a
circle with radius r′ around ~p. Case 2a: If a component of ∂A coincides with the r′′-circle,

169

6 Geometric Sampling Theorems

a component of A or Ac lies completely inside the r′-circle. We can place sampling points
on this circle in a way that the component is lost in the reconstruction, �gure 6.2 (c).
Case 2b: Otherwise, we can choose r′ so that part of the r′-circle is in A and part is in Ac.
If these parts form more than two connected components we can place a sampling point
in each of these components, and the reconstruction will contain a junction, whereas the
original didn't, �gure 6.2 (d). Case 2c: If there are exactly two components, we can move
the r′-circle a little until either it no longer intersects ∂A (which brings us back to case
2a), or the number of components increases (which brings us back to case 2b). In no case
will the topology be preserved.

The original sampling theorems of Pavlidis and Serra follow as corollaries of this more
general theorem:

Corollary 6.1. [Pavlidis 82]: Let S be a square grid with pixel spacing d, in arbitrary
position (i.e. arbitrary rotation and translation with respect to the coordinate system). The
pixel radius in such a grid is d/

√
2. The reconstruction of any r-regular shape with r >

d/
√

2 will be topologically equivalent to the original. The same is true for the background.

[Serra 82]: Let S be a hexagonal grid with pixel spacing d, in arbitrary position. The
pixel radius in such a grid is d/

√
3. The reconstruction of any r-regular shape with r >

d/
√

3 has the same homotopy tree as the original.

It should be noted that our proof provides a better bound than Serra's original one
(he required r > d). In case of these special grids, r-regularity is only a su�cient, but no
longer a necessary requirement. Certain shapes with corners are now allowed, provided
that the angle at the corner is larger than 90◦ (square grid) or 60◦ (hexagonal grid).
A more detailed treatment of these kind of shapes is currently being developed in the
theory of half-regular shapes [Stelldinger 05], which we shall not pursue further in the
present work.

However, we had seen in section 2.2 that topological equivalence is not su�cient for
two shapes to be recognized as similar. It is also necessary to establish high geometric
similarity. In the sequel, we are going to show that the reconstruction of any r-regular
shape is even r′-homeomorphic to the original, where r′ is the maximum pixel radius.
But �rst, we give a simple proof for the shapes being weakly r-similar (see de�nition
2.13):

Lemma 6.5. Let A be a r-regular shape, and Â its reconstruction by some r′-grid S with
r′ < r. Then the Hausdor� distance between the boundaries ∂A and ∂Â is at most r′, i.e.
the shapes are weakly r′-similar.

Proof. Suppose to the contrary that ∂Â contains a point ~x whose distance from ∂A
exceeds r′. Let Q := {~s ∈ S : ~x ∈ pixel(~s)} be the set of sampling points whose pixels
contain ~x. Due to the de�nition of an r′-grid, all sampling points in Q are located in
a closed r′-disk around ~x. Since the shape is r-regular and r > r′, this disk is either
completely in A or completely in Ac. The same must be true for all points in Q. Therefore,
~x cannot belong to the boundary ∂Â � contradiction.

170

6.1 Sampling Analysis of Grid-Based Region Representations

(a)

^A

1a

2a
2b1b

1a

A
^

A

(b)

i

n−1

n

i2i

1i

A

^A

r

. . .

P

’’’c

’’’

ic^i
^

−<r’

ic ic

P

PP

ic^

<A
^

r’−< r’−

Figure 6.3: (a) Di�erent cases for the de�nition of split points; (b) partition re�nement and
mapping for case 2b.

The analogous proof for strong r′-similarity is much more complicated.

Theorem 6.3. [Stelldinger & Köthe 05]: Let A be a r-regular shape, and Â its recon-
struction by some r′-grid S with r′ < r. Then there exists a r′-homeomorphism between
A and Â. That is, there is a bijective function f : R2 → R2 such that f(~x) ∈ Â⇔ ~x ∈ A
and |f(~x)− ~x| ≤ r′.

Proof. According to theorem 6.2, we already know that A and Â are R2-homeomorphic.
So it remains to be shown that the homeomorphism moves no point by more than r′. This
can always be guaranteed for the entire plane R2 if it is true for the boundaries ∂A and
∂Â. Due to r-regularity of A, no pixel can touch two components of ∂A. Therefore, we can
treat each component ∂A′ of ∂A and its corresponding component ∂Â′ separately. The
proof principle is to split ∂A′ and ∂Â′ into sequences of segments {Ci} and {Ĉi}, and show
that, for all i, Ĉi can be mapped onto Ci with an r′-homeomorphism. The order of the
segments in the sequences is determined by the orientation of the plane, and correspond-
ing segments must have the same index. Then the existence of an r′-homeomorphism
between each pair of segments implies the existence of the r′-homeomorphism for the
entire boundary. We de�ne initial split points ~̂ci of ∂Â

′ as follows (see �gure 6.3a):
Case 1 : A split point is de�ned where ∂Â′ crosses or touches ∂A′. Case 1a: If this is

a single point, it automatically de�nes a corresponding split point of ∂A′. Case 1b: If
extended parts of the boundaries coincide, the �rst and last common points are chosen
as split points.
Case 2 : A pixel corner which is on ∂Â′ but not on ∂A′ becomes a split point if the

corner point lies in A (Ac) and belongs to at least two pixels that are in Âc (Â). Case 2a:
If there are exactly two such neighboring pixels, a corresponding split point is de�ned
where ∂A′ crosses the common boundary of these pixels. Case 2b: Otherwise, the split
point is treated specially.
In the course of the proof, the initial partition will be re�ned. The treatment of case

1b) is straightforward: Here, two segments Ci and Ĉi coincide, so we can de�ne the
r′-homeomorphism as the identity mapping.
Next, consider case 2b (�gure 6.3b). Let the special split point ~̂ci ∈ A (Ac) be a corner

of pixels Pi1 , ..., Pin ∈ Âc (Â). The orientation of the plane induces an order of these
pixels. The pixels Pi2 to Pin−1 intersect ∂Â′ only at the single point ~̂ci. We must avoid

that an extended part of ∂A′ gets mapped onto the single point ~̂ci. Thus, we change

171

6 Geometric Sampling Theorems

(a)
r’

r’ r’

r’

(b)

^

si

Ci

iC

A
^

Pi
^
A

A

(c)

Pr’+
i

s

s
C i

^A

^

c i

i

’

r’

e
^=cec

^

iC
sc

s

A

A
^

Figure 6.4: (a) Any two points in a Reuleaux triangle of size r′ have a distance of at most r′;
(b) Covering of corresponding segments with Reuleaux triangles; (c) Construction for sampling
points lying on ∂A

′
.

the initial partitioning: Replace ~̂ci with two new split points ~̂ci
′ and ~̂ci

′′, lying on ∂Â′ to
either side of ~̂ci at a distance ε. De�ne as their corresponding split points the points ~ci

′

and ~ci
′′ where ∂A′ crosses the common border of Pi1 , Pi2 and Pin−1 , Pin respectively. Due

to r-regularity, |~ci′~̂ci| < r′ and |~ci′′~̂ci| < r′, and the same is true for all points between ~ci
′

and ~ci
′′. Therefore, ε can always be chosen so that every point between ~ci

′ and ~ci
′′ can

be mapped onto every point between ~̂ci
′ and ~̂ci

′′ with a displacement of at most r′. This
implies the existence of an r′-homeomorphism between these segments.

After these modi�cations, the segments not yet treated have the following important
properties: Each Ci is enclosed within one pixel Pi, and the corresponding segment Ĉi is
a subset of Pi's boundary. To prove the theorem for these pairs, we use the property of
Reuleaux triangles with diameter r′ that no two points in such a triangle are farther apart
than r′ (�gure 6.4a). Due to r-regularity, ∂A′ can cross the border of any r′-Reuleaux
triangle at most two times. We re�ne the segments so that each pair is contained in a
single triangle, which implies the existence of an r′-homeomorphism. Consider the pair
Ci, Ĉi and let the sampling point of pixel Pi be ~si. If this point is not on ∂A′ (�gure
6.4b), Ci splits Pi into two parts, one containing Ĉi and the other containing ~si. We now
place r′-Reuleaux triangles as follows: a corner of every triangle is located at ~si, every
triangle intersects Ci and Ĉi, and neighboring triangles are oriented at 60◦ of each other,
so that no three triangles have a common overlap region. Since the pixel radius is at
most r′, this set of triangles completely covers both Ci and Ĉi, and each consecutive pair
of triangles shares at least one point of either segment. Thus, we can de�ne additional
split points among the shared points, so that corresponding pairs of the new segments
lie entirely within one triangle. The existence of an r′-homeomorphism for the re�ned
segments follows.

If the sampling point ~si of Pi is on ∂A
′ (�gure 6.4c), this Reuleaux construction does

not generally work. In this case, we �rst place two r′-Reuleaux triangles such that both
have ~si as a corner point, one contains the start points ~cs, ~̂cs of Ci and Ĉi respectively,
the other the end points ~ce, ~̂ce, and they overlap Ĉi as much as possible. If they cover Ĉi
completely, the Reuleaux construction still works with ~si as split point. Otherwise Ĉi is
partly outside of the triangles, and the normal of ∂A′ crosses Ĉi in this outside region.
We choose a point ~si

′ on the opposite normal with distance ε from ~si and project each

172

6.1 Sampling Analysis of Grid-Based Region Representations

point ~c of Ĉi not covered by either triangle onto the point where the line ~c~si′ crosses Ci.
It can be seen that this mapping is an r′-homeomorphism: Draw circles with radius ε
and r′ + ε around ~si

′. Ci and Ĉi lie between these circles, so that each point is moved
by at most r′. The extreme points of this construction de�ne new split points, and the
remaining parts of Ci and Ĉi can be mapped within the two triangles. Thus, there is an
r′-homeomorphism in this case as well.

This theorem stresses once more the fundamental role of r-regular shapes: Only r-
regularity guarantees topological equivalence and geometric similarity under all circum-
stances, i.e. with all grid layouts, translations and rotations (see [Stelldinger & Köthe 05]
for a proof of this statement). Unfortunately, the real world is not that simple � real
shapes are often not regular. We will deal with this problem in section 6.2. Before, we
will make our sampling analysis of regular shapes more realistic in another way, namely
by considering blurring in a real camera.

6.1.2 Sampling of Blurred Images

In a real system, the geometric image is blurred before sampling, and a realistic geo-
metric sampling theorem should incorporate a reasonable blurring model. This was �rst
pointed out by [Latecki et al. 98]. They de�ne v-digitization (with 0 ≤ v ≤ 1) where a
pixel belongs to the reconstructed set Â if at least v × 100% of the pixel area is covered
by the shape to be digitized. For a square grid with pixel distance d they were able to
prove that the topology of an r-regular shape is preserved for all v when d < r/

√
2.

This result can easily be expressed and generalized in terms of the linear image ac-
quisition model described in section 3.1. The presentation in this section follows again
[Stelldinger & Köthe 05].
In the linear image acquisition model, blurring is generally described by a convolution

of the ideal geometric image with a point spread function (PSF):

f̃A(~x) = PSF (~x) ? χA(~x)
fkl = f̃A

(
~x = (k · d, l · d)T

)
where χA is the indicator function of the shape to be digitized, and d is the pixel pitch.
The v-digitization is obtained by using a �at, square-shaped PSF which has exactly the
same size as the pixels

PSF (~x) =

{
1 if max (|x1| , |x2|) < d

2

0 otherwise

The choice of a particular value v is equivalent to applying the threshold v to the digital
gray-scale image fkl, followed by nearest-neighbor interpolation to get the binary shape
reconstruction Â. The interpretation of v-digitization in terms of the linear camera model
is much more general because we can now, in principle, choose the PSF arbitrarily.
Since thresholding commutes with sampling and nearest-neighbor interpolation, we can
simplify the theoretical analysis by changing the order of events: the threshold is now

173

6 Geometric Sampling Theorems

�
�
�
� �

�
�
�

��������������������

sampling and
quantization

binarization

�
�
�
��
�
�
�

��������������������

reconstruction

��
��
��
���

�
�
�

�
�
�
� ��
��
��
��

blurring by
PSF

������������������
�
�
�
�

binarizationbinarization

����
�
�
�
��
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

����

��
��
��
��

��
��
��
��

����

��
��
��
��

����

��
��
��
��

�
�
�
� ����

�
�
�
���

�
�
�
�

��������������������

sampling and
quantization

�
�
�
��
�
�
�

��������������������

reconstruction

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
��������

����
����

����
����
����

����
����
����
��������

����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

��
��
��
��

��
��
��
��

����
����
����
����

�����
�����
�����

�����
�����
�����

����
����
����
����

����
����
����

����
����
��������

����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

�����
�����
�����

�����
�����
�����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
��������

����
����

����
����
����

����
����
����
���������

�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

Figure 6.5: Discretization model of a real camera (top row). Since binarization commutes with
sampling and reconstruction the binary reconstruction of a blurred image can be computed in
several mathematically equivalent ways (bottom row). This property is independent of the grid
layout (here, a hexagonal grid is used). Illustration from [Stelldinger 03].

taken in the continuous domain, directly after blurring, and the thresholded analog image
is sampled and reconstructed. As �gure 6.5 illustrates, the resulting reconstructions are
identical in both cases. When we apply the transitions in this order, the analysis can
be split into two independent parts: (1) blurring of the original image and binarization
(= selection of a level set of f̃A), and (2) sampling and reconstruction of the level set
selected in (1). Provided that this level set ful�lls the conditions of theorems 6.2 and 6.3,
the results of the previous section directly apply to part (2), and only part (1) needs
additional analysis.

We shall show in this section that smoothing with a �at circular PSF does not fun-
damentally change the statements of these theorems. A �at circular PSF of radius p is
de�ned as

PSF (~x) = kp(~x) =

{
1 if |~x| ≤ p
0 otherwise

Flat PSFs have the advantage that the convolution with the original set can be reduced
to measuring the area of overlap between the PSF and the shape A:

f̃A(~x) =
‖Kp(~x) ∩A‖
‖Kp(~x)‖

where Kp(~x) is the support of the PSF, translated to point ~x, and ‖.‖ denotes area.
Therefore, we can derive properties of the level sets of f̃A by purely geometric means.
Obviously, only a 2p-wide strip Ap = ∂A⊕Kp around the boundary ∂A (where ⊕ denotes
morphological dilation) is relevant because the PSF does not overlap A outside this strip
and f̃A will be identically 1 or 0 there. All level sets of f̃A have the following property:

Lemma 6.6. Let ~x be a point on ∂A, and let ~c1 and ~c2 be the centers of the inside and
outside osculating circles of radius r. Moreover, let ~c3 and ~c4 be the two points on the

174

6.1 Sampling Analysis of Grid-Based Region Representations

(a)

s

A

c1 c2c3 c4

r r

p

c c4+(c−c3)

(b)

AcA

r
s2

c2

s1

p

c1

r

g0
c3’ c3

c0
r’

b0

b1b2

Figure 6.6: (a) If a p-disk is shifted orthogonally to the boundary ∂A from an inner osculating
to an outer osculating position, its intersection area with A strictly decreases. (b) The boundary
of the circle b0 centered at point ~c0 (light gray) intersects the boundary ∂A (bold line) at the
two points ~s1 and ~s2. Since A is r-regular, its boundary can only lie within the area marked with
dark gray.

normal ~c1~c2 with distance p from ~x. Then the boundary of every level set has exactly one
point in common with ~c3~c4.

Proof. Consider a point ~c inKp(~c3) and translate the line segment ~c3~c4 by ~c−~c3 (see �gure
6.6a) . Because of the restricted curvature of ∂A, the translated line segment intersects
∂A at exactly one point. Thus, as t ∈ [0, 1] increases, the area of ‖Kp(~c3 +t·(~c4−~c3))∩A‖
is strictly decreasing. This area is proportional to the result of the convolution, so the
same holds for the gray values. Since the p-disk centered in ~c3 is an inside osculating disk
of A, the gray value at ~c3 is f(0) = 1. Likewise, f(1) = 0. This implies the lemma.

The curvature of the level set contours is bounded by the following lemma:

Lemma 6.7. Let ~c0 ∈ Ap be a point such that f̃A(~c0) = (χA ? kp)(~c0) = l, (0 < l < 1).
Thus, ~c0 is on the boundary of level set Ll = {~x : f̃A(~x) ≥ l}. Then there exists a circle
bout of radius ro ≥ r′ = r − p that touches ~c0 but is otherwise completely outside of Ll.
Likewise, there is a circle bin with radius ri ≥ r′ that is completely within Ll.

Proof. Consider the set b0 = Kp(~c0) centered at ~c0. Let its boundary ∂Kp(~c0) intersect
the boundary ∂A at the points ~s1 and ~s2 (see �gure 6.6b). Let g0 be the bisector of the
line ~s1~s2. By construction, ~c0 is on g0. De�ne ~c1 and ~c2 as the points on g0 whose distance
from ~s1 and ~s2 is r, and draw the circles b1 and b2 with radius r around them. Now, the
boundary of A cannot lie inside either b1 \ b2 or b2 \ b1, because otherwise A could not
be r-regular. The areas where ∂A may run are marked dark gray in �gure 6.6b. Since
p < r, there can be no further intersections between ∂Kp(~c0) and ∂A besides ~s1 and
~s2. On g0, mark the points ~c3 between ~c0 and ~c1, and ~c3

′ between ~c0 and ~c2, such that
|~c1~c3| = |~c2~c3

′| and min(|~c0~c3|, |~c0~c3
′|) = r′ = r − p. Due to the triangle inequality, and

since p < r, such a con�guration always exists. We prove the lemma for the circle bout
around ~c3, bin around ~c3

′ is treated analogously.

175

6 Geometric Sampling Theorems

(a)

Ac

s2

s1

c0 c1c3

r’

c4

A
b0

b4

b3’

b3

(b)

f4

f4’

f1

f2

f3

f3’

b4

b0

b3’

(c)

f4

f1

f4’

f3

f3’

Figure 6.7: (a) The gray level at any point ~c4 6= ~c0 on b3 is smaller than the gray level at ~c0;
(b) and (c) decomposition of the circles b0 and b4 into subsets (see text).

Let b3 = bout be the circle around ~c3 with radius r′, and b′3 the circle around ~c3 that
touches ~s1 and ~s2 (�gure 6.7a). Consider a point ~c4 on ∂b3 and draw the circle b4 with
radius p around ~c4. This circle corresponds to the footprint of the PSF centered at ~c4.
Now we would like to compare the result of the convolution kp ? χA at ~c0 and ~c4. The
convolution results are determined by the amount of overlap between A and b0 = Kp(~c0)
and b4 = Kp(~c4) respectively. To compare b0 ∩ A and b4 ∩ A, we split the two circles
into subsets according to �gure 6.7b (only b0, b4 and b′3 are shown in this �gure). Circle
b0 consists of the subsets f1, f2, f3, f4, whereas b4 consists of f1, f2, f

′
3, f
′
4. The subsets

f1 and f2 are shared by both circles, while due to symmetry f3, f
′
3 and f4, f

′
4 are mirror

images of each other. In terms of the subsets, we can express the convolution results as
follows:

(kp ? χA)(~c0) =
‖f1 ∩A‖+ ‖f2 ∩A‖+ ‖f3 ∩A‖+ ‖f4 ∩A‖

‖Kp‖

(kp ? χA)(~c4) =
‖f1 ∩A‖+ ‖f2 ∩A‖+ ‖f ′3 ∩A‖+ ‖f ′4 ∩A‖

‖Kp‖

By straightforward algebraic manipulation we get:

‖Kp‖ ((kp ? χA)(~c0)− (kp ? χA)(~c4)) = ‖f3 ∩A‖−‖f ′3 ∩A‖+ ‖f4 ∩A‖−‖f ′4 ∩A‖ (6.1)

Since the radius of b′3 is smaller than r, and its center ~c3 is between ~c0 and ~c1, the boundary
∂b′3 intersects ∂A only at s1 and s2. It follows that subset f3 is completely inside of A,
whereas f ′4 is completely outside of A. Hence, we have ‖f3 ∩ A‖ = ‖f3‖ = ‖f ′3‖ and
‖f ′4 ∩A‖ = 0. Inserting this into (6.1), we get

‖Kp‖ ((kp ? χA)(~c0)− (kp ? χA)(~c4)) = ‖f ′3‖ − ‖f ′3 ∩A‖+ ‖f4 ∩A‖ > 0 (6.2)

Thus, the gray level at ~c4 is smaller than l. When ~c4 is moved further away from ~c0, the
subset f2 will eventually disappear from the con�guration (�g. 6.7c). If ~c3 is outside of
b0, f1 will �nally disappear as well. It can easily be checked that (6.2) remains valid in
either case. Due to the de�nition of ~c3, no other con�gurations are possible. Therefore,
the gray values on the boundary ∂bout are below l everywhere except at ~c0.

176

6.1 Sampling Analysis of Grid-Based Region Representations

It remains to prove the same for the interior of bout. Suppose the gray level at point
~c ∈ b0out were l′ ≥ l. By what we have already shown, the associated level line ∂L′l cannot
cross the boundary ∂bout (except at the single point c0 if l′ = l). So it must form a
closed curve within bout. However, this curve would cross some normal of ∂A twice, in
contradiction to lemma 6.6. This implies the claim for outside circles. The proof for inside
circles proceeds analogously.

We conclude that all level sets of the blurred image f̃A are quite similar to the original
shape A and ful�ll the conditions of theorem 6.3:

Theorem 6.4. [Stelldinger & Köthe 05]: Let A be an r-regular set, and Ll any level set
of kp ? χA, where kp is a �at disk-like point spread function with radius p < r. Then Ll
is r′-regular (with r′ = r − p) and strongly p-similar to A.

Proof. The proof of r′-regularity follows directly from the de�nition of r-regularity and
lemma 6.7. The required p-homeomorphism can be constructed as follows: Because of
the restricted curvature of ∂A, the normals of ∂A cannot intersect within the p-strip Ap
around ∂A (cf. [Latecki et al. 98, Latecki 98]). Therefore, due to 6.6, every point ~s on
∂A can be translated along its normal towards a unique point on the given level line
∂Ll and vice versa. The distance between s and its image is ≤ p. This mapping can be
extended to the entire R2-plane in the usual way, so that we get a p-homeomorphism
with the desired properties. circles proceeds analogously.

Combining this result with the results of the previous section concerning digitization
and reconstruction of binary shapes, we �nally get a sampling theorem for shapes that
have been subjected to blurring with a �at disk PSF:

Theorem 6.5. [Stelldinger & Köthe 05]: Let A be an r-regular set, Ll any level set of
kp ? χA, where kp is a �at disk-like point spread function with radius p < r, and S a
grid with maximum pixel radius r′′ < r − p. The S-reconstruction L̂l of Ll is strongly
(p+ r′′)-similar to A.

Proof. By theorem 6.4, Ll is r
′-regular and there exists a p-homeomorphism between A

and Ll. By theorem 6.3, the S-reconstruction of an r′-regular set with an r′′-grid (r′′ < r′)
is strongly r′′-similar to the original set. In other words Ll and L̂l are r

′′-homeomorphic.
Consequently, there is at least a (p+ r′′)-homeomorphism between A and L̂l.

This result is closely related to the �ndings of [Latecki et al. 98] regarding v-digitization.
Recall that they proved that d < r/

√
2 must hold for the pixel spacing d of a square grid

in order to preserve the topology of all r-regular shapes for all choices of v. If we express
their result in terms of the pixel radius r′ = d/

√
2 and the radius of the PSF p = d/

√
2,

we get r′ + p < r which is exactly the same formula as we obtained for circular PSFs of
radius p.

Unfortunately, the generalization of these results to non-�at PSFs is problematic. The
analysis of level-line properties after smoothing becomes now much more di�cult, because
their geometry depends in complicated ways on exactly which part of the PSF overlaps

177

6 Geometric Sampling Theorems

the shape. We were able to derive partial results in [Stelldinger & Köthe 06] for so-called
p-PSFs:

De�nition 6.3. A p-point spread function Pp(~x) is a function with the following prop-
erties:

1. It has unit integral
∫

R2 Pp(~x) d~x = 1 in order to preserve signal energy.

2. It is radially symmetric Pp(~x) = Pp (|~x|).

3. It is non-negative and compactly supported in a disc with radius p: Pp(~x) ≥ 0 if
|~x| < p and Pp(~x) = 0 otherwise.

p-PSFs are good approximations of real cameras as long as the error made by setting
the PSF to zero outside a suitably chosen p-disk can be neglected. Using this concept we
proved the following theorem:

Theorem 6.6. Let S be a square, hexagonal, or triangular grid with pixel radius r′.
Furthermore, let A be an r-regular shape, Pp(~x) an arbitrary p-PSF such that r′ + p < r
and p < 1.1651r′ (square grid), p < 1.80191r′ (hexagonal grid), and p < 0.480269r′

(triangular grid). The blurred analog image f̃A is the convolution of the PSF with A's
indicator function f̃A = Pp?χA. Then it holds for all thresholds t that the S-reconstruction
Ât of the level-set f̃A ≥ t is weakly (r′+p)-similar to A, that is A and Ât are topologically
equivalent, and their Hausdor� distance is at most r′ + p.

The proof can be found in [Stelldinger & Köthe 06]. We conjecture that the restrictions
on p relative to r′ are not necessary, but we have not yet been able to prove this conjecture.
But even without these restrictions the conditions of the theorem (r-regularity of the
input shape, error-free images) limit its applicability to real problems. Therefore, we will
pursue a di�erent approach with di�erent proof principles in the next section.

6.2 Sampling Analysis of Boundary Representations

In the previous section we have shown that pixel-based region reconstructions can only
be guaranteed to be structure preserving when the original plane partition is r-regular.
Unfortunately, this is a quite unrealistic condition in real scenes: most natural objects
have corners, and even if they don't they may still occlude each other, so that the geomet-
ric projection contains T-junctions. These con�gurations cannot be handled by a model
based on r-regularity. Moreover, the theory is not yet able to incorporate measurement
errors.
It turns out that these problems are consequences of pixel-based region representations:

When the reconstructed boundary ∂Â is restricted to interpixel boundaries, undesirable
e�ects caused by corners and junctions of the true shapes, or by measurement noise, are
unavoidable. We can get rid of these restrictions by turning to more �exible concepts
than interpixel boundaries. Suitable adaptive boundary representations (in the form of
polygonal GeoMaps) have been introduced in sections 4.3.1, 5.1 and 5.3. For the purpose

178

6.2 Sampling Analysis of Boundary Representations

Figure 6.8: Left: The black curve and its dilation with an α-ball (gray region) have the same
homotopy type, i.e. the curve is α-stable (de�nition 6.4). Center: When edgels (black) are sampled
from the curve, the homotopy types of the curve and of the dilation of the edgels (gray region)
may be di�erent (note the hole). Right: The α-shape of the edgels is guaranteed to have the same
homotopy type as the dilation of the edgels (theorem 6.7).

of sampling analysis, the notion of a (p, q)-boundary sampling (de�nition 5.3) is particu-
larly suitable. Recall that a (p, q)-boundary sampling of a plane partition with boundary
B is a set of edge points (edgels) such that the distance of the true boundary B to the
nearest edgel does not exceed p, and the distance from each edgel to the nearest point of
B does not exceed q, see �gure 5.14 in section 5.3.

In contrast to representations where boundaries are restricted to pixel borders, adap-
tive boundary representations can recover subpixel boundary information because they
can take advantage of higher order interpolation methods, whereas inter-pixel boundaries
are implicitly based on nearest-neighbor interpolation. Adaptive boundaries utilize more
information from the data and are therefore more robust against e�ects caused by acci-
dental grid properties (such as grid anisotropy or connectivity paradoxes). On this basis,
we are going to prove a much more general sampling theorem that applies to a much larger
class of shapes (r-stable instead of r-regular, see below) and incorporates measurement
errors. The presentation in this section follows [Stelldinger et al. 06, Köthe et al. 06].

Suppose a (p, q)-boundary sampling is given. Then we �rst compute the α-shape of
the given points according to de�nition 5.5. The topology of the α-shape is related in a
fundamental way to the dilation of the edgels:

Theorem 6.7. Let S be a set of edgels (i.e. points near the edge of a shape to be recon-
structed), and |Dα| the α-shape of S (i.e. the union of the cells in the α-complex). Then
the union Sα of closed α-discs centered at the points si ∈ S covers |Dα|, and the two sets
Sα and |Dα| are of the same homotopy type.

The theorem is proved in [Edelsbrunner 95]. When the points in S are sampled exactly
from the boundary B of a plane partition P (i.e. there are no measurement errors), the
α-shape |Dα| is a structure preserving reconstruction of P if and only if the dilation
of the edgels with α-discs is of the same homotopy type as B. This requirement is
indeed ful�lled in certain situations: In [Bernardini & Bajaj 97] it is proved that |Dα|
is even homeomorphic to B if P is an r-regular partition with p < α < r and q = 0.
Unfortunately, this no longer applies when the original partition is not r-regular and/or
the edgels are not exactly on the original boundary. Figure 6.8 shows an example where

179

6 Geometric Sampling Theorems

2r waist
1r

2r

Figure 6.9: The homotopy type of an r-stable plane partition (black lines) will not change when
its boundary is dilated with a disc of radius r1 ≤ r (light gray), while dilations with a larger
radius r2 > r (dark gray) may merge di�erent arcs as marked by the circle. If this happens, we
say that the region has an r2-waist.

the r-dilation of B has the same homotopy type as B itself, but the r-dilation Sr of the
edgels has di�erent homotopy.
In order to relax the requirement of r-regularity and permit shapes with corners and

junctions, the concept of r-stability is of fundamental importance:

De�nition 6.4. A plane partition P with boundary B is r-stable when B can be dilated
with a closed disc of radius ρ without changing its homotopy type for any ρ ≤ r.

Figure 6.9 illustrates this shape characterization. Just like r-regularity, r-stability en-
sures that regions have a certain minimal size, because regions are not allowed to split
up into several components by an r-dilation of the boundary. In addition, corners and
junctions are now allowed, because only the homotopy type has to be preserved, whereas
topological equivalence between the original boundary and its dilation is not required.
When S is a set of edgels which sample the boundary B su�ciently well (i.e. with

su�ciently small p and q), theorem 6.7 ensures that the topology of the α-shape resulting
from S (for some suitable α) will be very similar to the topology of B. But �gure 6.8
makes it clear that the structure is not always completely preserved: the α-shape may
contain spurious holes which do not correspond to any region of P . This is the reason for
the introduction of (α, β)-holes in de�nition 5.5: for suitable β, the holes not containing a
Delaunay triangle with circumradius of at least β are exactly the spurious holes. In order
to prove this and to derive precise values for α and β, we need the following lemma:

Lemma 6.8. An α-hole h is an (α, β)-hole if and only if it contains a point v whose
distance from the nearest edgel is at least β.

Proof. I. (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β) -hole): when v is in the in�nite region,
the claim follows immediately. Otherwise, v is contained in some Delaunay triangle. By
assumption, the corners of this triangle must have distance ≥ β from v. Hence, the
triangle's circumradius must be at least β and the claim follows.

180

6.2 Sampling Analysis of Boundary Representations

p1

p2

p4

v

p5

p3

Figure 6.10: Illustration of the proof of lemma 6.8 (see text).

II. (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by assumption, the closure of h
contains a Delaunay triangle t with circumradius of at least β. Consider the center v of its
circumcircle. If it is within the triangle t, it is also in h and the claim follows. Otherwise,
it is at least in some (α, β)-hole, and we must prove that t is in the same hole. Suppose to
the contrary that v and t are in di�erent α-holes. Then there exists a Delaunay triangle
t′ or a single edge e between t and v whose smallest circumcircle is smaller than α. The
corners of t′ or e cannot be inside t's circumcircle since it is a Delaunay triangle. Neither
t′ nor e can contain v because their circumcircle radius would then be at least β. Now
consider the illustrated triangle p1, p2, p3 and its circumcircle (gray) with center v. The
points p4 and p5 are the end points of e or of one side of t′. Their distance |p4p5| must be
greater than |p1p3|. Consequently, any circumcircle with radius ≤ α (dashed) around p4

and p5 contains t, contrary to the condition (imposed by the de�nition of an α-complex)
that it must not contain any other edgel. The claim follows from the contradiction.

Now recall algorithm 5.12 for (α, β)-reconstruction. It constructs the α-complex from
a given set S of edgels and then �lls all (α, β)-holes, i.e. all holes not containing a triangle
with circumradius of at least β. The remaining holes correspond to the regions of the
original plane partition, and the resulting (α, β)-reconstruction has the same topological
structure as the original plane partition. This is shown in the following theorem, which
thus explains why algorithm 5.12 is de�ned in that particular way:

Theorem 6.8. Let P be an r-stable plane partition with boundary B, and S a (p, q)-
sampling of B. Then the (α, β)-boundary reconstruction B̂ derived from S according to
algorithm 5.12 has the same homotopy type as B, and the (α, β)-holes of B̂ are topolog-
ically equivalent to the regions ri of P , if

1. p < α ≤ r − q

2. β = α+ p+ q

3. every region ri contains an open γ-disc with γ ≥ β + q > 2(p+ q).

Proof. Let U be the union of open α-discs centered at the points of S. Furthermore, let
B⊕ = B ⊕ Boα+q be the dilation of B with an open α + q-disc, and r	i = ri 	 Bα+q the
erosion of region ri ∈ P with a closed (α+ q)-disc.

181

6 Geometric Sampling Theorems

• According to the de�nition of a (p, q)-sampling, the dilation ofB with a closed q-disc
covers S. Consequently, B⊕ covers U . Therefore, U cannot have fewer connected
components than B⊕. B⊕ has as many components as B due to r-stability of P .
Conversely, since α > p, every open α-disc around a point of S intersects B, and
the union U of these discs covers B. It follows that U cannot have more components
than B. The number of components of B and U is thus equal. Since U and |Dα|
are of the same homotopy type (theorem 6.7), this also holds for the components
of |Dα|.

• Since P is r-stable with r ≥ α+q, each r	i is a connected set with the same topology
as ri. The intersection r

	
i ∩ B⊕ is empty, and r	i cannot intersect |Dα|⊂U ⊂B⊕.

Hence, r	i is completely contained in a single α-hole of |Dα|.

• Due to condition 3, ri contains a point whose distance from B is at least γ = β+ q.
Its distance from S is therefore at least γ − q = β. Due to lemma 6.8, the α-hole
which contains r	i is therefore also an (α, β)-hole.

• Since B⊕ covers U and U covers B, no (α, β)-hole can intersect both r	i and r	j
(i 6= j). It follows from this and the previous observation, that every region ri can
be mapped to exactly one (α, β)-hole which will be denoted hi.

• An α-hole that does not intersect any region r	i must be completely contained
within B⊕. Every point v ∈ B⊕ has a distance d < α + q to the nearest point of
B. In turn, every point in B has a distance of at most p to the nearest point in S.
Hence, the distance from v to the nearest point of S is d′ < α+p+q = β. According
to lemma 6.8, this means that an α-hole contained in B⊕ cannot contain a triangle
with circumradius β and cannot be an (α, β)-hole.

• The previous observation has two consequences: (i) All holes remaining in B̂ inter-
sect a region r	i . Therefore, the correspondence between ri and hi is 1-to-1, and

B and B̂ enclose the same number of regions. (ii) All di�erences between B̂ and
Dα (i.e. all Delaunay cells re-inserted into B̂) are con�ned within B⊕. This implies
that B̂ cannot have fewer components than B⊕ and B. Since all re-inserted cells
are incident to Dα, B̂ cannot have more components than |Dα|, which has as many
components as B (see �rst observation). Hence, B and B̂ have the same number of
components.

• Consider the components of the complement (r	i)C and recall that r	i is a subset

of both ri and hi for any i. Since B and B̂ have the same number of components, it
is impossible for hCi to contain a cell that connects two components of (r	i)C . This
means that the sets rCi and hCi have the same number of components. This �nally
proves the topological equivalence of ri and hi, and implies that B and B̂ have the
same homotopy type.

182

6.2 Sampling Analysis of Boundary Representations

p+q

2(p+q)

Figure 6.11: The intuitive meaning of the bounds in theorem 6.8: The boundary (black) must
be (p+q)-stable (gray region), and every region must contain a circle with radius 2(p+q), where
p and q are the maximum errors of the boundary sampling.

To state this result in a more intuitive way, we can say that topology-preserving (α, β)-
reconstruction of a plane partition P is possible, when (i) the plane partition is r-stable
with r > p + q and (ii) each region of P is large enough to enclose a circle with radius
2(p + q), where p and q are the maximum errors of the given boundary sampling, see
�gure 6.11. Due to the requirements r > p + q and α > p, an edge detector with very
di�erent values for p and q is not very useful: The bigger of the two errors bounds will
dominate the performance, and the high accuracy in the other will largely be wasted.
This is especially a problem with Canny's edge detector, which may achieve very small q
(below 0.2 pixels) whereas p is about 0.73 because the algorithm computes at most one
edgel per pixel (see section 7.6).
If no r exists that meets all conditions of theorem 6.8 for a given plane partition

(or if α is chosen too big), structure preservation is no longer guaranteed. Very small
regions may get lost in the reconstruction. A region that gets split into two or more
parts by an ρ-dilation of the boundary (i.e. has a ρ-waist) with ρ < α may also become
disconnected in the reconstruction. In case of very small waists, i.e. when ρ + 2p +
2q ≤ α, this is even guaranteed to happen. Thus, we can still apply the new boundary
sampling theorem: we modify the original plane partition by connecting the two sides
of every small waist by a new arc. When the modi�ed partition ful�lls the requirements
of the theorem, the modi�ed topology is always preserved, and the di�erence between
the modi�ed reconstruction and the original plane partition is well de�ned. Thus, our
theorem precisely predicts the topological errors being made by the reconstruction.
Figure 6.12 illustrates the principle of (α, β)-reconstruction and the meaning of its

parameters. More examples can be found in chapter 7. The parameters α and β are
essentially thresholds on the region size. Unlike many other thresholds, optimal values
for these thresholds can be derived from an error analysis of the segmentation algorithm,
as we will demonstrate below. There are two reasons why r-stable plane partitions are
su�cient for topology preserving (α, β)-reconstruction, whereas r-regular partitions are
required in the context of pixel-based region reconstruction:

• Edgels can be placed more freely than just at the pixel corners, so that the boundary

183

6 Geometric Sampling Theorems

Figure 6.12: Illustration of (α, β)-reconstruction. Edgels are shown as black dots in the original
image (left). Reconstructions have been done with and without subsequent boundary thinning
according to algorithm 5.13 (black contours alone and black plus red areas respectively). The
reconstructions use α = 1.6, β = 3.7 (center) and α = 4.5, β = 6.7 (right). The right images
exhibit a connectivity error (indicated by the arrow) because α is too big here.

representation is more accurate to begin with.

• The (α, β)-reconstruction is not required to create thin boundaries (e.g. with van-
ishing area), but may contain triangles.

The latter relaxation has become possible by a corresponding relaxation in the de�ni-
tion of a �correct reconstruction�: The (α, β)-reconstruction is required to be structure
preserving (i.e. has a boundary of correct homotopy type), whereas a pixel-based digitiza-
tion according to theorem 6.2 is topologically equivalent (homeomorphic) to the original
plane partition which is a much stronger requirement. This leads to an interesting prop-
erty of (α, β)-reconstruction: Whenever the resolution or accuracy of the edgels is locally
insu�cient for a crisp de�nition of the reconstructed boundary, reconstruction of an ex-
act boundary location is not attempted because artifacts cannot be ruled out. Instead,
artifacts are avoided by leaving a thick boundary, and thick boundaries clearly signal
problems with the edgel accuracy. This ability for self-diagnosis is nicely illustrated by
the red areas in �gure 6.12 center and right.

When a thick boundary representation is undesirable and no special treatment of
uncertain areas is required, one can apply topology-preserving thinning according to
the minimal boundary reconstruction algorithm 5.13. Thinning results are illustrated in
�gure 6.12 (black lines in red areas) and in �gure 6.13. Since the minimal boundary
reconstruction is the shortest possible one with correct topology, surviving edges connect
edgels closest to each other. Neighboring edgels align in an optimal way on the thinned
boundary. The length dmax of the longest surviving edge is a measure of the density of

184

6.2 Sampling Analysis of Boundary Representations

Figure 6.13: Left: real input image. Center: edgel detection with the subpixel Canny algorithm
(9-point parabola �t) and its (α, β)-reconstruction. The outer white ring of the street sign cannot
be resolved at the given value of α and appears as a single thick boundary. Right: Tolology-
preserving thinning recovers the true boundaries.

the boundary sampling.

The maximum distance p from the true boundary to the nearest edgel may be much
larger than dmax/2 if the displacements of neighboring edgels are highly correlated. This
often occurs in practice: For example, Canny or watershed edgels along a circular arc are
consistently biased toward the concave side of the true curve. An (α′, β)-reconstruction of
the edgel set with α′ = dmax/2 + ε < p and arbitrarily small ε is still correct in the sense
of theorem 6.8: Since the minimal reconstruction is a subset of the (α′, β)-reconstruction,
no true regions can get merged. Since α′ < α, no region can get lost, and since β remains
unchanged, no additional holes can be created. In fact, β′ = α′ + p + q < 2p + q would
have been su�cient.

We found experimentally that undesirable holes (α-holes that are not (α, β)-holes) are
actually quite rare, and their largest triangles are hardly ever as large as the maximal
possible circumradius β allows. Therefore, an (α′, β′)-boundary reconstruction with β′

even smaller than α′+p+ q often produces the correct region topology. We are currently
investigating the conditions which permit weaker bounds. This is important, because
a smaller β leads to a correspondingly reduced γ, i.e. the required size of the original
regions is reduced, and more di�cult segmentation problems can be solved correctly.

6.2.1 Application to Grid-Based Boundary Digitization Schemes

For further illustration, let us apply theorem 6.8 to the grid-based boundary digitization
schemes introduced in section 4.3.2. In these methods, the grid imposes constraints on
permitted edgel locations, so optimal error bounds are in general not achievable.2 Nev-
ertheless, analysis of these methods is instructive to understand how the error bounds p
and q are derived, and how rounding to grid-based coordinates in�uences these errors.

Let's �rst look at grid intersection digitization according to de�nition 4.12. For sim-

2The localization errors of subpixel schemes will be analyzed in section 7.2.2.3.

185

6 Geometric Sampling Theorems

(a)

p

q

(b)

p

q

Figure 6.14: (a) The grid intersection digitization (de�ned by the centers of the gray pixels) of
a curve whose error bounds p and q are close to the worst case

√
2 and 1

2 respectively. (b) The

same for supercover digitization with p ≈
√

2/2 and q ≈
√

2/2.

plicity, let the grid size (i.e. the smallest distance from one sampling point to another)
be unity. When each component of the boundary B crosses at least one grid line (i.e. no
region is so small that it �ts in a single dual pixel), the distance p of any point of B
to the nearest selected grid point is less than

√
2, and the distance q of any grid inter-

section to its rounded coordinate cannot exceed 1/2, see �gure 6.14a. Inserting this into
the conditions of theorem 6.8, we get α ≥

√
2, r ≥

√
2 + 1

2 , β ≥ 2
√

2 + 1
2 ≈ 3.3, and

γ ≥ 2
√

2 + 1 ≈ 3.8. This means that every region must contain a circle with area of at
least 46 pixels. However, the worst case con�gurations giving rise to the values of β and
γ in the theorem cannot actually occur in a square grid because Delaunay edges between
grid points cannot have arbitrary length. It can be shown that the largest circumradius
in an undesirable α-hole is below

√
34 ≈ 2.9, so that γ ≈ 3.4 (circle area 37 pixels) is

su�cient.

The grid intersection digitization is a subset of the supercover digitization (de�nition
4.13). On a square grid, the latter turns any connected planar curve into a 4-connected
digital curve. When pixels are Voronoi cells (cf. de�nition 4.9), the worst errors occur
when a curve that just touches the corner of the biggest pixel. When the radius of this
pixel is g, this implies that p = g and q ≤ g. Hence, α > g, r > 2g , β > 3g and
γ > 4g are required. On a unit square grid we have g =

√
2/2 and thus q ≤ p =

√
2/2,

γ > 2
√

2 ≈ 2.8, see �gure 6.14b. Thus, the supercover digitization imposes weaker
constraints on the original plane partition P than the grid-intersection digitization. This
is mainly due to denser sampling of the boundary (smaller spacing of the edgels). As
stated in [Ronse & Tajine 00], the supercover digitization is a Hausdor� discretization,
i.e. it selects those grid points that minimize the Hausdor� distance max(p, q) between
the set of edgels and the boundary B. Thus, the stated bounds for α, β and γ are su�cient
conditions for any Hausdor� discretization.

Finally, it also possible to derive bounds for subset digitization where a region is
represented by the union of the pixels whose sampling points are located in the region.
In order to apply theorem 6.8, we need to use either the crack edges or mid-crack edges,
see de�nition 4.11. The edgels are located at the pixel corners or at the intersections
between cracks and grid lines respectively. Let the maximal pixel radius of the grid be g.
Then, the maximal distance q of any edgel to the nearest boundary point cannot exceed

186

6.2 Sampling Analysis of Boundary Representations

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

Figure 6.15: An r-stable region (hatched)
may have a spike which causes its subset dig-
itization (black circles) to be disconnected in
the 4- or 8-neighborhood sense (note the iso-
lated point marked with an arrow).

g in either the midcrack or endcrack digitizations, but the distance p from any boundary
point to the nearest edgel can be arbitrary large: The grid reconstruction R̂ of an r-stable
region R is not in general topologically equivalent to the closure of R and may even be
disconnected. The distance between the components of R̂ may approach the diameter
of R when R has a long narrow spike, see �gure 6.15. Obviously, this is not a desirable
bound for the value of p. We need a restriction that is stronger than r-stability, but
weaker than r-regularity and which prevents these undesirable spikes:

De�nition 6.5. Let P be a plane partition with boundary B. We say two points x1, x2 ∈
B delimit a (θ, d)-spike, if the Euclidean distance from x1 to x2 is at most d and if every
path on B from x1 to x2 contains at least one point with ∠x1yx2 < θ. We say that P
is free of (θ, d)-spikes if for any pair of boundary points x1, x2 ∈ B with distance of at
most d, there exists a path Y ⊂ B between x1 and x2 such that ∠x1yx2 ≥ θ for all points
y ∈ Y .

Intuitively, two points delimit a (θ, d)-spike, if the shortest boundary path between
them does not di�er too much from a straight line, i.e. it lies inside the shaded re-
gion in �gure 6.16. Note that r-regular partitions have no (θ, d)-spikes for d ≤ r and

θ = 2 arctan
(
d/(2r −

√
4r2 − d2)

)
(e.g. for θ = 90◦, 60◦ we get d = r and d =

√
3r

respectively). By sampling su�ciently densely one can enforce the angles to be arbitrar-
ily �at. But in general, absence of (θ, d)-spikes does not imply r-stability, so we have
to require both. Due to this requirement, the boundary will now remain within a cer-

yd d yθ θ

θ
2

x1

x2

d

x1

x2 d
2 sin θ

2

2 sin

Figure 6.16: In order to preclude (θ, d)-spikes, the contour between the points x1 and x2 (dash-
dotted) must remain entirely in the shaded region (left: θ < 90◦, right: θ > 90◦). It can be seen
how the maximum size of spikes is thus bounded.

187

6 Geometric Sampling Theorems

tain distance of the edgels, and we can now estimating p for midcrack and endcrack
digitization:

Theorem 6.9. Let G be a square grid with sample distance h (pixel radius g = h/
√

2),
and let P be a plane partition such that every region ri ∈ P contains a closed g-disc and
the boundary B has no (θ, d)-spikes. Then the endcrack digitization is a (p, q)-boundary
sampling with q = h/

√
2 and p = q+

(
h
2 + q

)
/ sin θ

2 , provided that h ≤ d/(1+
√

2), and the
midcrack digitization is a (p, q)-boundary sampling with q = h

2 and p = q+
(
h
2 + q

)
/ sin θ

2 ,

provided that h ≤ d
2 .

Proof. First, we prove the bounds on q. Let x, y be two 4-adjacent square grid points.
Their common pixel edge is in the interpixel boundary if and only if x and y lie in di�erent
regions ri and rj , i.e. the grid line between x and y intersects the boundary B in at least
one point v. The endcrack edgels are exactly the end points of these pixel edges, and their
distance to v is at most h/

√
2. It follows that q = h/

√
2 for the endcrack digitization.

The midcrack edgels are the center points between x and y, so their maximum distance
to v is h

2 . Hence, q = h
2 for the midcrack digitization. The maximum distance between

neighboring edgels is h in both cases.
Now, we prove the bound on p given q. By de�nition B =

⋃
∂ri, where ∂ri is the

boundary of region ri. Since every region contains a closed disc of radius g = h/
√

2, and
every such disc contains at least one grid point, every region ri contains a grid point,
i.e. r̂i is not empty, and there exist at least four edgels near ∂ri. Due to the nonexistence
of (θ, d)-spikes, any two components (∂ri)j and (∂ri)l of the boundary ∂ri must have a
distance of more than d ≥ 4q. So, for every component there exists a set of edgels which
are closer to (∂ri)j than to any other component. Obviously every component (∂ri)j is a
closed curve. Thus by mapping every edgel to the nearest point of B, one gets a cyclic list
of points [bk](ij) for every component (∂ri)j , and each point bk has a distance of at most
h+2q to its successor bk+1 in the list. For endcrack edgels, we have h+2q = (1+

√
2)h ≤ d,

and for midcrack edgels h+ 2q = 2h ≤ d. Thus, the boundary part between bk and bk+1

includes no point with an angle smaller than θ. As shown in �gure 6.16, this implies that
the distance from any boundary point between bk and bk+1 to the nearer one of these
two points is at most

(
h
2 + q

)
/ sin θ

2 . Thus, the maximum distance to the nearest of the

two edgels which are mapped onto bk and bk+1 is p = q +
(
h
2 + q

)
/ sin θ

2 .

For example, if the grid spacing is h = 1 and the original plane partition has no
(60◦, d)-spikes for d > 2.4, we get p = 3.12 and q = 0.71 and for endcrack digitization
and p = 2.5 and q = 1

2 for midcrack digitization. It follows that midcrack digitization has
slightly higher geometric accuracy than endcrack digitization and should be preferred,
see �gure 6.17.

6.2.2 Geometric Limitations of Pixel-Accurate Edges

We conclude the discussion of grid-based boundary representations by reporting addi-
tional results about geometric accuracy limits of subset digitization and crack edges
in binary images. These limits have been studied by several authors, a comprehensive

188

6.2 Sampling Analysis of Boundary Representations

Figure 6.17: Left: original image. Center: thresholding segmentation (threshold = 100) with
endcrack edges. Right: the same with midcrack edges. The latter is slightly more accurate (due
to reduced staircasing), although not nearly as good as subpixel thresholding (�gure 5.3 left).

overview is presented in [Klette & Rosenfeld 04]. We already observed in theorem 6.1
that one justi�cation of subset digitization comes from the fact that the area of a digi-
tized region converges to the true area as the sampling distance decreases. This property
is called multigrid convergence. Unfortunately, many measurements involving the bound-
ary of a digital region (i.e. the crack edges implied by the digitization) are not multigrid
convergent.

Consider the computation of the perimeter of a reconstructed region r̂ or, even simpler,
the length of a straight line l̂ from pixel-accurate data. First let us assume that r̂ results
from the subset digitization of a polygon. The boundary of r̂ is an interpixel contour,
i.e. consists of a sequence of horizontal and vertical lines. Therefore, the perimeter of the
digitized shape will converge to the sum of L1-distances |∆x|+ |∆y| between consecutive
corners of the polygon, and not toward its true Euclidean perimeter. In the worst case
(all polygon sides are oriented at multiples of 45◦), the relative bias in the limit of in�nite
resolution will be

√
2− 1 ≈ 41%, see �gure 6.18.

De�ning lines by grid-intersection digitization does not fare much better. Let the re-
constructed contour polygon be de�ned by connecting the centers of consecutive pixels
in the digital contour. Since the angles between these connections and the x-axis are
multiples of 45◦, the bias is smaller than in the interpixel case (where only multiples
of 90◦ occur), but still signi�cant. In case of a straight line, the estimated length con-
verges to l̂ =

√
2nd + ni, where nd = min (|∆x| , |∆y|) is the number of diagonal steps

between the two endpoints of the line, and ni = ||∆x| − |∆y|| is the number of horizon-
tal or vertical steps [Klette & Rosenfeld 04]. The maximum bias occurs for lines whose
slope is an odd multiple of 22.5◦ and amounts to 8.2%. The average bias over all an-
gles is 6.6%. The average bias can be minimized by weighting the two numbers ni and
nd di�erently [Dorst & Smeulders 91]: When l̂ = 0.945ni + 1.346nd, the average over
all angles becomes 2.6% in the limit. By also counting how often the slope direction

189

6 Geometric Sampling Theorems

Figure 6.18: Geometric properties of the subset digitization (gray pixels) of a triangular shape
(black lines): As the grid is re�ned, the area of the shaded region converges to the true area of the
shape, but the perimeter does not converge (in this particular case, it even remains constant).

changes along the contour (call this number nc), the estimate can be further re�ned as
l̂ = 0.980ni + 1.406nd − 0.091nc, but this still fails to converge to the true value and has
an expected bias of 0.8%.
Re�ning boundary localization to subpixel accuracy is the natural solution for the con-

vergence problem. If possible, subpixel re�nement should be controlled by the original
intensity or boundary strength data (like in Canny's algorithm 5.10) because the neces-
sary geometric information has been recoded into intensities due to the action of the PSF
(see �gure 1.1 and section 3.1). But sometimes only a digital contour is available. Then
the only possibility to reduce round-o� errors of grid-based coordinates is by averaging
over some part of the contour. In the absence of prior information about the form of the
boundary (i.e. shape priors), the most popular approach is the construction of straight
line segments by means of the digital straight line algorithm 4.7 or the Euclidean path
algorithm [Braquelaire & Vialard 99]. These algorithms construct a set of subpixel accu-
rate split points which de�ne an approximate contour polygon. The length of this polygon
is indeed a convergent estimate of the Euclidean length of the underlying contour or line
(i.e. one sums over the Euclidean distance of consecutive split points). The speed of con-
vergence is linear. According to experiments in [Klette & Rosenfeld 04], who investigated
the error for a number of curved shapes at various resolutions, relative errors between 1%
and 2% were observed at resolutions where the perimeter of the contour measured a few
hundred pixels. It is even possible to achieve superlinear convergence (O

(
h1.5

)
) by using

the most probable original length estimate l̂ = n
√

1 + (b/a)2 where n is the number of

pixels in a straight line segment, and b/a is the best rational approximation of its slope
(as obtained by the above algorithm) [Dorst & Smeulders 91]. Since the line's end points
do not in general coincide with pixel centers, n is a rounded value with variance 1/12
(the variance of the uniform distribution in the interval [0, 1)). Therefore, even if b/a
were known exactly, 1% relative error would require n ≥ 29, i.e. a line segment of almost
30 pixels. Higher accuracy requires to replace n with the exact arc length between the
intersection of consecutive line segments, but apparently this possibility has not yet been
investigated.
In summary, we are once again led to the conclusion that subpixel accurate boundary

detectors are to be preferred. The accuracy of these detectors will be studied in detail in
the next chapter.

190

7 The Gradient Magnitude: Detailed

Error Analysis of a Boundary Indicator

Abstract

The image gradient is a very popular boundary indicator. For example, it is the basis
of the Canny edge detector and of many watershed-based edge detectors. The oriented
derivative of the gradient squared magnitude along the gradient direction is the Haralick
edge detector. Gradients are also directly or indirectly involved in the energy functionals
of many variational image segmentation methods. Therefore, this chapter is dedicated to
a detailed error analysis of various aspects of gradient-based boundary detection, such as
localization accuracy, orientation estimation, robustness against noise, behavior at more
complex boundaries like parallel edges or junctions. Our most important �nding is that
theoretical error analysis correctly predicts the errors observed in experiments. Thanks
to our careful modeling of all steps that eventually lead to a detected boundary, and to
the powerful GeoMap framework, all major error sources are apparently accounted for.
The analysis shows that the gradient is a very accurate and robust boundary indicator,
but also highlights two important weaknesses: it has di�culties with junctions and with
edges between shaded regions (where the step edge model is not applicable). The error
analysis framework developed here can also be applied to alternative boundary detection
methods, with the gradient serving as a good performance reference.

7.1 Sampling Analysis of the Gradient Magnitude

In section 3.1 we showed that a correspondence between discrete and continuous image
representations can be achieved when the image acquisition process conforms to the
requirements of Shannon's sampling theory. In particular, the analog camera image must
be band-limited, at least e�ectively by making the aliasing energy signi�cantly smaller
than the noise energy. Naturally, the same requirement applies to all subsequent stages of
the image analysis chain. Surprisingly, we found that this fact has been largely overlooked
when gradient magnitudes are computed.

Suppose the analog image is band-limited, i.e. its spectrum is zero above a certain
cut-o� frequency νN (also called Nyquist frequency)

F (~ν) = 0 if |~ν| ≥ νN

Then the analog image can be exactly reconstructed from the digital image when the

191

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.1: Illustration of the information loss when the squared derivative of a function is
represented at the same sampling locations (circles) as the original signal. The true signal is lost
unless additional samples (squares) are added. (top: sine wave sin(ν) with ν = νN − ε, center:
derivative cos(ν), bottom: squared derivative cos2(ν) = 1+cos(2ν)

2)

sampling distance λsignal is at most half the Nyquist wave length

λsignal ≤
1

2νN

The original continuous function is (approximately) reconstructed by convolving the sam-
ples fkl with an appropriate reconstruction �lter such as the sinc or spline interpolator.
The gradient of the analog image can be obtained by convolution with the �rst deriva-
tive of the reconstruction �lter instead with the �lter itself. Since computing a derivative
corresponds to a multiplication in the Fourier domain, this operation does not change
the band-limit of the analog image. However, when we compute the squared gradient
magnitude b, we must square the responses of the linear gradient �lter:

b(x, y) = |∇f(x, y)|2

The Fourier domain equivalent of this operation is a convolution of the gradient's spec-
trum with itself. When two functions with �nite support are convolved with each other,
the resulting function's support is the Minkowski sum (morphological dilation) of the
two original supports. This means that the cut-o� frequency νgradient is doubled, and the
sampling distance λgradient must be halved accordingly in order to avoid information loss.

νgradient = 2νN

λgradient =
λsignal

2

This important sampling e�ect was �rst pointed out in [Köthe 03c]. A 1-dimensional
illustration of the phenomenon is given in �gure 7.1. Figure 7.2 demonstrates the phe-
nomenon on a real image, more results can be found in section 7.7. Although aliasing

192

7.1 Sampling Analysis of the Gradient Magnitude

(a)

(b) (c) (d)

Figure 7.2: Gradient squared magnitude of a real image: (a) subregion of Brodatz texture D15
(with ROI rectangle marked); (b) gradient squared magnitude at original resolution; (c) gradient
squared magnitude at doubled resolution. (d) The di�erence image clearly shows the high amount
of aliasing noise present in the gradient magnitude at original resolution.

artifacts are not always as clearly visible as in this �gure, they always degrade the results
of subsequent analysis steps (such as edgel detection), unless the e�ective bandwidth of
the original image was below half the Nyquist frequency in the �rst place. If the image
contains small detail, we must represent the gradient squared magnitude on a raster
with twice the resolution in both directions. In theory, the gradient magnitude (i.e. the
square root of the squared magnitude) has an even greater band-width, but in practice
the e�ective band-width of the square root operator is not signi�cantly larger, so another
increase in sampling density is not necessary.

If the zero-crossings of the oriented second derivative are used as a boundary indicator,
the oversampling ratio must be even bigger. The numerator of the second derivative
involves products of three band-limited functions

f2
xfxx + 2fxfyfxy + f2

y fyy

Therefore, the support of the spectra is dilated with itself two times, leading to a band-
limit that is three times as large as the original band-limit. Accordingly, threefold over-
sampling is required to avoid aliasing. Yet another example, namely the di�erence of the

193

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

(a) (b) (c)

Figure 7.3: Ridge and valley detection by the di�erence between the eigenvalues of the Hessian
of Gaussian matrix: (a) original �ngerprint image; (b) eigenvalue di�erence at original resolution;
(c) eigenvalue di�erence at doubled resolution. Aliasing artifacts are clearly visible in (b).

eigenvalues of the Hessian matrix

λ1 − λ2 =
√

(fxx − fyy)2 + 4f2
xy

is demonstrated in �gure 7.3. This operator is a useful detector of ridges and valleys, which
both appear bright, whereas edges remain dark. Aliasing artifacts are clearly visible in
the center image, which has not been subjected to oversampling.
The important fact that oversampling is often necessary in order to ful�ll the require-

ments of Shannon's sampling theorem has been overlooked in the image analysis literature
so far. Given that the derivation of this conclusion is straightforward, we �nd this rather
surprising. One reason may have been that artifacts are usually not as obvious as in
�gures 7.2 and 7.3, and are hard to distinguish from other sources of error. Moreover,
image interpolation may appear to be useless at �rst sight because it doesn't reveal any
new information. One has to understand that its e�ect is just the opposite here: it pre-
vents existing information from being lost as a consequence of insu�cient sampling. This
is clearly an important factor in the empirically observed improvement of segmentation
performance on interpolated images (see, for example, �gures 1.4 and 1.5 in chapter 1).
The above analysis poses the question of how oversampling should be implemented

in practice. The best method would be to perform it directly in the camera by placing
sensors twice as densely relative to the e�ective cut-o� frequency of the lens, similar to
what happens in the human eye. Since such data are usually unavailable, the best solution
is to interpolate the samples to a higher resolution before processing, as explained in
section 3.3.1. Alternatively, one can integrate oversampling into the feature detection
process itself: Since feature detection usually starts with linear �ltering (e.g. derivative
�lters), we can design �lters that also compute �lter responses in between the original

194

7.2 Analysis of Isolated Straight Step Edges

samples, e.g. at half integer coordinates. This is especially simple if �lters are de�ned by
a continuous function, e.g. a Gaussian derivative: The convolution of a discrete image f
with a continuous �lter g is written as

(f ∗ g)(x, y) =
∑
i,j

fi,j g(x− i, y − j) (7.1)

and we can obviously insert arbitrary real-valued coordinates on the left-hand side. This
approach is slightly faster then the interpolation approach because it achieves two things
in one step. On the other hand, its signal properties are slightly worse, because the
sampling of the kernel in (7.1) may cause additional aliasing. This aliasing cannot occur
in the interpolation approach because there the kernel is sampled after interpolation,
i.e. at a higher sampling rate.

7.2 Analysis of Isolated Straight Step Edges

Recall from chapter 2 that we de�ned the ideal geometric image as a collection of regions
ri with indicator functions ρi(x, y), where single continuous functions fi(x, y) describe the
interior of each region, and their combination is discontinuous across region boundaries,
cf. equation (2.1):

fgeometric(x, y) =
∑
i

ρi(x, y) fi(x, y)

If we could directly observe this ideal geometric image, the segmentation problem would
be trivial because we only had to look for discontinuities. But the ideal image is always
blurred by the continuous point spread function (PSF) of the optical system

f̃ = PSF ? fgeometric

When the PSF is band-limited and there is no noise, this blurred image can be exactly
reconstructed from the digitized image. However, we have to replace the discontinuity-
based boundary de�nition with something else, because there are no discontinuities in
the blurred image. A particularly important alternative is the de�nition of boundaries
by the image gradient. Gradient-based detectors assume that boundaries are located at
points where the gray-level variation has a relative maximum. In case of isolated straight
step edges without noise, this assumption is exactly justi�ed. In this context, �isolated�
means that the separation between di�erent edges is larger than the e�ective diameter
of the PSF, so that every point in the image is in�uenced by at most one edge. Straight
edges ensure that the 2-dimensional image function can be (locally) reduced to a one
dimensional function

f̃(~x) = f̃1

(
~xT~n

)
where ~n is the normal direction of the edge. Finally, the step edge assumption (i.e. the
assumption that the fi are constant functions) ensures � together with the assumption of
a rotationally symmetric PSF � that the gradient is symmetric about the edge, so that a
relative gradient maximum occurs exactly at the true edge position. The same applies to

195

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

the zero-crossings of the second derivative in gradient direction. The term �gradient-based
edge detector� shall refer to either of these edge de�nitions.

When a gradient-based edge detector is unable to �nd the true position of an iso-
lated straight step edge, its implementation is apparently not an exact realization of the
underlying theory. Deviations can, for example, be caused by replacing exact sinc inter-
polation with spline reconstruction, using discrete gradient �lters instead of analog ones,
or rounding results to integer coordinates. To quantify these deviations, it is natural to
start with a comparison of edge detectors on arti�cial, noise-free test images. This is
the topic of the next subsection. In later subsections, we investigate by how much edge
detector performance degrades when the image becomes more complicated.

Throughout this chapter, we assume that the PSF is a Gaussian. We saw in section
3.2.3 that this is a good model for real cameras. Blurred step edges can than be described
by the analytic model

f̃(~x) = ΦσPSF

(
~xT~n+ t

)
(7.2)

where Φσ(u) = 1
2

(
1 + erf

(
u√
2σ

))
is the integral of the Gaussian PSF (the so called

�probit� function), ~n is a unit vector normal to the edge, and t is the subpixel shift
of the edge relative to the origin of the local coordinate system. Test images for the
experiments described in the present section were created analytically by equation (7.2),
the coordinate origin was always in the image center, and error measurements are plotted
against the angle φ between the true edge direction ~n and the x-axis.

For every edge detector, we search for the edgel nearest to the origin and test how
well the value of t and the angle between ~n and the x-axis are reproduced at that point.
It should be noted that the experiments described in this chapter only involve local
measurements � we do not �t lines or other geometric primitives to collections of edgels
in order to improve the estimates of the orientation or subpixel shift. Precise descriptions
of the algorithms used in this chapter can be found in chapter 5.

7.2.1 Noise-Free Straight Edges

In principle, gradient-based operators should be able to detect the position and angle
of noise-free isolated step edges perfectly. Here, �noise-free� does not only refer to the
absence of statistical noise, but also to the absence of aliasing noise. Therefore, we use
σPSF = 0.9 to ensure that the Gaussian PSF is e�ectively band-limited. We are inter-
ested in the question how well the (continuous) gradient-based edge model is realized by
various algorithms, and start with an investigation of coordinate round-o� errors in pixel-
accurate edge detectors. Figure 7.4 shows experimental results. As expected, rounding
leads to signi�cant localization errors. When edges are restricted to pixel centers (pixel-
accurate Canny algorithm, region growing-based watersheds) or to pixel corners (crack-
edge watersheds), the expected error can easily be calculated: Round-o� errors along the
edge are undetectable, whereas round-o� errors perpendicular to the edge are uniformly
distributed within the interval of locations that get rounded to the same point. The half-
width of these regions is ±0.5 pixels for horizontal and vertical edges, and ±

√
2/2 for

diagonal ones. The variances of the corresponding uniform distributions are 1/12 and

196

7.2 Analysis of Isolated Straight Step Edges

Gaussian gradient, scale: 1.0
Canny, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, crack edge, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, mid−crack edge, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, thin 8−connected edge, pixel accuracy

0 50 100 150

ground truth angle [degrees]

-0.4

-0.2

0.0

0.2

0.4

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

(a)

0 50 100 150

ground truth angle [degrees]

-0.2

-0.1

0.0

0.1

0.2

0.3

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

-0.4

-0.2

0.0

0.2

0.4

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

(b) (c)

Figure 7.4: Geometric accuracy of pixel-based GeoMap creation algorithms (Canny's algorithm
5.10 without sub-pixel correction, end-crack and mid-crack edges from the watershed union-�nd
algorithm 5.8, and thin 8-connected edges from the region-growing based watershed algorithm
5.9), with σPSF = 0.9 and σ�lter = 1.0. True subpixel positions are (a) t = 0 , (b) t = 0.25, and
(c) t = 0.5. Note that the red and orange curves almost always coincide because the �rst and
last algorithms detect the same points.

1/6 respectively. In the general case of edges in direction φ with random subpixel shifts
t, the root-mean-square (RMS) localization errors1 are

RMS(x)round o� =

√
1/12

max (|sinφ| , |cosφ|)
(7.3)

In the next experiment, we compare the errors of subpixel-accurate edge detectors,
�gure 7.5. It can be seen that the maximum localization error does never exceed 0.07
pixels, and the accuracy improves for more complex detection methods. In fact, the
best methods (subpixel watersheds, and Canny's algorithm with spline-based subpixel
correction) achieve errors below 0.003 pixels, i.e. are two orders of magnitude better
than the pixel-accurate detectors. It is also remarkable that noise with an SNR of 200 is
su�cient to turn a degenerate boundary indicator into a Morse function � recall that the

1The root-mean square-error of n measurements xi with expectation x̄i is de�ned as RMS(x) =√
1
n

∑
i (xi − x̄i)2.

197

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Gaussian gradient, scale: 1.0
Canny, 3−point parabola correction

Gaussian gradient, scale: 1.0
Canny, 9−point parabola correction

Gaussian gradien, scale: 1.0
Canny, Newton iterations on spline

Gaussian gradient, scale: 1.0
Canny, Newton iterations on spline

Gaussian gradient, scale: 1.0
watershed, subpixel accuracy
Haralick operator, scale: 1.0
zero crossings, subpixel accuracy

0 50 100 150

ground truth angle [degrees]

-0.025

-0.020

-0.015

-0.010

-0.005

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

0.00

0.01

0.02

0.03

0.04

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

0.00

0.01

0.02

0.03

0.04

0.05

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

0.00

0.01

0.02

0.03

0.04

0.05

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

0 50 100 150

ground truth angle [degrees]

0.000

0.002

0.004

0.006

0.008

0.010

0.012

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

Figure 7.5: Edge position errors for subpixel-accurate edge detectors with σPSF = 0.9 and
σ�lter = 1.0. True subpixel positions were t = 0.1 (top), t = 0.3 (center), t = 0.5 (bottom).
Left column: Subpixel-correction methods in Canny's algorithm (3-point parabola �t, 9-point
parabola �t, and Newton iterations on spline interpolation, cf. �gure 5.13 in section 5.2) . Right
column: Spline-based subpixel algorithms (Canny's algorithm with spline interpolation, sub-
pixel watershed algorithm, Haralick's detector with subpixel zero crossings). Gaussian noise with
signal-to-noise ratio 200 was added to these images in order to make the gradient magnitude
ful�ll the Morse property, de�nition 5.2.

198

7.2 Analysis of Isolated Straight Step Edges

0 50 100 150
ground truth angle [degrees]

−0.001

0

0.001

0.002

0.003

po
si

tio
n

er
ro

r
[p

ix
el

s]

Gaussian gradient, scale: 1.0
Canny, Newton iterations on spline

Gaussian gradient, scale: 1.0
watershed, subpixel accuracy
Haralick operator, scale: 1.0
zero crossings, subpixel accuracy

Figure 7.6: Same as �gure 7.5 bottom right,
but with two-fold oversampling of the original
image. Note the dramatically reduced error of
Haralick's detector.

Morse property (de�nition 5.2) is a prerequisite for the subpixel watershed algorithm to
work.

Errors are largest for the 3-point parabola correction of Canny's algorithm. In addi-
tion, this operator exhibits much higher errors for diagonal edges, and the error reverses
its sign as t increases from 0.3 to 0.5. This behavior is very undesirable because com-
plicated systematic errors of that kind are hard to correct in subsequent analysis steps.
The behavior of the 9-point parabola correction is much more uniform, and its error
rarely exceeds 0.02 pixels. Relatively large errors are also found for the subpixel Haralick
operator. This is a consequence of the fact that aliasing is introduced into the Gaussian
second derivative �lters (which form the basis of Haralick's operator) when these �lters
are sampled at σ�lter = 1.0 with unit sample spacing. To avoid this, two-fold oversampling
should be applied to the original image, so that the derivative �lters can be digitized with
a sample spacing of 1/2. Signi�cantly improved results on oversampled images are shown
in �gure 7.6.

Finally, we demonstrate results for edge orientation estimation in �gure 7.7. We see that
orientation errors are very small (below 0.004◦), and that they are comparable for pixel-
accurate and subpixel algorithms. This is due to the fact that the gradient direction of an
isolated step edge is constant in a certain neighborhood of the edge, so that localization
errors have only minor e�ects on orientation estimation.

We draw the following conclusions from the experiments so far: Straight edge localiza-
tion on spline interpolated boundary indicators is extremely accurate when the images
are free of noise and aliasing. A bias of as little as 0.003 pixels is possible, indicating that
the continuous theory is very well implemented by these algorithms. Haralick's detector
(when applied at the same �lter scale) and the 9-point parabola �t are still reasonably
accurate with a maximum error of about 0.02 − 0.03 pixels. The 3-point parabola �t
and the pixel-accurate methods are clearly ignoring much of the available information.
The 9-point �t is by far the cheapest among the better algorithms, but it can create at
most one edgel per pixel. Considering the boundary sampling theorem 6.8, higher edgel
densities along the true edge are desirable because the maximum distance p from true
boundary points to edgels (which is always at least half as big as the edgel spacing)
should not signi�cantly exceed the localization error q. When only one edgel per pixel is
detected, p can never be smaller than

√
2/2 along diagonal edges, and one cannot draw

signi�cant advantages from the detector's high localization accuracy of q < 0.03.

199

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

ground truth angle [degrees]

−0.004

−0.002

0

0.002

0.004

or
ie

nt
at

io
n

er
ro

r
[d

eg
re

es
]

Gaussian gradient, scale: 1.0
Canny, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, crack edge, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, mid−crack edge, pixel accuracy

Gaussian gradient, scale: 1.0
watershed, thin 8−connected edge, pixel accuracy

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Gaussian gradient, scale: 1.0

160

Canny, Newton iterations on spline
Gaussian gradient, scale: 1.0
watershed, subpixel accuracy
Haralick operator, scale: 1.0
zero crossings, subpixel accuracy

170 180

ground truth angle [degrees]

−0.004

−0.002

0.000

0.002

0.004

0.006

0.008

or
ie

nt
at

io
n

er
ro

r
[d

eg
re

es
]

Figure 7.7: Edge orientation errors for pixel-accurate (left) and subpixel accurate (right) edge
detectors at σPSF = 0.9, σ�lter = 1.0, t = 0.3 (the curves for other t are similar).

7.2.2 Noisy Images

We have seen that edge detection performance of subpixel-accurate algorithms in a noise-
free situation is extremely good. We now extend our analysis to noisy images, but keep
the constraint of isolated straight step edges. The same problem has been investigated
by many authors, e.g. [Canny 86, Lyvers & Mitchell 88, Deriche 90, Kakarala & Hero 92,
De Vriendt 95]2. Canny introduced several metrics that quantify noise errors:

• the signal-to-noise ratio of the edge response as a measure for the probability of
missed edges (false negatives),

• the expected localization error for true edges,

• the probability of false positives in the neighborhood of the true edge, and

• the expected distance between false positives in areas dominated by noise (i.e. far
away from any true edges).

[Canny 86] himself and several subsequent authors, e.g. [Deriche 90, Shen & Castan 92],
use these metrics mainly to identify optimal operators within certain classes of admissible
edge detectors. In this context, it is su�cient to compute ratios between error metrics of
di�erent candidate detectors, whereas absolute error values are only of secondary interest.
In contrast, our focus is on absolute theoretical error bounds for a given imaging situation
and on the question whether real implementations of various edge detectors (gradient
magnitude, oriented second derivatives) actually achieve these bounds in practice. To
obtain realistic predictions, the theoretical analysis has to be conducted entirely in 2D
(many other authors restrict their analysis to the 1D case) and it must include the e�ects
of the camera PSF (signal blurring and possibly aliasing).

2See http://iris.usc.edu/Vision-Notes/bibliography/edge235.html#KK1097 for a comprehensive
list.

200

http://iris.usc.edu/Vision-Notes/bibliography/edge235.html#KK1097

7.2 Analysis of Isolated Straight Step Edges

As before, we assume that the PSF is a Gaussian at scale σPSF, the signal is a straight
step edge of height S, and the edge position is de�ned by the maxima of the Gaussian
gradient at scale σ�lter or the zero-crossings of the second Gaussian derivative in gradient
direction (both positions are identical for isolated straight step edges). Moreover, the
noise shall be white Gaussian noise with standard deviation N , band-limited in the
sampling pass-band.

The quotient S/N is the signal-to-noise ratio (SNR) of the digital image3. Since it is
possible to reconstruct the blurred analog image by convolving the discrete image with
the ideal interpolator (or a close approximation such as a quintic spline), we can perform
error analysis in the continuous domain. When edge detection is based on Gaussian �lters
and their derivatives, we can de�ne analog image functions by

f�ltered(x, y) = gσ�lter ? sinc ?
(

[gσPSF ? step]ij + nij

)
= s�ltered(x, y) +n�ltered(x, y) (7.4)

where subscripts indicate sampled quantities. The smoothed edge [gσPSF ? step] is de�ned
as in (7.2), and gσ�lter is a Gaussian �lter at scale σ�lter that reduces the noise. Derivatives
are de�ned as true in�nitesimal operators acting on f�ltered, not by �nite di�erences. This
is easily implemented by replacing gσ�lter with the appropriate Gaussian derivative �lters.
When the PSF is e�ectively band-limited, sampling of the signal and sinc-reconstruction
cancel each other, so that PSF and noise �lter can be combined into a single convolution

of the step with a Gaussian whose total scale is σ =
√
σ2
PSF + σ2

�lter:

s�ltered(x, y) = gσ ? step (7.5)

In contrast, the noise is convolved with the noise �lter and the sinc (which ensures that it
is band-limited), but not with the PSF. If the noise �lter is itself e�ectively band-limited
(i.e. σ�lter ≥ 0.9), the sinc-interpolation can be dropped

n�ltered(x, y) = gσ�lter ? sinc ? (nij) ≈ gσ�lter ? (nij)

Without loss of generality, we shall assume in our theoretical analysis that the edge is
vertical at x = 0. Then, all derivatives of the signal s�ltered(x, y) along the y-axis are zero,
whereas the derivatives of the noise n�ltered(x, y) are independent of the edge direction.
Experiments will be carried out at all edge orientations in order to check whether edge
detectors are rotationally invariant.

7.2.2.1 E�ects of Aliasing Noise

We �rst investigate how the term s�ltered(x, y) deviates from equation (7.5) when the PSF
is not band-limited. We had shown in section 3.2.1 that aliasing occurs when σPSF < 0.9.
Since σPSF > 0.4 in all practically relevant cameras, the PSF is still strong enough to
ensure that aliasing is only caused by the �rst spectrum replication outside the sampling

3Some authors prefer the term �contrast-to-noise ratio� in order to avoid confusion with SNR de�nitions
in terms of signal power.

201

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

(a)

-4 -2 2 4

-0.3

-0.2

-0.1

0.1

0.2

0.3

(b)

0.5 1 1.5 2 2.5 3

sigmafilter

0.5

0.6

0.7

0.8

0.9

S effective

S

Figure 7.8: (a) The ideal response of the second Gaussian derivative of a step without sampling
artifacts (solid), the actual response (dotted) and the aliasing component (dashed) for σPSF =
0.45 and σ�lter = 0.7. (b) E�ective reduction in the height of the step due to aliasing at σPSF =
0.45 (solid) and σPSF = 0.9 (dotted) as a function of σ�lter.

pass-band. Then, the Fourier transform of the step after reconstruction can be written
as

F
[
sinc ? [gσPSF ? step]ij

]
(ν1, ν2)

=

S

2πi ν1
e−2π2(ν2

1+ν2
2)σ2

PSF +
S

2πi (ν1−1)e
−2π2((ν1−1)2+ν2

2)σ2
PSF + S

2πi (ν1+1)e
−2π2((ν1+1)2+ν2

2)σ2
PSF

if |ν1|, |ν2| ≤ 1
2

0 otherwise

where the �rst term corresponds to the contribution of the sampling pass-band, and the
other two represent aliasing. This spectrum is multiplied with the transfer function of the
Gaussian noise �lter at scale σ�lter. The corresponding spatial domain functions cannot
be expressed analytically. Numeric results are shown in �gure 7.8. Figure 7.8a depicts the
second Gaussian derivative. It can be seen that the signal and aliasing responses have
opposite signs. Consequently, aliasing reduces the slope of the second derivative, which is
equivalent to an e�ective reduction of the step height by as much as 22% at σPSF = 0.45
and σ�lter = 0.7. Figure 7.8b shows the amount of reduction for other parameter choices.
We will see later that all error metrics are inversely proportional to the step height, so
an e�ective step height reduction results in a proportional error increase. Thus, edge
detection becomes signi�cantly more di�cult when aliasing is present.
On the other hand, aliasing noise of Gaussian PSFs is concentrated at high frequencies,

so a Gaussian noise �lter is able to remove some of the aliasing noise, cf. section 3.2.1.
We see in 7.8b that for a PSF with σPSF = 0.45 (which is not band-limited), noise �lters
with σ�lter = 1 and σ�lter = 2 lead to e�ective step height reductions of only 8% and 1%
respectively. This is still acceptable, especially when the image has low signal-to-noise
ratio, so that large noise �lters are required anyway. In contrast, the combination of a
band-limited PSF with a small �lter (for example, σPSF = 0.9, σ�lter = 0.85) should be
preferred when the SNR high.
Experimental results on images containing aliasing due to a too narrow PSF con�rm

these �ndings, as can be seen in �gure 7.9. In comparison to �gure 7.6 (which reports

202

7.2 Analysis of Isolated Straight Step Edges

0 50 100 150
ground truth angle [degrees]

0.00

0.01

0.02

0.03

po
si

tio
n

er
ro

r
[p

ix
el

s]

Gaussian gradient, scale: 1.0
Canny, Newton iterations on spline

Gaussian gradient, scale: 1.0
watershed, subpixel accuracy
Haralick operator, scale: 1.0
zero crossings, subpixel accuracy

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

Gaussian gradient, scale: 1.0
Canny, Newton iterations on spline

Gaussian gradient, scale: 1.0
watershed, subpixel accuracy
Haralick operator, scale: 1.0
zero crossings, subpixel accuracy

170 180
ground truth angle [degrees]

−0.5

0.0

0.5

or
ie

nt
at

io
n

er
ro

r
[d

eg
re

es
]

Figure 7.9: Errors of subpixel edge detectors at σPSF = 0.45 and σ�lter = 1 on 2-fold interpolated
input and t = 0.3 (left: localization error, right: orientation error). These diagrams should be
compared with �gures 7.6 and 7.7 right.

the same experiment for σPSF = 0.9), the localization errors have increased by more
than an order of magnitude. The increase in orientation errors is not much less (compare
with �gure 7.7 right). However, these errors exhibit some interesting behavior: they are
much smaller for diagonal edges than for horizontal or vertical edges. This is easily
understood when one recalls that the sampling passband is square-shaped. Consequently,
the Nyquist limit for diagonal frequencies is

√
2-times as high as the one along the grid's

principal directions, so there is only little aliasing for diagonal edges. On di�erent reasons,
the orientation error is also zero at edge directions which are exact multiples of 90◦:
Here, the gradient component along one direction is exactly zero, and no amount of
aliasing in the other gradient component can cause an error in the orientation estimate.
These experiments also show that aliasing can be neglected whenever the errors due
to statistical noise are signi�cantly larger than the maximal aliasing errors, i.e. when
statistical position errors exceed 0.03 pixels, and orientation errors exceed 0.5◦. Statistical
errors are analyzed below.

7.2.2.2 Probability Distributions of Noisy Gradient Magnitudes and Optimal

Thresholds

Let us now look at how the gradient magnitude changes due to statistical noise. The
variance of Gaussian derivatives of the noise term n�ltered(x, y) can be computed by
autocorrelation. Due to Parseval's theorem, the autocorrelation of the (k+ l)'s derivative
is given in the Fourier domain as

Var

[
∂k+ln(x, y)
∂xk∂yl

]
= N2

∫ 1
2

1
2

∫ 1
2

1
2

(
(2πν1)k(2πν2)le−2π2(ν2

1+ν2
2)σ2

�lter

)2
dν1dν2

where N2 is the noise variance. Notice that the noise is only convolved with derivative
�lters at scale σ�lter, not with the PSF. The integration limits re�ect the fact that the
noise is band-limited within the sampling pass-band. If σ�lter & 0.9 (which is usually the

203

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

case in practice, especially when the image is oversampled as described in section 7.1),
we can safely extend the integration over the entire Fourier domain to obtain simpler
expressions. The variance of the �rst few derivatives of the noise are therefore

N2
x = N2

y =
N2

8πσ4
�lter

N2
xx = N2

yy =
3N2

16πσ6
�lter

N2
xy =

N2

16πσ6
�lter

N2
xxx = N2

yyy =
15N2

32πσ8
�lter

In order to compute the probability of false positives/negatives due to noise, we must
compare the gradient magnitude of a noisy step edge with the gradient magnitude of
pure noise. The gradient magnitude of a noise-free vertical step edge located at x = 0 is

s =
∂

∂x
(gσ ? stepS)

∣∣∣∣
x=0

=
S√
2πσ

where S is the step height and σ =
√
σ2
PSF + σ2

�lter is the total scale. The derivative of

the noisy step edge model (7.4) in x-direction

fx = sx + nx

is the sum of a constant and a Gaussian random variable with zero mean and variance
N2
x . Hence, fx|x=0 is a Gaussian random variable with mean s = S√

2πσ
and variance N2

x .

The derivative fy does not contain any signal component and is therefore just a Gaussian
random variable with zero mean and variance N2

y = N2
x . The squared gradient magnitude

g2 = f2
x + f2

y = (sx + nx)2 + n2
y

is the sum of squares of two Gaussian random variables with equal variance but di�er-
ent means. Its probability is a non-central χ2-distribution with two degrees of freedom.
According to [Proakis 89], the general formula for a non-central χ2-distribution with k
degrees of freedom is

p(y) =
1

2σ2
0

(
y

µ2

)(k−2)/4

e
− y+µ

2

2σ2
0 Ik/2−1

(
√
y
µ

σ2
0

)
where In(.) is the nth-order modi�ed Bessel function of the �rst kind, σ2

0 is the variance of
the original random variables, and µ2 is the noncentrality parameter of the distribution

µ2 =
∑
i

µ2
i

204

7.2 Analysis of Isolated Straight Step Edges

0.5 1 1.5 2
g2

0.2

0.4

0.6

0.8

1

S = 2

error rate

S = 1

S = 4

S = 3

σ�lter = 1 σ�lter = 1.7

S
N
R

=
2

S
N
R

=
3
.7

5

Figure 7.10: Left: False alarm rate (gray) and miss rates for step heights S ∈ {1, 2, 3, 4} (black)
as a function of the gradient squared magnitude with N2 = 1, σPSF = 0.5 and σ�lter = 1. Right,
�rst row: At SNR = 2, there is no good threshold on the gradient magnitude for σ�lter = 1,
whereas a good threshold exists at σ�lter = 1.7; second row: SNR = 3.75 is required for a good
threshold to exist for σ�lter = 1. At the given image size of 41× 41, an error rate of 0.1% allows
for one or two false pixels in the image domain. Thresholds were chosen according to table 7.1.

where µi denotes the mean of the ith original variable. The non-central χ2-distribution
has mean kσ2

0 + µ2 and variance 2σ2
0(kσ2

0 + 2µ2). In our case, k = 2, µ1 = s, µ2 = 0 and
σ2

0 = N2
x = N2

y . The above expression then simpli�es to

p(g2) =
1

2N2
x

e
− g

2+s2

2N2
x I0

(
|g| s
N2
x

)
(7.6)

When the step height S is zero, the formula reduces to the standard χ2-distribution with
two degrees of freedom and characterizes the probability distribution of the gradient
squared magnitude for pure noise:

pnoise(g2) =
1

2N2
x

e
− g2

2N2
x

The false alarm rate for some threshold g2
0 on the squared magnitude is just the comple-

ment of the cumulative probability of the noise

false alarm rate(g2
0) = 1−

∫ g20

0
pnoise(t) dt = e

− g20
2N2
x

The miss rate for true edges is the cumulative probability of p(g2) up to the threshold,
but this integral has no closed-form solution. The total error rate is minimized for the
balanced threshold where false alarm rate and miss rate are equal, i.e. where the two
curves cross. Edge detection will work reliably when the error rates are low at this
threshold. Figure 7.10 left shows these rates for various signal-to-noise ratios and standard
scales σPSF = 0.5 and σ�lter = 1. It can be seen that the reliability increases rapidly with
increasing SNR. At the optimal threshold, an error rate of 1% is achieved forSNR ≥ 2.9
(threshold g2

0 = 0.36), and an error rate of 0.1% is achieved for SNR ≥ 3.75 (threshold

205

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

1 2 3 4 5
SNR

1

2

3

4

Σfilter

Figure 7.11: Required �lter scale σ�lter for
reliable edge detection as a function of the
signal-to-noise ratio S/N for error rates 1%
(solid) and 0.1% (dotted). The curves refer to
σPSF = 0.5. Corresponding curves for σPSF =
0.9 run between these curves.

error rate 1% error rate 0.1%
SNR minimal σ�lter g2

0/N
2 |g0| /N minimal σ�lter g2

0/N
2 |g0| /N

≥ 4 0.8 0.9 0.95 0.95 0.68 0.82
3 1.0 0.37 0.61 1.2 0.26 0.51
2 1.4 0.095 0.31 1.7 0.06 0.24
1 2.6 0.008 0.09 3.2 0.005 0.07

Table 7.1: Values for minimal required �lter scale and corresponding normalized thresholds on
the gradient squared magnitude for σPSF = 0.5. The noise variance N2 must be made constant
throughout the image, for example by means of a noise normalization transform (cf. section 3.4).

g2
0 = 0.55). These predictions are con�rmed by the images on the right of �gure 7.10. A
more detailed analysis of the relation between SNR and �lter scale is given in �gure 7.11
and table 7.1 which show the scales and thresholds required for achieving given error
rates for given SNR.
A simple approximate formula for the required SNR at a given �lter size can be derived

by the following consideration due to Canny. A false positive near a true edge is unlikely
when the slope of the signal's second derivative at the edge exceeds the maximum ex-
pected slope of the second derivative of the noise. The maximum expected slope of the
second derivative of the noise is 3Nxxx (with 99.7% probability), whereas the slope of
the second derivative of the signal equals the step height times the second derivative of
a Gaussian. Inserting these values, we get

|sxxx|
3Nxxx

∣∣∣∣
x=0

=
S

N

4
3
√

15
σ4
�lter(

σ2
PSF + σ2

�lter

)3/2 > 1

Therefore, the required SNR is

SNR >
3
√

15
4

(
σ2
PSF + σ2

�lter

)3/2
σ4
�lter

(7.7)

For �lter sizes σ�lter = 1, 2, 3 and σPSF = 0.5, this formula gives minimum required SNRs
of 4.0, 1.6, and 1.0 respectively, in reasonable agreement with table 7.1.
We see that the gradient magnitude edge detector can tolerate a whole lot of noise when

noise �lters of moderate size are used. However, this is only true for isolated step edges.

206

7.2 Analysis of Isolated Straight Step Edges

When two or more edges run very closely to each other, even a moderately strong post-
�lter with σ�lter = 3 may cause these edges to blend into each other (this phenomenon
will be analyzed in more detail in section 7.3.2). To keep them separate, smaller �lters
have to be used, which signi�cantly reduces the tolerance of edge detection against noise.
A similar e�ect can be observed at edges between shaded regions, see section 7.3.1.

7.2.2.3 Error Propagation for Edge Position and Orientation

To estimate the edge localization error due to noise, we use the same technique as
[Canny 86], but apply it in the 2-dimensional image domain. That is, our error anal-
ysis is based on 2D derivatives and integrals throughout, whereas Canny restricted itself
to the 1-dimensional case in most of his paper. Our analysis is similar to [De Vriendt 95],
who �rst derived many of the results reported in this section. We assume without loss of
generality that the true edge runs vertically at x = 0. Statistical expectations are then
independent of y, and we can assume y = 0 as well. Furthermore, let us pretend for the
moment that we already know the edge direction. Then we can detect the noisy edge
position by just looking for zero crossings of the second derivative along the x-direction.
The second x-derivative of the noise-free edge vanishes at x = 0, but the second derivative
of the noisy edge vanishes at a displaced position ∆xZ :

fxx(∆xZ) = sxx(∆xZ) + nxx(∆xZ) = 0

We expand the signal term into its �rst order Taylor series around x = 0. Since sxx is
zero at this point, we get

fxx(∆xZ) ≈ sxxx(x)|x=0 ∆xZ + nxx(∆xZ) = 0 (7.8)

The third derivative of the step is sxxx(x)|x=0 =− S√
2πσ3 . After rearranging, we obtain

the standard deviation of the edge position as

StdDev [∆xZ] =
Nxx

|sxxx|

∣∣∣∣
x=0

=
N

S

√
6

4

(
1 +

σ2
PSF

σ2
�lter

)3/2

≈ 0.61
N

S
(if σ�lter � σPSF) (7.9)

However, in reality the true edge direction is unknown, so we cannot just search for
zero crossings of the second x-derivative. Instead, we take the second derivative along
the local gradient direction. This expression contains additional terms which potentially
increase the variance of the result. When we still assume (w.l.o.g.) the edge to run verti-
cally through the coordinate origin, the second directional derivative along the gradient
direction will again vanish at some displaced location ∆xZ such that

f2
xfxx + 2fxfyfxy + f2

y fyy

f2
x + f2

y

∣∣∣∣∣
x=∆xZ

= 0

For fx 6= 0 (which always holds near the true edge), this can be rewritten as

1

1 +
(
fy
fx

)2 fxx + 2
fy
fx

1 +
(
fy
fx

)2 fxy +

(
fy
fx

)2

1 +
(
fy
fx

)2 fyy

∣∣∣∣∣∣∣
x=∆xZ

= 0

207

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 1 1.5 2 2.5 3 3.5 4

ex
pe

ct
ed

 lo
ca

liz
at

io
n

er
ro

r
[p

ix
el

s]

filter scale

PSF scale=0.45
PSF scale=0.9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 1.5 2 2.5 3 3.5 4

ex
pe

ct
ed

 o
ri

en
ta

tio
n

er
ro

r
[d

eg
re

es
]

filter scale

SNR=1, PSF scale=0.45
SNR=1, PSF scale=0.9

SNR=4, PSF scale=0.45
SNR=4, PSF scale=0.9

SNR=10, PSF scale=0.45
SNR=10, PSF scale=0.9

Figure 7.12: Left: The expected edge displacement due to noise as a function of the �lter scale
σ�lter for S/N = 1 and σPSF ∈ {0.45, 0.9}. Corresponding values for other signal-to-noise ratios
are obtained by simply dividing the error by the SNR. In case of a pixel-accurate edge detector,
the expected round-o� error must be added. Right: Expected edge orientation error as a function
of σ�lter for S/N ∈ {1, 4, 10} and and σPSF ∈ {0.45, 0.9}. Errors due to aliasing (cf. �gure 7.9)
can be neglected at these noise levels.

Expanding the image into its signal and noise parts f = s + n and recalling that all
y-derivatives of the signal part are zero, we get

1

1 +
(

ny
sx+nx

)2 (sxx + nxx) + 2
ny

sx+nx

1 +
(

ny
sx+nx

)2 nxy +

(
ny

sx+nx

)2

1 +
(

ny
sx+nx

)2 nyy

∣∣∣∣∣∣∣
x=∆xZ

= 0

(7.10)

Near the true edge, we have Var [sx + nx] ≈ s2
x = S2

2π(σ2
PSF+σ2

�lter)
and

Var

[
ny

sx + nx

]
≈
(
N

S

)2 σ2
PSF + σ2

�lter

2σ2
�lter

For reasonable signal-to-noise ratios and �lter scales, this is always � 1. Thus, the
second and third terms in (7.10) are close to zero, whereas the �rst term is almost equal
to fxx = sxx + nxx. It follows that the localization error for unknown edge direction
(7.10) is essentially the same as that for known edge direction (7.9). The error in the
estimated edge orientation has no signi�cant in�uence on the localization error. Figure
7.12 left depicts formula (7.9) as a function of the �lter scale. When S/N > 14 (which is
realistic in high quality images), we should be able to achieve localization errors below
1/20 of a pixel. This is a strong justi�cation of sub-pixel accurate edge detection. We
will see below that such high accuracy can actually be achieved in practice.

In this context, it is interesting to note that the di�erence between the known-edge-
direction / unknown-edge-direction cases is not always small. For example, when edges
are de�ned by zero-crossings of the Laplacian of Gaussian, the Taylor series reads

fxx + fyy = 0 = sxxx(x)|x=0 ∆xLaplace + nxx(∆xLaplace) + nyy(∆xLaplace)

208

7.2 Analysis of Isolated Straight Step Edges

The quantities nxx and nyy are correlated with a correlation coe�cient of 1
3 , see [De Vriendt 95].

Therefore, we get

Var [nxx + nyy] = Var [nxx] + Var [nyy] +
2
3

√
Var [nxx]Var [nyy] =

8
3
Var [nxx]

In other words, the localization error of the Laplacian of Gaussian exceeds the one of the
oriented second derivative by a factor of

√
8/3 ≈ 1.63:

StdDev [∆xLaplace] =

√
8
3
StdDev [∆xZ] (7.11)

These results will be con�rmed by our experiments, see sections 7.2.2.5 and 7.4.
Just like edge position estimates, edge orientation estimates su�er from noise. The edge

orientation can be determined by the angle between the gradient vector and the x-axis

φ = arctan
(
fy
fx

)
(7.12)

The variance of this expression can be derived from the variance of the gradient vector
components by standard error propagation

Var[φ] = JTφ Σfx,fy Jφ

where Jφ = (∂φ/∂fx, ∂φ/∂fy)
T is the Jacobian of the orientation, and Σfx,fy is the

covariance matrix of the gradient components. Since the gradient components are or-
thogonal, the covariance matrix is a diagonal matrix, and we get

Var[φ] =
Var[fy] f2

x + Var[fx] f2
y(

f2
x + f2

y

)2
As the gradient operator is isotropic, we can compute the expected angular error for
an arbitrary edge orientation, e.g. vertical. Then we have f2

y = 0, f2
x = S2

2πσ2 (with

σ2 = σ2
PSF + σ2

�lter as before), and Var[fy] = N2
y = N2

8πσ4
�lter

. Inserting these values, we

obtain

Var[φ] =
N2

4S2

σ2
PSF + σ2

�lter

σ4
�lter

and thus

StdDev[φ] =
N

S

√
σ2
PSF + σ2

�lter

2σ2
�lter

(7.13)

This formula is illustrated in �gure 7.12 right. Its predictions are also well con�rmed by
the experiments in sections 7.2.2.5 and 7.4. At SNR = 10 and standard scales, the ex-
pected orientation error is around 4.5◦, which is still acceptable. At SNR = 1, orientation
estimation becomes essentially impossible with small �lters.
Curvature (and therefore the radii of curved edges) can be determined by taking the

derivative of the tangent angle with respect to arc length. If the edge direction is de�ned

209

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

by the vector perpendicular to the gradient direction, the curvature is simply the isophote
curvature

κ =
f2
y fxx − 2fxfyfxy + f2

xfyy(
f2
x + f2

y

)3/2 (7.14)

The standard error propagation rule results in a quite complicated expression which
depends on the detailed shape of the contour. If we assume that the curvature is small,
the result simpli�es to

StdDev[κ] =

√
3
8
N

S

√
σ2
PSF + σ2

�lter

σ3
�lter

(7.15)

This expression is exact for straight lines, and a good approximation for slightly curved
ones. When we set σPSF = 0.5, σ�lter = 1 and SNR = 10, the expected curvature error is
StdDev[κ] = 0.07. Thus, the expected error exceeds the true curvature when the curve
radius is above 15 pixels! This shows that precise curvature estimation is an extremely
di�cult problem in noisy images � when the curvature is small, not even its sign can be
determined with any certainty, cf. [Utcke 03].

7.2.2.4 Error Correlation along the Edge

Another interesting question is how fast the di�erent errors change along the edge. Con-
sider a particular point on the edge where the position error happens to be zero and
de�ne a local coordinate system whose horizontal axis coincides with the tangent at that
point, and which is oriented so that the sign of the displacement is negative to the left
of the point, and positive to its right. As we traverse the edge to the right, the error will
�rst raise, but eventually will become zero again, this time changing sign from positive
to negative, and so on. We denote the expected distance between two consecutive error
zero-crossings with the same polarity (both from negative to positive error or vice versa)
as the average wave length of the error along the edge.
This wave length can be computed as follows: Without loss of generality, we assume

that the edge runs vertically. Then the position error is zero whenever nxx (the second
horizontal derivative of the noise) is zero, cf. (7.8). Similarly, the orientation error is zero
whenever fy = ny (the �rst vertical derivative of the noise) is zero, cf. (7.12). The curva-
ture error is dominated by the term f2

xfyy, which is zero whenever nyy is zero. Along the
y-direction, i.e. along the true vertical edge, all these errors are 1-dimensional Gaussian
random processes. According to [Rice 45] (see also [Canny 86]), the expected distance
between two consecutive zero-crossings (with opposite polarity) of a noise process p with
derivative p′ is

dz = π

√
Rp(0)
Rp′(0)

where Rp(0) and Rp′(0) denote the autocorrelations of p and p′ at zero. Since our noise
processes have zero mean, the autocorrelation equals the variance, and the expected
wave length λ is twice the distance of consecutive zero crossings. Applying this formula

210

7.2 Analysis of Isolated Straight Step Edges

to the position, orientation, and curvature error cases, we get the following wave-length
estimates

position: λpos-error = 2π

√
N2
xx

N2
xxy

=
√

8πσ�lter

orientation: λori-error = 2π

√
N2
y

N2
yy

=

√
8
3
πσ�lter (7.16)

curvature: λcurv-error = 2π

√
N2
yy

N2
yyy

=

√
8
5
πσ�lter

For example, at σ�lter = 1, the position error can be expected to keeps its sign over an
average boundary length of 4 pixels.
An even more detailed characterization of the noise along the boundary is possible by

means of the power spectrum of the localization error. The power spectrum not only tells
us how errors along the edge are correlated. It also allows us to predict how fast these
errors decrease when the initial boundary polygon is subsequently smoothed. We will
make use of this possibility in chapter 8. Due to the correlation of neighboring errors,
the error power spectrum along the edge does not have the characteristics of Gaussian
white noise (i.e. constant noise power up to some limit frequency), contrary to a popular
model assumption.
To derive the power spectrum, recall that the noise was Gaussian distributed before

edge detection. Thus, we have to investigate how noise characteristics change due to
noise �ltering. We have shown above that the localization error depends on the values
of the second derivative perpendicular to the edge, see (7.9), and that slight errors in
the edge orientation estimate do not have signi�cant in�uence on the localization er-
ror. An oriented second derivative �lter can be separated into its derivative component
perpendicular to the edge, and its smoothing component along the edge. After �ltering
perpendicular to the edge, the noise spectrum along the edge is still Gaussian distributed,
because the �lter is linear. Thus, correlation between neighboring points along the edge
is solely caused by the �lter component acting along the edge. It follows that the power
spectrum of the localization noise must be proportional to the squared transfer function
of the noise �lter along the edge:

‖F [∆xZ]‖2 ∼
(
e−2π2ν2σ2

�lter

)2

(where ‖F [∆xZ]‖2 denotes the power spectrum of the localization error ∆xZ , and ν
is the spatial frequency along the edge). On the other hand, it follows from Parseval's
theorem that the integral over the power spectrum must be equal to the expectation
of the squared localization error, which is simply the square of the standard deviation,
equation (7.9). This condition de�nes the correct normalization of the power spectrum:

‖F [∆xZ]‖2 =
3
√
π

4

(
N

S

)2

σ�lter

(
1 +

σ2
PSF

σ2
�lter

)3

e−4π2ν2σ2
�lter

= 2
√
πσ�lterε

2 e−4π2ν2σ2
�lter (7.17)

211

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.1 0.2 0.3 0.4 0.5

filter scale = 1, SNR = 10
filter scale = 1, SNR = 20

filter scale = 2, SNR = 5.4

Figure 7.13: Localization noise power spectrum along a straight edge. Left: Subregion of a
noisy image with detected edge (SNR = 10, σ�lter = 1). Right: Comparison of power spectrum
measurements (σPSF = 0.9, edge length 256 pixels, edge detection by Canny's algorithm with
spline-based subpixel correction according to equation (5.8), averaging over 80 noise realizations)
with theoretical predictions for various values of SNR and σ�lter.

where ε = StdDev [∆xZ] is the standard deviation of the localization error according to
(7.9). This prediction is very well con�rmed by experiment, as can be seen in �gure 7.13.

7.2.2.5 Experimental Validation in Arti�cial Images

In order to validate our theoretical error analysis, we repeat the experiments from section
7.2.1 for noisy images. Figure 7.14 con�rms for the subpixel-accurate versions of the
watershed algorithm and Laplacian zero-crossings that the actual localization error is
indeed independent of orientation and true edge position. In addition, it is veri�ed that
the error of the Laplacian zero-crossing operator is indeed

√
8/3-times as big as the

one of the gradient-based operator. Similar diagrams are obtained for other algorithms.

0 20 40 60 80

ground truth angle [degrees]

-0.1

0.0

0.1

0.2

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

gauss, scale: 1.0

watershedSubPixel

laplacian, scale: 1.0

zerosSubPixel

0 20 40 60 80

ground truth angle [degrees]

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

gauss, scale: 1.0

watershedSubPixel

laplacian, scale: 1.0

zerosSubPixel

Figure 7.14: The mean localization error and its standard deviation as a function of the edge
orientation for ground-truth subpixel shifts of t = 0.1 (left) and t = 0.5 (right), using the subpixel
watershed algorithm and subpixel zero-crossings of the Laplacian operator at scales σPSF = 0.9,
σ�lter = 1 and SNR = 20. The standard deviation predicted by theory is 0.075 pixels (watershed
edges, equation (7.9)) and 0.12 pixels (Laplacian edges, equation (7.11)). Mean and standard
deviation are computed from 40 di�erent noise realizations for each angle.

212

7.2 Analysis of Isolated Straight Step Edges

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

re
la

tiv
e

fr
eq

ue
nc

y

actual localization error / predicted localization error

crack-edge watershed
subpixel watershed

Canny
Haralick

Laplacean

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.5 1 1.5 2

re
la

tiv
e

fr
eq

ue
nc

y

actual angle error / predicted angle error

crack-edge watershed
subpixel watershed

Canny

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.5 1 1.5 2

re
la

tiv
e

fr
eq

ue
nc

y

actual curvature error / predicted curvature error

crack-edge watersheds
subpixel watersheds

Canny

Figure 7.15: Comparison of measured and predicted errors. The curves represent histograms of
the ratio between these errors for various algorithms. Histograms were computed over 200 arti-
�cial edge images generated according to (7.4) with additive Gaussian noise. Image parameters
were randomly selected: edge orientation between 0 and 2π, subpixel shift t between −0.5 and
0.5, signal-to-noise ratio between 4 and 64, and the PSF scale in {0.5, 0.9}. Left: localization er-
rors according to (7.3), (7.9), and (7.11). Center: tangent angle errors according to (7.13). Right:
curvature errors according to (7.15).

These results are represented in compact form in �gure 7.15. It shows histograms of the
ratio between measured and predicted errors for various algorithms and features (left:
position, center: orientation, right: curvature). In all cases, the distribution of this ratio
has a marked peak at approximately 1, i.e. the theoretical predictions are con�rmed very
well. The good agreement is remarkable, given that absolute errors varied signi�cantly
(e.g. between 0.01 pixels and 0.4 pixels in case of localization) due to the wide range of
image parameters tested. Interestingly, the systematic error of the 9-point �t in Canny's
algorithm is negligible as soon as the localization error caused by noise exceeds about
0.02 pixels. Indeed, this algorithm is slightly more accurate than expected because the
9-point �t has the e�ect of a little additional regularization. Corresponding results for
the tangent angle and curvature errors are shown in �gure 7.15 center and right, and the
predictions are again con�rmed very well.
An interesting observation concerns a variant of gradient-based edge detection. Some

applications require boundary indicators that signal edges by local minima rather than
maxima. To adapt the gradient to these schemes, it is often replaced with the inverse
gradient

finverse =
1

ε+ |∇g|
for some small ε > 0 that ensures finverse remains bounded. To test how this boundary
indicator compares with the standard gradient, we repeat the localization experiment
for straight edges. We apply the subpixel watershed algorithm with exactly the same
parameters, except that we have to trace �owlines from saddle points downwards to
minima now (for simplicity, we implement this by the standard watershed algorithm
applied to −finverse). Figure 7.16 shows that the error of the inverse gradient is much
higher than that of the standard gradient. Therefore, we cannot recommend the inverse
gradient for edge detection or energy minimization. If a boundary indicator is needed
which marks edges by minima, the negated gradient − |∇g| should be preferred.

213

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

0 20 40 60 80

ground truth angle [degrees]

-0.4

-0.2

0.0

0.2

0.4

0.6

p
o
s
it
io

n
 e

rr
o
r

[p
ix

e
ls

]

gradient, scale: 1.0

watershedSubPixel

inverse gradient, scale: 1.0

watershedSubPixel

Figure 7.16: Left: Standard gradient |∇g| and inverse gradient −1
10−6+|∇g| of a test image with

SNR = 10. Inversion strongly ampli�es the noise. Scales are equal to �gure 7.14. Right: Compar-
ison of the subpixel watershed algorithm on these boundary indicators. The standard deviation
on the inverse gradient is 4 times as high, and its mean is much less accurate, indicating a dis-
tribution with long tails (outliers). That is, edge detection on the inverse gradient is much less
stable.

7.3 Deviations from the Model of Isolated Straight Step

Edges

Gradient-based boundary detectors can only be expected to give unbiased edge position
estimates for isolated straight step edges. Since edges are not strictly conforming to this
model in reality, we investigate by how much edge detection errors increase due to various
deviations from the ideal model. In the sections to follow we consider shaded regions (de-
viation from the step edge requirement), parallel edges (deviation from the requirement
of isolated edges), and curved edges. The behavior of gradient-based boundary detectors
near corners and junctions is treated in section 7.5.

7.3.1 Shaded Regions

Equation (2.1) for ideal geometric images simpli�es to the step edge model when the
functions fi (describing the interior of region ri) are constant functions for all i. However,
this is only an approximation of reality. In real images, shading and other e�ects cause
the intensity in each region to change gradually. We model this by approximating fi and
fj with their �rst order Taylor series around a boundary point ~x0. Higher order intensity
variations are assumed to occur only at scales signi�cantly beyond the e�ective diameters
of the PSF and noise �lter, and can thus be neglected. For simplicity, we also assume
that the intensity does only change perpendicular to the edge, but is constant along the
edge. Furthermore, we still use Gaussians for PSF and noise �lters, so that the combined
�lter e�ect on the signal can be described by a single Gaussian convolution at total scale

σ =
√
σ2
PSF + σ2

�lter.

Without loss of generality, the edge shall be oriented vertically so that the x-axis runs
perpendicular to the edge, and the coordinate system shall be translated so that ~x0 is
at the origin. Since shading is restricted to the direction perpendicular to the edge, all

214

7.3 Deviations from the Model of Isolated Straight Step Edges

+j

fi

ri rj

ss

= +f

Figure 7.17: Left: Pro�le of the ideal geometric image perpendicular to the edge between shaded
regions ri and rj , where fi and fj can be approximated as linear functions within the e�ective
radius s of the PSF. Right: This function can be decomposed into a step of height bd, a ramp
with slope am and a symmetric roof with slope ±ad/2.

derivatives in y-direction are zero and have no in�uence on edge localization. The linear
intensity pro�les perpendicular to the edge is described by

f(x) =

{
alx+ bl if x < 0
arx+ br if x > 0

When the edge pro�le changes slowly in y-direction, the parameters al, bl, ar, and br
may be interpreted as averages along the edge. The pro�le f(x) can be decomposed into
a step (Θ denotes the unit step function), a ramp and a roof according to

f(x) = bd Θ(x) + (amx+ bl) +
ad
2
|x|

with average slope am = (ar + al) /2, slope di�erence ad = ar − al and step height
bd = br − bl, see �gure 7.17. The decomposition makes quantitative analysis of the
blurred gradient magnitude easy, because the derivatives of the individual transitions
can be computed analytically � we get a delta function, a constant function, and a step
function respectively. The gradient magnitude b(x) of the blurred pro�le f(x) is simply
obtained by blurring the individual derivatives and computing the magnitude of the sum.
In case of blurring with a Gaussian gσ(x), we get

b(x) =
∣∣∣∣ ∂∂x (gσ(x) ? f(x))

∣∣∣∣ =
∣∣∣∣gσ(x) ?

∂

∂u
f(x)

∣∣∣∣ =
∣∣∣∣bdgσ(x) + am +

ad
2

erf
(

x√
2σ

)∣∣∣∣
(7.18)

where erf(x) = 2√
π

∫ x
0 e
−u2

du is the error function. Local extrema of this expression

correspond to the zero crossings of its derivative:

∂

∂u
b(x) = bdg

′(x) + adgσ(x) = gσ(x)
(
ad − bd

x

σ2

)
!= 0

There is only one zero crossing at

∆x =
ad
bd
σ2 (7.19)

which always corresponds to a maximum of the gradient magnitude. We notice that the
localization bias |∆x| is zero if and only if the slope di�erence ad between the left and

215

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 0.5 1 1.5 2 2.5 3 3.5 4

m
ea

su
re

d
bi

as
 (

pi
xe

ls
)

expected bias (pixels)

Figure 7.18: Left: Measured bias vs. bias predicted by (7.19) for 224 combinations of edge
orientation, subpixel shift t, total scale σ and normalized slope di�erence ad/bd > 0 using the
subpixel watershed algorithm. Predictions are so good that the spread of the measurements is
hardly visible. Right: original image, ground truth edge (green) and detected edge (red) for
σ = 4.2 and ad/bd = 0.2. The image size is 43× 43 and the bias 3.6 pixels.

right region is zero. Step edges are a special case of this condition. Otherwise, the bias
is proportional to the slope di�erence and to the square of the Gaussian's scale, i.e. it
increases rapidly with scale. This prediction is con�rmed by experiment, �gure 7.18.

In addition to the bias, shaded region interiors have another undesirable consequence:
they reduce the relative contrast of the edge response, and this e�ect also increases rapidly
with scale. The reason is as follows: The gradient �lter response of a linear function (i.e.
the interior of a shaded region) is independent of the �lter scale � it is always equal
to the function's slope. The gradient magnitude of a step also increases when the slope
di�erence between the adjacent regions increases, but at a lower rate. Consequently, the
edge / non-edge responses become asymptotically equal with increasing slope di�erence,
and this e�ect is ampli�ed as the �lter scale increases, see �gure 7.19. If the image is noisy,
the e�ective signal-to-noise ratio may be reduced to the point where the edge cannot be
detected anymore: The gradient squared magnitude in the interior of a shaded region with
slope a and additive Gaussian noise is a non-central χ2-distribution with non-centrality
parameter µ2 = a2, in contrast to the plain χ2-distribution we got for unshaded regions.
This means that the probability curves for false and true edges in �gure 7.10 will have
increasing overlap, so that the error rate increases.

Edges between shaded regions are thus problematic both in terms of bias and statistical
errors. We can take three measures to improve detection performance at these edges:

1. We can reduce the slope in relation to σPSF by taking images at higher resolution
(i.e. smaller viewing distance or higher magni�cation).

2. When the noise level in the image is su�ciently low, we can use noise �lters with
small σ�lter.

3. We can use edge detectors that are also sensitive for changes in slope (i.e. maxima
of the second derivative), for example the boundary tensor to be introduced in
section 9.3.

216

7.3 Deviations from the Model of Isolated Straight Step Edges

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-4 -3 -2 -1 0 1 2 3 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-1 -0.5 0 0.5 1

gr
ad

ie
nt

 m
ag

ni
tu

de

slope difference

non-edge response
edge response, scale = 1
edge response, scale = 2
edge response, scale = 3

Figure 7.19: Left: Gradient magnitude along the x-axis for a step between shaded regions with
σ = 1, al = 0, and ar = bd = 1. The di�erence between the edge response (the value of the
gradient maximum) and the no-edge response in the right region is reduced due shading. Right:
Comparison of edge and no-edge response as a function of the normalized slope di�erence ad/bd
for various scales. It can be seen that the edge becomes e�ectively invisible when either the slope
di�erence or �lter scale are high enough.

Upon further analysis, it may also turn out that edges between shaded regions cannot be
detected by purely low-level means with su�cient reliability under realistic conditions.
One could then speci�cally look for additional (high-level) information that helps in the
detection of these edges. Thus, shading certainly calls for more research.

7.3.2 Parallel and Approximately Parallel Edges

Edges frequently occur in pairs. This is obvious in arti�cial environments, where parallel
edges abound due to the convenient tradition of designing objects in terms of rectangles
and other basic shapes. But parallel or almost parallel edges are also common in nat-
ural environments: tree trunks and branches, animals' legs and bodies, and many fruit
shapes are but a few examples. Even if the objects themselves are not characterized by
parallel boundaries, the gap between adjacent objects (i.e. the background) may exhibit
parallelism. Accordingly, explicit recognition of parallelism is a useful part of the image
analysis toolbox, as was recently demonstrated by [Ren et al. 05b].

Error bounds for parallel edges will di�er from those for isolated edges as soon as the
separation between the two edges becomes less than the e�ective diameter of the blurring
kernel. We will speak of geometric interference when the responses of neighboring features
start to in�uence each other. Interference leads to reduced signal-to-noise ratio, higher
localization errors and may even cause complete detection failure. In the context of
parallelism, we need to distinguish two cases: edges with identical polarity (staircase
edges) and with opposite polarity (bar patterns). The error behavior of the two cases
is di�erent. Let us �rst look at edges without noise. As before, we assume a Gaussian
PSF and use Gaussian �lters, so that the combined scale of the PSF and �lter becomes

σ =
√
σ2
PSF + σ2

�lter. Without loss of generality, the edges shall run vertically, i.e. the

217

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

0.6 0.8 1.2 1.4 1.6 1.8 2
Σ�xs

0.5

1

1.5

2

2.5

d�2xs

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 0.6 0.8 1.2 1.4 1.6 1.8 2
Σ�xs

0.2

0.4

0.6

0.8

1

Seff

Figure 7.20: Left: Overestimation of the width of a narrow bar pattern: measured relative
distance d/2xs between the edge pair of a bar pattern, as a function of σ/xs for a2 = −a1

(solid), a2 = −2a1 (dotted), and a2 = −4a1 (dashed). Center: Same diagram with experimental
results added (using the subpixel watershed algorithm at SNR=100, 10 di�erent bar widths, and
averaging over 20 angles and subpixel shifts at every bar width). Right: Reduction of the e�ective
contrast of a narrow bar pattern: the e�ective gradient of the small step in a bar pattern (i.e.
the one with step height a1) relative to the gradient of a single isolated step with height a1, as
a function if σ/xs for a2 = −a1 (solid), a2 = −2a1 (dotted), and a2 = −4a1 (dashed).

edge model is
f(x, y) = a1Θ(x+ xS) + a2Θ(x− xS)

where Θ(.) is the unit step function, and a1, a2 are the contrasts of the �rst and second
step. This function is convolved with a Gaussian with total scale σ, and the edge positions
are determined by the zeros x1,2 of the second horizontal derivative of the result at y = 0

∂2

∂x2
(f ? gσ)

∣∣∣∣
y=0

= − 1
2πσ4

(
a1 (x+ xS) e−

(x+xS)2

2σ2 + a2 (x− xS) e−
(x−xS)2

2σ2

)
(7.20)

When xS > 2σ, the edges do not signi�cantly interfere and are simply detected as two
separate edges, irrespective of a1 and a2. When σ approaches xS or even becomes bigger,
the behavior of the edge detector critically depends on the values of a1 and a2.
We speak of a bar pattern when a1 and a2 have similar magnitudes, but opposite

signs. In this case, two separate zero-crossings do always exist, no matter how large
the ratio σ/xS becomes. In the limit σ/xS → ∞ and a1 = −a2, the distance x2 − x1

between the zero-crossings approaches 2σ, because the bar is e�ectively an impuls, and
(7.20) approaches the second derivative of a Gaussian. When the magnitudes of a1 and a2

di�er, the distance between the two edges is overestimated even more when σ/xs becomes
large, see �gure 7.20 left and center. When the image is not corrupted by noise, we can
still detect the pair of edges correctly, provided that our image and edge data structures
are able to represent two separate edges at a very small distance. For example, when
σ = 1 pixel, xs = 0.5 pixels and a1 = a2, the resulting edge distance in the analog image
is about 2 pixels. If we rely on grid-based edge representations at the original image
resolution (i.e. thin 8-connected pixel edges), correct representation of these edges will
often be impossible. Resolution problems can be avoided when the image is interpolated
to twice its original size before gradient computation (cf. section 7.1), or a polygonal
edge representation is used.
Another problem with parallel edges is that the e�ective contrast is reduced relative

to a single edge with identical step height, especially when the step heights di�er on

218

7.3 Deviations from the Model of Isolated Straight Step Edges

0.5 0.6 0.7 0.8 0.9
Σ�xs

0.2

0.4

0.6

0.8

1

d�2xs

1.5 2 2.5 3 3.5 4
a2�a1

0.6

0.7

0.8

0.9

Σmax�xs

1.5 2 2.5 3 3.5 4
a2�a1

0.2

0.4

0.6

0.8

1
x0

Figure 7.21: Left: Relative reduction in the measured distance between the edges of a staircase
pattern as a function of the relative scale, for a2 = a1 (solid), a2 = 2a1 (dotted), a2 = 4a1

(dashed). The graphs end at the scale where one of the edges disappears. Center: Relative scale
where a staircase edge pair turns into a single edge, as a function of the relative step height
between the two edges. Right: The measured position of the surviving edge for σ/xs = 1 moves
towards the stronger edge in the pair as the relative step height between the two edges increases
(the staircase center position is at x0 = 0).

Figure 7.22: Left: A staircase pattern with su�cient distance between the edges (here, σ/xs =
0.4) is reliably detected. Right: When σ/xs ≈ 1, it is no longer possible to reliably detect a pair
of edges. However, humans interpret this image as a single edge too. (a2 = a1 in both images)

the two sides of the bar pattern. This can be seen in �gure 7.20 right. For example, a
contrast reduction to 50% is observed when a2 = −2a1 and σ/xs ≈ 1.6. This leads to a
corresponding increase in all noise-related errors.

The staircase pattern occurs when a1 and a2 have the same sign. When σ/xs is small,
two separate edges are detectable at the correct distance 2xs. The measured distance
between the two edges decreases as the ratio σ/xs increases (�gure 7.21 left). If a1 = a2,
the two edges eventually meet when σ/xs = 1, and only a single zero crossing (at x = 0)
exists then. In other words, the staircase is smoothed to the point where it appears as
a single boundary. When a1 6= a2, the edge pair disappears even earlier (see �gure 7.21
center), for example at σ/xs ≈ 0.76 when a1 = 2a2. Moreover, the measured position x0

of the surviving edge moves toward the higher contrast step of the pair, �gure 7.21 right.
Then the staircase essentially appears as a single edge, see �gure 7.22.

The situation is similar when two neighboring edges are only approximately parallel.
One common case is encountered when two objects almost touch each other. Although

219

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

the edges to the sides of the gap are rarely exactly parallel, the detectability limits are
similar to those of exactly parallel edges. If the con�guration is near the limits, it may
happen that the two contours are no longer properly separated, leading to topological
errors (falsely merged regions and/or spurious regions). This is especially likely when
only pixel-accurate representations are used.
An even more important e�ect is what we call the ladder phenomenon. It occurs in

the segmentation of long bar patterns, i.e. when two almost parallel edges with opposite
polarity remain close together over a relatively large part of the image. Figure 7.23
illustrates the ladder phenomenon with idealized and real examples. Due to noise, the
measured edge positions always oscillate around their true positions (cf. section 7.2.2.4)
and don't run exactly parallel. Now consider the gradient at the center between the
two edges of the bar. The gradient along the center line would only be exactly zero, if
the step heights on either side of the bar were equal, and the oscillations were exactly
synchronized. However, this never happens in real images. Instead, the real gradient
has local minima where the distance to the two edges is maximal, and it has saddle
points where this distance is minimal. Gradient maxima occur on the edges at points
where the distance to the other edge is maximal. According to Maxwell's de�nition of
watersheds (de�nition 5.1 in section 5.1.2), watershed edges run from saddle points to
maxima. Consequently, almost parallel edges are always connected by spurious edges,
similar to the rungs in a ladder. We have found that these ladder con�gurations are a
major cause of the watershed algorithm's oversegmentation. Since the resulting regions
are often very small, they are sometimes missed by pixel-accurate watershed algorithms,
whereas they are found very reliably by the subpixel watershed algorithm. This may lead
to the impression that the subpixel algorithm is inferior, but this impression is wrong
because the ladder edges are artifacts of the boundary indicator image, not of the edge
detector.
Detection and removal of undesirable ladder rungs is not easy. Simple thresholding

often fails to remove the rungs, because the gradient in the space between two strong edges
is not necessarily small. Some good edges are usually disappearing before the strongest
bad edges. There is also no straightforward geometric criterion because the ladder pattern
is usually very regular and cannot readily be distinguished from a genuine repetitive
pattern. Interestingly, Canny's algorithm does not su�er from the ladder phenomenon
(see �gure 7.24 top): Since Canny's non-maxima suppression looks for local gradient
maxima only along the gradient direction, it will not detect ladder rungs because their
normal direction tends to be perpendicular to the local gradient direction. However,
this advantage comes at the price of missed edges and gaps near junctions, as discussed
in section 5.2. Gaps are very problematic because they deprive us of the possibility to
compute meaningful region features (e.g. gray-level averages) which are important in
many image analysis tasks.
Therefore, the question arises whether one can combine the ability of the watershed al-

gorithm to produce closed contours with the robustness of Canny's algorithm against the
ladder phenomenon. Indeed, we have found that the following modi�cation to the sub-
pixel watershed algorithm e�ectively removes the ladder e�ect. Recall that the subpixel
watershed algorithm works by edge tracing in a boundary indicator function, starting at

220

7.3 Deviations from the Model of Isolated Straight Step Edges

local maximum of gradient image
local minimum of gradient image
saddle point of gradient image

desirable gradient ridge on true contour

undesirable gradient ridge (ladder effect)

Figure 7.23: Top left: Illustration of the ladder phenomenon: Due to unavoidable irregularities,
the gradient image has additional saddle points between parallel edges, giving rise to undesirable
ridges that look like rungs in a ladder. Top right: Demonstration of the ladder phenomenon in
a test image (SNR = 100, true distance between the two parallel edges is 2.2 pixel) using the
subpixel watershed algorithm (red: watersheds, green: local maxima of the gradient, blue: saddle
points). Bottom: Demonstration in a real image. Due to its many parallel edges, the ladder
phenomenon is occurring frequently in the well-known camera man image, as can be seen in the
two subregions shown (edge detection with subpixel watershed algorithm, σ�lter = 1.0, 2-fold
oversampling, gradient threshold = 1.2).

saddle points of the boundary indicator and moving upwards along the �owline (algo-
rithm 5.4 in section 5.1.2). False positive edges resulting from noise are recognized by
the boundary strength at the saddle point (which is always the point of lowest strength
in any given edge): An edge is not traced when the strength at the saddle point is below
a threshold which is derived from the image's noise characteristics (see section 7.2.2.2).
This latter condition can be modi�ed so that a candidate edge is also dropped when
the saddle point is apparently located on a ladder edge. We determine whether the local
edge normal is pointing in a direction with signi�cant local gray-level change. In order to
avoid that this decision has the unwanted side e�ect of creating edge gaps like in Canny's
algorithm, we use a measure for directed edge strength that can represent multiple edge
directions in a single point, namely the structure tensor [Jähne 02].

Algorithm 7.1: Subpixel watershed algorithm with ladder removal

Input: Image to be segmented.

221

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

1. Compute the image gradient by means of a Gaussian derivative �lter at scale σ�lter:(
fx
fy

)
=

(
∂gσ�lter
∂x ? f

∂gσ�lter
∂y ? f

)

2. Compute the gradient magnitude and the structure tensor

‖∇f‖ =
√
f2
x + f2

y , S = gσ�lter?

(
f2
x fxfy

fxfy f2
y

)
=
(

s11 s12

s21 = s12 s22

)

3. Use algorithm 3.1 to �nd the saddle points of the gradient magnitude ‖∇f‖.

4. For each saddle point:

a) Compute the Hessian matrix H of ‖∇f‖ and de�ne the initial edge tracing
direction ~t by the eigenvector corresponding to the large eigenvalue of H, and
the initial edge normal ~n = ~t⊥ by the eigenvector corresponding to the small
eigenvalue of H.

b) Compute the large eigenvalue smax = 1
2

(
s11 + s22 +

√
(s11 − s22)2 + 4s2

21

)
of

the structure tensor S and the tensor projection s onto the normal direction
~n: s = ~nTS~n.

c) If the ratio s/smax is above a threshold s0 = 0.2 (meaning that there is signif-
icant relative edge strength along direction ~n) and the adjusted edge strength
‖∇f‖ s

smax
is above the gradient threshold g0 (meaning that there is signi�cant

absolute edge strength along direction ~n)4, perform edge tracing according to
algorithm 5.4. Otherwise, ignore the present saddle point (i.e. drop the half-
edge pair starting at this point).

This algorithm is not entirely satisfying because the criterion in step 4(c) is a heuristic
which has not yet been justi�ed by theoretical analysis. But the algorithm performs
quite well in practice, as �gure 7.24 bottom shows: All ladder edges have been correctly
recognized, yet all detected contours remain closed. This is in contrast to the result of
Canny's algorithm shown in �gure 7.24 top, which doesn't exhibit the ladder e�ect, but
has no closed contours.

4The threshold g0 is computed according to table 7.1.

222

7.3 Deviations from the Model of Isolated Straight Step Edges

Figure 7.24: Top: Canny's algorithm does not su�er from the ladder phenomenon, but fails
to produce closed contours. Bottom: Application of the modi�ed subpixel watershed algorithm
that recognizes and removes spurious ladder edges while keeping closed contours (algorithm
parameters for both algorithms as in �gure 7.23 bottom)

7.3.3 Curved Edges

In case of isolated straight step edges, the symmetry of the con�guration guarantees
that the relative maxima of the gradient magnitude and the zero-crossings of the second
derivative are located precisely at the true edge positions. When edges are not straight,
this symmetry is lost, and gradient-based edge detectors will return biased edge positions.
The magnitudes of the bias, along with errors due to noise, are addressed in this section.

7.3.3.1 Noise-Free Curved Edges

Systematic localization errors are occurring when an edge is not straight. The prototypical
con�guration for this situation is a circular region with radius R and contrast a. When
the PSF is band-limited, we can analyze this con�guration in the continuous domain.
The Gaussian PSF and Gaussian noise �lters can be combined into a single Gaussian

kernel with total scale σ =
√
σ2
PSF + σ2

�lter. A closed-form expression for the gradient

223

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

0.2 0.4 0.6 0.8 1
Σ�R

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15

Hr0-RL�Σ

Figure 7.25: Normalized bias of gradient-
based edge positions of curved edges, as a
function of the ratio σ/R, computed by nu-
meric maximization of (7.21) . An analytic
approximation of this curve for σ/R < 0.5 is
given in (7.23).

magnitude of a blurred circular region was derived by [Lim 03, Bouma et al. 05]

b(r) = |a| R
σ2

e−
r2+R2

2σ2 I1

(
r R

σ2

)
(7.21)

where I1 is the modi�ed Bessel function of order 1, and r is the radial distance from the
center of the region. The edge position is de�ned by the position of the relative maximum
r0 = arg maxr b(r) of this expression along the radial direction. Since no closed-form
expression for the position of the maximum is known, �gure 7.25 shows numeric results.
It plots the normalized displacement (r0 − R)/σ of the detected edge against the ratio
σ/R between total scale and region radius. Thanks to these normalizations, the diagram
applies to arbitrary scales and radii. When σ/R is large, the blurring kernel is much
bigger than the circle. In the limit σ/R → ∞, the circle is indistinguishable from an
impulse, and (7.21) converges toward the gradient of the kernel itself.
More interesting behavior is observed when the kernel covers only part of the circle.

Since the e�ective radius of a Gaussian kernel is about 2σ, this means we are mainly
interested in the interval σ/R < 0.5. In this interval, the bias is always negative, i.e. the
detected curve is displaced toward the circle's interior. For small σ/R, the magnitude of
the relative displacement grows almost linearly

r0 −R
σ

≈ − σ

2R
(7.22)

(the maximum approximation error of this equation is 10−3 when σ/R < 0.2, and 10−2

when σ/R < 0.3). Hence, the absolute displacement |r0 −R| increases with the square of
the scale, similar to what we found in case of shaded regions, equation (7.19). In other
words, the bias grows faster than the scale, so that small PSFs and noise �lters are again
desirable. An approximation that is valid in the entire range σ/R < 0.5 is given by

r0 −R
σ

= 0.52

√
0.122 +

(σ
R
− 0.476

)2
− 0.255 (7.23)

(the error of this approximation does not exceed 3 ·10−4). The maximum displacement of
about −0.2σ occurs at σ/R ≈ 0.476. When the relative scale exceeds this size, gradients
from the entire contour of the circular region start to interfere, and the detected contour
no longer shrinks, but grows again. This eventually leads to the impulse response limit
mentioned above.

224

7.3 Deviations from the Model of Isolated Straight Step Edges

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

m
ea

su
re

d
di

sp
la

ce
m

en
t (

pi
xe

ls
)

predicted displacement (pixels)

Gaussian gradient, 9-point Canny
Gaussian gradient, subpixel watersheds

Figure 7.26: Left: Edge detection results for a circular region with R = 2 pixels and σPSF = 0.5:
true boundary (cyan), subpixel watershed algorithm (red), and 9-point �t Canny algorithm
(green), both with σ�lter = 0.9. Note that edgel computation is purely local, no circle �tting is
performed. Right: Measured displacement r0−R (average with error bars) for Canny's algorithm
with 9-point subpixel correction (green) and the subpixel watershed algorithm (blue) vs. predicted
bias according to numerical maximization of (7.21) for R ∈ {2, 4, 10, 20}, σPSF = 0.5 and σ�lter ∈
{0.7, 1.0, 2.0, 3.0}. (Each data point is obtained by averaging along the perimeter of 20 circles
which have di�erent subpixel center positions.)

7.3.3.2 Experimental Validation with Arti�cially Created Curved Edges

In this section we repeat some of the experiments from section 7.2 for curved edges. We
�rst investigate whether the predicted bias is actually reproduced by real edge detectors.
Since we use small PSFs and �lters, challenging problems are especially posed by small
circles. Figure 7.26 left demonstrates that the subpixel watershed algorithm (red) is able
to �nd a very accurate boundary for a region as small as R = 2. In contrast, the result of
Canny's algorithm (green) su�ers from the limitation that at most one edge per pixel is
found. The resulting contour is therefore a 9-gon, which is only a coarse approximation
to a circle. In this example, the total scale of PSF and edge detection �lter was σ = 1.12,
so the con�guration is close to the worst case with maximum normalized bias according
to theory.

Figure 7.26 right shows a plot of measured displacements against those predicted by
the numerical maximization of (7.21). Results of the subpixel watershed algorithm match
theoretical predictions very well, whereas the Canny algorithm usually has larger displace-
ments (by magnitude) than predicted. This is partly due to the additional regularization
which is implicitly performed when the edge is localized by the least-squares �t in a 3×3
neighborhood (i.e. the 9-point Canny algorithm has a somewhat larger e�ective scale
than σ).

Our next experiment concerns noisy curved edges. We are interested in the question
whether the noise error analysis for straight edges (section 7.2.2.3) carries over to curved
edges. We �rst repeat the experiment of �gure 7.26 (circle with radius 2) with a noisy
input image, see �gure 7.27. It can be seen that the region is still correctly located, albeit
with larger errors. Moreover, the noise causes the error to change its sign around the

225

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

po
si

tio
n

er
ro

r
(p

ix
el

s)

normalized arc length

Gaussian gradient, crack-edge watersheds
Gaussian gradient, subpixel watersheds

Gaussian gradient, 9-point Canny
Haralick, subpixel zero-crossings

Figure 7.27: Edge detection on a small noisy circle (compare with the noise-free version of this
experiment, �gure 7.26). Left: Original image with true boundary (cyan), subpixel watershed
algorithm (red), and 9-point Canny algorithm (green). Circle radius was 2 pixels, SNR = 10, and
σPSF = σ�lter = 1. Right: Position error along the entire circle boundary for various algorithms.

method bias st. dev.

(pixels) (pixels)

theoretical prediction -0.11 0.17

crack-edge watershed -0.22 0.35

subpixel watershed -0.11 0.26

9-point Canny -0.20 0.23

Haralick -0.12 0.25

Table 7.2: Comparison of mean and stan-
dard deviation of position error with theoret-
ical predictions.

circle contour. Sign changes occur four to six times, in accordance with the prediction of
equation (7.16). Table 7.2 compares the measured errors with theoretical predictions of
the bias according to equation (7.23) and the standard deviation according to equation
(7.9). The standard deviations of all algorithms are higher than predicted, which is no
surprise, because the prediction of the standard deviation was taken from the straight
edge model, whereas the actual edge is highly curved. Nonetheless, the predictions are
good enough to be of practical value, especially as they become better when the edge
has lower curvature (see below). The bias of the most accurate algorithms (subpixel
watersheds and Haralick zero-crossings) conforms to the prediction. Like in the noise-
free experiment, the 9-point Canny algorithm has slightly higher bias (but lower standard
deviation) due to its additional regularization. Finally, the errors of the pixel-accurate
watershed algorithm are signi�cantly larger than predicted because the prediction doesn't
include round-o� to pixel coordinates.

Finally, we create test images with a noise-free or noisy ellipse in order to validate
theoretical predictions on a contour with varying curvature. Position error results are
shown in �gure 7.28. Again, theoretical predictions are veri�ed quite well. The accuracy
of di�erent subpixel methods is very similar, and the error decreases proportionally to
the inverse SNR. In contrast, the accuracy of the crack-edge watershed is dominated by
round-o� errors to grid coordinates and does not pro�t from better SNR. All methods

226

7.3 Deviations from the Model of Isolated Straight Step Edges

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0 10 20 30 40 50 60 70 80 90

po
si

tio
n

er
ro

r
(p

ix
el

s)

arc length (pixels)

Gaussian gradient, crack-edge watersheds, SNR=10
Gaussian gradient, crack-edge watersheds, SNR=100

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90

po
si

tio
n

er
ro

r
(p

ix
el

s)

arc length (pixels)

Gaussian gradient, subpixel watersheds, SNR=10
Gaussian gradient, subpixel watersheds, SNR=100

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90

po
si

tio
n

er
ro

r
(p

ix
el

s)

arc length (pixels)

Gaussian gradient, 9-point Canny, SNR=10
Gaussian gradient, 9-point Canny, SNR=100

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90

po
si

tio
n

er
ro

r
(p

ix
el

s)

arc length (pixels)

Haralick, subpixel zero-crossings, SNR=10
Haralick, subpixel zero-crossings, SNR=100

method SNR=10 SNR=100

residual bias st. dev. residual bias st. dev.

(pixels) (pixels) (pixels) (pixels)

theoretical prediction 0.0 0.17 0.0 0.017

crack-edge watershed -0.08 0.32 -0.05 0.30

subpixel watershed -0.04 0.14 -0.003 0.017

9-point Canny -0.05 0.11 -0.01 0.022

Haralick -0.05 0.14 -0.005 0.027

Figure 7.28: Top: Test image (ellipse with radii 40 and 20 pixels, SNR = 10, σPSF = σ�lter = 1)
with true contour (blue), result of crack-edge (red) and subpixel (green) watershed algorithms.
Center: Edge position error for various methods at SNR = 10 and SNR = 100 (the same noise
realization was used in both cases). Curves refer to the top half of the ellipse. The expected bias
according to (7.23) has already been subtracted from the position error measurements, i.e. the
diagrams show residual errors. Bottom: Comparison of residual position errors with theoretical
predictions.

227

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

-15

-10

-5

 0

 5

 10

 15

 0 10 20 30 40 50 60 70 80 90

ta
ng

en
t a

ng
le

 e
rr

or
 (

de
gr

ee
s)

arc length (pixels)

Gaussian gradient, SNR=10
Gaussian gradient, SNR=100

method SNR=10 SNR=100

bias st. dev. bias st. dev.

(degrees) (degrees) (degrees) (degrees)

theoretical prediction 0◦ 4.1◦ 0◦ 0.41◦

subpixel watershed −0.01◦ 4.2◦ −0.005◦ 0.46◦

9-point Canny −0.08◦ 4.2◦ −0.01◦ 0.47◦

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0 10 20 30 40 50 60 70 80 90

cu
rv

at
ur

e
(1

/p
ix

el
)

arc length (pixels)

true curvature
Gaussian isophote curvature, SNR=10

Gaussian isophote curvature, SNR=100

method SNR=10 SNR=100

bias st. dev. bias st. dev.

(1/pixels) (1/pixels) (1/pixels) (1/pixels)

theoretical prediction 0.0 0.087 0.0 0.0087

subpixel watershed 0.0008 0.092 −6 · 10−6 0.009

9-point Canny 0.0007 0.093 3 · 10−5 0.009

Figure 7.29: Detailed results for the ellipse experiment in �gure 7.28 (continued). Curves cor-
respond to the top half of the ellipse. Top: Errors of edge tangent angle and comparison with
theoretical predictions. Bottom: Curvature and comparison of curvature errors with theoretical
predictions.

exhibit a residual bias, i.e. the bias is larger than predicted by the purely curvature-
dependent formula (7.22). This indicates that the localization bias of curved edges also
depends on the SNR. However, the residual bias is smaller than the position standard
deviation, so more accurate theoretical analysis of the bias may not be worthwhile. The
average wave-length of the error along the subpixel watershed curve also conforms to the
prediction of (7.16): For σ�lter = 1, the depicted interval with arc-length 96 pixels should
contain 22 error zero-crossings, and the actual number in the diagram is 24.

Experimental results for tangent angles and curvature on the same ellipse are shown in
�gure 7.29. Again we �nd very good agreement between theory and experiment. Errors
reduce proportionally to the inverse SNR. Formula (7.16) predicts the tangent error to
have 38 zero-crossings in the depicted interval, and the curvature error to have 49. The
actual values are 39 and 50 respectively. The experiment also highlights the di�culties
in curvature estimation: The true curvature of the ellipse is between 0.1 and 0.012.
Therefore, the relative error of the isophote curvature according to (7.14) is between 50%
and 400%, when a �lter of σ�lter = 1 is used on an image with SNR = 10!

7.4 Experimental Validation in Natural Images

In order to check whether our results on arti�cial edge images carry over to images taken
by a real camera, we repeat our experiments on the test images by [Baker & Nayar 99]

228

7.4 Experimental Validation in Natural Images

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

fr
eq

ue
nc

y

actual position error / predicted position error

Gaussian gradient, crack-edge watersheds
Gaussian gradient, subpixel watersheds

Laplacian of Gaussian, subpixel zero-crossings
9-point Canny

Haralick, subpixel zero-crosings

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

fr
eq

ue
nc

y

actual angle error / predicted angle error

Gaussian gradient, crack-edge watersheds
Gaussian gradient, subpixel watersheds

9-point Canny

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

fr
eq

ue
nc

y

actual position error / predicted position error

Gaussian gradient, crack-edge watersheds
Gaussian gradient, subpixel watersheds

Laplacian of Gaussian, subpixel zero-crossings
9-point Canny

Haralick, subpixel zero-crosings

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

fr
eq

ue
nc

y

actual angle error / predicted angle error

Gaussian gradient, crack-edge watersheds
Gaussian gradient, subpixel watersheds

9-point Canny

Figure 7.30: Comparison of measured position and angle error with theoretical predictions. Top
row: set �benchmark2�, bottom row: set �benchmark1�.

which we discussed in section 2.2.2.2. In particular, we use the straight edge test sets
�benchmark1� (150 images) and �benchmark2� (185 images) and the ellipse test set
�benchmark7� (75 images). Results of edge detection algorithms were compared with
consensus ground truth according to algorithm 2.1 (see �gure 2.12 for two example im-
ages with our computed ground truth). Since the object type in each image is known, it
was possible to compute the consensus ground truth by a robust global model �t (of an
edge or ellipse). The ground truth is therefore signi�cantly more accurate than the purely
local measurements of individual edge detectors. Thus, we can expect error estimates to
be close to what they would be when exact ground truth were available.

To prepare our experiments, the input images are �rst subjected to non-parametric
noise normalization according to algorithm 3.2. Ground truth was computed afterward
because noise normalization leads to a slight shift in the apparent edge position. The
SNR after noise normalization was between 17 and 29 (set �benchmark1�) and between
3 and 40 (set �benchmark2�). In order to compare the measured errors with theoretical
predictions, we also estimated the PSF scale in the straight-edge images by means of
the slanted edge technique described in [ISO 12233:2000]. Since many edges are slanted
much more than the recommended 5◦, we additionally corrected the estimated PSFs for
the true slant angle. The PSFs were well approximated by Gaussians, so we computed
σPSF according to the optimal Gaussian �t. It turned out that σPSF varied between 0.5
pixels and 1.2 pixels, where high values are probably due to imperfect focus.

229

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.31: Examples for non-Gaussian noise in the �benchmark1� set (image �d2�). Left:
Contrast enhancement in the dark image region reveals horizontally correlated quantization
noise. Right: Outliers near the true contour cause distortions in the detected edge. Horizontal
noise correlation is also visible in the bright image area.

Figure 7.30 shows histograms of the ratio between measured and predicted errors on
the straight-edge data sets. It can be seen that the predictions are con�rmed very well
in the test set �benchmark2�, whereas the actual errors are signi�cantly higher than pre-
dicted in test set �benchmark1�. This is surprising, because �benchmark2� contains the
more di�cult images, with higher noise levels and partly shaded regions. When we look
at absolute results, we recognize that the absolute errors for the set �benchmark1� are
indeed small (typical localization errors below 0.1 pixels), but nevertheless exceed the
theoretical prediction by a factor of 2 to 3. We believe that the reason for this behavior
lies in the noise characteristic of the �benchmark1� images: The noise is markedly non-
Gaussian, as is demonstrated in �gure 7.31. It is horizontally correlated, contains outliers
and is dominated by quantization round-o� in dark image areas. These noise character-
istics cannot be corrected by point-wise noise normalization according to algorithm 3.2.
Consequently, edge position errors are as large as they would have been under Gaussian
noise with two or three times higher standard deviation. A more complicated noise nor-
malization algorithm could possibly improve results, provided that the noise is accurately
modeled, but the present simple experiment is probably not worth the e�ort. Since most
image analysis algorithms are best suited for Gaussian noise, image acquisition devices
with Gaussian noise characteristics should be preferred.
Results for an ellipse image are reported in �gure 7.32. Agreement between theory

and experiment is generally quite satisfactory, with the exception of the edge localization
bias, which should be negative but is actually positive. This is probably due to inaccura-
cies in the computed ground-truth. Another interesting phenomenon are the somewhat
lower errors in the �rst half of the diagram (up to an arc length of 50). This may be a
consequence of horizontal noise correlation: the �rst part of the contour runs approxi-
mately horizontally, so that the negative in�uence of horizontal noise correlation is less
noticeable. Once more, we observe that the curvature cannot be determined with �lters
of scale σ�lter = 1 on real images.

230

7.4 Experimental Validation in Natural Images

-0.5

 0

 0.5

 1

 1.5

 10 20 30 40 50 60 70 80 90 100

po
si

tio
n

er
ro

r
(p

ix
el

s)

arc length (pixels)

Gaussian gradient, crack-edge watershed
Gaussian gradient, subpixel watershed

Laplacian, subpixel zero-crossings
Gaussian gradient, 9-point Canny
Haralick, subpixel zero-crossings

method bias st. dev.

(pixels) (pixels)

theoretical prediction -0.01...-0.1 0.11

crack-edge watershed 0.17 0.34

subpixel watershed 0.22 0.13

Laplacian 0.25 0.14

9-point Canny 0.22 0.13

Haralick 0.22 0.15

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 10 20 30 40 50 60 70 80 90 100

ta
ng

en
t a

ng
le

 e
rr

or
 (

de
gr

ee
s)

arc length (pixels)

Gaussian gradient, subpixel watershed

method bias st. dev.

(degrees) (degrees)

theoretical prediction 0◦ 2.7◦

subpixel watershed 0.17◦ 1.5◦

9-point Canny 0.18◦ 1.5◦

-0.1

-0.08

-0.06

-0.04

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 10 20 30 40 50 60 70 80 90 100

cu
rv

at
ur

e
(1

/p
ix

el
)

arc length (pixels)

actual curvature
Gaussian, isophote curvature

method bias st. dev.

(1/pixels) (1/pixels)

theoretical prediction 0.0 0.07

subpixel watershed -0.044 0.027

9-point Canny -0.044 0.027

Figure 7.32: Top: Noise-normalized test image benchmark7-a2 with true contour (blue), result
of crack-edge (red) and subpixel (green) watershed algorithms (σ�lter = 1) . In the upper right
part of the contour, the edges from local algorithms have a gap, because the edge contrast is
lost due to a contrast inversion along the contour. At the point where the edges end, the SNR is
about 3. Row 2: Error of edge position for the lower part of the contour, where the SNR decreases
from 20 to 15 (the ground truth arc length increases from right to left in the lower part of the
ellipse). Row 3: Error of edge tangent angle. Row 4: Comparison of the true curvature with the
measured isophote curvature along the subpixel watershed.

231

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

25 50 75 100 125 150 175
Β @degreesD

0.5

1

1.5

2

2.5

x0�Σ

Figure 7.33: Left: Relative displacement x0/σ along the bisector of an L-corner as a function of
the corner's opening angle, according to (7.24). Right: Results of various subpixel edge detectors
for a 30◦-corner at SNR = 100: ground-truth (blue), subpixel watersheds (red), Canny with
9-point correction (green, with gap), and Haralick operator with subpixel zero-crossings (dark
red).

7.5 Corners and Junctions

We have seen in section 7.3.3.1 that curved edges cause a bias in the detected edge
positions. Even larger displacements are encountered at sharp corners (see �gure 7.33
right). A detailed theoretical investigation of the errors for di�erent boundary indicators
was conducted by [Rohr 94]. He derived the following equations for the edge displacement
x0 along the corner bisector for boundary indicators on the basis of the Gaussian gradient.
Let x′ be the solution of the implicit equation

1√
2π

e−x
′2/2 −

(
tan

(
β

2

))2 x′

2

(
1 + erf

(
x′√

2

))
= 0

where β is the opening angle of the corner. Then the displacement is

x0 = σ x′

√
1 +

(
tan

(
β

2

))2

(7.24)

where σ =
√
σ2
PSF + σ2

�lter is the combined scale of the PSF and derivative �lter. The

edge is always displaced towards the acute angle of the corner, and the (theoretical)
displacement becomes maximal on the bisector. Figure 7.33 left depicts the theoretically
predicted displacement according to (7.24) as a function of the opening angle. It can be
seen that the displacement increases without bound as the angle approaches 0◦. Corners
with small opening angles are therefore very di�cult to detect with local operators. At
15◦, the displacement is 2.2σ which can be considered as a practical limit in the sense that
detection of smaller corners is not reliably possible with the edge operators considered
here.

232

7.5 Corners and Junctions

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.5 1 1.5 2

re
la

tiv
e

fr
eq

ue
nc

y

ratio measured displacement / predicted displacement (predicted = 2.4 pixels)

Gaussian gradient, pixel-accurate Canny operator
Haralick operator, subpixel zero-crossings

Gaussian gradient, subpixel watersheds

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

re
la

tiv
e

fr
eq

ue
nc

y

ratio measured displacement / predicted displacement (predicted = 1.0 pixels)

Gaussian gradient, pixel-accurate Canny operator
Haralick operator, subpixel zero-crossings

Gaussian gradient, subpixel watersheds

Figure 7.34: Comparison of the predicted displacement according to (7.24) with experimental
data at σ =

√
2 and SNR = 100. Histograms are generated from 120 images with di�erent

orientations and subpixel positions of the corner. Left: Corner opening angle 30◦. Right: Corner
opening angle 90◦.

We use the technique described in section 2.2.2.1, equation (2.3) to create test images
for experimental validation of these results. Figure 7.33 right shows the actually detected
edges of various subpixel-accurate detectors for a low-noise 30◦ corner image. Signi�cant
distortions relative to the ground truth can be noted. The Haralick operator performs
slightly better than the others, whereas Canny's algorithm fails to produce a closed
contour. 7.34 shows the ratio between predicted and actual errors in more detail. It can
be noted that theory and experiment agree very well for subpixel-accurate detectors and
90◦ corners (�g. 7.34 right), whereas the results of pixel-accurate detectors exhibit high
variability due to the additional grid round-o� errors. These round-o� errors are no longer
very noticeable for 30◦ corners, because the bias is much larger than the pixel distance
here (cf. �gure 7.34 left). Consequently, the pixel-accurate Canny operator performs
nearly as well as the subpixel watershed algorithm (as long as it produces a closed
contour). As was already apparent in �gure 7.33 right, subpixel zero-crossings computed
from Haralick's operator are slightly better than expected for 30◦ corners. Moreover,
the results of all operators exhibit noticeable variability (it is not yet clear whether this
variability is caused by noise alone).

Extending this theoretical analysis towards junctions of degree 3 and higher is di�cult
because the number of degrees of freedom increases rapidly. For example, we can inde-
pendently choose one angle and two gray levels for a T-junction, two angles and two gray
levels for a Y-junction etc. Even more variables would be required if we moved from the
step edge model to a piecewise planar gray level model. Then, a simple corner (degree
2) has already seven degrees of freedom: three for the planar intensity model in either of
the two adjacent regions, and one for the opening angle of the corner.

There is no simple normalization that reduces the general properties of these con�gu-
rations into an easily comprehensible form. Moreover, the errors of di�erent detectors are
no longer qualitatively similar, as they had been in case of straight edges and corners. It
is therefore only possible to analyze a � hopefully representative � set of example junc-
tions. This has been done by [Neumann 88, Deriche & Giraudon 93, Rohr 92, Beymer 91,

233

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.35: Edge distortions at T-junctions for the subpixel watershed algorithm (σ =
√

2,
SNR = 10, background image is shown without noise). Black: ground truth; red: strongest edge
(black→white) has twice the contrast of the weakest one (black→gray); green: ratio of strongest
to weakest edge is 3 (this corresponds to the background image); blue: ratio is 4.

Rothwell et al. 95], who analyzed the performance of various edge detectors at junctions
under the step edge model, and we reproduce some of their experiments with our edge
detectors.
Test images are again generated by the technique described in section 2.2.2.1, equation

(2.3). When edge detection is performed by means of Gaussian �lters and their deriva-

tives, PSF and �lter scale add to the total scale σ =
√
σ2
PSF + σ2

�lter as usual. In practice,

junctions of degree 3 are by far the most common. Since the number of degrees of freedom
in these junctions is still relatively low, experiments can cover the parameter space fairly
well. The experiments revealed the following typical edge detector behaviors:

1. All edges are distorted near the junction. The magnitude of the distortions depends
on the relative strengths between the edges at the same junction (weaker edges
have higher distortions), the angle enclosed by adjacent edges (smaller angles lead
to larger distortions), and the order of intensity changes around the junction (per-
muting the intensities may completely change the distortion pattern). Figure 7.35
illustrates this for a number of T-junctions, and �gure 7.36 for more complicated
junctions of degree 3.

2. The results of subpixel edge detectors are largely rotationally invariant, as �gure
7.37 shows. This is not the case for pixel-accurate detectors since round-o� errors
depend on the orientation of the edges relative to the grid.

234

7.5 Corners and Junctions

3. The edge detectors of the watershed family are producing closed contours. In con-
trast, edges detected by Canny's algorithm or zero crossings (Haralick's operator,
Laplace operator) often have gaps, see �gure 7.38. Gaps always occur on the weak-
est edge, and their size is usually between σ and 2σ, but may exceed 3σ in some
cases. These gaps result from the assumption of a single local edge direction, which
is inherent to Canny's and Haralick's detectors, but clearly violated near junctions,
cf. section 5.2. The gaps roughly correspond to the distorted part of the watershed
boundary, and the tendency to form gaps and the size of the gaps increases some-
what when the edges at the junction di�er signi�cantly in strength (not shown).

The situation at junctions of higher degree is even more complex. In addition to the
phenomena we already observed for junctions of degree 3 (distortions, lower reliability for
small angles), the results of the subpixel watershed algorithm show a new kind of error:
degree-4 junctions are often split up into several junctions of degree 3. This is illustrated
in �gure 7.39: Most degree-4 junctions are split into two degree-3 junctions, but if the
gray-levels at the junction form a saddle point, we may even get four degree-3 junctions
enclosing a small phantom region. In contrast, Canny's and Haralick's algorithms exhibit
the gaps we already know from degree-3 junctions. Due to these gaps, we often get a
single connected edge plus two dangling edges instead of a degree-4 junction. The ability
of the watershed algorithm to maintain closed contours can be considered an advantage
because it correctly reproduces region topology and allows the computation of region
properties. Conversely, the gaps produced by the alternative algorithms often lead to the
entire image to consist of only a single region, so that no useful region properties can be
computed.

235

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.36: Edge distortions at degree-3 junctions for the subpixel watershed algorithm (σ =√
2, SNR = 10, background image is shown without noise). Black: ground truth; red: strongest

edge (black→white) has twice the contrast of the weakest one (black→gray); green: ratio of
strongest to weakest edge is 3 (this corresponds to the background image); blue: ratio is 4.

236

7.5 Corners and Junctions

Figure 7.37: Rotational invariance of edge distortions at a junction for the subpixel watershed
algorithm (σ =

√
2, SNR = 10, background image is shown without noise). Green: edges detected

in the images shown; red: edges detected in 30◦ rotated images, aligned with the background
image by inverse rotation. The two results should be equal. The small di�erences visible can be
explained by the fact that the noise was di�erent in the two (rotated and non-rotated) images.

Figure 7.38: Edge gaps at T-junctions for the subpixel Canny algorithm (red) and the subpixel
Haralick operator (green) against ground truth (black, background image is shown without noise).
Parameters: σ =

√
2, SNR = 10, ratio of strongest to weakest edge is 3.

237

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.39: Edge distortions at degree-4 junctions for the subpixel watershed algorithm (σ =√
2, SNR = 10, background image is shown without noise). Black: ground truth; red: result of

the subpixel watershed algorithm.

Figure 7.40: Edge gaps at degree-4 junctions for the subpixel Canny algorithm (red) and the
subpixel Haralick operator (green) against ground truth (black, background image is shown
without noise). Parameters: σ =

√
2, SNR = 10.

238

7.6 Measurement Errors and the Boundary Sampling Theorem

crack-edge

WS

subpixel

WS

pixel

Canny

subpixel

Canny

mid-crack

Haralick

subpixel

Haralick

p q p q p q p q p q p q

straight line 0.71 0.71 0.13 0.06 0.79 0.52 0.73 0.09 0.71 0.53 0.11 0.09

SNR = 100 [0.71] [0.71] [0.11] [0.05] [0.79] [0.5] [0.72] [0.05] [0.71] [0.5] [0.07] [0.05]

straight line 1.0 2.4 0.61 0.58 1.21 1.01 1.14 0.48 0.99 0.96 0.62 0.57

SNR = 10 [1.4] [0.52] [1.0] [0.52] [1.0] [0.52]

disc, r = 4 0.78 1.0 0.30 0.29 0.96 0.74 0.79 0.34 0.87 0.72 0.34 0.33

SNR = 100 [0.96] [0.25] [0.75] [0.25] [0.75] [0.25]

corner 90◦ 1.34 1.55 1.06 0.74 1.17 0.75 1.29 0.73 1.43 0.96 1.06 0.74

SNR = 100 [1.0] [0.71] [1.0] [0.71]

corner 30◦ 2.84 1.84 3.00 0.94 2.69 0.99 2.85 0.60 2.34 0.84 2.42 0.55

SNR = 100 [2.4] [0.62] [2.4] [0.62]

T-junction 3.19 4.54 2.89 3.81 3.46 1.68 3.40 1.40 3.26 3.88 3.21 3.40

SNR = 100

T-junction

(≥ 30◦)

2.30 4.54 2.00 3.81 2.89 1.32 2.80 1.40 2.61 3.88 2.60 3.40

SNR = 100

X-junction 2.65 4.53 3.87 2.86 3.01 2.2 3.07 1.86 3.07 3.31 2.78 3.82

SNR = 100

Table 7.3: Maximal errors p and q for various feature types and edge detectors. Theoretical
predictions (if available) are given in brackets. Parameters of all algorithms: combined scale of
PSF and �lter σ =

√
2, gradient threshold t = 1.2. �T-junction (≥ 30◦)� means that the minimum

angle between adjacent edges was 30◦. Otherwise, it was 15◦.

7.6 Measurement Errors and the Boundary Sampling

Theorem

While the analysis of junction errors by means of examples is interesting and instructive, it
doesn't have direct practical consequences, because it cannot answer questions like �Is the
resolution of this image su�cient?� or �How large will the error margin be?�. Fortunately,
the boundary sampling theorem 6.8 allows us to draw more general conclusions about
the practical performance of di�erent boundary detectors near junctions. Recall that the
sampling theorem guarantees preservation of important topological properties provided
that the error of the boundary sampling is su�ciently small relative to the region size.
That is, we can analyze a large, representative sample of junctions and measure p (the
maximal distance of any true boundary point from a detected edgel) and q (the maximal
distance of any detected edgel from the true boundary). In order for the topology to be
preserved despite of these errors, the correct (ground-truth) boundaries must be r-stable
with r > p+ q, and every region must contain a circle with radius 2r. Table 7.3 lists the
measured errors for various situations and various detectors.

The computation of theoretical predictions for p and q is simpli�ed because these num-

239

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

bers represent maximum errors. Thus, the theoretical maximum errors from independent
sources (e.g. from noise and from round-o� to pixel coordinates) can just be added.
Speci�cally, predictions have been obtained as follows:

• The predictions of p and q for pixel-accurate detectors in the low-noise case are
taken from the rounding error analysis of the corresponding sampling schemes in
section 6.2.1 (additional statistical errors can be neglected due to the high SNR).

• The predictions for pixel-accurate detectors in noisy images are the sum of the
maximum statistical errors according to equation (7.9) and the rounding errors.

• The error q of subpixel-accurate detectors for straight lines is computed by means of
equation (7.9). The corresponding error p is obtained as p =

√
d2/4 + q2, where d is

the maximum distance between subsequent edgels. In case of the Canny algorithm,
we have d =

√
2 because at most one edgel is returned per pixel. The other subpixel-

accurate algorithms support adaptive step size control, and we adjusted the steps
so that we got d = 0.2 for the subpixel watershed algorithm and d = 0.1 for the
subpixel Haralick algorithm.

• The predictions of p for corners are the displacements according to equation (7.24),
and the corresponding q is the distance of this displaced point from the ground
truth contour, i.e. q = p sin (φ/2), where φ is the corner's opening angle.

We can make a number of interesting observations in this table.

1. The subpixel algorithms are indeed more accurate than the corresponding pixel-
accurate algorithm versions, usually by a large margin. Theoretical predictions are
pretty close to the experimental data, with the exception of q for the pixel-accurate
watershed algorithm, where some false positive edges (due to oversegmentation)
cause larger experimental errors than expected.

2. The error at corners and junctions is much bigger than the error at straight and
curved lines.

3. No algorithm is a clear winner.

The subpixel watershed algorithm has the lowest values for p since it is able to maintain
closed boundaries (i.e. there are no false negatives due to missing boundary parts). In
contrast, it has relatively high values for q since the well-known oversegmentation of
the watershed transform results in extra edges which are often located far from the
true boundary. It is unclear whether the advantage of closed contours can compensate
for the disadvantage of oversegmentation, especially in the context of (α, β)-boundary
reconstruction which only considers edgels as points and ignores their original links. In
terms of the sum p+q (which is the most relevant characteristic because the ground-truth
plane partition is required to be (p+ q)-stable), the subpixel Canny algorithm is best. Its
disadvantage of having large p for straight and curved edges can be compensated if it is

240

7.6 Measurement Errors and the Boundary Sampling Theorem

applied to 4- or 8-fold oversampled versions of the original image � then the point density
along the edge becomes comparable to that of the other subpixel algorithms. Figure 7.41
contrasts the original segmentation of two example junctions with (α, β)-reconstruction
(algorithm 5.12) on the basis of parameters selected according to table 7.3. It can be
seen that the di�erences between edge detectors are smaller after (α, β)-reconstruction
than they were before. In the upper example, all algorithms make a topological error
(the watershed algorithm creates a spurious region, the others leave a gap and merge two
regions) which is corrected by (α, β)-reconstruction.
The large discrepancy between algorithm performance for edges and for junctions is a

big problem. We had seen earlier that subpixel edge detectors can readily segment parallel
edges with a separation as small as two pixels or circular regions with a radius smaller
than 2, and α < 1 can be used for (α, β)-reconstruction of isolated straight or curved
edges. However, these α-values are not nearly large enough to close gaps at junctions or to
detect uncertain junction con�gurations. But when we choose larger α-values according
to the maximum errors at junctions, we will no longer be able to resolve small regions.
In practice, the problem is not quite as bad, because table 7.3 represents maximum

errors that guarantee topological correctness in all circumstances. If we only require
junctions to be correct with a certain high probability, we can get good results with
much smaller α-values, because very problematic junctions occur relatively infrequently
in actual images. Nevertheless, it remains an important question whether boundary in-
dicators with better performance near junctions can be developed. We will come back to
this question in chapter 9.

241

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

subpixel watersheds subpixel Canny algorithm subpixel Haralick algorithm

Figure 7.41: Comparison of (α, β)-reconstruction (rows 2 and 4) with the original segmentations
(rows 1 and 3). Parameters: SNR = 100, σPSF = σ�lter = 1, α = 2.0 (subpixel watershed), α = 2.8
(subpixel Canny), α = 2.6 (subpixel Haralick), β = α.

242

7.7 Examples

7.7 Examples

A few examples shall demonstrate that the methods we presented also work well on real
images. First, consider �gure 7.42. It shows a texture that is subjected to signi�cant
perspective foreshortening. Thus, the image resolution reduces rapidly toward the top
image border. We compare the performance of a standard pixel-accurate Canny detector
at original resolution with a subpixel watershed algorithm on an oversampled image. It is
clearly seen that the watershed segmentation maintains �delity almost to the top border
(although with slight oversegmentation), whereas the traditional Canny edge image has
already many errors in the lower half of the image.
The good performance of the subpixel watershed algorithm is also demonstrated in

�gure 7.43, where it is able to resolve individual planks on the building's wall, instead of
just interpreting the wall as a texture.
Figure 7.44 illustrates the application of edge detectors to a color image. Here, we

replaced the gray-level gradient with a color gradient de�ned as

g(x, y) =
√
λ1 − λ2

(
cosφ
sinφ

)
(7.25)

where λ1 ≥ λ2 are the eigenvalues of the color gradient tensor

C =
(

r2
x + g2

x + b2x rxry + gxgy + bxby
rxry + gxgy + bxby r2

y + g2
y + b2y

)
and (cosφ, sinφ)T is the eigenvector corresponding to λ1. Despite the high color contrast,
the standard Canny operator cannot segment the smaller features (especially the window)

Figure 7.42: Texture foreshortening example. Bottom left: pixel-accurate Canny algorithm
(σ�lter = 0.8, gradient threshold 10). Bottom right: subpixel watershed algorithm (two-fold
oversampling, σ�lter = 1.6 in the oversampled coordinate system, gradient threshold 5).

243

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.43: Result of the subpixel watershed algorithm with ladder removal (algorithm 7.1)
on a low-resolution region (two-fold oversampling, σ�lter = 1.6 in the oversampled coordinate
system, gradient threshold 0.4).

and has many false positives (spurious edges) and false negatives (gaps). In contrast, the
subpixel watershed algorithm (which only makes use of the magnitude of g(x, y), but
on a two-fold oversampled image) resolves small details correctly, has no gaps, and only
slight oversegmentation.

Figure 7.44: Left: original color image. Center: result of pixel-accurate Canny algorithm on
color gradient (σ�lter = 0.7, gradient threshold 12). Right: result of subpixel watershed algorithm
(two-fold oversampling, σ�lter = 1.4 in the oversampled coordinate system, gradient threshold
6)

244

7.7 Examples

Figure 7.45: Part of an ancient Chinese manuscript. This fragment gives an impression of the
shape variations as the text happens to be very similar in four consecutive columns. The white
rectangle indicates the characters to be shown in �gure 7.46.

A Case Study

To conclude this section, we present a small case study that highlights particularly well
how the methods outlined in this chapter help in obtaining good segmentation results.
The task in this project is the analysis of ancient Chinese manuscripts which have recently
been excavated and sometimes date back as far as 300 B.C. (�gure 7.45). The specialists
for these manuscripts want to analyze various writing characteristics in order to identify
scribes and their schools. This knowledge would be a tremendous help in various tasks
such as the correct grouping of fragments into entire works, their precise dating, and their
assignment to di�erent thought traditions. Decisions about these questions should be
based on objective text characteristics (such as shape features of the calligraphy), rather
than content-based text analysis, because the latter may be biased by the interpreter's
modern background: Since interpretation of ancient manuscripts is still a relatively new
�eld, there is a certain risk that knowledge about modern interpretations of a single
character or an entire text passages might impose some unconscious prejudice on attempts
at semantic text analysis. Purely geometric text features are not susceptible to this risk.

Regardless of which geometric features will eventually turn out to be useful, segmenta-
tion of individual characters is a useful (perhaps necessary) processing step before such
characteristics are computed. Since di�erences between scribes may by very subtle (such

245

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

as tiny variations in stroke widths and angles), these segmentations should be as accurate
as possible. Inspection of the input data reveals that the width of some important strokes
is below 2 pixels, sometimes even only 1 pixel. Likewise, the size of certain stroke charac-
teristics that reveal a stroke's direction is only in the order of single pixels. Furthermore,
stroke angles must be measured with an accuracy below 5 degrees to be useful. These
requirements clearly suggest that a subpixel-accurate segmentation algorithm has to be
used5. Moreover, twofold oversampling is required to avoid aliasing in gradient-based
algorithms.

Since dark characters on bright background are binary shapes, thresholding comes
immediately to mind as a method of choice, but edge detection should also give reasonable
results. (Image analysis is performed on the red channel only because it has the highest
contrast.) Figure 7.46 shows results for three segmentation methods. It can be seen that
pixel-accurate thresholding recovers neither the geometry nor the topology with su�cient
accuracy to be useful for the present application (�gure 7.46 left). In contrast, the subpixel
thresholding algorithm 5.2 does indeed give very good results (�gure 7.46 center). The
subpixel watershed algorithm (�gure 7.46 right) is also very good, but exhibits some
oversegmentation, especially in the lower character, which is more di�cult due to its
very narrow strokes and very small holes. Upon closer inspection one recognizes that
some of these additional edges are indeed supported by signi�cant intensity gradients,
which remain invisible to the thresholding segmentation.

The manuscript example is of particular interest because it allows us to predict the
quality of the segmentation by means of the theoretical tools described in this work. In
order to apply these tools, we must �rst analyze the basic properties of the data � the
size of the features to be detected, the noise characteristic of the sensor, and its PSF.
Measurement of these characteristics should be an intrinsic part of the image acquisition
process. Since this has not been done here, we must estimate them as good as possible
from the data itself. By visual inspection, we �nd that the width of the smallest features
of interest is in the order of the pixel diameter. To determine the PSF (e.g. by means
of the slanted edge technique described in [ISO 12233:2000], cf. section 3.2.3), a straight
edge with su�ciently large homogeneous regions on both sides or a similar well-de�ned
structure would be needed. Unfortunately, the image does not contain such a structure,
so we can only guess the PSF. From the values of typical detectors and visual comparison
with images whose PSF is known, we use a probable value of σPSF ≈ 0.6. Mean and noise
standard deviation in the bright background region are vbg = 215 and sbg = 9.0, whereas
in the dark foreground we have vfg = 14.9 and sfg = 9.0. We can therefore perform a linear
noise normalization according to equation (3.20), which in this particular case simply
amounts to a division by the noise standard deviation. After noise normalization, the
noise variance becomes unity, and the average intensities of background and foreground
are vbg = 24.0 and vfg = 1.65. The signal-to-noise ratio is thus SNR ≈ 22, and a graylevel
threshold of t = 13 suggests itself (�gure 7.46 left and center).

5The obvious solution to take images at higher resolution is not applicable because access to the original
documents is extremely restricted. To make things worse, existing images are often corrupted by non-
Gaussian noise (probably JPEG compression noise).

246

7.7 Examples

Figure 7.46: Segmentation results on two characters from the fragment shown in �gure 7.45
(computed on the red channel of the original color image, and using two-fold oversampling in case
of the subpixel-accurate detectors). Left: Pixel-accurate thresholding (threshold t = 13). Center:
Subpixel-accurate thresholding (threshold t = 13). Right: Subpixel watersheds of the gradient
magnitude (σ�lter = 0.8, gradient threshold g2

0 = 1.4). Algorithm parameters apply to the noise
normalized red channel.

Since many strokes in the character images are quite thin, we want to use small �lters
with σ�lter = 0.8 . . . 1.0. Equation (7.7) tells us that these �lter scales require signal-to-
noise ratios above 5 to 7 to be applicable. Since the actual SNR is 22, this condition is
clearly ful�lled. However, the e�ective SNR of narrow bar patterns is lower than that
of step edges (cf. section 7.3.2), so this number has to be adjusted. The diagram in
�gure 7.20 right tells us that the e�ective height of a bar with equal steps on its two
sides is reduced to 60% when σ/xs = 2, where σ is the combined scale of PSF and
�lter (i.e. σ = 1.0 . . . 1.17 in the present case), and xs is the half-width of the bar.
Thus, the required e�ective SNR is still achieved for stroke widths of only 1 to 1.2 pixels.
Assuming an e�ective signal-to-noise ratio of SNR = 10, and σ = 1.0 . . . 1.17, the optimal
threshold on the gradient squared magnitude in the noise-normalized images should be
chosen as g2

0 ≈ 1.4 (�gure 7.46 right). It can be seen that this threshold leads to some
oversegmentation. However, the oversegmentation is not a consequence of noise, but of
the complicated geometry (similar to the ladder e�ect described in section 7.3.2).

We can get rid of the oversegmentation when we base our decision whether or not an
edge is signi�cant on more sophisticated criteria than simple gradient thresholds. New
criteria would be especially useful when they were based on information beyond what
has already been utilized in the algorithm. Recall that the gradient magnitude is a purely
local measure of boundary strength. Therefore, more sophisticated criteria should make
use of non-local properties of the segmentation, such as region statistics and boundary
continuity. The computation of such properties has become possible because the regions of

247

7 The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator

Figure 7.47: Left: Original image. Right: Improvement of the watershed segmentation by means
of region averages (details see text).

the oversegmentation can be interpreted as superpixels, cf. [Ren & Malik 03]. Superpixels
are �adaptive pixels� that re�ect the structure of the data rather than the structure of
the imaging device. Therefore, they carry much more information than the pixels of
the grid. We investigated superpixel-based criteria for reduction of oversegmentation in
two diploma theses [Boetius 06, Kaynig 06]. The details of these methods are beyond
the scope of the present work, but the application to the Chinese character images is
quite simple. Here, we compute the average gray-level of each superpixel, and keep only
those edges that separate a bright region from a dark one. The threshold t = 13 is the
same as the one used in the direct thresholding segmentation, but �gure 7.47 shows that
the result is now superior to both the original watershed segmentation and the direct
threshold segmentation.

248

8 Tangent Direction Estimation

Abstract

The tangent orientation is an important and useful shape feature. Several more or less so-
phisticated tangent estimation methods have been proposed in the literature, but existing
method evaluation studies have only had limited scope (some were limited to tangents
derived from pixel-accurate boundaries, e.g. [Klette & Rosenfeld 04, Vialard 96], others
have only considered a single algorithm, e.g. [Kovalevsky 01b]). In this chapter, we show
how the results of the boundary error analysis from chapter 7 can be used to make
theoretical predictions about a derived measurement such as the tangent angle. These
predictions are well con�rmed by subsequent experiments. Our analysis suggests that
sophisticated tangent estimation methods are only superior to the (trivially computable)
direction perpendicular to the image gradient, when long boundaries with slowly varying
curvature have to be analyzed in noisy images.

8.1 Introduction

The local tangent direction is among the most important characteristics of a boundary.
At least four method classes are commonly used for tangent estimation:

1. One can derive the tangent angle directly from a local direction provided by the
boundary indicator function, e.g. from the direction perpendicular to the gradient.

2. When the boundary is represented by a polygonal arc, the tangent at a knot of
the polygon can be approximated by the average direction of the adjacent line
segments.

3. When the boundary is represented as a function ~x(t) of arc length t, one can apply
suitable derivative �lters to estimate the tangent direction.

4. One can �t a parametric model to a piece of the boundary (e.g. a straight edge or
a circle) and determine the tangent direction from the model parameters.

The �rst possibility is only applicable when the boundary indicator actually provides a
local preference direction. This is not always the case. A purely scalar boundary strength
is, for example, computed by the SUSAN operator [Smith & Brady 97]. Moreover, even if
a single preference direction is available, it cannot account for the tangent of all adjacent
boundaries near a junction.
The second method is unsuitable for grid-based boundary representations because

the polygons derived from grid-based coordinates have only a few di�erent orientations

249

8 Tangent Direction Estimation

(e.g. two for interpixel edges). The resulting tangent estimates would thus be extremely
inaccurate and useless. Methods 3 and 4 require su�ciently long pieces of boundary to
be applicable. This is problematic when an edge is short or when the tangent is to be
determined near an edge's end point. Problems also arise with these methods when the
curvature of the boundary changes within the neighborhood considered, because this
leads to biased orientation estimates.

We already determined the accuracy of the gradient direction (method 1) in section
7.2.2.3, so we will use it as a reference and concentrate on the other possibilities in this
chapter.

8.2 Direct Tangent Estimation from Polygon Segment

Directions

If applicable, determining the tangent direction at a knot as the average of the two
adjacent edge segments is the simplest method (method 2 in the list). In the limit of zero
knot distance along the polygon, this de�nition is equivalent to computing tangents by
means of derivatives

φtangent = arctan

(
∂C
∂y

∂C
∂x

)
(8.1)

where C is the boundary of interest. Obviously, this approach will not yield good results
for pixel-accurate boundary representations: Since a 4-connected boundary has only two
di�erent segment orientations, and an 8-connected one has four, only 4 respectively 8
di�erent tangent orientations are possible. This is too inaccurate for virtually any con-
ceivable application. In contrast, the polygons resulting from subpixel-accurate edge de-
tectors are quite accurate, so this simple method may yield reasonable results. In fact,
if the image were not corrupted by noise, the polygon tangent would approach the true
tangent as the knot distance along the polygon approached zero. Since the subpixel wa-
tershed algorithm 5.4 and the subpixel zero-crossing algorithm 5.3 sample the boundary
quite densely (with typical vertex distances in the order of 1/10 of a pixel), the tangent
accuracy in low-noise images can be expected to be quite good.

We can quantify the expected error of the polygon tangent by looking at the limiting
case, the true boundary derivative (8.1). For small angles, the arc-tangent can be replaced
with its argument1. Without loss of generality, we assume that the true tangent direction
is parallel to the x-axis, i.e. we can represent the curve as a function y = f(x), and
φtangent = df/dx = 0 would hold at the point of interest when there were no noise. The
standard deviation of the tangent orientation is therefore approximately equal to the
standard deviation of the derivative df/dx along the boundary. This standard deviation
can be computed by means of the power spectrum (7.17) of the localization error along
the boundary. Multiplying the power spectrum with the power spectrum (2πν)2 of the

1The error of this linearization is below 10% for angles up to 34◦. Since we are using the approximation
only for the estimation of the angle error, 10% accuracy are certainly su�cient.

250

8.2 Direct Tangent Estimation from Polygon Segment Directions

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 0.5 1 1.5 2 2.5 3

re
la

tiv
e

fr
eq

ue
nc

y

measured angle error / predicted angle error

subpixel watershed algorithm
subpixel Haralick operator

0.5 1 1.5 2 2.5 3 3.5 4
Σfilter

0.5

1

1.5

2

2.5

3

StdDev@ΦtangentD
���
StdDev@ΦgradientD

Figure 8.1: Left: Histogram of the ratio between the measured and predicted tangent angle
error for the subpixel watershed and Haralick algorithms. Measurements were taken over 228
images with edge orientations between 0◦ and 90◦, SNR between 5 and 20, σPSF ∈ {0.5, 0.9} and
σ�lter ∈ {1.0, 2.0}. Absolute errors ranged from 1◦ to 15◦. Right: Ratio between the expected
errors of the polygon-based tangent estimator and the gradient orientation for small σ�lter with
σPSF = 0.5 (solid) and σPSF = 0.9 (dashed). The ratio approaches

√
3/2 ≈ 0.866 as σ�lter →∞.

derivative operator and integrating over all frequencies gives the variance of the angle:

Var[φtangent] = 2
√
πσ�lterε

2

∫ ∞
−∞

(2πν)2 e−4π2ν2σ2
�lter dν

Note that this is a 1-dimensional integral, because we integrate along a 1-dimensional
curve. The standard deviation is just the square root of the variance:

StdDev[φtangent] =
√
Var[φtangent] =

ε√
2σ�lter

=
√

3
4
N

S

(
σ2
PSF + σ2

�lter

)3/2
σ4
�lter

(8.2)

where ε =
√

3
8
N
S

(
1 +

(
σPSF
σ�lter

)2
)3/2

is the standard deviation of the localization error

along the boundary according to (7.9), and σ�lter is the scale of the Gaussian gradient
operator used to detect the edge. Figure 8.1 left shows a comparison of actually mea-
sured errors with the errors predicted by this formula, and we see generally quite good
agreement. The error of the tangent obtained from the polygon may be compared with
the expected error of the gradient direction according to (7.13), i.e. method 1 in the list:

StdDev[φgradient] =
N

S

√
σ2
PSF + σ2

�lter

2σ2
�lter

In the limit σ�lter →∞, the ratio
StdDev[φtangent]
StdDev[φgradinet]

is independent of σPSF and approaches
√

3
2 ≈ 0.866, i.e. the polygon-based tangent estimator is better in the limit. Figure 8.1
right depicts the ratio between the two errors for small values of σ�lter, where the gradient

251

8 Tangent Direction Estimation

orientation is superior. For straight edges, the two methods become equally accurate at

σ�lter =
√

3 + 2
√

3σPSF ≈ 2.5σPSF.

8.3 Filter-Based Tangent Estimation

Instead of using the polygon segments directly for tangent estimation, we may also em-
ploy a more complicated method in order to achieve higher accuracy. This approach
is especially popular for pixel-accurate boundaries, where direct tangent estimation ac-
cording to the previous section is too inaccurate. In �lter-based tangent estimation, the
derivatives ∂C/∂x and ∂C/∂y are computed by means of suitable derivative �lters. Let
the curve be represented as C = ~p(t) = (x(t), y(t))T , where t is an arc length parameter.
Then, the derivatives are determined by convolution of ~p with the derivative �lter g′σC (t):(

x′(t)
y′(t)

)
= ~p(t) ? g′σC (t)

where σC is a measure of the �lter size. Two �lters are in common use: the symmetric
di�erence

g′σC (t) =
δ(t− σC)− δ(t+ σC)

2σC
and the Gaussian derivative

g′σC (t) =
−t√
2πσ3

C

e
− t2

2σ2
C

The former approximates the tangent at point ~p(t) by the chord between the points
~p(t−σC) and ~p(t+σC), while the latter computes weighted centroids of the polygon points
to the left and right of ~p(t) and uses the direction between these centroids as tangent
direction. As σC increases, the estimated tangent direction is less and less in�uenced by
noise. The expected error can again be computed by integrating over the product of the
power spectra of the noise and the �lter. We get the following expressions

StdDev[φsym-di�] = StdDev[φtangent]
σ�lter
σC

√
1− e

−
σ2
C

σ2
�lter (8.3)

and

StdDev[φGd] = StdDev[φtangent]
(

1 +
σ2
C

σ2
�lter

)−3/4

(8.4)

where StdDev[φtangent] is the expected error of the tangent without �ltering according
to (8.2), and σ�lter is the scale of the �lter that was used to compute the underlying
boundary indicator. As expected, the error with �ltering approaches the error without
�ltering when σC → 0. For large σC , the error decreases asymptotically as σ−1

C and

σ
−3/2
C respectively. However, while the Gaussian derivative �lter is superior in the limit

252

8.3 Filter-Based Tangent Estimation

5 10 15 20
window size

0.2

0.4

0.6

0.8

1

Figure 8.2: Reduction in the tangent angle standard deviation when the angle is determined by
a �lter with the given window size: symmetric di�erence (solid) and Gaussian derivative (dashed)
at σ�lter = 1 (black) and σ�lter = 2 (gray).

of in�nitely large �lter size, this is not necessarily the case at practically relevant values
of σC , where only a �nite piece of the boundary is available.

Each �lter requires a certain minimal length of boundary to be applicable: The sym-
metric di�erence �lter is only applicable when the boundary continues for at least σC on
either side of the point of interest. That is, we need a �window� of length lsym-di� = 2σC
along the polygon. The Gaussian derivative �lter is in�nitely large, so we must clip it at
a �nite window size. In order to avoid systematic errors, we should at least extend the
window to 2σC on either side of the point of interest, so the total required window size
is lGd = 4σC .
Figure 8.2 shows the error reduction relative to the un�ltered tangent as a function of

the required window size l. We observe two interesting facts:

1. The window must be quite large (≈ 4σ�lter) before the reduction of the error be-
comes noticeable, and

2. when we use identical windows for the symmetric di�erence and Gaussian deriva-
tives, the Gaussian �lter is not superior until the window size becomes quite large
(l ≈ 14 for σ�lter = 1).

Contrary to our intuition, Gaussian �lters are not superior to symmetric di�erences in
this application unless the shapes we are interested in are very large.

Irrespective of the �lter, one would like to choose σC as large as possible in order to
minimize the error due to noise. However, the estimated tangent will be biased when the
polygon is asymmetric around the point ~p, see �gure 8.3. The bias due to curve asymme-
try increases with increasing �lter size, so one wants to choose small σC . Consequently,
there is a trade-o� in the selection of σC that optimally balances noise errors against
bias. [Kovalevsky 01b] proposes a method for estimating the optimal σC for the sym-
metric di�erence �lter, and we generalize his method to arbitrary �lters. To simplify the
derivation, we rotate the coordinate system so that ~p(t) is at the origin and the x-axis is
parallel to the tangent at ~p(t). As long as |x| is not too large, the polygonal curve can be

253

8 Tangent Direction Estimation

t

pp

true tangents

estimated tangent directions

t t t

Figure 8.3: Tangent estimation by symmetric di�erences. When the curvature of the boundary
is symmetric around the point ~p, the estimated tangent direction is unbiased (left), otherwise it
is biased (right). This applies likewise to tangent estimation with Gaussian �lters.

approximated in the new coordinate system by a function y(x) = q(x) +n(x) where q(x)
is the true curve and n(x) is additive localization noise with power spectrum according
to (7.17). We expand q(x) into a Taylor series around x = 0:

y(x) ≈ q(0) + q′(0)x+
q′′(0)

2
x2 +

q′′′(x)
6

x3 + n(x)

The constant and linear terms on the right hand side vanish by de�nition of the local
coordinate system. The convolution of the Taylor series with a derivative �lter thus gives

y ? g′σ
∣∣
x=0
≈ q′′(0)

2
(x2 ? g′σC) +

q′′′(x)
6

(x3 ? g′σC) + (n ? g′σC)

where all convolutions are evaluated at x = 0. The convolution of the even function x2

with a derivative �lter is zero because derivatives are odd functions. Hence, the term
x2 ? g′σC vanishes as well. Therefore, we have

y ? g′σC
∣∣
x=0
≈ q′′′(x)

6
(x3 ? g′σC) + (n ? g′σC)

Since we want to approximate q′(0) = 0 as well as possible, the �lter response should be
close to zero. That is, we want to minimize the square of the right hand side

σC-optimal = arg min
σC

(
q′′′(x)

6
(x3 ? g′σC) + (n ? g′σC)

)2

The expression to be minimized is a non-central χ2-distributed random variable with

mean µ =
(
q′′′(x)

6 (x3 ? g′σC)
)2

+ Var
[
n ? g′σC

]
, and σC should be chosen so that µ is

minimized. We already derived expressions for the variance (actually its square root, the
standard deviation) in equations (8.3) and (8.4). The systematic error is easy to compute
as well. In case of the symmetric di�erence �lter, we get(

q′′′(x)
6

(x3 ? g′σC)
)2

=
(
q′′′(x)σ2

C

6

)2

and for a Gaussian derivative(
q′′′(x)

6
(x3 ? g′σC)

)2

=
(
q′′′(x)σ2

C

2

)2

254

8.3 Filter-Based Tangent Estimation

Inserting these expressions into µ and setting the derivative with respect to σC to zero,
we get a closed form solution for the optimal width σsym-di� of the symmetric di�erence
�lter

σsym-di� =
(

3ε
|q′′′|

)1/3

(8.5)

where ε is again the standard deviation of the localization noise according to (7.9).
In contrast, there is no closed form solution for the optimal scale σGd of the Gaussian
derivative. The optimal σ2

Gd is a root of the polynomial 4 |q′′′|4 s2(σ2
�lter+s)

5−9ε4σ2
�lter =

0. In order to obtain an approximate closed form expression for the root we simplify the
polynomial by noting that σGd � σ�lter in all practically relevant cases. Then s ≈
s+ σ2

�lter, and thus

σGd ≈

√√√√(9ε4σ2
�lter

4 |q′′′|4

)1/7

− σ2
�lter (8.6)

The expression under the square root is positive when ε
|q′′′| >

21/44
31/2 σ

3
�lter. Otherwise, the

condition σGd � σ�lter is violated, and Gaussian �ltering wouldn't make sense anyway.
It turns out that

σsym-di� ≈ 2σGd

so that the required window sizes lsym-di� = 2σsym-di� and lGd = 4σGd are indeed ap-
proximately equal, i.e. both �lters use the same piece of the polygon when their sizes are
optimally chosen. When optimal intervals are used, the expected error in tangent angle
(in radians) for the two �lter types is

StdDev[φsym-di�] =
1
2

(√
3ε2q′′′

)1/3

StdDev[φGd] =
1
2

((
32√
27
ε4
∣∣q′′′∣∣3 σ2

�lter

)1/7

+
∣∣q′′′∣∣(σ2

�lter −
(

9ε4σ2
�lter

4 |q′′′|4

)1/7
))

(note that ε is also a function of σ�lter).
A natural question arising from these derivations is whether it is possible to compute

the optimal interval in practice. After all, the third derivative q′′′ of the function is needed
in order to obtain an optimal estimate of the �rst derivative q′. [Kovalevsky 01b] notes
that the expressions for optimal σsym-di� and σGd represent minima and depend on |q′′′|
only as very low powers, so that rather coarse estimates of |q′′′| should be su�cient for
reasonable σsym-di� and σGd. We have found experimentally, that a su�ciently accurate
|q′′′| can be computed by means of a �nite di�erence �lter according to∣∣q′′′(t)∣∣ =

∥∥∥∥−~p(t− 2d) + 2~p(t− d)− 2~p(t+ d) + ~p(t+ 2d)
2d3

∥∥∥∥ (8.7)

where t is arc-length, and d ≥ 8σ�lter (this bound corresponds to the average wavelength
of the localization error along the polygon according to (7.16)). In other words, a window
of

l = 32σ�lter

255

8 Tangent Direction Estimation

is required in order to compute a su�ciently accurate third derivative! This is more than
will be available in many applications, so that �ltering with optimal �lter sizes will often
be impossible.
Regardless of whether optimal �lter sizes are used or not, we must deal with another

di�culty: The knots of the polygons resulting from our edge detectors are not in general
equidistant, whereas discrete convolution requires equidistant points. There are three
possibilities to solve this problem:

1. One can resample the polygon at (approximately) equidistant intervals by using
linearly interpolated points. In case of a pixel-accurate boundary polygon, an im-
proved variant of this approach was proposed by [Vialard 96]. They �rst use the
digital straight line algorithm 4.7 to transform the original (pixel-based) polygon
into a polygon with longer (subpixel-accurate) segments. The new polygon is then
resampled by linear interpolation. This works better than direct resampling of
pixel-accurate coordinates.

2. One can compute an equidistant polygon from the original one by means of a least
squares �t [Eberly 03].

3. The original knots can be used without resampling when the convolution is imple-
mented as a normalized convolution [Knutsson & Westin 93].

Only the �rst two methods make sense for a symmetric di�erence �lter, whereas all three
may be applied in connection with Gaussian derivative �lters. Normalized convolution of
a polygon with a smoothing �lter is de�ned as

~p ? gσ =
∑

i ~pigσ(t− ti)∑
i gσ(t− ti)

where ti is the arc-length parameter of point ~pi. The numerator is a discrete convolution
with non-equidistant points, and the denominator adjusts the normalization of the nu-
merator for non-uniform sampling. When normalized convolution is to be applied with a
derivative �lter, the right hand side must be di�erentiated according to the quotient rule

~p ? g′σ =
(
∑

i ~pig
′
σ(t− ti)) (

∑
i gσ(t− ti))− (

∑
i ~pigσ(t− ti)) (

∑
i g
′
σ(t− ti))

(
∑

i gσ(t− ti))2

In our experiments, we employ least-squares polygon resampling (method 2). We use
re�ective boundary conditions for open polygons and cyclic boundary conditions for
closed ones.

8.4 Model-Based Tangent Estimation

Alternatively, the tangent can be determined by �tting a geometric model to a piece
of the polygon, and then estimating the angle from the model. A least squares �t of a
model to the point sequence ~pi−k, ..., ~pi+l = ~p(ti−k), ..., ~p(ti+l) around the point of interest

256

8.4 Model-Based Tangent Estimation

~pi = ~p(ti) minimizes the sum of squared distances d2
j between the given points and the

model, the so-called geometric residual

R = min
m

∑
j

d2
j = min

m

∑
j

‖~pj −m(~pj)‖2

where the minimization extends over some set of feasible models (i.e. over the parameter
space of a speci�c model class), and m(~pj) is the point on the model curve m which
is closest to ~pj . To solve the �tting problem, it is useful to translate the points into a
coordinate system whose origin coincides with the centroid of the given points

~pj
′ = ~pj − ~pS with ~pS =

1
n

∑
j

~pj

This not only simpli�es many equations, but also improves numerical stability and accu-
racy because errors due to �nite number representations are signi�cantly reduced. On the
other hand, centering of the points reduces algorithm speed because one can no longer
compute geometric moments of the point set incrementally2.
The simplest possible model is a straight line, where dj = Ax′j + B y′j + C with

constraint A2 + B2 = 1. It is well known that the optimal solution to this problem is
determined by the eigenvector corresponding to the large eigenvalue of the scatter matrix

T =
(
txx txy
txy tyy

)
=

(∑
x′2j
n

∑
x′jy
′
j

n∑
x′jy
′
j

n

∑
y′2j
n

)

where n = l + k + 1 is the number of points in the interval, and ~pj
′ = (x′j , y

′
j)
T are the

centered point coordinates. The angle of the optimal line, and therefore the estimated
tangent orientation, is

φ =
1
2

arctan
2txy

txx − tyy
The optimal interval size can be chosen according to a χ2-test of the residual: k and l
should be increased as long as the residual R does not exceed a given con�dence level for
a χ2-distribution with n− 2 degrees of freedom and variance ε2, where ε is the expected
localization error of the edge detector used.
Natural contours can be better approximated when not only straight lines, but also

circular arcs are permitted as candidate models. Under this more general model, the
minimum distance between a point and the model can be computed as

dj =
2Pj

1 +
√

1 +APj

2In principle, it is possible to compute centered moments incrementally (recall, for example, the

well-known formula 1
n

∑
j x
′2
j = 1

n

∑
j x

2
j −

(
1
n

∑
j x
)2

). But for higher order moments, e.g.

1
n

∑
j

(
x′2j + y′2j

)2
as needed for circle �tting, these formulas are numerically very problematic and

therefore unsuitable for practical computations.

257

8 Tangent Direction Estimation

(cf. [Chernov & Lesort 05]) with

Pj = A
(
x′2j + y′2j

)
+B x′j + C y′j +D

subject to the constraint

B2 + C2 − 4AD = 1

It can be seen that these de�nitions reduce to the straight line case when A = 0. If A 6= 0,
the circle radius is given by r =

∣∣ 1
2A

∣∣, and the coordinates of the circle's center are x′C =
− B

2A and y′C = − C
2A . Unfortunately, the model instance minimizing the geometric residual

R can no longer be determined analytically, and an iterative minimization method is
required. However, this is too expensive in our context, because we have to perform the
�t thousands or even millions of times per image. A popular alternative is to replace the
geometric residual equation with an algebraic one

Ra = min
m

∑
j

P 2
j

with constraint A = 1. This minimization problem is easy to solve because it leads to a
linear system in the parameters B, C, and D, but the resulting solutions are not always
close to the optimal geometric �ts one is actually interested in. Therefore, [Pratt 87]
proposed to minimize a gradient-weighted algebraic residual de�ned as

Rg = min
m

∑
j

P 2
j

B2 + C2 − 4AD

and demonstrated the superiority of this approach over the naive algebraic �t. Subse-
quently, [Chernov & Lesort 05] observed that minimizing Rg is equivalent to minimizing
the algebraic residual Ra, subject to the constraint B2 + C2 − 4AD = 1 (instead of
A = 1). This allowed them to introduce a very e�cient new algorithm for �nding an
optimal circle. Consider the moment matrix

T =

tzz txz tyz tz
txz txx txy 0
tyz txy tyy 0
tz 0 0 1

where

txx = 1
n

∑
j x
′2
j , tyy = 1

n

∑
j y
′2
j , tzz = 1

n

∑
j z
′4
j

txz = 1
n

∑
j x
′
jz
′2
j , tyz = 1

n

∑
j y
′
jz
′2
j , tz = 1

n

∑
j z
′2
j = txx + tyy

and z′2j = x′2j + y′2j . The matrix entries for tx and ty are zero because the centroid of the
given points lies in the origin of the primed coordinate system. This is crucial for the

258

8.4 Model-Based Tangent Estimation

following algorithm to work. The algebraic residual can now be written as Ra = aT T a
with a = (A,B,C,D)T . Likewise, the constraint is written as aT C a = 1 with

C =

0 0 0 −2
0 1 0 0
0 0 1 0
−2 0 0 0

The optimal solution a can be found as the eigenvector corresponding to the smallest
non-negative eigenvalue of the generalized eigenvalue problem

T a = λC a

The key of the algorithm of [Chernov & Lesort 05] is the observation that the character-
istic polynomial of this eigenvalue problem has a particularly simple form

det (T− λC) = 4λ4 + c2λ
2 + c1λ+ c0

with

c0 = t2xztyy + t2yztxx − 2txytxztyz +
(
t2z − tzz

) (
txxtyy − t2xy

)
c1 = tz

(
tzz − t2z + 4txxtyy − 4t2xy

)
− t2xz − t2yz

c2 = 4txxtyy − 4t2xy − 3t2z − tzz

Consequently, it is not necessary to solve the eigenvalue problem by means of expensive
matrix methods. Instead, the desired root λo of the characteristic polynomial can be
determined by Newton's algorithm, which is guaranteed to converge quickly to the correct
solution when iterations are started at an initial guess of λ = 0. Finally, the center of the
optimal circle (in the coordinate system whose origin coincides with the centroid of the
given points) is

x′C =
txz (tyy − λo)− txytyz

2
(
λ2
o − λotz + txxtyy − t2xy

)
y′C =

tyz (txx − λo)− txytxz
2
(
λ2
o − λotz + txxtyy − t2xy

)
and its radius is

r =
√
x′2C + y′2C + 2λo + tz

From the coordinates of the circle center, the desired tangent angle at point ~pi
′ is de�ned

as

φ = arctan
x′C − x′i
y′i − y′C

Other models beyond lines and circles (e.g. ellipses and parabolas) are also possible, but
we found their performance to be inferior to the circle �tting method and didn't consider
them further.

259

8 Tangent Direction Estimation

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent directly from polygon

Figure 8.4: Left: Original image with overlayed subpixel watershed boundary. Ellipse radii
are r1 = 40, r2 = 20 (i.e. perimeter is ≈ 194 pixels, minimum curvature radius 10 pixels),
SNR = 100, and σPSF = σ�lter = 1. Right: Angle errors for tangents taken perpendicular to the
gradient direction, and by the average of two consecutive polygon segments at every knot of the
polygon.

8.5 Experimental Comparison

We performed a large number of experiments on generated noisy ellipses (with σPSF = 1)
to validate and compare the performance of the tangent estimation algorithms outlined
above. Unless otherwise noted, edge detection was performed with the subpixel watershed
algorithm at scale σ�lter = 1. Figure 8.4 left shows the original image (with SNR = 100)
and the detected contour, which looks perfect in an image of such high quality. In all
diagrams, we plot the error of the tangent direction relative to the ground truth tangent
angle for all detected points around the ellipse. Figure 8.4 right shows these measurements
for the gradient-based tangent (which will act as a reference in all experiments) and the
tangent estimated directly from the direction of the polygon segments. Theory predicts
that the error of the polygonal tangents should exceed the one of the gradient by a factor
of
√

3 ≈ 1.7 at the algorithms parameters chosen. Actual error standard deviations are
listed in table 8.6. It can be seen that the tangent directions are measured quite accurately
� the angle error of the gradient is below 0.5◦. The errors of the polygon tangent are
somewhat higher than expected. In �gure 8.4 right, we can see that this is caused by
outlier points, which deviate slightly (invisible to the naked eye) from the true contour,
causing exceptionally high angle errors (up to about 4◦) at a few points. These outliers
are a numerical problem in the subpixel watershed algorithm that is caused by the image
function being very close to degenerate (e.g. close to not being a Morse function) due to
large homogeneous regions and low noise. Natural images do not exhibit this problem.

Figure 8.5 reports results for �lter-based and model based tangent estimation within
small windows along the boundary. All algorithms compute the tangent angle by using
points from the same interval with radius 2 pixels to either side of the current contour
point. The resulting errors are remarkably similar for all these methods, and we don't
get signi�cantly better results than with the much simpler gradient method. The error

260

8.5 Experimental Comparison

SNR = 100 SNR = 10
method bias std. dev. bias std. dev.

(degrees) (degrees) (degrees) (degrees)

gradient -0.0002 0.48 [0.41] 0.006 4.2 [4.1]

simple tangent -0.01 0.94 [0.71] -0.1 7.0 [7.1]

Gauss (σC = 1) -0.0003 0.49 [0.42] -0.0001 4.3 [4.2]

Gauss (σC = 2) -0.0003 0.50 [0.21] 0.0003 2.3 [2.1]

Gauss (σC = 4) -0.0007 1.14 [0.08] -0.002 1.6 [0.85]

Gauss (scale selection) 0.036 0.42 0.06 1.6

symmetric di�erence (σC = 2) -0.0003 0.45 [0.35] 0.0004 3.5 [3.5]

symmetric di�erence (σC = 4) -0.0003 0.60 [0.18] 0.0004 1.8 [1.8]

symmetric di�erence (σC = 8) -0.0008 1.60 [0.09] -0.004 2.0 [0.9]

symmetric di�erence (scale selection) -0.003 0.45 0.23 1.7

line �t (window radius = 2) -0.0004 0.50 0.0005 4.3

line �t (window radius = 4) -0.0004 0.48 0.001 2.3

line �t (window radius = 8) -0.0003 1.05 -0.004 1.5

circle �t (window radius = 2) -0.0003 0.50 -0.0003 4.3

circle �t (window radius = 4) −3 · 10−5 0.48 -0.0007 2.3

circle �t (window radius = 8) 0.0002 1.10 0.003 1.6

Table 8.1: Bias and standard deviations of various algorithms for the image in �gure 8.4 (cen-
ter columns) and �gure 8.9 (right columns). Theoretical predictions, if available, are given in
brackets, best results are printed in bold face.

values in table 8.1 con�rm that this behavior is also predicted by theory. In order to
improve the accuracy, �lters and model �t must be applied in larger windows. Figure 8.6
shows results for window radii 4 and 8. However, table 8.1 shows that the average errors
are not reducing, in contrast to the predictions of theory. This is due to the fact that
theoretical predictions apply to straight lines, whereas the ellipse is curved. The bias due
to curved boundaries is clearly visible in �gure 8.6: The (absolute) errors have marked
maxima near the apexes of the ellipse (i.e. at arc lengths near 0 and near 0.5), whereas
the errors along the low-curvature part of the ellipse (arc lengths around 0.25 and .75)
are indeed signi�cantly reduced relative to the gradient method. This bias is even more
pronounced for more elongated ellipses � see �gure 8.7.

In order to keep the bias at a minimum, we can apply the optimal scale selection
method proposed by [Kovalevsky 01b], see equations (8.7) and (8.6). Results of �lter-
based tangent estimation with optimal scales for the two ellipses are shown in �gure 8.8.
Scale selection is successful in ensuring that the error does never increase with respect
to the gradient direction, and that it is signi�cantly reduced whenever the boundary is
su�ciently symmetric, i.e. especially along its low-curvature part. Scale selection deter-
mines the optimal window size to have radius 2 near the apexes and radius 8 to 16 along
the symmetric part of the boundary. Unfortunately, the third derivative according to
equation (8.7), which is required to compute the optimal scale, must be determined on a

261

8 Tangent Direction Estimation

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale = 2)

tangent by Gaussian derivative (scale = 1)

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 2)

tangent from circle fit (window radius = 2)

Figure 8.5: Angle errors of �ltering and model �tting for the image from �gure 8.4. The stated
scale and radii mean that all algorithms use the same window (of length 4 pixels � recall that
the Gaussian window has radius 2 · scale). This window is too small for the results being superior
to the gradient direction, due to error correlation along the polygon.

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=4)

tangent by Gaussian derivative (scale=2)

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale = 8)

tangent by Gaussian derivative (scale = 4)

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 4)

tangent from circle fit (window radius = 4)

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 8)

tangent from circle fit (window radius = 8)

Figure 8.6: Same as �gure 8.5, but for larger windows. Now the statistical errors are signi�cantly
reduced, but near the apexes of the ellipse we get strongly biased angle estimates due to curve
asymmetry.

262

8.5 Experimental Comparison

very large window (radius 16) in order to be su�ciently accurate for scale computation.
Thus, the scale selection method can only be applied when the objects in the image are
quite large. Moreover, this method cannot be applied near the ends of open polygons
(see below).
In �gure 8.9, we repeated the same experiment with a noisy ellipse. As table 8.1

(right columns) shows, the measured errors also conform to our theoretical predictions.
In fact, the agreement is even better than in the low-noise case because the bias caused
by the curved boundary is now much lower than the statistical error. This also means
that the trade-o� between bias and window size for �lter and model-�t methods is now
di�erent. Here, window radii up to 8 pixels can be used without problem, because the bias
introduced by the large window size is still below the statistical error without �ltering. In
fact, in noisy images it is preferable to just use larger �lter sizes instead of optimal scale
selection: Due to noise, the estimates of the third derivative (8.7) become too inaccurate.
Consequently, the selected scales will be noisy, which translates into noisy estimates of
the tangent angle.
Another kind of noisy boundary is encountered in the context of pixel-accurate edge

detectors. Here, the noise is due to round-o� to grid-based coordinates. We already
mentioned that the tangents of the polygon are of no use here, because only a few
di�erent directions are possible. Therefore, �ltering is absolutely necessary. Results are
shown in �gure 8.10. It can be seen that small �lter windows are insu�cient, but even
with a large window (of radius 8) the accuracy of the gradient is not nearly achieved.
Finally, we investigate the accuracy near the ends of open polygons. Here, a symmetric

�lters or symmetric model �ts cannot be applied because the remaining part of the curve
is too short on one side of the current point. One could try to apply re�ective boundary
conditions to elongate the curve, but this is not helpful because the computed tangent
directions will then simply converge to the direction of the curve's last polygon segment
when the current point moves closer to the end. Therefore, we need an asymmetric tan-
gent estimation method. Taking the direction of the curve's last segment (instead of the
average between two consecutive polygon segments) is the simplest possibility. Alterna-
tively, one can apply model �t methods in asymmetric windows. In our experiments on
ellipses, we simulate open polygons by forcing the use of asymmetric windows. That is, an
asymmetric window size of 4 pixels contains as many points as a symmetric window with
radius 2, but all points in the window are on the same side of the current point. Figure
8.11 shows the results. It can be seen that the segment-based and line �t methods are
not working well in the asymmetric case whereas the curve �t method works quite well,
due to its ability to extrapolate a curved boundary better than is possible with straight
lines. However, it is unclear whether its performance matches the one of the gradient,
because we did not simulate by how much the gradient direction will be distorted near
the end of a boundary (i.e. near a junction).
We draw the following conclusions from our experiments:

1. The tangent directions estimated from gradient directions are very accurate.3

3This is especially true when one considers that we did not yet take any measures for improving raw
gradient directions, comparable to using larger windows in polygon-based tangent estimation.

263

8 Tangent Direction Estimation

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent directly from polygon

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=2)

tangent by Gaussian derivative (scale=1)

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=4)

tangent by Gaussian derivative (scale=2)

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 2)

tangent from circle fit (window radius = 2)

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 4)

tangent from circle fit (window radius = 4)

Figure 8.7: Results for a more elongated ellipse with overlayed subpixel watershed boundary.
Ellipse radii are r1 = 40, r2 = 10 (i.e. perimeter is ≈ 172 pixels, minimum curvature radius
2.5 pixels), SNR = 100, and σPSF = σ�lter = 1. The bias of the angle estimates near the ellipse's
apexes is even more pronounced, especially in the �ltering and model �tting methods.

264

8.5 Experimental Comparison

-3

-2

-1

 0

 1

 2

 3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale selection)

tangent by Gaussian derivative (scale selection)

-10

-5

 0

 5

 10

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale selection)

tangent by Gaussian derivative (scale selection)

Figure 8.8: Results of �ltering with optimal scale selection on the images �gure 8.4 (left) and
�gure 8.7 (right). The third derivative (8.7) was computed with d = 8σ�lter, i.e. in a window of
length 32 pixels. The estimated optimal scales were between 2 and 16 pixel (symmetric di�erence)
and 1 and 8 pixels (Gaussian derivative).

2. Due to correlated localization errors in neighboring polygon points, �lter-based
and model-�tting method are only superior when relatively large �lter windows
(stretching over at least 4 pixels to either side of the current point when σ�lter = 1)
are used. However, this requires long boundaries to be available and carries the risk
of getting biased angle estimates is much higher for large windows. In low-noise
images, this problem can be addressed by automatic scale selection, whereas the
bias can often be neglected in high-noise images.

3. Tangent angle estimation from pixel-accurate boundaries requires �ltering. But
even with large �lters, the tangents are less accurate than the ones obtained from
the gradient direction.

4. Near the end points of open polygons, only the circle �tting method achieves sat-
isfactory performance, besides possibly the gradient direction.

In summary, considering the much higher cost of polygon �ltering or model �tting, the
method of choice in most situations will be the gradient direction approach.

265

8 Tangent Direction Estimation

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent directly from polygon

-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=8)

tangent by Gaussian derivative (scale=4)

-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from line fit (window radius = 8)

tangent from circle fit (window radius = 8)

-15

-10

-5

 0

 5

 10

 15

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale selection)

tangent by Gaussian derivative (scale selection)

Figure 8.9: Same as �gures 8.4 to 8.6, but with SNR = 10. The bias caused by �ltering is now
smaller than the statistical error without �ltering, i.e. �ltering is bene�cial. Note also that the
�ltering result with scale selection is now quite noisy due to noisy estimates of the underlying
third derivative.

266

8.5 Experimental Comparison

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=2)

tangent by Gaussian derivative (scale=1)

-8

-6

-4

-2

 0

 2

 4

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent by symmetric difference (scale=8)

tangent by Gaussian derivative (scale=4)

method average (degrees) standard deviation (degrees)

gradient -0.0002 0.48

Gauss (σC = 1) 0.017 5.51

Gauss (σC = 4) 0.004 1.44

symmetric di�erence (σC = 2) 0.012 4.32

symmetric di�erence (σC = 8) 0.004 1.90

Figure 8.10: Tangent angle errors for the �ltering method applied to pixel-accurate Canny
edges (image as in �gure 8.4). Note that not even the largest windows are su�cient to match the
performance of the gradient direction.

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
one-sided tangent from polygon

tangent from one-sided line fit (window size = 4)

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
gl

e
er

ro
r

(d
eg

re
es

)

normalized arc length

tangent perpendicular to gradient direction
tangent from one-sided circle fit (window size = 4)

method average (degrees) std. dev. (degrees)

one-sided simple tangent 0.08 1.24

one-sided line �t (window width = 4) 3.71 2.98

one-sided line �t (window width = 8) 7.43 5.8

one-sided circle �t (window width = 4) -0.0002 1.00

one-sided circle �t (window width = 8) 0.0004 1.06

Figure 8.11: Tangent angle errors for one-sided model �t (image and edge detector as in �gure
8.4). Only the circle �t is able to handle the asymmetry reasonably well (note that the gradient
data are only shown for reference and do not contain an asymmetry).

267

8 Tangent Direction Estimation

268

9 Improving the Junction Response

Abstract

We had seen in section 7.6 that the localization errors of gradient-based detectors near
corners and junctions are quite large (in the order of several pixel diameters). Many
alternative boundary detection methods attempt to improve the boundary quality near
junctions, but only a few of them manage without heavy heuristics. Tensor-based meth-
ods are important representatives of the latter category. In this chapter we describe
two approaches to tensor computation: (i) by means of spatial integration of a vecto-
rial boundary indicator (i.e. isotropic and anisotropic structure tensors of the gradient),
and (ii) by means of 2-dimensional quadrature �lters (the boundary tensor). While the
theoretical justi�cations of these methods are extremely promising, their objective exper-
imental evaluation is somewhat disappointing: none of the tensor methods is consistently
outperforming the simple image gradient.

9.1 Tensors

The quality of gradient-based boundaries is very di�erent along edges (a fraction of
a pixel diameter) and near corners and junctions (several pixel diameters). When we
work conservatively and adjust the parameters of subsequent algorithms (such as (α, β)-
boundary reconstruction, algorithm 5.12) according to the accuracy limits suggested
by the junction errors, we will waste a lot of resolution near edges. It is therefore an
important question whether the junction response can be improved, if possible to the
point where it matches the accuracy of the edge response.

One reason for the unsatisfactory performance near junctions is the inability of gradient-
based boundary detectors to represent several orientations at a single location: There is
only one gradient direction in every point, but corners and junctions are de�ned as points
where edges with two or more di�erent orientations meet. Therefore, a promising way
toward better junction response is the introduction of boundary indicators that are not
restricted to a single orientation. One approach to these boundary indicators is the con-
cept of tensors, see e.g. [Granlund & Knutsson 95].

Tensors are collections of measurements (called tensor elements) whose values change
in a certain, well-de�ned way when the underlying coordinate system is rotated. Each
tensor element is referred to by an ordered tuple of indices, and a tensor whose elements
are de�ned over p di�erent indices is called a pth-order tensor. Each index takes values be-
tween 1 and the dimension N of the underlying space, i.e. N = 2 in case of 2-dimensional
images. A tensor with no indices (p = 0) is referred to as a 0th-order tensor, and it con-
tains only a single number, called a scalar. A tensor with one index in two dimensions is

269

9 Improving the Junction Response

a set of two numbers (T1, T2) and referred to as a 1st-order tensor or a vector. Likewise,
a 2nd-order tensor consists of a 2 by 2 matrix of numbers, and so on. In case of Cartesian
tensors (i.e. those de�ned in a Cartesian coordinate system) the relationship between
tensor elements in a given coordinate system and a rotated one is particularly simple:
The tensor elements in the rotated system can be calculated as linear combinations of
the tensor elements in the original system:

T̃i1...ip =
N∑
l1=1

· · ·
N∑
lp=1

ri1l1 . . . riplpTl1...lp (9.1)

where Tl1...lp are the elements of a pth-order tensor, and ril are the elements of the
N -dimensional rotation matrix. These transformation rules ensure that the properties
represented by the tensor as a whole remain invariant under Euclidean transformations
(rotation and translation) of the underlying space, although the values of the individual
tensor elements change. In the special case of a 0th-order tensor, we have T̃ = T , i.e. T
is a rotationally invariant quantity. For example, the intensity values of an analog image
can be interpreted as 0th-order tensors because they are independent of the rotation of
the camera around the optical axis.

New tensors can be created from existing ones by a number of simple operations:

• Linear combinations: When T1 and T2 are tensors of the same order, then T =
α1T1 + α2T2 is also a tensor of the same order, i.e. equation (9.1) remains valid.

• Cartesian product (also called outer product): A tensor T of order p + q can be
obtained from two given tensors P and Q of orders p and q respectively, when the
individual tensor elements are de�ned as:

Ti1...ipj1...jq = Pi1...ipQj1...jq

• Contraction: A tensor P of order p− 2 can be obtained from a tensor T of order p
by taking the sum over a pair of indices, say the indices numbered k and l

Qi1...ik−1ik+1...il−1il+1...ip =
n∑
j=1

Ti1...ik−1j ik+1...il−1j il+1...ip

The notation of this operation is often simpli�ed by Einstein's summation conven-
tion, where summation is automatically implied when a tensor element has two
like-named indices. For example, Qim = Tijjm denotes the contraction of a 4th-
order tensor to a 2nd-order one, i.e. Qim = Ti11m + Ti22m + ...TiNNm where N is
the dimension of the space.

Obviously, arbitrary powers of rotationally invariant quantities (i.e. 0th-order tensors)
remain rotationally invariant. Likewise, it is easily shown that matrix products of 2nd-
order tensors are still 2nd-order tensors.

270

9.1 Tensors

New rotationally invariant quantities can be de�ned by contracting all indices of a
given even order tensor. For example, in a 2-dimensional space, there are two independent
possibilities to obtain rotationally invariant numbers from a 2nd-order tensor, namely the
trace

tr [T] = T11 + T22 = Tii

and the determinant

det [T] = T11T22 − T12T21 =
1
2

(Tii)
2 − 1

2
TijTji

where the alternative de�nitions (which make use of the summation convention) empha-
size that trace and determinant can indeed be computed in terms of the three elementary
tensor operations (for example, TijTji denotes two-fold contraction of the outer product
of T with itself). An equivalent pair of rotationally invariant numbers is given by the
tensor's eigenvalues

λ1,2 =
1
2

(
T11 + T22 ±

√
(T11 − T22)2 + 4T12T21

)
=

1
2

(
Tii ±

√
2TijTji − (Tii)

2

)
where the second de�nition again emphasizes that eigenvalues can be computed in
terms of elementary tensor operations. It is easily veri�ed that tr [T] = λ1 + λ2 and
det [T] = λ1λ2. The signi�cance of 2nd-order tensors for the junction problem arises from
the fact that these tensor can distinguish locally 1-dimensional structures (i.e. edges)
from locally 2-dimensional ones (i.e. corners and junctions): Tensors representing the
�rst case have only one non-zero eigenvalue, whereas those representing the second case
have two non-zero eigenvalues. Thus, 2-dimensional second order tensors provide more
powerful boundary representations than scalar or vector-valued measurements (such as
the ones we discussed in chapter 7 � directed second derivative, Laplacian operator, gradi-
ent vector and magnitude), although they still have an important limitation: While they
are able to distinguish locally 2-dimensional structures from 1-dimensional ones, they
cannot represent two independent local directions. The eigenvectors associated with the
two eigenvalues are always pointing into orthogonal directions, i.e. only one direction can
be chosen independently. This is insu�cient for certain applications. Therefore, some au-
thors proposed even more powerful tensor representations. For example, [Aach et al. 06]
compute 3-dimensional vectors from the second derivatives (fxx, fxy, fyy) of the image and
de�ne 2nd-order tensors by the outer product of these vectors with themselves, followed
by spatial integration over a neighborhood. The resulting tensors can encode two inde-
pendent directions. An even more powerful representation is proposed by [Nordberg 04],
who computes a 4th-order tensor in every point of the image. Multiple local orientations
are then determined by a generalization of eigenvector decomposition to 4th-order ten-
sors. However, these approaches are rather new, and their properties in terms of accuracy
and reliability are not yet known in detail. Therefore, in the sections to follow we will
restrict our attention to the well-known case of 2-dimensional second order tensors.

271

9 Improving the Junction Response

9.2 Tensor De�nition by Spatial Integration of Gradients

Corners and junctions are characterized by the fact that the gradients in a neighborhood
have di�erent directions. Therefore, it should be possible to �nd corners and junctions
by integrating (i.e. averaging) the gradient directions over the neighborhood. However,
direct integration of the gradient vectors does not give useful results, because gradients
with opposite directions cancel out. It is necessary to �rst transform the gradients into a
representation where this cannot happen. This is achieved by taking the outer product
of the gradient vector with itself, resulting in the gradient tensor :

G = ∇f ∇fT (9.2)

=
(

f2
x fxfy

fxfy f2
y

)
The gradient tensor is always rank-de�cient, i.e. it has only one non-zero eigenvalue, and
the associated eigenvector points in the gradient direction or in the opposite direction
(in other words, the tensor represents only an orientation, not a direction). Now, spatial
integration can no longer cause di�erently oriented structures to cancel each other. In-
stead, we obtain tensors with two non-zero eigenvalues, and the magnitude of the smaller
eigenvalue indicates the degree to which the present point is locally 2-dimensional. The
tensor obtained after spatial integration is called structure tensor

S = gσi ?G (9.3)

=
(

gσi ? f
2
x gσi ? fxfy

gσi ? fxfy gσi ? f
2
y

)
where gσi denotes an integration �lter at scale σi, usually a Gaussian. This approach �rst
appeared in [Bigün et al. 91, Nagel 85].

Unfortunately, the advantages of spatial integration come at a price: Spatial integration
results in a loss of resolution. In addition to the �lters computing the derivatives, a second
smoothing is imposed by the spatial integration step. For example, when we consider
a step edge blurred with a Gaussian PSF, the gradient magnitude along the gradient

direction has the form of a Gaussian with width
√
σ2
PSF + σ2

�lter, but the width after

integration becomes
√
σ2
PSF + σ2

�lter + 2σ2
i (where the edge strength has been de�ned as

the square root of tr [S], which is the analogue of the gradient magnitude in the context
of the structure tensor). In practice, one usually sets σi to a value between 2σ�lter and
3σ�lter. Thus, with standard values of σPSF = 0.5, σ�lter = 0.9, the width of the edge
response increases three- to four-fold after integration. In order to remain distinguishable,
the separation between two neighboring edges must be increased accordingly.

This loss of resolution is often unacceptable. Blurring can be reduced when the inte-
gration is not performed uniformly in all directions, but is restricted to directions where
it actually has a desirable e�ect, namely along edges. The idea is that reliable gradient
information is only available up to a certain distance from a junction, whereas gradients

272

9.2 Tensor De�nition by Spatial Integration of Gradients

in the immediate neighborhood of a junction are distorted. Therefore, edge information
should be extrapolated toward junctions from the locations where it is still reliable.
This idea is very similar to the ability of the human visual system to group features

according to the rules of good continuation. This ability is, for example, used to group the
individual segments of a dashed line into a coherent whole. Edge extrapolation accord-
ing to the rules of good continuation has been explored by [Williams & Jacobs 97] who
proposed stochastic completion �elds that simulate contour continuation by means of
random walks. The walk starts at a line ending and proceeds along the previous tangent
direction and with the previous curvature, but direction and curvature are allowed to
change according to a certain probability distribution. As the distance from the starting
point increases, these probability distributions are becoming less and less peaked. The
stochastic completion �eld is now de�ned as the probability for a random walker starting
at the line ending to reach a particular point in the plane. Each completion �eld has
the shape of a fan oriented according to the line ending direction, and the superposition
of all completion �elds in the image has exactly the desired e�ect of anisotropic edge
extrapolation.
[Williams & Jacobs 97] determine completion �elds by means of random walk simula-

tion, whereas [August & Zucker 03] compute them as solutions of suitably de�ned di�er-
ential equations. Since these solutions are quite expensive, [Medioni et al. 00] propose a
much simpler parametrization of the completion �elds. In their approach, line endings are
represented by tensors encoding feature strength, isotropy, and orientation. The tensor
at a given image point in�uences all other points in a neighborhood: It casts votes as to
how the tensors at neighboring points should look like if they were good continuations
of the present tensor. Thus, votes are strong when the two points are close together, and
the orientations of the two tensors are consistent with a circular arc connecting the two
points (i.e. the orientation of voting tensors is adjusted according to the curvature of the
connecting arc). Each voting �eld has thus the shape of a butter�y oriented along the
tensor direction at the �eld's center, and the superposition of all voting �elds gives the
�nal completion �eld. Accordingly, the method is called tensor voting.
A further simpli�cation was proposed by the hourglass �lter method [Köthe 03c]. Here,

tensors vote in their neighborhood like in standard tensor voting, but they only cast votes
according to their own orientation. This simpli�cation is possible because we use rela-
tively small voting kernels (scales in the kernel's major direction are about 2 to 3 pixels,
corresponding to the size of a junction's neighborhood were the gradient information is
distorted). The voting strength is thus de�ned as

h (r,∆φ) =
1
p

exp
(
− r2

2σ2
i

)
exp

(
−(tan ∆φ)2

2σ2
φ

)
(9.4)

where r = |~x− ~x0| is the distance between the point ~x0 casting the vote and the point
~x receiving the vote, ∆φ = arccos

(
~tT0 · ~t

)
is the angle di�erence between the minor

axis ~t0 of the tensor (i.e. the eigenvector corresponding to the small eigenvalue, which
points along the edge when T is a gradient tensor) and the vector ~t = 1

r (~x− ~x0), σi
and σφ are the radial and angular scales of the kernel, and the constant p normalizes the

273

9 Improving the Junction Response

Figure 9.1: Hourglass kernel according to
(9.4) with ~t0 along the horizontal axis, σφ =
0.4.

kernel to unit integral. Figure 9.1 depicts the kernel for the case that ~t0 points along the
horizontal axis. When ~t0 is di�erent (i.e. the edge runs in another direction), the voting
kernel is rotated accordingly. The scale σφ controls the opening angle of the hourglass,
and we found σφ = 0.4 to be a good choice for most applications. This corresponds to
an hourglass opening angle of about 50◦, i.e. the �lter amplitude at ∆φ = ±25◦ is half
the maximal amplitude at ∆φ = 0. Filter results are not very sensitive to the choice of
σφ � values between 0.3 and 0.7 give essentially the same results. However, for σφ < 0.3,
the �lter becomes susceptible to noise in the estimated direction ~t0. For ρ > 0.7, the
anisotropy of the kernel is lost, and undesirable blurring becomes again visible.

When an anisotropic kernel is used, the structure tensor is no longer obtained from
the gradient tensor by means of convolution. Instead, it must be computed according to

Sh (~x) =
∑
~y

h
(
|~x− ~y| , arccos

[
~t0 (~y)T · (~x− ~y) / |~x− ~y|

])
G (~y) (9.5)

Note that it is crucial to determine the reference direction ~t0 according to the eigendi-
rections of G at the point ~y, because votes must be casted along the edge direction of
the voting point1. We will refer to the result Sh of anisotropic integration according to
(9.5) as the hourglass tensor. Figure 9.2 compares the gradient magnitude with the trace
of the isotropic and anisotropic structure tensors for an example image.

Another approach toward anisotropic structure tensor integration is a statistical one.
Suppose point ~x0 is located near a corner or junction. Then all edges in a neighborhood
of ~x0 will meet approximately at ~x0. The orientations of these edges are determined by
the direction perpendicular to the gradient direction, and the importance of each edge is
determined by the gradient magnitude, both measured at a point on the edge. It is now
possible to compute a least-squares estimate of the most likely crossing point of all edges
in the given neighborhood. Let the gradient at point ~x be ~g(~x). Then the normal of the
edge through ~x is parallel to the gradient, i.e. ~n(~x) = ~g(~x)/ |~g(~x)|. The distance between

1If the direction ~t0 could be estimated at point ~x, a slightly modi�ed version of the anisotropic �lter
could be e�ciently implemented by means of steerable �lters [Freeman & Adelson 91]. However, the
requirement to use ~t0(~y) implies that the complete 2-dimensional sum has to be evaluated at every
point.

274

9.2 Tensor De�nition by Spatial Integration of Gradients

Figure 9.2: Left: The facade of the entrance hall of Lorsch monastery is decorated with delicate
tilings. Center left: The gradient magnitude correctly represents the edges of the tiles, but is zero
at their corners (because these points happen to be saddle points, i.e. the gradient vanishes).
Center right: Due to excessive blurring, the tiling structure is lost in the square root of the
structure tensor trace. Right: The square root of the trace of the anisotropic structure tensor
(i.e. integration is done with the hourglass �lter) represents both edges and corners correctly.
Parameters were σ�lter = 0.8, σi = 1.6, σφ = 0.4. All computations were performed in a two-fold
oversampled image to avoid aliasing artifacts (cf. section 7.1), and the given �lter sizes have been
scaled accordingly.

this edge and the point ~x0 is given by the scalar product

d (~x, ~x0) = ~nT (~x− ~x0) =
~g(~x)T (~x− ~x0)
|~g(~x)|

Now, the most likely edge crossing is the point ~x0 which minimizes the squared sum over
all distance d is minimized:

~x0,opt = arg min
~x0

∑
~x

w (|~x− ~x0|) |~g(~x)|2 d (~x, ~x0)2

where w (|~x− ~x0|) is a windowing function (usually a Gaussian), and |~g(~x)|2 weights point
~x according to its edge strength. Note that this factor cancels with the denominator of
d2. The right hand side can therefore be written as

~x0,opt = arg min
~x0

∑
~x

w (|~x− ~x0|) cos (∆ψ)2 G(~x)

where ∆ψ is the angle between the edge normal ~n(~x) and the vector ~x−~x0, and G(~x) =
~g(~x)~g(~x)T is the gradient tensor at point ~x. Since cos (∆ψ)2 = 1− sin (∆ψ)2, and ∆ψ =
π/2−∆φ (where ∆φ is the angle between the edge direction and the vector ~x−~x0), this
is equivalent to

~x0,opt = arg min
~x0

[∑
~x

w (|~x− ~x0|) G(~x)−
∑
~x

w (|~x− ~x0|) cos (∆φ)2 G(~x)

]

275

9 Improving the Junction Response

When we assume that ~x0 is close to the true junction point ~x0,opt, the weights w (|~x− ~x0|)
will not change signi�cantly when we move from ~x0 to ~x0,opt. Therefore, the �rst term
in brackets is approximately constant, and we can also write

~x0,opt = arg max
~x0

∑
~x

w (|~x− ~x0|) cos (∆φ)2 G(~x)

The expression to be maximized can be interpreted as another anisotropic �lter conform-
ing to (9.5). Its response at junctions is a local maximum, in agreement with the desired
behavior of anisotropic integration. The kernel of this version of anisotropic integration
is

h2(r,∆φ) =
1
p

exp
(
− r2

2σ2
i

)
cos (∆φ)2 (9.6)

where p is again a normalization constant. This kernel looks quite similar to the hourglass
kernel with σφ = 0.85 and still exhibits considerable blurring perpendicular to the edges.
More pronounced anisotropy (smaller opening angle) is achieved when the cosine is raised
to a higher power. A kernel similar to the hourglass kernel with σφ = 0.4 is obtained by
using cos6

h6(r,∆φ) =
1
p

exp
(
− r2

2σ2
i

)
cos (∆φ)6 (9.7)

Results of anisotropic integration with the kernels (9.6) and (9.7) are shown in �gure 9.3,
where it can be seen that the cos6 kernel does indeed perform extremely similar to the
hourglass kernel.
Yet another approach to anisotropic structure tensor integration is suggested by structure-

preserving di�usion. In contrast to isotropic di�usion, where the di�usivity is a scalar,
the di�usivity in anisotropic di�usion is a tensor. That is, the di�usivity is represented
by an ellipse whose axes are oriented along the directions of maximum and minimum
di�usivity. Under this interpretation, we get an anisotropic Gaussian integration kernel

he(r,∆φ) =
1
p

exp

(
−(r cos (∆φ))2

2σ2
1

)
exp

(
−(r sin (∆φ))2

2σ2
2

)
(9.8)

where r and ∆φ are de�ned as before, p is a normalization constant, and σ1 and σ2 < σ1

are the scales of the kernel along the edge and perpendicular to it, respectively. This
kernel is inserted into (9.5) instead of the hourglass kernel2. We obtained good results
with σ1 ≈ 2σ�lter and σ2 . σ�lter. Although the shapes of the anisotropic Gaussian kernel
and the hourglass kernel are quite di�erent, the �lter results are remarkably similar, see
�gure 9.3.

2Note that the result of this �lter is not the same as the result of anisotropic di�usion, because the
latter requires a sequence of in�nitesimally small smoothing steps, whereas we use a single step with
a relatively large ellipse.

276

9.2 Tensor De�nition by Spatial Integration of Gradients

Figure 9.3: Comparison of di�erent variants of anisotropic tensor integration of the gradient
tensor (top row) and the corresponding integration kernels (bottom row). Left: Result of the
hourglass �lter (9.4) for the Lorsch example (repeated from �gure 9.2). Center left: cos2 kernel
according to (9.6). Center right: cos6 kernel according to (9.7). Right: Anisotropic Gaussian kernel
according to (9.8). Filter parameters were σ�lter = 0.8, σi = σ1 = 1.6, σ2 = 0.5. Filtering was
performed in two-fold oversampled images (with �lter sizes adjusted accordingly), and images
are shown for this resolution.

277

9 Improving the Junction Response

9.3 Tensor De�nition by Combination of Even and Odd

Filters

An alternative to spatial tensor integration was proposed in [Granlund & Knutsson 95]
and earlier works by the same authors. Originally, they had been interested in the exten-
sion of edge detection to other locally 1-dimensional image features, in particular lines
(as found in line drawings). Formally, 1-dimensional features are de�ned by the fact that
the image is locally reduced to a 1-dimensional function that varies only along a certain
direction ~n and is constant perpendicular to that direction:

f2(~x) ≈ f1(~xT~n)

(We write ≈ instead of = because the condition is only ful�lled locally in real images.)
Then the local signal energy and orientation can be represented by an orientation tensor
which is the outer product of the local direction vector times a factor λ encoding signal
strength:

T = λ~n~nT (9.9)

The value of this tensor should now be equal for edges and lines of equal strength,
regardless of their di�erent pro�les. This property is called phase invariance because
edges and lines can be understood as superpositions of trigonometric (complex expo-
nential) basis functions at di�erent phase (namely phase 0 or π for lines and ±π/2
for edges). Phase invariance can be achieved by means of oriented quadrature �lters
[Granlund & Knutsson 95] or local polynomial approximations [Farnebäck 02]. Quadra-
ture �lter pairs have been invented to estimate the instantaneous energy and phase of
1-dimensional signals. A quadrature pair (heven, hodd) consists of an even and an odd
symmetric �lter, and the instantaneous (edge or line) energy can be calculated as the
sum of squares of the �lter responses:

E(x) = (heven ? f1)2 + (hodd ? f1)2 (9.10)

To actually form a quadrature pair, the �lters must be related by the Hilbert transform
H, which is de�ned in the Fourier domain by

Hodd(u) = H[Heven(u)] = i
u

|u|
Heven(u) = i sign(u)Heven(u) (9.11)

(slanted capitals denote the Fourier transforms of the corresponding lower-case func-
tions). To apply these �lters in 2D, it is conventional to rotate them into some orientation
of interest. In order to estimate T in a 2D image, at least 3 orientations are necessary
[Granlund & Knutsson 95]. When the local image structure is indeed 1-dimensional and
the orientations θi = [0, π/3, 2π/3] are used, one gets

T =
∑
i

(mimT
i − I/4)Ei (9.12)

where Ei is the energy computed for orientation i, mi = (cos θi, sin θi)T and I is the unit
tensor.

278

9.3 Tensor De�nition by Combination of Even and Odd Filters

Another possibility to de�ne a tensor representation which is sensitive to both step
edges and lines is the formula

T = aaT + γBBT (9.13)

where a and B are �rst- and second-order tensors which represent odd-symmetric (i.e. step
edge-like) and even symmetric (e.g. line-like) image structures respectively. An in-depth
discussion of how to estimate suitable a and B can be found in [Farnebäck 02]. Possibil-
ities include local polynomial �ts, facet models, moment �lters, and Gaussian derivative
�lters. However, when a and B are estimated according to one of these methods, T is only
phase invariant for a single feature scale depending on γ (γ is therefore considered as an
algorithm tuning parameter). This is undesirable because most images contain features
at di�erent scales, and phase invariance cannot be achieved for all of them simultaneously
by a �xed value of γ.
Fortunately, there is a method for de�ning a and B that does not su�er from these

shortcomings. It is based on the Riesz transform, a generalization of the Hilbert transform
(9.11) to arbitrary dimensional spaces. According to [Felsberg & Sommer 01], the Riesz
transform is de�ned in the Fourier domain by

HN [H(~u)] = i
~u

|~u|
H(~u) (9.14)

In contrast to the Hilbert transform, the argument ~u is now a vector in an N -dimensional
space rather than a scalar. In the spatial domain, the Riesz transform of some function
h(~x) can be written as a convolution

HN [h(~x)] = −Γ((N + 1)/2)
π(N+1)/2

(
~x

|~x|N+1
? h(~x)

)
(9.15)

where Γ(.) is the gamma function.
We see that the Riesz transform is very similar to the gradient (which is expressed

as 2πi ~uH(~u) in the Fourier domain). The only di�erence is the factor (2π |~u|)−1 in
the Riesz transform expression. The meaning of this di�erence is best understood when
the two operators are written in polar coordinates. In the 2-dimensional Fourier domain
with polar coordinates (ρ, φ), the gradient becomes 2πi (ρ cosφ, ρ sinφ)T , whereas the
expression for the Riesz transform reads i (cosφ, sinφ)T . That is, both operators modify
the angular component of a function H (ρ, φ) in the same way, but the gradient does also
modify the radial component, which the Riesz transform leaves alone. It turns out that
this is the key property for making �lters phase invariant at all scales simultaneously:
When all �lters involved in the construction of the tensor have the same radial spectrum,
and di�er only in their angular spectra, phase invariance at a single scale automatically
implies phase invariance at all scales.
Given any radial symmetric band-pass with transfer functionH (|~u|), the corresponding

�rst-order Riesz kernel in the spatial domain is a vector-valued function of the form

hodd(~x) = H [h (|~x|)] =
(

cosφ
sinφ

)
h̃ (|~x|)

279

9 Improving the Junction Response

where h̃ (|~x|) is the �rst order Hankel transform of H (|~u|):

h̃ (r) = 2π
∫ ∞

0
H(ρ) J1(2π r ρ) ρ dρ

and J1(.) is the �rst-order Bessel function of the �rst kind. The Hankel transform is
essentially a 2-dimensional Fourier transform for polar separable functions where the
angular integration has already been carried out. The second order Riesz kernel is a
matrix-valued function

heven(~x) = H2 [h (|~x|)] =
(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

)
˜̃
h (|~x|)

with
˜̃
h (|~x|) being the second order Hankel transform of H (|~u|)

˜̃
h (r) = 2π

∫ ∞
0

H(ρ) J2(2π r ρ) ρ dρ

The kernels hodd and heven play the same role as the even and odd �lters in (9.10)
and generalize them to 2D. It is easily shown that hodd and heven always ful�ll the
requirements (9.1) of �rst- and second-order tensors, independent of the particular form
of H (|~u|). In order to obtain a boundary detector, we simply have to choose H (|~u|)
suitably, for example as the Laplacian of Gaussian (see section 9.3.2).

The convolution of a scalar-valued image f (~x) (i.e. of a function which is a 0th-order
tensor in every point) with hodd and heven results in a vector- and matrix-valued image
respectively. Thus, the �ltered images are functions whose values are 1st- and 2nd-order
tensors in every point, i.e. we can write

ah (~x) =
[(

cosφ
sinφ

)
h̃ (|~x|)

]
? f (~x) (9.16)

Bh (~x) =
[(

cos2 φ sinφ cosφ
sinφ cosφ sin2 φ

)
˜̃
h (|~x|)

]
? f (~x) (9.17)

Using the thus obtained ah and Bh, we can now de�ne T in every image point according
to (9.13) as

Th = ahaTh + BhBT
h = TB (9.18)

This tensor was �rst introduced in [Köthe 03a] (by means of a di�erent derivation) and
will be referred to as the boundary tensor. As we will show below, this name is justi�ed
because TB does not only react to step-like and line-like 1-dimensional features but also
gives reasonable responses at 2-dimensional feature points such as corners and junctions.
It is also easily seen that the boundary tensor is phase invariant. Unlike the tensors
in (9.13), there is no need for a tuning parameter γ to achieve this. This follows from
the fact that ah and Bh are related by the Riesz transform. Consider an intrinsically
1-dimensional image f (~x) = f1

(
~xT~n

)
, where we assume without loss of generality that

280

9.3 Tensor De�nition by Combination of Even and Odd Filters

Figure 9.4: Left: A test image with a circular step edge and a circular line. Right: the corre-
sponding boundary energy. The boundary energy is rotationally invariant and phase invariant,
i.e. it produces the same response for odd-symmetric features such as edges and even-symmetric
features such as lines.

~n is parallel to the horizontal axis. Then, all terms in ah and Bh containing sin (φ) are
zero, and the trace of TB reduces to

tr [TB] =
(
h̃ ? f1

)2
+
(˜̃
h ? f1

)2

which is precisely the same as the quadrature energy (9.10) in the 1-dimensional case3.
The trace tr [TB] is called the boundary energy because it generalizes the 1D energy
computation (9.10) to two dimensions. Figure 9.4 demonstrates phase invariance and
rotational invariance of the boundary energy for a simple test image. The boundary
tensor is also closely related to the orientation tensors according to (9.12): It can be
shown that the latter tensors converge to the boundary tensor when the energies Ei
are computed by means of steerable �lters [Freeman & Adelson 91], and the number of
orientations approaches in�nity.
The downside of phase invariance is a loss in resolution in comparison to applying

just an odd or even �lter. Consider, for example, a single straight step edge. Both the
boundary energy and the squared magnitude of the Gaussian gradient have Gaussian-
like response pro�les perpendicular to the edge. However, when the scales of the two
operators are equal, the gradient pro�le is only 70% as wide as the boundary energy,
cf. �gure 9.5. In e�ect, two edges must have 1.4 times the distance from each other to
remain distinguishable in the boundary energy. This is caused by the fact that the even
�lter part does not contribute useful information at odd-symmetric features like edges.
This property of quadrature �lters also has a negative e�ect on the signal-to-noise-ratio
of the boundary energy.

9.3.1 Analysis of the Boundary Tensor as a Quadratic Filter

In order to understand the behavior of the boundary tensor near corners and junctions, we
adopt the proposal of [Nordberg & Farnebäck 03] and formulate the tensor as a quadratic
�lter [Sicuranza 92]. This is necessary because the boundary tensor is de�ned in terms

3A more detailed proof that TB is phase invariant and generalizes quadrature �lters to 2D can be found
in [Köthe 06a].

281

9 Improving the Junction Response

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

-4 -3 -2 -1 0 1 2 3 4

Gaussian gradient squared magnitude
boundary energy

Figure 9.5: Pro�le of the operator response to a step edge. The squared magnitude of the
Gaussian gradient (red) is only 70% as wide as the boundary energy (green). Operator scale was
σ = 1 in both cases.

of squared �lter responses, so an analysis on the basis of linear �lters is insu�cient.
Quadratic convolution is de�ned as

f̃(~x) =
∫∫

h(~x− ~x1, ~x− ~x2)f(~x1)f(~x2) d~x1 d~x2

where h(., .) is the kernel, and the method is termed �quadratic� because the original
image f appears twice in the integral. Let hoddi (~x) denote the ith component (i = 1, 2)
of the �rst order kernel hodd(~x). Then

(a aT)il = aial = (hoddi ? f)(hoddl ? f)

=
∫
hoddi (~x− ~x1)f(~x1) d~x1

∫
hoddl (~x− ~x2)f(~x2) d~x2

=
∫∫ (

hoddi (~x− ~x1)hoddl (~x− ~x2)
)
f(~x1)f(~x2) d~x1 d~x2

Similarly, let hevenil (~x) represent component il (i, l = 1, 2) of the kernel for the second
order kernel heven (~x). This leads to

(B BT)il =
∑
k

BikBkl =
∑
k

(hevenik ? f)(hevenkl ? f)

=
∫∫ (∑

k

hevenik (~x− ~x1)hevenkl (~x− ~x2)

)
f(~x1)f(~x2) d~x1 d~x2

We can combine both equations into a single quadratic convolution with kernel

hil(~x1, ~x2) = hoddi (~x1)hoddl (~x2) +
∑
k

hevenik (~x1)hevenkl (~x2)

Then the components of the boundary tensor can be written as

TB,il(~x) =
∫∫

hil(~x− ~x1, ~x− ~x2)f(~x1)f(~x2) d~x1 d~x2

282

9.3 Tensor De�nition by Combination of Even and Odd Filters

Due to Parseval's theorem, the �lter response at the origin ~x = 0 is equal to the integral
over the Fourier transform of the convolution integral, i.e.

TB,il(~x = 0) =
∫∫

Hil(~u,~v)F (~u)F (~v) d~u d~v (9.19)

where F is the 2-dimensional Fourier transform of f , Hil is the (2× 2)-dimensional
Fourier transform of hil(~x1, ~x2). Inserting the Fourier representation of the Riesz trans-
form, Hil gets a simple functional form:

Hil(~u,~v) = − ~ui
|~u|

~vl
|~v|
H(|~u|)H(|~v|) +

∑
k

(
~ui~uk
|~u|2

~vk~vl
|~v|2

)
H(|~u|)H(|~v|)

=
~ui
|~u|

~vl
|~v|

(
−1 +

~uT~v

|~u||~v|

)
H(|~u|)H(|~v|) (9.20)

whereH (|~u|) is the given radially symmetric bandpass �lter. When we base the boundary
tensor on the Laplacian of Gaussian, we have H(t) = −4π2t2 exp

(
−2π2t2σ2

)
.

In this form, it is now possible to see how Hil responds to intrinsically 2-dimensional
image features. To simplify matters, we assume that the coordinate system has been
shifted so that the point of interest is the coordinate origin. Moreover, we assume the
resulting image spectrum F (~u) to be polar separable, i.e. can be written as the product
of a radial and an angular function

F (~u) = F (|~u| , φ) = Fr(|~u|)Fa(φ)

If the point of interest is at the center of an intrinsically 2-dimensional feature (i.e.
a corner or junction), and the scale of the bandpass �lter H(|~u|) matches the feature
scale, this assumption is at least approximately ful�lled in the pass-band of H(|~u|). The
product H(|~u|)F (~u) then becomes H(|~u|)Fr(|~u|)Fa(φ). After inserting this and (9.20)
into the Fourier domain expression (9.19), the integrals over ~u = ρ1(cos(φ), sin(φ))T and
~v = ρ2(cos(ψ), sin(ψ))T can be expressed in polar coordinates and factor into a product
of two integrals:

TB (~x = 0) =
∫∫

~u

|~u|
~vT

|~v|

(
−1 +

~uT~v

|~u||~v|

)
H(|~u|)H(|~v|)F (~u)F (~v) d~u d~v

=
(∫∫ (

cosφ cosψ cosφ sinψ
sinφ cosψ sinφ sinψ

)
(−1 + cosφ cosψ + sinφ sinψ)Fa(φ)Fa(ψ) dφ dψ

)
×
(∫∫

H(ρ1)H(ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

)
= TB,a ×TB,r (9.21)

In other words, the boundary tensor factors into the product of an angular component
(a 2× 2 matrix) and a radial component (a scalar). It should be noted that this decom-
position is only possible because the boundary tensor is phase invariant. The angular

283

9 Improving the Junction Response

integral TB,a in (9.21) can be further simpli�ed in terms of the Fourier coe�cients of Fa:

αn =
∫ 2π

0
cos(nφ)Fa(φ) dφ βn =

∫ 2π

0
sin(nφ)Fa(φ) dφ (9.22)

It turns out that only the Fourier coe�cients up to second order are relevant (the oth-
ers drop out due to orthogonality of trigonometric functions), and the boundary tensor
components can be written as (see [Köthe 06a] for details):

TB,11 = (α2
1 +

1
4

(α0 + α2)2 +
1
4
β2

2) TB,r

TB,22 = (β2
1 +

1
4

(α0 − α2)2 +
1
4
β2

2) TB,r (9.23)

TB,21 = TB,12 = (α1β1 +
1
2
α0β2) TB,r

where TB,r is the (scalar) radial part of (9.21). These equations show what type of
features the boundary tensor is sensitive to: The radial part TB,r assumes high values
if the image contrast is high near the point of interest, and the angular components
TB,a are high if the neighborhood around that point is well described by the �rst �ve
Fourier coe�cients. That is, when we draw a circle around the point of interest whose
radius corresponds to the scale of the bandpass �lter H (|~u|), the intensity variations
along this circle should be well described by the Fourier coe�cients α0 to β2. This makes
it immediately clear why the boundary tensor is a richer feature descriptor than the
gradient magnitude: The latter is only sensitive to the two Fourier coe�cients α1 and β1

(corresponding to step edge-like image structures, i.e. features of odd symmetry).
Figure 9.6 shows example for the performance of the boundary tensor on some junction

con�gurations. The depicted intensity pro�les demonstrate that �ve Fourier coe�cients
are su�cient for coarse approximation of the true intensity, but details (such as narrow
regions and staircase-like pro�les) are lost. Consequently, the boundary energy represents
the structure very well (center right). The small eigenvalue of the boundary tensor (right),
which encodes to what degree the structure is intrinsically 2-dimensional, has maxima
in the neighborhood of the junctions, but not necessarily at the precise junction point.
This re�ects the limitations imposed by the �ve-coe�cient approximation of the pro�le.

9.3.2 E�cient Computation of the Boundary Tensor

Thanks to the convolution theorem of Fourier theory, the �lter responses hodd and heven

can always be computed in the Fourier domain, and the boundary tensor is then ob-
tained by point-wise combinations of the spatial domain responses after inverse Fourier
transform. However, for small �lters this may not be the most e�cient method since
it requires one forward and 5 inverse Fourier transforms. An algorithm working purely
in the spatial domain may be much faster then. Let the bandpass �lter H (|~u|) be the
Laplacian of Gaussian. Its transfer function is

H(|~u|, σ) = −4π2|~u|2e−2π2|~u|2σ2
(9.24)

284

9.3 Tensor De�nition by Combination of Even and Odd Filters

-50

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

in
te

ns
ity

angle (degrees)

intensity profile around center
approximation by 5 Fourier coefficients

-50

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

in
te

ns
ity

angle (degrees)

intensity profile around center
approximation by 5 Fourier coefficients

-50

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

in
te

ns
ity

angle (degrees)

intensity profile around center
approximation by 5 Fourier coefficients

-50

 0

 50

 100

 150

 200

 250

 300

 0 50 100 150 200 250 300 350

in
te

ns
ity

angle (degrees)

intensity profile around center
approximation by 5 Fourier coefficients

Figure 9.6: Boundary tensor response for some junction con�gurations (left). Center left: the
intensity pro�le around the center of the con�guration (red) and its approximation by the �ve
Fourier coe�cients that the boundary tensor actually sees (green). Center right and right: Bound-
ary energy and small eigenvalue of the boundary tensor.

285

9 Improving the Junction Response

-4 -2 2 4

-0.3

-0.2

-0.1

0.1

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9.7: Left: hodd1 (solid) and heven11 (dashed) along the x1 axis when the band-pass is the
Laplacian of Gaussian at σ = 1 (the approximation h̃odd1 is indistinguishable form the exact
function hodd1 in the depicted 4σ interval, it only has longer tails). Right: transfer functions of H
(dashed) and its approximation H̃odd

1 = F [h̃odd1] (solid) at σ = 1.

We have found experimentally that this band-pass gives very good feature resolution
(good separation of nearby features) and is better than other choices in this respect, which
is probably due to the Gaussian's optimal localization in both the spatial and frequency
domains. Moreover, the resulting spatial domain �lters can be e�ciently computed by
means of separable Gaussian-like �lters. This is immediately obvious for the second-order
Riesz transform of this �lter, whose transfer function reads

Heven(~u, σ) = −4π2

(
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

)
|~u|2e−2π2|~u|2σ2

= −4π2

(
u2

1 u1u2

u1u2 u2
2

)
e−2π2(u2

1+u2
2)σ2

which we readily recognize as the Fourier transform of the Hessian matrix of the Gaussian.
The corresponding spatial domain �lters are therefore simply the second derivatives of
the Gaussian:

hevenil (~x, σ) =
xixl − σ2δil

2πσ6
exp

(
−x

2
1 + x2

2

2σ2

)
The transfer function of the odd �lters (�rst order Riesz transform) becomes

Hodd(~u, σ) = −4π2

(
cosφ
sinφ

)
|~u|2e−2π2|~u|2σ2

The corresponding spatial domain expression is not so simple

hoddi (~x, σ) =
xi

4
√

2πσ7
exp

(
−|~x|

2

4σ2

)(
(|~x|2−3σ2)I0

(
|~x|2

4σ2

)
−(|~x|2−σ2)I1

(
|~x|2

4σ2

))
where I0 and I1 are modi�ed Bessel functions of the �rst kind. Fig. 9.7 left depicts
the shape of hodd1 and heven11 along the x1 axis. Unfortunately, the exact spatial domain
expressions of the odd kernels are unsuitable for practical applications because their
asymptotic decay is only of order O(|~x|−4), and the �lters are not Cartesian separable.
This means that large 2-dimensional �lter masks are needed, which makes computation

286

9.3 Tensor De�nition by Combination of Even and Odd Filters

of hoddi very slow. Therefore, we apply a design technique similar to the one used for
steerable quadrature �lters [Freeman & Adelson 91] to approximate hoddi with �lters h̃oddi

that can be computed separably and decay exponentially. The idea is to realize h̃oddi as
sums of �lters that are third order polynomials times a Gaussian. The polynomials-times-
Gaussian are de�ned so that they together form a supersymmetric third order tensor �lter
h̃ikl (a supersymmetric tensor has the property that its components don't change under
permutation of indices, i.e h̃112 = h̃121 = h̃211 etc.). Then the �rst order tensor �lters
can be obtained by contraction over any pair of indices, i.e. h̃oddi =

∑
k h̃ikk. We make

the following ansatz:

h̃iii(~x, σ′) =
(
s x3

i

σ′5
+
t xi
σ′3

)
1

2πσ′2
exp

(
−x

2
1 + x2

2

2σ′2

)
h̃ill(~x, σ′) =

xi
σ′2

(
s x2

l

σ′3
+

t

3σ′

)
1

2πσ′2
exp

(
−x

2
1 + x2

2

2σ′2

)
(i 6= l)

By expressing these functions in a rotated coordinate system, it is easy (if tedious) to
verify that the tensor requirements (9.1) are ful�lled with p = 3 . The transfer function
of the resulting �lters h̃oddi is

h̃oddi =
∑
k

h̃ikk c s H̃i(~u, σ′) = 8π3ui
σ′

(
s(4− |~u|2σ′2) +

4t
3

)
e−2π2|~u|2σ′2 (9.25)

We now formulate a least squares problem to choose s, t, and σ′ so that the radial part
of H̃i(~u, σ′) becomes as similar as possible to the desired H(~u, σ):

minimize w.r.t. s, t, σ′ :
∫ (

H̃(|~u|, σ′)−H(|~u|, σ)
)2

d~u

where H̃(|~u|, σ′) is obtained from H̃i(~u, σ′) by replacing ui with |~u|. This optimization
problem is similar to the one in [Freeman & Adelson 91], but we compute the solution
in the 2-dimensional Fourier domain, and include σ′ in the optimization. Therefore, our
approximation will be signi�cantly better. The solution is

s = −0.5589, t = 2.0425, σ′ = 1.0818σ (9.26)

Fig. 9.7 right depicts H̃ and H. It can be seen that the approximation is very good. Thus,
the boundary tensor can be computed by means of 7 separable, Gaussian derivative-like
�lters. This can be compared with the structure tensor, where 2 �lters are needed to
compute the gradient tensor, but then 3 �lters at a larger (typically doubled) scale are
applied to integrate the gradient tensors over a neighborhood. Thus, while the number
of �lters to compute the structure tensor is lower (5 vs. 7), larger windows are required,
making the overall computational e�ort about equal.
An even simpler approximation of the boundary tensor in terms of Gaussian derivative

�lters is possible by computing the gradient energy tensor or GET operator according to
[Köthe & Felsberg 06, Felsberg & Köthe 05]. Let

a = ∇gσ ? f

287

9 Improving the Junction Response

be the Gaussian gradient of the image f at scale σ1 = σ. Then,

B =
(
∇∇T

)
gσ ? gσ ? f

is the Hessian matrix of the image at scale σ2 =
√

2σ. Finally,

c = ∇
((
∇T∇

)
gσ ? gσ ? gσ ? f

)
is the gradient of the Laplacian of Gaussian at scale σ3 =

√
3σ. Note that a, B, and c

can be e�ciently computed by repeated application of a �rst derivative of Gaussian �lter
at a �xed scale σ. It is even possible to approximate the �rst derivative by a simple Sobel
�lter. Then, the gradient energy tensor is de�ned as

TGET = B BT − 1
2
(
a cT + c aT

)
(9.27)

It was shown in [Köthe & Felsberg 06] that TGET is a good approximation of the bound-
ary tensor TB when the latter is computed on the basis of the Laplacian of Gaussian
bandpass at scale

√
2σ. The main di�erence is that TB is guaranteed to be positive

semi-de�nite, whereas no such guarantee can be given for TGET . However, in practice
this doesn't seem to be a big problem � when TGET has negative eigenvalues, they can
simply be clamped at zero, because they indicate that there is only weak image structure
in one or all directions.

9.4 Experimental Evaluation

In order to �nd out whether the proposed tensor methods are indeed consistently better
near junctions we apply them to the same test images as have been used in section
7.6, that is to arti�cial junction images of degree 3 and 4. The boundary detector in
these experiments is the subpixel watershed algorithm, applied to the trace of the tensor
response of the di�erent �lter methods. This choice has the advantage that it facilitates
direct comparison of the resulting boundaries. On the other hand, it doesn't make use of
the complete tensor information � it only uses the sum of the eigenvalues, but not their
di�erence or the eigenvector orientation. However, it is unclear whether this information
would improve results signi�cantly, and convincing boundary detection algorithms that
incorporate complete tensor information don't seem to exist as yet. One reason for this
may be the fact that the tensor eigenvalues encode only one independent direction, but
advanced junction representations would need at least two independent directions. We
conjecture that 2× 2 tensors will not be able to achieve signi�cantly better results than
will be presented below.
Figure 9.8 demonstrates that it is possible to get better results from tensor-based

methods than are obtained from the gradient magnitude. However, it can also be seen
that no single algorithm is consistently better than the gradient: When we sort results
by increasing error, the order is di�erent for each junction con�guration, and there are
even cases where the plain gradient magnitude wins by a large margin (�gure 9.8 right).

288

9.4 Experimental Evaluation
anisotropic structure tensor
boundary tensor
structure tensor
hourglass

grad grad

hourglass
structure tensor
boundary tensor
anisotropic structure tensor

Figure 9.8: Comparison of tensor-based boundary detection with the gradient magnitude at
T-junctions (black: ground truth, red: gradient magnitude, magenta: structure tensor, green:
boundary tensor, blue: anisotropic structure tensor, cyan: hourglass tensor). Parameters of im-
ages: σPSF = 1, SNR = 100; of gradient magnitude: σ�lter = 1.2; of structure tensor, equation
(9.3): σ�lter = 1, σi = 2; of boundary tensor (9.24): σ = 1.2; of anisotropic structure tensor (9.8):
σ�lter = 1, σ1 = 2, σ2 = 0.7; of hourglass kernel (9.4): σ�lter = 1, σi = 2, σφ = 0.4. The results
of �lters according to (9.6) and (9.7) are very similar to the hourglass result and therefore not
shown.

structure tensor
boundary tensor
anisotropic structure tensor
grad

hourglass

structure tensor
boundary tensor
anisotropic structure tensor
grad

hourglass

hourglass
structure tensor
boundary tensor
anisotropic structure tensor
grad

Figure 9.9: Comparison of tensor-based boundary detection with the gradient magnitude at
junctions of degree 4 (black: ground truth, red: gradient magnitude, magenta: structure tensor,
green: boundary tensor, blue: anisotropic structure tensor, cyan: hourglass tensor). Parameters
of images and operators are as in �gure 9.8.

289

9 Improving the Junction Response

gradient

magnitude

structure

tensor

boundary

tensor

anisotropic

structure

tensor

hourglass

tensor

p q p q p q p q p q

[p̄] [q̄] [p̄] [q̄] [p̄] [q̄] [p̄] [q̄] [p̄] [q̄]

straight lines 0.21 0.046 0.22 0.18 0.31 0.12 0.24 0.16 0.30 0.20

SNR = 100 [0.024] [0.011] [0.026] [0.010] [0.027] [0.013] [0.028] [0.014] [0.03] [0.014]

straight lines 0.65 0.65 0.67 0.34 1.4 1.5 0.49 0.49 0.50 0.50

SNR = 10 [0.14] [0.14] [0.092] [0.070] [0.25] [0.40] [0.11] [0.10] [0.12] [0.11]

T-junctions 2.5 2.3 5.3 3.2 4.3 2.6 2.8 2.0 2.9 1.8

SNR = 100 [0.10] [0.04] [0.32] [0.06] [0.17] [0.05] [0.15] [0.06] [0.15] [0.05]

X-junctions 3.5 2.5 8.6 3.3 5.2 3.3 3.6 2.3 4.5 2.0

SNR = 100 [0.17] [0.08] [0.47] [0.13] [0.30] [0.11] [0.19] [0.09] [0.19] [0.08]

Table 9.1: Maximum errors p and q for various boundary detectors and image features. Cor-
responding average errors are given in brackets. The minimum angle between adjacent edges in
the junction con�gurations was 30◦.

It is also not uncommon for the di�erent detectors to produce very similar results (not
shown). Figure 9.9 shows that the situation is the same for junctions of degree 4.

In order to get insight into the quality of tensor-based results beyond mere examples,
we make again use of the boundary sampling theorem 6.8. It states that the quality of a
boundary detector should be judged by the maximum errors p (maximum distance of a
ground truth point to the nearest detected boundary point) and q (maximum distance of
a detected boundary point to the ground truth). In table 7.3 we reported that gradient-
based boundary detectors have maximum errors in the order of 3 pixels at junctions. On
the other hand, the step edge response of these detectors is very accurate, depending on
the noise level. So it is of interest whether tensor-based methods improve the junction
response without worsening the edge response. Since theoretical error bounds similar to
the ones we derived for gradient-based methods are not yet available for tensor-based
methods, we performed this analysis experimentally on a set of several hundred test
images generated according to equation (2.3) with randomly selected parameters.

The results are shown in table 9.1. Tensor methods can indeed achieve lower errors. For
example, the q-value of isotropic and anisotropic structure tensors (including the hour-
glass tensor) is signi�cantly lower for noisy straight edges, because the tensor integration
e�ectively suppresses noise. As one would expect, this e�ect is biggest for isotropic inte-
gration. Near junctions, the anisotropic structure tensor and the hourglass tensor perform
slightly better than the gradient magnitude (at least in terms of p+ q), but the improve-
ment is small and may not always be worth the much higher computational e�ort. The
errors of the boundary tensor for noisy edges are very high which turned out to be a
consequence of the fact that it was impossible to �nd a threshold that removed all false
positives without removing true positives. The boundary tensor is therefore more sus-
ceptible to noise than the gradient. This is easy to understand: At the location of the

290

9.4 Experimental Evaluation

step edge, the signal response of the even �lters is zero due to the edges anti-symmetry.
Therefore, the even �lters only contribute noise in this case. If we assume that the noise
behavior of the odd �lter part is similar to that of the gradient magnitude, the total noise
content of the boundary tensor trace must clearly be higher.

291

9 Improving the Junction Response

292

10 Conclusions and Outlook

In this work we explored whether it is possible to derive low-level segmentation methods
with predictable performance. We can summarize our �ndings as follows:

1. We conducted a very careful error analysis for low-level segmentation and achieved
remarkably good agreement between theoretical predictions and actually observed
performance.

2. A number of factors critically contribute to this success:

a) We de�ned low-level image segmentation as a subsystem whose goal has to be
well distinguished from that of high-level segmentation: Low-level segmenta-
tion is concerned with the reconstruction of properties of an ideal geometric
image from a real digital image. This point of view facilitates the de�nition of
realistic measures of success. In contrast, recovery of actual object boundaries
would ask too much from a low-level subsystem, and corresponding perfor-
mance targets would be impossible to achieve.

b) It is insu�cient to work in either the continuous or discrete domain alone.
Rather, it is necessary to treat these domains as complements of each other,
and to switch between corresponding representations as need arises. This fact
must be re�ected by image acquisition and boundary detection models. When
algorithms are genuinely discrete, their relationship to the (analog) real world
must be explicitly established. Likewise, when algorithms are de�ned in the
continuous domain, discretisation must be an intrinsic element of the algo-
rithm design and analysis. Oversampling of the boundary indicator (section
7.1) and subpixel-accurate boundary detection (section 5.1) have been identi-
�ed as highly e�ective methods arising from this point of view.

c) Algorithms and data structures must be powerful enough to take advantage of
the complete information contained in the image data. This includes topologi-
cal relations and subpixel-accurate geometric information. Spline interpolation
and the GeoMap framework have proved to be highly powerful tools in this
respect.

3. Many well-known image segmentation algorithms have successfully been trans-
formed into our proposed framework, often by replacing certain heuristics with
concepts that serve the same purpose but lend themselves to formal performance
analysis. Examples include edgel linking in the GeoMap framework instead of tra-
ditional heuristic edgel linking, and thresholding of gradient magnitudes only after
noise-normalization.

293

10 Conclusions and Outlook

4. Understanding the relationships between sensor resolution, lens blurring, noise and
target object shape/size is critical to the success of low-level segmentation. We
were able to formalize these relationships in a number of new geometric sampling
theorems which can be considered as key results of this work. These theorems
formulate su�cient conditions which guarantee that ground truth topology and
geometry are correctly recovered within given error bounds. If an image analysis
task does not meet these conditions, higher resolution or additional information
(e.g. shape constraints) are required for reliable segmentation.

5. By means of very careful experimentation we found that complicated methods do
not consistently outperform simple methods. This applies to both initial boundary
detection, and derived measures such as the tangent angle.

The last observation is especially interesting, because it matches the practical experience
of many application developers, whereas publications on new algorithms regularly suggest
the opposite. In part, this contradiction can be attributed to the fact that di�erent
applications pose di�erent requirements on algorithms. But our experience during the
preparation of this work also points out another reason: It is extremely di�cult to conduct
really objective comparisons of di�erent low-level approaches. This is not only a technical
problem, but also a psychological one. On the technical side, there are two di�culties:

1. The de�nition of representative ground truth for low-level image analysis is di�cult,
because the geometric image (which is the reference of comparison) is generally
unknown. We have discussed this problem in section 2.2.2, but do not consider it
solved. In this work, we based algorithm comparisons on relatively simple natural
images with known properties, and on realistic arti�cial images, and found quite
good agreement between these image types.

2. Methods to be compared must be implemented so that they only di�er in a single
respect, whereas everything else should be equal. For example, when we compare
the quality of non-maxima suppression, we have to make sure that the algorithms
apply the same �lters for boundary indicator computation (e.g. the Gaussian gra-
dient at a particular scale), use the same precision for intermediate results (e.g.
single-precision �oating point numbers), and so on. Otherwise, it would never be
exactly clear which algorithm detail caused the observed performance di�erences.
To ful�ll these requirements, we did not use algorithm implementations from dif-
ferent sources, but implemented everything from scratch in our uni�ed framework,
so that algorithms share all code except for the one implementing the feature to be
tested.

On the psychological side, the problems are even more subtle: It is all too easy for our
unconscious brain to slightly bias the experimental design so that our favorite algorithm
(e.g. the one we just invented, or the one that took the most work to implement) is
given some hidden advantage: The set of test images may slightly favor that algorithm, a
little less care may be used in the implementation and testing of competing algorithms,

294

certain negative results may not be presented in the paper, and so on. We have done
the utmost to avoid this in the present work, but the best strategy for the future might
be to assign the roles of algorithm designer/implementer and experimenter to di�erent
persons, similar to what is done in other �elds like physics.

Our results suggest that two algorithms (which also appear to be the most popular
among practitioners) o�er the best performance: the watershed transform, and Canny's
algorithm. Both work well on the Gaussian gradient, but can easily be adapted to other
boundary indicators. The watershed transform is slightly more �exible, because it only
needs a scalar boundary indicator, whereas Canny's algorithm also requires local orien-
tations. The geometric accuracy of both algorithms is similar. Moreover, both algorithms
are available in subpixel-accurate versions, which makes them suitable for low-resolution
imagery. Again, the subpixel watershed algorithm has a slight advantage here, because
it is able to place points along the contour with any desired spacing, whereas Canny's
algorithm is restricted to one boundary point per pixel. Here, research should be directed
towards a subdivision scheme that allows insertion of additional points into the Canny
boundary without loosing geometric accuracy.

In terms of topological correctness, the two algorithms exhibit opposite behavior: The
watershed transform tends to produce oversegmentation, whereas Canny's algorithm pro-
duces undersegmentation. In other words, Canny's algorithm returns few false positives,
but edges have gaps, especially near junctions. We presented (α, β)-reconstruction (cf.
section 5.3) as a well-de�ned way to close these gaps. Unfortunately, the values for α
and β required for reliable gap closure are relatively large, so that resolution is lost at
other locations in the image where the accuracy is signi�cantly higher (e.g. at parallel
edges). Therefore, the development of boundary detectors with improved junction be-
havior should be a high research priority. The proposals discussed in chapter 9, while
promising from a theoretical perspective, have not lived up to expectations in experi-
ments. The same can be said about other ideas from the literature that are not reviewed
in detail here. Obviously, the junction problem is more di�cult than one would think,
and further research might just as well discover a formal proof that a purely low-level
solution of this problem is impossible.

In the context of GeoMap creation we found it highly desirable that the underlying
boundary detector produces closed boundaries. Closed boundaries allow us to compute
region properties that can be used in subsequent computations to improve the segmen-
tation or derive higher-level object properties. In contrast to boundary indicator on the
basis of local �ltering, region properties are adapted to the geometry of the image par-
tition. The watershed transform has again a slight advantage here, because it creates
closed boundaries, although at the price of oversegmentation. In contrast, the edge gaps
typical for Canny's algorithm lead to undersegmentations without meaningful regions.
We are convinced that it is easier to merge regions in an oversegmentation than to close
gaps in an undersegmentation, and methods taking advantage of region properties are
currently under active development.

We would like to point out the following open problems that might be the focus of
future research:

295

10 Conclusions and Outlook

1. We already mentioned the necessity to improve the junction response, or to prove
the impossibility of this endeavor. This problem can be approached either by means
of an improved boundary indicator, or by the combination of several boundary
indicators. A major di�culty is to ensure that advances near junctions are not
achieved at the cost of reduced boundary �delity away from junctions.

2. False positives or negatives are often caused by image features that are beyond the
boundary indicator's capabilities. This especially applies to shaded and textured
regions. We had seen in chapter 7 that smooth shading tends to cause undersegmen-
tation, whereas textures will usually lead to oversegmentation. Boundary indicators
dealing with these region properties have been proposed, but have not yet reached
the same level of understanding as the more basic boundary indicators.

3. The reliability analysis should be extended to other boundary de�nitions, especially
those based on the minimization of certain energy functionals. While these methods
are guaranteed to �nd a local or even global optimum of the energy functional, the
relationship between this optimum and the ground truth segmentation is unclear.
Formal proofs showing when an energy optimum will reproduce the desired ground
truth segmentation do not yet seem to exist.

4. The representation of initial segmentation results in a GeoMap allows the appli-
cation of post-processing methods that take advantages of the graph-like GeoMap
structure. These methods can make use of non-local image features such as the ones
suggested by gestalt theory, or statistics of extended, irregularly shaped regions,
which cannot be computed by local boundary indicators. While certain results on
such methods exist (e.g. in the context of the waterfall algorithm and irregular
pyramids), the full potential of this approach has not yet been realized.

5. We believe that the scope of geometric sampling theorems is not restricted to
boundary detection. It would be interesting to develop similar theorems for other
analysis modalities such as motion and object recognition. These theorems could,
for example, tell us whether the resolution of an image and the accuracy of the
extracted features are su�cient for determining which object (out of a given set of
candidates) is visible in an image. Results like this would be very helpful in deciding
which feature set should be applied in a given object recognition task.

6. If the performance of purely bottom-up methods is insu�cient for reliable image
analysis, additional information (such as shape priors or hypotheses about the
objects to be seen) has to be utilized. The additional information should compensate
for the de�cits of low-level image analysis, but should never override valid stimulus
data. Further research is required to determine the optimal balance between visual
input data and information outside the stimulus.

7. Many of the ideas presented in this work can be generalized to 3- and higher-
dimensional problems. However, this generalization is not straightforward for subpixel-
accurate boundary tracing methods (subpixel watersheds and subpixel zero-crossings),

296

because these methods rely on a linear ordering of the boundary points. A surface
in 3-dimensional space has to be traced along two independent directions, which
is much more di�cult, especially when the surface has an irregular shape. Here,
subdivision methods are to be preferred, but a detailed formal performance analysis
of these methods seems to be an open problem.

297

10 Conclusions and Outlook

298

11 Acknowledgments

This thesis could not have been written without the help of many people, and I gratefully
acknowledge their support. First and foremost I'd like to thank Prof. Hans Siegfried
Stiehl for his continued encouragement and interest in the topics and problems of this
thesis, and for pointing out shortcomings of existing approaches which motivated many
of the proposed solutions. I'm also most grateful to Prof. Bernd Neumann, the head
of the Cognitive Systems Group, for creating and maintaining the creative atmosphere
that made this work possible, and for giving me the freedom and resources required to
successfully pursue my research.
Peer Stelldinger and Hans Meine have always been close collaborators and good friends,

and I'm convinced that this thesis could not exist in its present form without them. Our
discussions were always very inspiring and great fun. The collaboration was often so
tight that it was hard to tell precisely which idea had been who's. At any rate, I admire
Peer's ability to �nd relevant literature from seemingly unrelated �elds and to come up
with novel de�nitions that later give rise to beautiful theorems. Likewise, Hans used his
outstanding software design skills to craft much of the infrastructure that allowed me to
conduct experiments in whose results I can trust.
I'd like to thank all students � in particular Matthias Bock, Nils Boetius, Alexander

Bugl, Joshua Buttkus, Jörn Heinemeier, Florian Heinrich, Rainer Herzog, Verena Kaynig,
Gunnar Kedenburg, Yevgen Reznichenko, Benjamin Seppke, Leonid Tcherniavski, and
Andreas Tyart � who have been adventurous enough to try out some of my ideas. I
always learned a great deal from their work, and their results signi�cantly shaped my
own thinking. Teaching is the best way to learn, as the saying goes. They and many
others, especially Kasim Terzic, helped implementing improvements and extensions to
the VIGRA framework which were instrumental to my research.
I'm grateful to Prof. Tony Lindeberg and Prof. Gösta Granlund for their hospitality,

support and valuable discussions during my visits to their labs. They and their coworkers
� most notably Michael Felsberg and Klas Nordberg � introduced me to important new
concepts like Riesz transforms, energy operators and channel representations, and I had
the honor of many fruitful discussions that resulted in a number of joint publications.
Finally, I'm deeply indebted to my family for their support (not the least in proof-

reading the manuscript) and for their patience during countless hours of thinking, exper-
imenting, and writing.

299

11 Acknowledgments

300

Bibliography

[Aach et al. 06] T. Aach, C. Mota, I. Stuke, M. Mühlich, E. Barth: �Analysis of super-
imposed oriented patterns�, IEEE Trans. on Image Processing, 15(12):3690-3700,
2006

[Abramowitz & Stegun 72] M. Abramowitz, I. Stegun: �Handbook of Mathematical Func-
tions�, Dover, 1972

[Ahronovitz et al. 95] E. Ahronovitz, J.P. Aubert, C. Fiorio: �The Star Topology: a Topol-
ogy for Image Analsysis�, in: Proc. 5th Intl. Conf. Discrete Geometry for Computer
Imagery (DGCI 1995), pp. 101-116, 1995

[Allebach 05] J.P. Allebach: �Image Scanning, Sampling, and Interpolation�, in:
[Bovik 05], pp. 629-644, 2005

[Allgower & Georg 97] E.L. Allgower, K. Georg: �Numerical path following�, In: P.G. Cia-
rlet, J.L. Lions (Eds.), Handbook of Numerical Analysis, volume 5, pp. 3-207,
North-Holland, 1997

[Andersen & Kim 85] T.A. Andersen, C.E. Kim: �Representation of digital line segments
and their pre-images�. Computer Vision, Graphics, and Image Processing (CVGIP),
30:279-288, 1985

[Artal & Navarro 94] P. Artal, R. Navarro: �Monochromatic modulation transfer function
of the human eye for di�erent pupil diameters: an analytical expression�, J. Optical
Society of America A, 11(1):246-249, 1994

[August & Zucker 03] J. August, S. Zucker: �Sketches with Curvature: The Curve Indi-
cator Random Field and Markov Processes�, IEEE Trans. Pattern Analysis and
Machine Intelligence, 25(4):387-400, 2003

[Baddeley 92] A.J. Baddeley: �An error metric for binary images�, in: W. Förstner,
S. Ruwiedel (Eds.): Robust Computer Vision: Quality of Vision Algorithms, pp. 59-
78, Karlsruhe: Wichmann Verlag, 1992

[Baker & Nayar 99] S. Baker, S. Nayar: �Global Measures of Coherence for Edge Detector
Evaluation�, in: CVPR'99, Proc. of IEEE Conf. on Computer Vision and Pattern
Recognition, vol. 2, pp. 373-379, Los Alamitos: IEEE Computer Society Press, 1999

[Beckmann & Legge 02] P. Beckmann, G. Legge: �Preneural limitations on letter iden-
ti�cation in central and peripheral vision�, J. Optical Society of America A,
19(12):2349-2362 , 2002

301

Bibliography

[Belongie et al. 02] S. Belongie, J. Malik, J. Puzicha: �Shape Matching and Object Recog-
nition Using Shape Contexts�, IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 24(4):509-522, 2002

[Bern & Eppstein 92] M. Bern, D. Eppstein: �Mesh Generation and Optimal Triangula-
tion�, in: D.-Z. Du, F. Hwang (Eds.): Computing in Euclidean Geometry, Lecture
Notes Series on Computing, vol. 1, pp. 23-90, Singapore: World Scienti�c, 1992

[Bernardini & Bajaj 97] F. Bernardini, C.L. Bajaj: �Sampling and Reconstructing Man-
ifolds Using Alpha-Shapes�, Proc. 9th Canadian Conf. Computational Geometry,
1997

[Bertram et al. 00] M. Bertram, M.A.Duchaineau, B. Hamann, K.I. Joy: �Bicubic
Subdivision-Surface Wavelets for Large-Scale Isosurface Representation and Visu-
alization�, in: Proc. IEEE Visualization 2000, pp. 389-396, Los Alamitos: IEEE
Computer Society Press, 2000.

[Bertrand et al. 99] Y. Bertrand, C. Fiorio, Y. Pennaneach: �Border Map: a Topological
Representation for nD Image Analysis�, in: G. Bertrand, M. Couprie, L. Perro-
ton (Eds.): Proc. 8th Intl. Conf. Discrete Geometry for Computer Imagery (DGCI
1999), Lecture Notes in Computer Science 1568, pp. 242-257, Berlin: Springer, 1999

[Beymer 91] D. Beymer: �Finding Junctions Using the Image Gradient�, in: Proc.
CVPR'91, IEEE Conf. on Computer Vision and Pattern Recognition, pp. 720-721,
1991. Long version: MIT AI Lab Memo No. 1266, Arti�cial Intelligence Laboratory,
Massachusetts Institute of Technology, 1991

[Bigün et al. 91] J. Bigün, G. Granlund, J. Wiklund: �Multidimensional Orientation Es-
timation with Applications to Texture Analysis and Optic Flow �, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 13(8):775-790, 1991

[Boetius 06] N. Boetius: �Detektion salienter Kanten mit modernen Lernverfahren",
Diploma thesis, Computer Science Department, University of Hamburg, 2006

[Boomgaard & Weijer 03] R. v.d. Boomgaard, J. v.d. Weijer: �Least Squares and Robust
Estimation of Local Image Structure�, in: L. Gri�n, M. Lillholm (Eds.): Scale Space
Methods in Computer Vision, Proc. ScaleSpace 2003, pp. 237-254, Lecture Notes
in Computer Science 2695, Heidelberg: Springer, 2003

[Bouma et al. 05] H. Bouma, A. Vilanova, L.J. van Vliet, F.A. Gerritsen: �Correction for
the Dislocation of Curved Surfaces Caused by the PSF in 2D and 3D CT Images�,
IEEE Trans. Pattern Analysis and Machine Intelligence, 27(9):1501�1507, 2005

[Bovik 05] A. Bovik: (Ed.): �Handbook of Image and Video Processing�, Second Edition,
Amsterdam: Elsevier, 2005

[Bracewell 78] R.N. Bracewell: �The Fourier Transform and its Applications�, New York:
McGraw-Hill, 1978

302

Bibliography

[Braquelaire & Brun 98] J.-P. Braquelaire, L. Brun: �Image segmentation with topological
maps and interpixel representation�, J. Visual Communication and Image Repre-
sentation 9(1):62-79, 1998

[Braquelaire & Domenger 99] J.-P. Braquelaire, J.-P. Domenger: �Representation of Seg-
mented Images with Discrete Geometric Maps�, Image and Vision Computing,
17:715-735, 1999

[Braquelaire & Vialard 99] J.-P. Braquelaire, A. Vialard: �Euclidean paths : A new repre-
sentation of boundary of discrete regions�, Graphical Models and Image Processing
61(1):16-43, 1999

[Braquelaire 05] A. Braquelaire: �Representing and Segmenting 2D Images by Means of
Planar Maps with Discrete Embeddings: From Model to Application�, in: L. Brun,
M. Vento (Eds.): Graph-Based Representations in Pattern Recognition, Proc.
5th IAPR Workshop GbRPR '05, Lecture Notes in Computer Science 3434, pp. 92-
121, Springer, 2005

[Brice & Fennema 70] C. Brice, C. Fennema: �Scene Analysis Using Regions�, Arti�cial
Intelligence 1(3), 205-226, 1970

[Brodzik 98] M.L. Brodzik: �The Computation of Simplicial Approximations of Implicitly
De�ned p-Manifolds�, Computers and Mathematics with Applications, 36(6):93-
113, 1998.

[Brun & Domenger 97] L. Brun, J.-P. Domenger: �A new split and merge algorithm with
topological maps and inter-pixel boundaries�, In: Proc. 5th Intl. Conf. in Central
Europe on Computer Graphics and Visualization, 1997

[Brun et al. 98] L. Brun, J.-P. Domenger, J.-P. Braquelaire: �Discrete maps: a framework
for region segmentation algorithms�, In: Proc. WS Graph-Based Representations
in Pattern Recognition, pp. 83-92, Berlin: Springer, 1998

[Brun & Kropatsch 01] L. Brun, W. Kropatsch: �Introduction to Combinatorial Pyra-
mids�, in: G. Bertrand, A. Imiya, R. Klette (Eds.): Digital and Image Geometry
- Advanced Lectures, Lecture Notes in Computer Science 2243, pp. 17-37, Berlin:
Springer, 2001

[Brun et al. 03] L. Brun, M. Mokhtari, J.-P. Domenger: �Incremental modi�cations of
segmented images de�ned by discrete maps�, J. Visual Communication and Image
Representation, 14(3):251-290, 2003

[Bugl & Heinemeier 04] A. Bugl, J. Heinemeier: �Ein Rahmenwerk zur Evaluation von
Kantendetektoren�, Diploma thesis, Department of Informatics, University of Ham-
burg, 2004

[Campbell & Green 65] F.W. Campbell, D.G. Green: �Optical and retinal factors a�ect-
ing visual resolution�, J. of Physiology, 181:576-593, 1965

303

Bibliography

[Campbell & Gubisch 66] F.W. Campbell, R.W. Gubisch: �Optical Quality of the Human
Eye�, J. of Physiology, 186:558-578, 1966

[Canny 86] J. Canny: �A Computational Approach to Edge Detection�, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 8(6):679-698, 1986

[Catmull & Rom 74] E.E. Catmull, R.J. Rom: �A class of local interpolating splines�, in:
R.E. Barnhill, R.F. Riesenfeld (Eds.): Computer Aided Geometric Design, pp. 317-
326, Orlando: Academic Press, 1974

[Cayley 1859] A. Cayley: �On contour and slope lines�, The London, Edinghburgh and
Dublin Philosophical Magazine and J. of Science, vol. 18, no. 120, pp. 264-268,
1859.

[Chan & Vese 01] T. Chan, L. Vese: �Active contours without edges�, IEEE Trans. Image
Processing, 10(2):266-277, 2001.

[Chernov & Lesort 05] N. Chernov, C. Lesort: �Least squares �tting of circles�, J. of
Mathematical Imaging and Vision, 23(3):239-252, 2005

[Chew 87] L.P. Chew: �Constrained Delaunay triangulations�, in: Proc. 3rd Annual Sym-
posium on Computational Geometry, pp. 215-222, New York: ACM Press, 1987

[Cormack 05] L.K. Cormack: �Computational Models of Early Human Vision�, in:
[Bovik 05], pp. 325-346, 2005

[Curcio et al. 90] C.A. Curcio, K.R. Sloan, R.E. Kalina, A.E. Hendrickson: �Human Pho-
toreceptor Topography�, J. Comparative Neurology, 292:497-523, 1990

[Damiand et al. 04] G. Damiand, Y. Bertrand, C. Fiorio: �Topological model for two-
dimensional image representation: de�nition and optimal extraction algorithm�,
Computer Vision and Image Understanding, 93(2):111-154, 2004

[Debled-Rennesson & Reveilles 95] I. Debled-Rennesson, J.-P. Reveilles: �A linear algo-
rithm for segmentation of digital curves�, Intl. J. Pattern Recognition and Arti�cial
Intelligence, 9(6):635-662, 1995

[Deriche 90] R. Deriche: �Fast algorithms for low-level vision�, IEEE Trans. Pattern Anal-
ysis and Machine Intelligence, 1(12):78-88, 1990

[Deriche & Giraudon 93] R. Deriche, G. Giraudon: �A computational approach for corner
and vertex detection�, Intl. Journal of Computer Vision, 10(2):101-124, 1993

[De Vriendt 95] J. De Vriendt: �E�ect of Sampling, Quantization, and Noise on the Per-
formance of the Second Directional Derivative Edge Detector�, Multidimensional
Systems and Signal Processing, 6:37-68, 1995

[Di Battista et al. 99] G. Di Battista, P. Eades, R. Tamassia, I.G. Tollis: �Graph Draw-
ing�, Prentice Hall, 1999

304

Bibliography

[Dibos & Knop�er 00] F. Dibos, G. Knop�er: �Global total variation minimization�,
SIAM J. Numerical Analysis, 37(2):646-664, 2000

[Dorst & Smeulders 91] L. Dorst, A. Smeulders: �Straight Line Segments: Parameters,
Primitives and Properties�, Contemporary Mathematics, 119:45-62, 1991

[Du�eux 46] P.M. Du�eux: �L'Intégral de Fourier et ses Applications à l'Optique�,
Rennes: Societé Anonyme des Imprimeries Oberthur, 1946. English translation:
�The Fourier Transform and its Applications to Optics�, Second Edition, New York:
John Wiley & Sons, 1983

[Duford & Puitg 00] J.-F. Dufourd, F. Puitg: �Functional speci�cation and prototyping
with oriented combinatorial maps�, Computational Geometry 16:129-156, 2000

[Eberly 96] D. Eberly: �Ridges in Image and Data Analysis�, Dordrecht: Kluwer Aca-
demic Publishers, 1996

[Eberly 03] D. Eberly: �Least-Squares Reduction of B-Spline Curves�, http://

www.geometrictools.com/Documentation/BSplineReduction.pdf (link checked
5.5.07), 2003

[Edelsbrunner & Mücke 94] H. Edelsbrunner, E.P. Mücke: �Three-dimensional alpha
shapes�, ACM Trans. Graphics, 13:43-72, 1994

[Edelsbrunner 95] H. Edelsbrunner: �The union of balls and its dual shape�, Discrete
Comput. Geom., 13:415-440, 1995

[Erhardt et al. 84] H.G. Erhardt, J. Kane, L.S. O'Hara: �Silicon cylindrical lens arrays
for improved photoresponse in focal plane arrays�, in: SPIE vol. 501, Proc. State of
the Art Imaging Arrays and Their Applications, pp. 165-172, 1984

[Farnebäck 02] G. Farnebäck: �Polynomial Expansion for Orientation and Motion Esti-
mation�, PhD thesis, Linköping University, Dissertation No. 790, 2002

[Faugeras & Luong 01] O. Faugeras, Q.-T. Luong: �The Geometry of Multiple Images:
The Laws That Govern the Formation of Multiple Images of a Scene and Some of
Their Applications�, MIT Press, 2001

[Felsberg & Sommer 01] M. Felsberg, G. Sommer: �The Monogenic Signal�, IEEE Trans.
Image Processing, 49(12):3136-3144, 2001

[Felsberg & Köthe 05] M. Felsberg, U. Köthe: �GET: The Connection Between Mono-
genic Scale-Space and Gaussian Derivatives�, in: R. Kimmel, N. Sochen, J. Weick-
ert (Eds.): Scale Space and PDE Methods in Computer Vision, Proc. of Scale-Space
2005, Lecture Notes in Computer Science 3459, pp. 192-203, Heidelberg: Springer,
2005

[Fiete 04] R.D. Fiete: �Elements of Photogrammetric Optics�, in: [McGlone 04], Chapter
4, pp. 317-398, 2004

305

http://www.geometrictools.com/Documentation/BSplineReduction.pdf
http://www.geometrictools.com/Documentation/BSplineReduction.pdf

Bibliography

[Fiorio 96] C. Fiorio: �A topologically consistent representation for image analysis: the
topological graph of frontiers�, in: S. Miguet, A. Montanvert, S. Ubéda (Eds.): Proc.
6th International Conference on Discrete Geometry for Computer Imagery (DGCI
1996), Lecture Notes in Computer Science 1176, pp. 151-162, Berlin: Springer, 1996

[Fischler & Bolles 81] M.A. Fischler, R.C. Bolles: �Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and Automated
Cartography�, Comm. of the ACM, 24:381-395, 1981

[Förstner 86] W. Förstner: �A Feature Based Correspondence Algorithm for Image
Matching�, Intl. Arch. of Photogrammetry and Remote Sensing, 26:150-166, 1986

[Förstner 99] W. Förstner: �Image Preprocessing for Feature Extraction in Digital In-
tensity, Color and Range Images�, Proc. Summer School on Data Analysis and
the Statistical Foundations of Geomatics, Lecture Notes in Earth Science, Berlin:
Springer, 1999

[Förstner 05] W. Förstner: �Uncertainty and Projective Geometry�, in: E. Bayro Cor-
rochano (Ed.): Handbook of Geometric Computing, pp. 493-534, Berlin: Springer,
2005

[Freeman & Adelson 91] W. Freeman, E. Adelson: �The design and use of steerable �l-
ters�, IEEE Trans. Pattern Analysis Machine Intelligence, 13(9):891-906, 1991

[Georgeson & Freeman 96] M.A. Georgeson, T. Freeman: �Perveived Location of Bars
and Edges in One-dimensional Images: Computational Models and Human Vision�,
Vision Research, 37(1):127-142, 1997

[Georgeson 98] M.A. Georgeson: �Edge-�nding in human vision: a multi-stage model
based on the perceived structure of plaids�, Image and Vision Computing 16:389-
405, 1998

[Geusebroek 05] J.-M. Geusebroek: �The Stochastic Structure of Images�, in: R. Kimmel,
N. Sochen, J. Weickert (Eds.): Scale-Space and PDE Methods in Computer Vision,
Proc. of ScaleSpace 05, Lecture Notes in Computer Science 3459, pp. 327-338,
Berlin: Springer, 2005

[Goodman 05] W. Goodman: �Introduction to Fourier Optics�, Third Edition, Engle-
wood: Roberts & Company, 2005

[Goudail & Réfrégier 04] F. Goudail, P. Réfrégier: �Statistical Image Processing Tech-
niques for Noisy Images�, New York: Kluwer Academic / Plenum Publishers, 2004

[Graham & Hood 92] N. Graham, D.C. Hood: �Modeling the dynamics of light adapta-
tion: The merging of two tradtions�, Vision Research, 25:1373-1393, 1992

[Granlund & Knutsson 95] G. Granlund, H. Knutsson: �Signal Processing for Computer
Vision�, Dordrecht: Kluwer Academic Publishers, 1995

306

Bibliography

[Granlund & Moe 04] G. Granlund, A. Moe, �Unrestricted Recognition of 3-D Objects
for Robotics Using Multi-Level Triplet Invariants�, Arti�cial Intelligence Magazine
25(2):51-67, 2004

[Greivenkamp 90] J.E. Greivenkamp: �Color dependent optical pre�lter for the suppres-
sion of aliasing artifacts�, Applied Optics, 29(5):676-684, 1990

[Haralick 84] R. Haralick: �Digital Step Edges from Zero Crossings of Second Directional
Derivatives�, IEEE Trans. Pattern Analysis Machine Intelligence, 6:58-64, 1984

[Haralick & Shapiro 92] R. Haralick, L. Shapiro: �Computer and Robot Vision�, vol. 1,
Addison Wesley, 1992

[Harris & Stevens 88] C.G. Harris, M.J. Stevens: �A Combined Corner and Edge Detec-
tor �, Proc. of 4th Alvey Vision Conference, pp. 147-151, 1988

[Hartley & Zisserman 04] R.I. Hartley, A. Zisserman: "Multiple View Geometry in Com-
puter Vision", Second Edition, Cambridge University Press, 2004

[Hatcher 02] A. Hatcher: �Algebraic Topology�, Cambridge: Cambridge Univerity Press,
2002

[Heckbert 94] P.S. Heckbert (Ed.): �Graphics Gems IV�, San Diego: Morgan Kaufmann,
1994

[Healey & Kondepudy 94] G. Healey, R. Kondepudy: �Radiometric CCD Camera Cali-
bration and Noise Estimation�, IEEE Trans. Pattern Analysis Machine Intelligence,
16(3):267-276, 1994

[Heath et al. 97] M. Heath, S. Sarkar, T. Sanocki, K.W. Bowyer: "A Robust Visual
Method for Assessing the Relative Performance of Edge-Detection Algorithms",
IEEE Trans. Pattern Analysis Machine Intelligence, 19(12):1338-1359, 1997

[Henderson 02] M.E. Henderson: �Multiple Parameter Continuation: Computing Implic-
itly De�ned k-Manifolds�, Int. J. Bifurcation and Chaos, 12(3):451-476, 2002

[Hirsch & Curcio 89] J. Hirsch, C.A. Curcio: �The Spatial Resolution Capacity of Human
Foveal Retina�, Vision Research, 29(9):1095-1101, 1989

[Hofer et al. 05a] H. Hofer, B. Singer, D.R. Williams: �Di�erent sensations from cones
with the same photopigment�, J. of Vision, vol. 5, pp. 444-454, 2005

[Hofer et al. 05b] H. Hofer, J. Carroll, J. Neitz, M. Neitz, D.R. Williams: �Organization
of the Human Trichromatic Cone Mosaic�, J. of Neuroscience, 25(42):9669-9679,
2005

[Huck et al. 99] F.O. Huck, C.L. Fales, R. Alter-Gartenberg, S.K. Park, Z. Rahman:
�Information-theoretic assessment of sampled imaging systems�, Optical Engineer-
ing 38(5):742-762, 1999

307

Bibliography

[Iglesias et al. 98] I. Iglesias, N. Lopez-Gil, P. Artal: �Reconstruction of the Point Spread
Function of the Human Eye from Two Double-Pass Retinal Images Using Phase
Retrieval Algorithms�, J. Optical Society of America A, vol. 15, pp. 326-339, 1998

[ISO 12233:2000] ISO Standard No. 12233: �Photography - Electronic still picture cam-
eras - Resolution measurements�, 2000

[Jähne 97] B. Jähne: �Practical Handbook on Image Processing for Scienti�c Applica-
tions�, Boca Raton: CRC Press, 1997

[Jähne 02] B. Jähne: �Digitale Bildverarbeitung�, 5. Au�age, Berlin: Springer, 2002

[Johansson & Moe 05] B. Johansson, A. Moe: �Patch-Duplets for Object Recognition and
Pose Estimation�, in: 2nd Canadian Conference on Robot Vision, pp. 9-16, IEEE
Computer Society Press, 2005

[Julesz 81] B. Julesz: �Textons, the Elements of Texture Perception, and their Interac-
tion�, Nature, 290:91-97, 1981

[Kakarala & Hero 92] R. Kakarala, A.O. Hero: �On Achievable Accuracy in Edge Local-
ization�, IEEE Trans. Pattern Analysis Machine Intelligence, 14(7):777-781, 1992

[Kass et al. 88] E. Kass, A. Witkin, D. Terzopoulos: �Snakes: active contour models�,
Intl. Journal for Computer Vision, 1(4):321-331, 1988

[Kaynig 06] V. Kaynig: �Perceptual Criteria for Edge Relevance", Diploma thesis, Com-
puter Science Department, University of Hamburg, 2006

[Kettner 98] L. Kettner: �Designing a Data Structure for Polyhedral Surfaces�, Proc.
14th ACM Symp. on Computational Geometry, New York: ACM Press, 1998

[Khalimsky et al. 90] E. Khalimsky, R. Kopperman, P. Meyer: �Computer Graphics and
Connected Topologies on Finite Ordered Sets�, J. Topology and its Applications,
vol. 36, pp. 1-27, 1990

[Klette & Rosenfeld 04] R. Klette, A. Rosenfeld: �Digital Geometry�, Amsterdam: Else-
vier, 2004

[Knutsson & Westin 93] H. Knutsson, C.-F. Westin: �Normalized and di�erential convo-
lution�, in: Proc. CVPR 93, Computer Vision and Pattern Recognition, pp. 515-523,
1993

[Koenderink & v. Doorn 93] J. Koenderink, A. v. Doorn: �Local Features of Smooth
Shapes: Ridges and Courses�, SPIE vol. 2031: Proc. Geometric Methods in Com-
puter Vision, pp. 2-13, 1993

[Köthe 00] U. Köthe: �Generische Programmierung für die Bildverarbeitung�, PhD thesis,
Department of Informatics, University of Hamburg, 2000

308

Bibliography

[Köthe 01] U. Köthe: �Generic Programming Techniques that Make Planar Cell Com-
plexes Easy to Use�, in: G. Bertrand, A. Imiya, R. Klette (Eds.): Digital and Image
Geometry - Advanced Lectures (Proc. of a Dagstuhl Seminar), Lecture Notes in
Computer Science 2243, pp. 17-37, Berlin: Springer, 2001

[Köthe 02] U. Köthe: �XPMaps and Topological Segmentation - a Uni�ed Approach to Fi-
nite Topologies in the Plane�, in: A. Braquelaire, J.-O. Lachaud, A. Vialard (Eds.):
Proc. of 10th International Conference on Discrete Geometry for Computer Im-
agery (DGCI 2002), Lecture Notes in Computer Science 2301, pp. 22-33, Berlin:
Springer, 2002

[Köthe 03a] U. Köthe: �Integrated Edge and Junction Detection with the Boundary Ten-
sor�, in: ICCV 03, Proc. of 9th Intl. Conf. on Computer Vision, Nice 2003, vol. 1,
pp. 424-431, Los Alamitos: IEEE Computer Society, 2003

[Köthe 03b] U. Köthe: �Deriving Topological Representations from Edge Images�, in:
T. Asano, R. Klette, C. Ronse (Eds.): Geometry, Morphology, and Computational
Imaging, 11th Intl. Workshop on Theoretical Foundations of Computer Vision, Lec-
ture Notes in Computer Science 2616, pp. 320-334, Berlin: Springer, 2003

[Köthe 03c] U. Köthe: �Edge and Junction Detection with an Improved Structure Ten-
sor�, in: B. Michaelis, G. Krell (Eds.): Pattern Recognition, Proc. of 25th DAGM
Symposium, Magdeburg 2003, Lecture Notes in Computer Science 2781, pp. 25-32,
Berlin: Springer, 2003

[Köthe & Stelldinger 03] U. Köthe, P. Stelldinger: �Shape Preserving Digitization of Ideal
and Blurred Binary Images�, in: I. Nyström, G. Sanniti di Baja, S. Svensson (Eds.):
Discrete Geometry for Computer Imagery, Proc. of 11th DGCI Conference, Naples
2003, Lecture Notes in Computer Science 2886, pp. 82-91, Berlin: Springer, 2003

[Köthe 04] U. Köthe: �Accurate and E�cient Approximation of the Continuous Gaus-
sian Scale-Space�, in: C.E. Rasmussen, H. Bültho�, M. Giese, B. Schölkopf (Eds.):
Pattern Recognition, Proc. of 26th DAGM Symposium, Lecture Notes in Computer
Science 3175, pp. 350-358, Berlin: Springer, 2004

[Köthe & Felsberg 06] U. Köthe, M. Felsberg: �Riesz-Transforms Versus Derivatives: On
the Relationship Between the Boundary Tensor and the Energy Tensor�, in: R. Kim-
mel, N. Sochen, J. Weickert (Eds.): Scale Space and PDE Methods in Computer
Vision, Proc. of Scale-Space 2005, Lecture Notes in Computer Science 3459, pp.
179-191, Berlin: Springer, 2005

[Köthe 06a] U. Köthe: �Low-level Feature Detection Using the Boundary Tensor�, in:
J. Weickert, H. Hagen (Eds.): Visualization and Processing of Tensor Fields, pp.
63-79, Berlin: Springer, 2006

[Köthe 06b] U. Köthe: �VIGRA Reference Documentation�, version 1.5.0, 2006
http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/

309

http://kogs-www.informatik.uni-hamburg.de/~koethe/vigra/

Bibliography

[Köthe 06c] U. Köthe: �Boundary Characterization within the Wedge-Channel Represen-
tation�, in: B. Jähne, E. Barth, R. Mester, H. Scharr (Eds.): 1st Intl. Workshop on
Complex Motion, IWCM 2004, Lecture Notes in Computer Science 3417, pp. 42-53,
Berlin: Springer, 2006

[Köthe et al. 06] U. Köthe, P. Stelldinger, H. Meine: �Provably Correct Edgel Linking
and Subpixel Boundary Reconstruction�, in: K. Franke, K.-R. Müller, B. Nikolay,
R. Schäfer (Eds.): Pattern Recognition, Proc. DAGM 2006, Lecture Notes in Com-
puter Science 4174, pp. 81-90. Berlin: Springer, 2006

[Kovalevsky 89] V. Kovalevsky: �Finite Topology as Applied to Image Analysis�, Com-
puter Vision, Graphics, and Image Processing, 46(2):141-161, 1989

[Kovalevsky 97] V. Kovalevsky: �Applications of Digital Straight Segments to Economical
Image Encoding�, in: E. Ahronovitz, C. Fiorio (Eds): Discrete Geometry for Com-
puter Imagery, Proc. of 7th DGCI Conference, Lecture Notes in Computer Science
1347, pp. 49-62, Berlin: Springer,1997

[Kovalevsky 01a] V. Kovalevsky: �Algorithms and Data Structures for Computer Topol-
ogy�, In: G. Bertrand, A. Imiya, R. Klette (Eds.): Digital and Image Geometry
- Advanced Lectures (Proc. of a Dagstuhl Seminar), Lecture Notes in Computer
Science 2243, pp. 37-58, Berlin: Springer, 2001

[Kovalevsky 01b] V. Kovalevsky: �Curvature in Digital 2D Images�, Intl. J. Pattern
Recognition and Arti�cial Intelligence, 15(7):1183-1200, 2001

[Kropatsch 95] W. Kropatsch: �Building Irregular Pyramids by Dual Graph Contraction�,
IEE Proceedings Vision, Image and Signal Processing, 142(6):366-374, 1995

[Latecki 98] L.J. Latecki: �Discrete Representation of Spatial Objects in Computer Vi-
sion�, Dordrecht: Kluwer Academic Publishers, 1998

[Latecki et al. 98] L.J. Latecki, C. Conrad, A. Gross: �Preserving Topology by a Digiti-
zation Process�, Journal of Mathematical Imaging and Vision 8:131-159, 1998

[Liang & Williams 97] J. Liang, D.R. Williams: �Aberrations and retinal image quality of
the normal human eye�, J. Optical Society of America A, 14(11):2873-2883, 1997

[Lienhardt 91] P. Lienhardt: �Topological models for boundary representation: a compar-
ison with n-dimensional generalized maps�, Computer Aided Design, 23(1):59-82,
1991

[Lim 03] J.-Y. Lim: �Discrete Scale-Space Formulation and Multiscale Edge Extraction
toward Higher Dimensions�, PhD Thesis, Department of Informatics, University of
Hamburg, Berlin: Akademische Verlagsgesellschaft, 2003

[Lindeberg 94] T. Lindeberg: �Scale-Space Theory in Computer Vision�, Dordrecht:
Kluwer Academic Publishers, 1994

310

Bibliography

[Lowe 04] D.G. Lowe, "Distinctive image features from scale-invariant keypoints�, Inter-
national Journal of Computer Vision, 60(2):91-110, 2004

[Lyon & Hubel 02] R. Lyon, P. Hubel: �Eying the Camera: Into the Next Century�, in:
Proc. of IS&T/TSID 10th Color Imaging Conference, pp. 349-355, 2002

[Lyvers & Mitchell 88] E.P. Lyvers, O.R. Mitchell: �Precision Edge Contrast and Ori-
entation Estimation�, IEEE Trans. Pattern Analysis and Machine Intelligence,
10(6):927-937, 1988

[MacLoad et al. 92] D. MacLoad, D.R. Williams, W. Makous: �A Visual Nonlinearity
Fed by Single Cones�, Vision Research, 32(2):347-363, 1992

[Mäntylä 88] M. Mäntylä: �An Introduction to Solid Modeling�, Computer Science Press,
1988

[Maes 98] F. Maes: �Segmentation and Registration of Multimodal Images: From Theory,
Implementation and Validation to a Useful Tool in Clinical Practice�, PhD thesis,
Katholieke Universiteit Leuven, Leuven, Belgium, May 1998.

[Marcos 03] S. Marcos: �Image Quality of the Human Eye�, Int. Ophthalmol. Clin.,
43(2):42-62, 2003

[Marr 82] D. Marr: �Vision � A Computational Investigation into the Human Represen-
tation and Processing of Visual Information�, San Francisco: W.H. Freeman and
Company, 1982

[Martin et al. 01] D. Martin, C. Fowlkes, D. Tal, J. Malik: �A database of human seg-
mented natural images and its application to evaluating segmentation algorithms
and measuring ecological statistics�, in: Proc. 8th Intl. Conf. on Computer Vision,
vol. 2, pp. 416-425, 2001

[Maxwell 1870] J.C. Maxwell: �On Hills and Dales�, London, Edinburgh, and Dublin
Philosophical Mag. and J. of Sci., 40:421-425, 1870; reprinted in: W. Niven (Ed.):
The Scienti�c Papers of James Clark Maxwell, vol. II, Dover, 1965

[McGlone 04] J. McGlone (Ed.): �Manual of Photogrammetry�, Fifth Edition, Bethesda:
American Society for Photogrammetry and Remote Sensing, 2004

[Medioni et al. 00] G. Medioni, M.-S. Lee, C.-K. Tang: �A Computational Framework for
Segmentation and Grouping�, Elsevier, 2000

[Meijering et al. 99] E.H.W. Meijering, K.J. Zuiderveld, M.A. Viergever: �Image Recon-
struction by Convolution with Symmetrical Piecewise nth-Order Polynomial Ker-
nels�, IEEE Trans. Image Processing, 8(2):192-201, 1999

[Meine 03] H. Meine: �XPMap-Based Irregular Pyramids for Image Segmentation�,
Diploma thesis, Department of Informatics, University of Hamburg, 2003

311

Bibliography

[Meine et al. 04] H. Meine, U. Köthe, H.S. Stiehl: �Fast and Accurate Interactive Image
Segmentation in the GeoMap Framework�, in: T. Tolxdor�, J. Braun, H. Handels,
A. Horsch, H.-P. Meinzer (Eds.): Proc. Bildverarbeitung für die Medizin 2004,
pp. 60-64, Berlin: Springer, 2004

[Meine & Köthe 05a] H. Meine, U. Köthe: �The GeoMap: A Uni�ed Representation for
Topology and Geometry�, in: L. Brun, M. Vento (Eds.): Graph-Based Representa-
tions in Pattern Recognition, Proc. 5th IAPRWorkshop GbRPR '05, Lecture Notes
in Computer Science 3434, pp. 132-141, Springer, 2005

[Meine & Köthe 05b] H. Meine, U. Köthe: �Image Segmentation with the Exact Water-
shed Transform�, in: J.J. Villanueva (Ed.): VIIP 05, Proc. 5th IASTED Intl. Conf.
Visualization, Imaging, and Image Processing, pp. 400-405, ACTA Press, 2005.

[Meine 08] H. Meine: PhD thesis, Department of Informatics, University of Hamburg,
forthcoming

[Meyer 94] F. Meyer: �Topographic Distance and Watershed Lines�, Signal Processing
38(1):113-125, 1994

[Michailovich & Tannenbaum 06] O. Michailovich, A. Tannenbaum: �Despeckling of
Medical Ultrasound Images�, IEEE Trans. on Ultrasonics, Ferroelectrics, and Fre-
quency Control, 53(1):64-78, 2006

[Mikolajczyk & Schmid 04] K. Mikolajczyk, C. Schmid: �Scale and a�ne invariant in-
terest point detectors�, International Journal of Computer Vision, 60(1):63-86, 2004

[Montanvert et al. 91] A. Montanvert, P. Meer, A. Rosenfeld: �Hierarchical Image Anal-
ysis Using Irregular Tessellations�, IEEE Trans. Pattern Anal. and Machine Intel-
ligence, 13(4):307-316, 1991

[Moré & Thuente 94] J. Moré, D. Thuente: �Line Search Algorithms with Guaranteed
Su�cient Decrease�, ACM Trans. Math. Software 20, 286-307, 1994.

[Mortensen & Barrett 98] E. Mortensen, W. Barrett: �Interactive segmentation with in-
telligent scissors�, Graphical Models and Image Processing, 60(5):349-384, 1998

[Mortensen & Barrett 99] E. Mortensen, W. Barrett: �Toboggan-based intelligent scissors
with a four parameter edge model�, in: Proc. IEEE Conf. Computer Vision and
Pattern Recognition, CVPR '99, vol. 2, p. 452-458, 1999

[Nackman 84] L.R. Nackman: �Two-dimensional critical point con�guration graphs�,
IEEE Trans. Pattern Anal. and Machine Intelligence 6(4):442-450, 1984

[Nagel 85] H.H. Nagel: �Analyse und Interpretation von Bildfolgen II�, Informatik-
Spektrum, 8(6):312-327, 1985

[Najman & Schmitt 94] L. Najman, M. Schmitt: �Watershed of a continuous function�,
Signal Processing 38:99-112, 1994

312

Bibliography

[Neumann 88] H. Neumann: �Theoretische Untersuchungen zur Extraktion monoku-
larer Tiefenhinweise (Konturen und Schattierung) und ihre partielle methodische
Evaluierung in einem rechnergestützten Perzeptionslabor�, PhD Thesis, Fachbere-
ich Informatik, Universität Hamburg, 1988

[Nguyen et al. 03] H.T. Nguyen, M. Worring, R. v.d. Boomgaard: �Watersnakes: Energy-
Driven Watershed Segmentation�, IEEE Trans. Pattern Analysis and Machine In-
telligence, 25(3):330-342, 2003

[Nordberg & Farnebäck 03] K. Nordberg, G. Farnebäck: �A Framework for Estimation
of Orientation and Velocity�, Proc. IEEE Intl. Conf. on Image Processing, vol. 3,
pp. 57-60, 2003

[Nordberg 04] K. Nordberg: �A fourth order tensor for representation of orientation and
position of oriented segments�, Technical Report LiTH-ISY-R-2587, Dept. of Elec-
trical Engineering, Linköping University, 2004

[Olsen & Nielsen 97] O.F. Olsen, M. Nielsen, �Multi-scale gradient magnitude water-
shed segmentation�, in: A. Del Bimbo (Ed.): Image Analysis and Processing , 9th

Int. Conf. ICIAP'97, Lecture Notes in Computer Science 1310, pp. 6-13, Berlin:
Springer, 1997

[Ortiz & Oliver 06] A. Ortiz, G. Oliver: �Radiometric Calibration of Vision Cameras and
Intensity Uncertainty Estimation�, Image and Vision Computing, 24(10):1137-1145,
2006

[Osher & Paragios 03] S. Osher, N. Paragios: �Geometric Level Set Methods in Imaging,
Vision, and Graphics�, Berlin: Springer, 2003.

[Osorio et al. 98] D. Osorio, D.L. Ruderman, T.W. Cronin: �Estimation of errors in lumi-
nance signals encoded by primate retina resulting from sampling of natural images
with red and green cones�, J. Optical Society of America A, 15(1):16-22, 1998

[Overington 92] I. Overington: �Computer Vision: a uni�ed, biologically-motivated ap-
proach�, Amsterdam: Elsevier, 1992

[Park & Rahman 99] S.K. Park, Z. Rahman: �Fidelity analysis of sampled imaging sys-
tems�, Optical Engineering 38(5):786-800, 1999

[Pattanaik et al. 98] S. Pattanaik, J.A. Ferwerda, M.D. Fairchild, D.P. Greenberg: �A
multiscale model of adaptation and spatial vision for realistic image display�, in:
M.F. Cohen (ed.): Proc. of SIGGRAPH 98, pp. 287-298, Addison Wesley, 1998.

[Pavlidis 77] T. Pavlidis: �Structural Pattern Recognition�, Berlin: Springer, 1977

[Pavlidis 82] T. Pavlidis: �Algorithms for Graphics and Image Processing�, Rockville:
Computer Science Press, 1982

313

Bibliography

[Poularikas 96] A.D. Poularikas (Ed.): �The Transforms and Applications Handbook�,
CRC Press, Boca Raton, 1996

[Poynton 96] C. Poynton: �A Technical Introduction to Digital Video�, New York: Wiley,
1996

[Pratt 87] W. Pratt, �Direct least-squares �tting of algebraic surfaces�, Computer Graph-
ics 21:145-152, 1987

[Pratt 01] W. Pratt: �Digital Image Processing�, Third Edition, New York: Wiley, 2001

[Pritchard 73] D.H. Pritchard: �Stripe-Color-Encoded Single Tube Color-Television Cam-
era Systems�, RCA Rev., vol. 34, pp. 217-266, 1973

[Proakis 89] J.G. Proakis: �Digital Communications�, Second Edition, New York: Mc-
Graw Hill, 1989

[Rahman & Jobson 03] Z. Rahman, D.J. Jobson: �Information Theoretic Analysis of
Noise Sources in Image Formation�, In: SPIE vol. 5108, Proc. Visual Information
Processing XII, 2003

[Ren & Malik 03] X. Ren, J. Malik: �Learning a classi�cation model for segmentation�,
in: Proc. 9th Int. Conf. Computer Vision, ICCV'03, vol. 1, pp. 10-17, 2003

[Ren et al. 05a] X. Ren, C. Fowlkes, J. Malik: �Scale-invariant contour completion using
conditional random �elds�, in: Proc. 10th Intl. Conf. Computer Vision, ICCV'05,
vol. 2, pp. 1214-1221, 2005

[Ren et al. 05b] X. Ren, A. Berg, J. Malik: �Recovering Human Body Con�gurations us-
ing Pairwise Constraints between Parts�, in: Proc. 10th Intl. Conf. Computer Vision,
ICCV'05, vol. 1, pp. 824-831, 2005

[Rice 45] S.O. Rice: �Mathematical analysis of Random Noise�, Bell System Technical
Journal, 24:46-156, 1945

[Rieger 97] J. Rieger: �Topographical properties of generic images�, Intl. Journal of Com-
puter Vision, 23(1):79-92, 1997

[Roerdink & Meijster 00] J. Roerdink, A. Meijster: �The watershed transform: de�ni-
tions, algorithms, and parallelization strategies�, Fundamenta Informaticae 41:187-
228, 2000

[Rohr 92] K. Rohr: �Modelling and Identi�cation of Characteristic Intensity Variations�,
Image and Vision Computing 10(2):66-76, 1992

[Rohr 94] K. Rohr: �Localization Properties of Direct Corner Detectors�, Journal of
Mathematical Imaging and Vision 4:139-150, 1994

[Ronse & Tajine 00] C. Ronse, M. Tajine: �Discretization in Hausdor� Space�, Journal
of Mathematical Imaging and Vision 12:219-242, 2000

314

Bibliography

[Roorda & Williams 99] A. Roorda, D.R. Williams: �The arrangement of the three cone
classes in the living human eye�, Nature, vol. 397, pp. 520-522, 1999

[Rosenfeld 70] A. Rosenfeld: �Connectivity in digital pictures�, J. of the Association for
Computing Machinery, 17(1):146-160, 1970

[Rosin et al. 92] P.L. Rosin, A.C.F. Colchester, D.. Hawkes: �Early image representation
using regions de�ned by maximum gradient paths between singular points�, Pattern
Recognition, 25(7):695-711, 1992

[Rothwell et al. 95] C. Rothwell, J. Mundy, W. Ho�man, V.-D. Nguyen: �Driving Vision
by Topology�, in: Proc. of IEEE Intl. Symposium on Computer Vision, pp. 395-400,
1995

[Rovamo & Kukkonen 98] J. Rovamo, H. Kukkonen: �Foveal optical modulation transfer
function of the human eye at various pupil sizes�, J. Opt. Soc. Am. A, 15(9):2504-
2513, 1998

[Rudin et al. 92] L.I. Rudin, S. Osher, E. Fatemi: �Non-linear total variation based noise
removal algorithms�, Physica D, 60:259-268, 1992

[Ryan & Schwartz 56] T.A. Ryan, C.B. Schwartz: �Speed of perception as a function of
mode of representation�, American Journal of Psychology, 69:60-69, 1956

[Schade 48] O.H. Schade: �Electro-optical characteristics of television systems�, RCA Re-
view 9(1):5-37, 1948

[Schoenberg 64] J.J. Schoenberg: �Spline functions and the problem of graduation�, Proc.
Nat. Acad. of Science 52:947-950, 1994

[Serra 82] J. Serra: �Image Analysis and Mathematical Morphology�, New York: Aca-
demic Press, 1982

[Serre et al. 05] T. Serre, M. Kouh, C. Cadieu, U. Knoblich, G. Kreiman, T. Poggio: �A
Theory of Object Recognition: Computations and Circuits in the Feedforward Path
of the Ventral Stream in Primate Visual Cortex�, AI Memo 2005-036/CBCL Memo
259, Massachusetts Inst. of Technology, Cambridge, 2005.

[Shen & Castan 92] J. Shen, S. Castan: �An Optimal Linear Operator for Step Edge De-
tection�, CVGIP: Graphical Models and Image Processing, 54(2):112-133, 1992

[Sicuranza 92] G. Sicuranza: �Quadratic Filters for Signal Processing�, Proc. of the IEEE,
80(8):1263-1285, 1992

[Smith & Brady 97] S. Smith, M. Brady: �SUSAN � A New Approach to Low Level Image
Processing�, Intl. Journal of Computer Vision, 23(1):45-78, 1997

[Smith et al. 03] C. Smith, F. Shu, L. Ion, M. Cowan: �Image Resolution of the One-CCD
Palomar Motion Picture Camera�, 37th Advanced Motion Imaging Conference,
2003

315

Bibliography

[Spies & Johansson 03] H. Spies, B. Johansson: �Directional Channel Representation for
Multiple Lines Endings and Intensity Levels�, in: ICIP 03, Proc. IEEE Intl. Conf.
on Image Processing, 2003

[Sporring et al. 97] J. Sporring, M. Nielsen, L. Florack, P. Johansen (Eds.): �Gaussian
Scale-Space Theory�, Dordrecht: Kluwer Academic Publishers, 1997

[Steger 99] C. Steger: �Subpixel-Precise Extraction of Watersheds�, in: ICCV '99, Proc.
7th Intl. Conf. Computer Vision, vol. II, pp. 884-890, 1999

[Stelldinger 03] P. Stelldinger: �Theoretische Grenzen der Bilddigitalisierung�, Diploma
thesis, Department of Informatics, University of Hamburg, 2003

[Stelldinger & Köthe 03] P. Stelldinger, U. Köthe: �Shape Preservation During Digitiza-
tion: Tight Bounds Based on the Morphing Distance�, in: B. Michaelis, G. Krell
(Eds.): Pattern Recognition, Proc. of 25th DAGM Symposium, Magdeburg 2003,
Lecture Notes in Computer Science 2781, pp. 108-115, Berlin: Springer, 2003

[Stelldinger & Köthe 05] P. Stelldinger, U. Köthe: �Towards a general sampling theory
for shape preservation�, Image and Vision Computing, Special Issue on Discrete
Geometry for Computer Vision, 23(2):237-248, 2005

[Stelldinger 05] P. Stelldinger: �Digitization of Non-regular Shapes�, in: C. Ronse, L. Na-
jman, E. Decenciere (Eds.): Mathematical Morphology, Proc. of ISMM '05, Dor-
drecht: Springer, 2005

[Stelldinger & Köthe 06] P. Stelldinger, U. Köthe: �Connectivity preserving digitization
of blurred binary images in 2D and 3D�, Computers & Graphics, 30(1):70-76, 2006.

[Stelldinger et al. 06] P. Stelldinger, U. Köthe, H. Meine: �Topologically Correct Image
Segmentation Using Alpha Shapes�, in: DGCI'06, Lecture Notes in Computer Sci-
ence, Berlin: Springer, 2006

[Stolte 05] N. Stolte: �Arbitrary 3D Resolution Discrete Ray Tracing of Implicit Sur-
faces�, in: E. Andres, G. Damiand, P. Lienhardt (Eds.): Discrete Geometry for
Computer Imagery, Proc. of 12th Intl. Conf. DGCI 2005, Lecture Notes in Com-
puter Science 3429, pp. 414-426, Berlin: Springer, 2005.

[Thibos et al. 87] L.N. Thibos, F.E. Cheney, D.J. Walsh: �Retinal limits to the detection
and resolution of gratings�, J. Optical Society of America A, 4(8):1524-1529, 1987

[Tutte 84] W.T. Tutte: �Graph Theory�, Cambridge University Press, 1984

[Unnikrishnan et al. 07] R. Unnikrishnan, C. Pantofaru, M. Hebert: �Toward Objective
Evaluation of Image Segmentation Algorithms�, IEEE Trans. Pattern Analysis and
Machine Intelligence, 29(6):929-944, 2007

[Unser et al. 93] M. Unser, A. Aldroubi, M. Eden: �B-Spline Signal Processing�, IEEE
Trans. Signal Processing, 41(2), pp. 821-833 (part I), 834-848 (part II), 1993

316

Bibliography

[Utcke 03] S. Utcke: �Error-Bounds on Curvature Estimation�, in: L. Gri�n, M. Lillholm
(Eds.): Scale Space Methods in Computer Vision, Proc. 4th ScaleSpace Conf., Lec-
ture Notes in Computer Science 2695, pp. 657-666, Berlin: Springer, 2003

[Utcke 06] S. Utcke: �Error propagation in geometry-based grouping�, PhD thesis, Institut
für Informatik, Albert-Ludwigs-Universität Freiburg, 2006

[VanRullen & Thorpe 01] R. VanRullen, S.J. Thorpe: �Is it a bird? Is it a Plane?
Ultra-rapid visual categorization of natural and arti�cial categories�, Perception,
30(6):655-688, 2001

[Vese & Chan 02] L. Vese, T. Chan: �A Multiphase Level Set Framework for Image Seg-
mentation Using the Mumford and Shah Model�, Intl. J. of Computer Vision,
50(3):271-293, 2002

[Vialard 96] A. Vialard: �Geometric Parameter Extraction from Digital Paths�, in:
S. Miguet, A. Montanvert, S. Ubéda (Eds.): Discrete Geometry for Computer Im-
agery, Proc. of 6th DGCI Conference, Lecture Notes in Computer Science 1176,
pp. 24-35, Berlin: Springer, 1996

[Vimal et al. 89] R.P. Vimal, J. Pokorny, V. Smith, S. Shevel: �Foveal Cone Thresholds�,
Vision Research 29(1):61-78, 1989

[Vincent & Soille 91] L. Vincent, P. Soille: �Watersheds in Digital Spaces: An E�cient
Algorithm Based on Immersion Simulations�, IEEE Trans. Pattern Analysis and
Machine Intelligence, 13(6):583-598, 1991

[Wachtler et al. 96] T. Wachtler, C. Wehrhahn, B. Lee: �A Simple Model of Human
Foveal Ganglion Cell Response to Hyperacuity Stimuli�, J. Computational Neu-
roscience, vol. 3, pp. 73-82, 1996

[Wallace et al. 01] W. Wallace, L.H. Schaefer, J.R. Swedlow. �A working persons guide
to deconvolution in light microscopy�, BioTechniques 31(5):1076-1097, 2001

[Weiss 94] I. Weiss: �High-Order Di�erentiation Filters That Work�, IEEE Trans. Pattern
Analysis and Machine Intelligence, 16(7):734-739, 1994

[Wendland 05] H. Wendland: �Scattered Data Approximation�, Cambridge University
Press, 2005

[Westheimer 86] G. Westheimer: �The Eye as an Opical Instrument�, in: K.R. Bo�,
L. Kaufman, J.P. Thomas (Eds.): Handbook of Perception and Human Perfor-
mance, vol. 1, pp. 4.1-4.20, New York: Wiley and Sons, 1986

[Williams & Burns 01] D.R. Williams, P.D. Burns: �Diagnostics for Digital Capture us-
ing MTF�, in: Proc. of IS&T PICS Conference, pp. 227-232, 2001

[Williams 85a] D.R. Williams: �Aliasing in Human Foveal Vision�, Vision Research,
25(2):195-205, 1985

317

Bibliography

[Williams 85b] D.R. Williams: �Visibility of inerference fringes near the resolution limit�,
J. Optical Society of America A, 2(7):1087-1093,1985

[Williams et al. 94] D.R. Williams, D.H. Brainard, M. McMahon, R. Navarro: �Double-
pass and interferometric measures of the optical quality of the eye�, J. Optical
Society of America A, 11(12):3123-3135, 1994

[Williams & Hofer 03] D.R. Williams, H. Hofer: �Formation and Acquisition of the Reti-
nal Image�, in: L.M. Chalupa, J.S. Werner (Eds.): The Visual Neuro Sciences,
vol. 1, pp. 795-810, MIT Press, 2003

[Williams & Jacobs 97] L. Williams, D. Jacobs: �Stochastic Completion Fields: A Neural
Model of Illusory Contour Shape and Salience�, Neural Computation 9(4):837-858,
1997

[Winkler 99] S. Winkler: �Issues in vision modeling for perceptual video quality assess-
ment�, Signal Processing, 78(2):231-252, 1999

[Winter 95] S. Winter: �Topological Relations Between Discrete Regions�, in: M. Egen-
hofer, J. Herring (Eds.): Advances in Spatial Databases, Lecture Notes in Computer
Science 951, Berlin: Springer, 1995

[Worring & Smeulders 93] M. Worring, A. Smeulders: �Digital Curvature Estimation�,
CVGIP: Image Understanding, 58(3):366-382, 1993

[Worring & Smeulders 95] M. Worring, A. Smeulders: �Digital Circular Arcs: Character-
ization and Parameter Estimation�, IEEE Trans. Pattern Analysis and Machine
Intelligence, 17(6):587-598, 1995

[Yitzhaky & Peli 03] Y. Yitzhaky, E. Peli: �Method for Objective Edge Detection Evalua-
tion and Detector Parameter Selection�, IEEE Trans. Pattern Analysis and Machine
Intelligence, 25(8):1027-1033, 2003

[Zomorodian 05] A. Zomorodian: �Topology for Computing�, Cambridge University
Press, 2005

318

	Introduction and Motivation
	The Low-Level Segmentation Problem
	Definition of the Problem
	Measures of Success
	Similarity between Plane Partitions and their Reconstructions
	Ground-Truth Definition and Matching
	Generated Test Images
	Test Objects and Scenes
	Algorithm 2.1: Consensus ground truth
	Manual Ground Truth

	Analysis of the Image Acquisition Process
	The Linear Model of the Image Acquisition Process
	The Linear Model in Digital Cameras and the Human Eye
	The Diffraction Limited System
	The Human Eye
	Digital Cameras

	Reconstruction of the Analog Camera Image
	Spline Interpolation
	Experiment: Detection of Extrema and Saddle Points in Spline-Interpolated Images
	Algorithm 3.1: Iterative critical point detection in a 2D spline

	Noise Normalization and Noise Filtering
	Noise in CCD Cameras
	Algorithm 3.2: Non-parametric noise normalization

	Speckle Noise
	Algorithm 3.3: Normalization of speckle noise

	Experiment: Critical Point Detection in Real Images

	The Representation of Segmentation Results
	Topology for Segmentation
	Combining Topology and Geometry in the GeoMap
	GeoMap Realizations
	Polygonal GeoMaps
	Grid-Based GeoMaps
	Algorithm 4.1: Crack Insertion Algorithm
	Algorithm 4.2: Thinning with Priority

	Manipulation of a GeoMap
	Euler Operators and Contraction Kernels
	Algorithm 4.3: Merge faces
	Algorithm 4.4: Remove bridge
	Algorithm 4.5: Contract edge

	Topology-preserving Manipulations
	Algorithm 4.6: Polygon simplification
	Algorithm 4.7: Digital Straight Line Detection
	Algorithm 4.8: Topology preservation under geometric manipulation of a polygonal GeoMap

	Interactive Segmentation in the GeoMap Framework

	Algorithms for GeoMap Creation
	Analog Boundary Definitions
	Subpixel-Accurate Tracing of the Zero-Contour
	Algorithm 5.1: Predictor-Corrector Method for Contour Tracing
	Algorithm 5.2: Spline-Based Zero-Crossing Detection
	Algorithm 5.3: Zero-Crossing GeoMap

	Subpixel-Accurate Watershed Tracing
	Algorithm 5.4: Sub-Pixel Watershed Algorithm
	Algorithm 5.5: Watershed -Ordering

	Grid-Based Boundary Definitions
	Algorithm 5.6: Crack Insertion by Thresholding
	Algorithm 5.7: Crack Insertion with Constraint
	Algorithm 5.8: Union-find Algorithm for Watershed Detection
	Algorithm 5.9: Region Growing Algorithm for Watershed Detection
	Algorithm 5.10: GeoMap creation by Canny's algorithm
	Algorithm 5.11: GeoMap creation by Rothwell's algorithm

	GeoMap Creation by Triangulation
	Algorithm 5.12: (,)-boundary reconstruction
	Algorithm 5.13: Minimal boundary reconstruction
	Algorithm 5.14: Contour completion by constrained Delaunay triangulation
	Algorithm 5.15: Conforming (,)-reconstruction

	Geometric Sampling Theorems
	Sampling Analysis of Grid-Based Region Representations
	Sampling without Blurring
	Sampling of Blurred Images

	Sampling Analysis of Boundary Representations
	Application to Grid-Based Boundary Digitization Schemes
	Geometric Limitations of Pixel-Accurate Edges

	The Gradient Magnitude: Detailed Error Analysis of a Boundary Indicator
	Sampling Analysis of the Gradient Magnitude
	Analysis of Isolated Straight Step Edges
	Noise-Free Straight Edges
	Noisy Images
	Effects of Aliasing Noise
	Probability Distributions of Noisy Gradient Magnitudes and Optimal Thresholds
	Error Propagation for Edge Position and Orientation
	Error Correlation along the Edge
	Experimental Validation in Artificial Images

	Deviations from the Model of Isolated Straight Step Edges
	Shaded Regions
	Parallel and Approximately Parallel Edges
	Algorithm 7.1: Subpixel watershed algorithm with ladder removal

	Curved Edges
	Noise-Free Curved Edges
	Experimental Validation with Artificially Created Curved Edges

	Experimental Validation in Natural Images
	Corners and Junctions
	Measurement Errors and the Boundary Sampling Theorem
	Examples

	Tangent Direction Estimation
	Introduction
	Direct Tangent Estimation from Polygon Segment Directions
	Filter-Based Tangent Estimation
	Model-Based Tangent Estimation
	Experimental Comparison

	Improving the Junction Response
	Tensors
	Tensor Definition by Spatial Integration of Gradients
	Tensor Definition by Combination of Even and Odd Filters
	Analysis of the Boundary Tensor as a Quadratic Filter
	Efficient Computation of the Boundary Tensor

	Experimental Evaluation

	Conclusions and Outlook
	Acknowledgments
	Bibliography

