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Abstract Object detection is one of the key compo-
nents in modern computer vision systems. While the

detection of a specific rigid object under changing view-

points was considered hard just a few years ago, cur-
rent research strives to detect and recognize classes of

non-rigid, articulated objects. Hampered by the om-

nipresent confusing information due to clutter and oc-
clusion, the focus has shifted from holistic approaches

for object detection to representations of individual ob-

ject parts linked by structural information, along with

richer contextual descriptions of object configurations.
Along this line of research, we present a practicable

and expandable probabilistic framework for parts-based

object class representation, enabling the detection of
rigid and articulated object classes in arbitrary views.

We investigate learning of this representation from la-

belled training images and infer globally optimal so-
lutions to the contextual MAP-detection problem, us-

ing A∗-search with a novel lower-bound as admissible

heuristic. An assessment of the inference performance

of Belief-Propagation and Tree-Reweighted Belief Prop-
agation is obtained as a by-product. The generality of

our approach is demonstrated on four different datasets

utilizing domain dependent information cues.
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1 Introduction

1.1 Motivation and Overview

Probabilistic approaches to object detection and recog-

nition have become a focal point of computer vision

research during the last years [50]. This trend has been
spurred by a substantial amount of work on the extrac-

tion of locally invariant image features [44,75], by the

impact of contextual probabilistic modeling and ma-
chine learning [27], and through the feasibility of large-

scale optimization and learning on standard PCs [5].

In this paper, we adopt the representation of ob-
ject views by configurations of its parts and study the

detection of object categories by combining state-of-

the-art approaches from three major lines of research:
Local feature extraction and statistical detection [44,

42], contextual modeling with both discriminative and

generative random fields [71,40,39], and efficient infer-

ence with deterministic algorithms [67,36]. The graphs
underlying our probabilistic representation of object

classes are complete, in order to take into account all

potentially relevant relations between object parts, and
to better cope with deficiencies of local part detectors

through contextual inference.

Our objective is to assess the capability of this gen-
eral approach for modeling and learning the variability

of object classes, and for detecting corresponding ob-

jects in images. To this end, we consider three differ-
ent and increasingly challenging categories: faces, hu-

man spines in 3D medical image data, and humans

(Figure 1), and apply throughout the same strategy:

Discriminative modeling of local appearance of object
parts and generative modeling of the geometry of part

configurations are combined in a probabilistic graphical

model in order to complement one another. Detection
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is carried out for comparison both by standard Belief-

Propagation (BP) and the related convex relaxation
solved by Tree-Reweighted Belief Propagation (TRBP).

In order to thoroughly assess the performance of these

established methods from the optimization point-of-view1,
we compute the corresponding ground truth in terms of

the global optimum using A∗ search with a novel lower

bound as admissible heuristic. By this, we also avoid
mixing up imperfections of the model and learning on

the one hand, and of inference on the other hand.

Because the variability of the three object categories

differs considerably, our study reveals the strengths and

limitations of the overall approach. While this study

shows that it competitively copes with significant vari-
ation of object appearance in a purely 2D view-based

manner, it still does not generalize to the reliable detec-

tion of highly-articulating humans that are dissimilar to
the training set.

1.2 Related Work and Contribution

The literature on detection and recognition of objects
and humans (people, pedestrians) is vast. Approaches

vary considerably depending on the image cues and the

prior knowledge used, and on the application area rang-
ing from pure detection to pose recovery in 2D and

3D to tracking in cluttered scenes, in connection with

surveillance tasks, driver-assistance systems, biometric
recognition or human-machine interface design. No at-

tempt will be made to provide a corresponding review

here. We confine ourselves to pointing out a few key

issues.

As a parts-based approach, our work differs from

representations in terms of “bag of features” [15,45,
61] that are sensitive to the robustness of local detec-

tion, and from approaches relying on silhouette-based

representations that coarsely quantize the correspond-
ing data manifold through clustering in order to handle

articulation and different aspects [58,76,28]. Further-

more, purely contour-based approaches [1,46] relying

on shape context [4] are likely to fail in scenes with
cluttered background.

Our approach is view-based in order to keep its
applicability to different object categories straightfor-

ward. We do not exploit category-specific 3D prior knowl-

edge as e.g. in [8] for the case of humans, or as in [41,
55,62,2] in very detailed form.

Rather, we integrate state-of-the-art approaches to
robust feature extraction and fast detection [44,16,42]

1 This is by no means clear a priori because our graphs differ

considerably from the more common regular grid-graphs in other
problems having typically a smaller number of states.

into a complete-graph based conditional random field

model of configurations of parts [40,51,39], and assess
its performance for view-based detection of humans,

and also for detecting instances of less variable object

categories (human spines and faces) for comparison.

Regarding occlusions of parts, a careful study of
occlusion-sensitive local likelihoods was provided in [59].

Corresponding additional occlusion constraints create

loops in the graphical model that are coped with ap-
proximate belief-propagation. In the same context, the

authors of [54] point out the importance of keeping the

number of parts variable. Inference involves local group-
ing and local optimization in a feed-forward manner

whose performance, however, appears difficult to assess

from the viewpoint of optimization.

Regarding probabilistic models of spatial part con-

figurations, Gaussian distributions have been proposed
in [48] that can only be accurate for restricted set of

human poses, however. Likewise, computationally more

convenient tree-structured models do not explicitly model
relations between all object parts. As a consequence,

they may tend to detect both arms and legs at the

same position, for instance, and therefore have been
mainly applied to views taken from a similar viewpoint

[21,23]. To overcome this shortcoming, configurations

are sampled from the tree-distribution and evaluted

by a global objective function. Recent work [59,35,30]
has shown, however, that using additional relations in

terms of acyclic graphs can enforce correct configura-

tions between body parts. We report experiments com-
paring tree-structured and non-tree-structured models

in Sec. 5.5.

We point out, on the other hand, that tree-structured

models benefit from a small number of parameters, and
have recently shown to be extensible to weakly-supervised

learning settings [24]. Furthermore, the paper [52] com-

prehensively elaborates on-line learning in order to adapt

a general human model to specific detected object in-
stances in the spatio-temporal context.

A notable difference to our work concerns the mean-

ing of nodes. Whereas most approaches, e.g. [26,52,59,

21], choose body parts as nodes we use in this work
body joints. This results in a non-redundant parametriza-

tion of the articulated object and smaller domains for

the random variables assigned to the nodes.

Markov random field (MRF) inference [72,67] is an
established technique in computer vision. For a review

of linear programming (LP) based relaxation, we re-

fer to [70], for an experimental evaluation of various

techniques in connection with standard applications to
[65], and for performance bounds based on weak du-

ality to [38]. In recent research, graphical structures

that are more densely connected than image grid graphs
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Fig. 1 Top: Graphs for objects from three different data sets. Bottom: Detected configurations of object parts. The datasets are Face
(a), Human (b), and HumanEva (c). Figure 18 shows a further example from 3D medical imaging. All these cases are handled by our
approach in a uniform manner.

have become more important [37]. In this context, the

ground truth evaluation of our model, utilizing com-

plete graphs with a very large number of node states,
sheds additional light on this important topic. Some-

what unexpected, the A∗-search technique based on a

novel lower bound as admissible heuristic outperforms
all techniques for small complete graphs, as e.g. used

for face detection.

Organization

We introduce the basic notation in Section 2 and detail
the components of our graphical model of object classes.

In Section 3, we summarize an established variational

approach to approximate inference and detail the lower
bound estimate and the search algorithm for globally

optimal, exact inference. The learning algorithm and

the corresponding model parameters are considered in

Section 4. A fairly comprehensive experimental evalua-
tion using four different data sets along with a discus-

sion is provided in Section 5. We conclude in Section 6

and point out directions of further research.

2 Graphical Model

In this section, we detail the components of our proba-
bilistic representation of object views. After fixing some

basic notation, we distinguish discriminative local mod-

els of object part appearance, and generative contextual

models for the geometry of part configurations. Both
components are combined in a probabilistic graphical

model.

2.1 Basic Notation

We adopt the common notation in the literature (e.g.,

[14]). |A| denotes the cardinality of a finite set A. For
a fixed object category, let G = (V,E) denote the re-

spective graph depicted in Figure 1, with vertices s ∈
V = {1, 2, . . . , |V |}, And with a complete set of edges

st ∈ E ⊂ V × V, S 6= t. Edges are undirected, so we
identify st = ts. We set C := V ∪ E. For a subgraph

T ⊂ G, E(T ) denotes the corresponding set of edges of

T .

As illustrated in Figure 1, each vertex s is uniquely
assigned to a fixed part of objects of the category. The

positions of parts s ∈ V in a given image, that is its lo-

cation xs on a subset Xs ⊂ Z
d of the regular image grid
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Z
d of dimension d = 2 or d = 3, are given by the vector

of random variables x = (x1, . . . , x|V |)
⊤

defined over
the graph G, and indexed by V . We denote X1 × · · · ×
X|V | with X . For the sake of readability, we will use the

common shorthand xS := (xs1
, . . . , xs|S|

)
⊤

, s1, . . . , s|S| ∈
S, for any S ⊆ V . In particular, xV = x, and xc, c ∈ C,

may either denote xs, s ∈ V , or (xs, xt)
⊤

, st ∈ E.
The probability of a particular localization x of an

object is modeled by the Gibbs distribution

p(x|θ) =
1

Z(θ)
exp

(

− J(x|θ)
)

, (1a)

J(x|θ) =
∑

c∈C

θc;xc
, (1b)

with the normalizing partition function Z(θ) ensuring
∑

x∈X p(x|θ) = 1. The term J(x|θ) is referred to as
energy of the Gibbs distribution. θc;xc

denotes the po-

tential of the part c of x as detailed in Section 2.2.

It will be convenient to interchangeably use another
common parametrization of (1) in terms of all possible

values of x. Defining the index set

I :=
{

(s; j) , s ∈ V, j ∈ Xs

}

∪
{

(st; jk) , s, t ∈ V, j ∈ Xs, k ∈ Xt

} (2)

and corresponding indicator functions

φ(x)s;j :=

{

1 if xs = j

0 otherwise

φ(x)st;jk :=

{

1 if xs = j ∧ xt = k

0 otherwise

(3)

we write with a corresponding vector φ(x) ∈ R
|I| and

a parameter vector θ ∈ R
|I|:

p(x|θ) =
1

Z(θ)
exp

(

− J(x|θ)
)

, (4a)

J(x|θ) =
〈

θ, φ(x)
〉

=
∑

α∈I

θαφ(x)α . (4b)

The functional dependence of θ on observed image data
I will be detailed below.

2.2 Potential Functions

To cope with the large variability of image data and

the complex dependencies therein, we transform the in-

formation into a set of scalar-valued feature functions.

Each potential function θc;xc
in equation (1b) can be

written as a weighted sum of the individual contribu-

tions:

θc;xc
=

∑

f∈F

λc,ffc(xc) (5)

with model weights λc,f , feature functions fc(xc), c ∈
C, f ∈ F , where the function types are

F := functions of











appearance if c ∈ V ,

appearance, length,

orientation, epipolar if c ∈ E .

(6)

Unary features may depend on one site xs and the im-

age I; Pairwise or edge features may depend on two
sites (xs, xt) and the image. Input features to the fea-

ture functions are: SIFT-features [44], color features,

edge length, edge orientation, and epipolar residuals.
All features have the property to depend at most on

two image sites, which allows us to compute exhaus-

tively all unary terms and a sufficiently large set of edge
terms. The features are described in detail in Sections

2.3, 2.4, and 2.5.

2.3 Object Appearance

Input features. Each feature function reduces a feature

vector to a scalar.

The input feature vectors are computed from a win-
dow at each site, Figure 2 shows some example win-

dows. For the 2D datasets (Human, HumanEva, Face,

see Section 5) we compute

– SIFT features [44] with 8 × 8 spatial and 10 ori-
entation bins at a fixed scale. Concatenation yields

feature vectors of dimension 8 × 8 × 10 = 640.

– Color features with 4 × 4 spatial bins in the L*a*b

color space. Here each bin contains the average color
of pixels falling inside it. Concatenation yields fea-

ture vectors of dimension 4 × 4 × 3 = 48.

The same two features computed in windows aligned

along the edge that connects two object parts have been
used for pairwise appearance features, see Figure 2. For

edges between physically connected body parts these

pairwise appearance features are in fact “limb-like” as
by construction they are invariant to translation, rota-

tion and foreshortening.

For the 3D dataset (Spine) we compute

– Intensity features with 15×15×15 spatial bins which

correspond one-to-one to the 3D window size of the
input sub-volume. Concatenation yields feature vec-

tors of dimension 15 × 15 × 15 = 3375.

No pairwise appearance features have been used for this

dataset.
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(a) (b)
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Fig. 2 Ground truth configurations for the Human (a), Hu-
manEva (b) and Face (c) datasets with corresponding (uniform)
window sizes for local appearance computations. (d) shows a

window for computation of pairwise appearance between left-
shoulder and left-hand. Note the cyan-edges are only for visu-
alization, and features are generally computed between all pairs.

Randomized classification trees. We use randomized clas-

sification trees [29] too compute scalar features given

feature vectors. They allow for fast evaluation, are able

to cope with large training data, and can be used to
detect points of interest [42]. Randomized classification

trees divide the feature space into arbitrary regions and

build a statistic of the training features in each region.
This process is repeated using many trees, e.g. about

100 in our case, and combining the individual statis-

tics by averaging the class counts. By this the effect of
the hard region boundaries is reduced. Training such a

classifier amounts to creating a set of decision trees and

collecting the statistics of the training data under the

trees’ classifications. The branching tests at tree-nodes
that divide the feature space are chosen at random from

a set of very simple tests, each involving only one or two

feature space dimensions.
In particular, we have adopted three types of tests

for branching

– T1: At each node of the tree, two dimensions dim1

and dim2 of an input feature vector v are chosen

at random and their respective values compared. If

v(dim1) < v(dim2), we descend the left branch of

the node, otherwise we descend the right branch.
– T2: At each node of the tree, one dimension dim of

the input features and a threshold value val in the

range of v(dim) are chosen randomly. If v(dim) ≤
val, we descend the left branch of the node, other-

wise the right branch.

– T3: This test is only used for pairs of input features.
At each node, two dimensions dim1 and dim2 are

chosen randomly. For two input features v1 and v2,

if v1(dim1) ≤ v2(dim2), we descend the left branch,

otherwise the right.

Among the three tree types we selected the best

performing as feature function generator for the input

features. These are T1 for SIFT features and 3D Spine
intensity features, T2 for color features, and T3 for pairs

of color features for color similarity.

Building the statistics for the trees stopped when

the number of training samples falling into a leaf was
smaller than a given threshold (a value of 10 was used

throughout the experiments), or if it only contained

samples of a single part. This method seemed favourable
compared to others defining a maximum depth of the

trees, as in our case the tree depth automatically adapts

to the number of training samples.
The overall performance and robustness against noise

results from aggregation of the statistics over a large

number of such tests that are distributed over the en-

semble of decision trees. For Human, HumanEva and
Face, we used 100 trees for the unary features and 70

for the pairwise features; for the Spine 150 trees were

used. The class-specific scalar feature value is obtained
by classifying a candidate feature vector, i.e. at each

tree-node we descend into the corresponding sub-tree

until we reach a leaf. The number of all training samples
in the leafs, corresponding to the class and accumulated

over all trees, divided by the number of all training sam-

ples accumulated over the respective leafs, yields the

scalar feature. The final feature function value is ob-
tained after a non-linear calibration method described

next.

Feature calibration. The computed scalar features or
classification scores have the property that higher val-

ues indicate higher probability that the feature being

observed in the window at the site corresponds to a
particular object-part. When combining different clas-

sification scores, it is important that they span compa-

rable ranges [53]. In previous publications [6,7], we have

successfully applied a form of logistic regression to clas-
sifier scores, which were obtained using support vector

machines (SVMs). The method and optimization was

first proposed by Platt [49] for SVMs, as a reliability
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diagram2 of their output showed a distinctive sigmoid-

shape. For other types of classifiers, however, this may
not be the case. For the randomized classification trees,

we opted for isotonic regression, which was proposed

by Zadrozny and Elkan [74] as an alternative for classi-
fier calibration. Here a stepwise-constant isotonic – i.e.

order-preserving – function is fitted by minimizing the

mean-squared error to the empirical class membership
probability using the pair-adjacent violators (PAV) al-

gorithm [17]. This method allows arbitrary classifica-

tion scores as long as higher scores indicate higher class

membership probability. It has been noted [53] that
for multi-class classification by combining binary clas-

sifiers, the one versus all (OVA) classification scheme

for well calibrated classifiers yields similar results than
more complicated schemes, e.g. methods inspired by er-

ror correcting codes. The effect of feature calibration is

visualized in Figure 3.
To reduce the set of functions for fitting and also

the number of weight-parameters λc,f , we averaged the

individual classifier scores of the SIFT and color classi-

fiers, separately for each vertex and each edge, by tak-
ing their geometric mean in order to obtain a combined

classifier score. For example, the combined appearance

score for a node is computed as

sappearance :=
√

sSIFT · scolor (7)

To these scores we fitted the isotonic function and refer

to the resulting functions as “appearance probabilities”
pa,c(xc, I) for class c ∈ C at site location xc for the

image I. We have found that this yields also slightly

better results with respect to classification than first
fitting the isotonic function to each feature type and

taking the geometric mean afterwards.

Finally, in terms of the the energy formulations (4b)

and (5), the negative logarithm of the appearance prob-
ability yields the feature function

fc(xc) := − ln pa,c(xc, I), f = {appearance}

2.4 Object Shape

The feature functions for object shape are derived from

simple 1D histograms. As input features we used the
Euclidean distance between pairs of sites constituting

an edge in the graph, and the absolute edge orienta-

tion. Unary terms, e.g. absolute part locations, were not
used. In other words, we only model object shape, not

absolute location. Whereas these features are thus in-

variant to object translation, the edge-length feature is

2 A reliability diagram plots the empirical class membership
probability vs. the classification score, e.g. Figure 3.
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Fig. 3 Classifier calibration on appearance features for the right
knee in the HumanEva dataset. (a) reliability diagram: x-axes
denote the combined, uncalibrated classifier scores, y-axes de-
note the reliability, i.e. the observed relative frequency for an

in-class feature having the respective classifier score; the blue
curve denotes the non-parametric isotonic function fit, the black
line corresponds to an ideal reliability and black dots indicate
estimated reliability (using histograms). The isotonic functions

follow the estimated reliability values closely. (b) and (c): His-
tograms of classifier scores before (b) and after calibration (c). In
green the normalized histogram for in-class features, in red the

normalized histogram for out-of-class features. Note that the cal-
ibrated scores are closer to ideal probabilistic scores, i.e. a score
of 1 for in-class and 0 for out-of-class features.background

not invariant to changes in scale and the orientation fea-

ture is not invariant to in-plane rotations. For training
we normalized the scale by computing rst = µst

lst
for all

available edges st ∈ E of the observed object, where µst

denotes a normalized edge length and lst is the observed

length. We assume that variations in r are due to global
scale and foreshortening. Foreshortening causes rst to

be overestimated as the observed lst is shorter than the

true edge-length. To account for foreshortening we as-
sume that at least one edge is not foreshortened so that

lst is the true image-length of that edge and thus take

the minimum over rst as the scale normalization fac-
tor r. Clearly though, the effects of foreshortening will

still hamper the length features. For inference on the

test images we treat object scale as a latent variable for

the length features, i.e. the features are computed after
normalization with the hidden/unknown scale parame-

ter r, that has to be inferred. In contrast we ignore the

dependency of the orientation features to in-plane rota-
tions for two reasons: (1) our particular objects usually

have one predominant orientation in images and (2)

where this assumption does not hold, e.g. standing vs.
lying humans, this will be reflected in the histograms

since these do allow for multiple modes. Clearly config-

urations that do not correspond to major modes will be

hard to detect with this approach.

No calibration, as done for the appearance terms,

was performed, as we assume that false edge candi-

dates will follow uniform distributions, so we can expect
that the reliability diagram is a straight line passing

through the origin. We refer to the histogram outputs

as length probability pl,c(xc|r) and orientation proba-
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bility po,c(xc), where c ∈ E and xc denotes the two

image sites corresponding to edge c. The feature func-
tions for the energy formulation:

fc(xc) := − ln pl,c(xc|r), c ∈ E, f ∈ {length} ,

fc(xc) := − ln po,c(xc), c ∈ E, f ∈ {orientation} ,

are again the negative logarithm of the histogram out-

put.

2.5 Epipolar Constraints

For the HumanEva dataset, up to 7 calibrated images

were taken at each time instant from different direc-

tions. We made use of this additional information by
combining the configurations of all available cameras

into a single model, where individual configurations in

the images must satisfy additional pairwise constraints
given by the epipolar geometry. For an image pair I1,

I2 and two points x1 ∈ I1, x2 ∈ I2 in correspondence,

i.e. imaging the same 3D world point, the epipolar con-

straint

x⊤
1 F12 x2 = 0

must be satisfied, where F12 is the fundamental matrix

[32] of the image pair.
For the number of images used simultaneously, we

use the original graph as depicted in Figure 1 (c) one for

each view, augmented by edges between all parts with
the same label in each combination of image pairs. The

corresponding model graph is therefore not fully con-

nected in this case. The input features for the addi-

tional edges are the algebraic residuals of the epipolar
constraint

∣

∣x⊤
c,i Fijxc,j

∣

∣ for each part c ∈ V and im-

age pairs Ii, Ij . We compute 1D histograms of these

features, analogously to the object shape features and
refer to them as epipolar probability pe,c(xc). With a

slight abuse of notation:

fc(xc) := − ln pe,c(xc), c = (s, i, j), s ∈ V,

i, j ∈ 1, . . . , 7, i 6= j, f ∈ {epipolar}

2.6 Image Graph and Missing Parts

When building the image graph corresponding to a model-
graph (Figure 1) in a bottom-up process we make in

each step use of previous computations to prune the

graph to manageable size in terms of computational ef-

fort and memory footprint. For a given test-image, we
proceed as follows:

1. Compute the appearance probability pa,c(xc, I) for

all parts c ∈ V and all corresponding image sites

xc ∈ X .

2. For a fixed, per-part threshold Tc, sample a set of

candidate part locations Xc by including all sites
with pa,c(xc, I) > Tc. Additionally, we use non-maxima

suppression to discard image sites nearby a sampled

candidate.
3. Compute the lengths pl,c(xc|r) and orientation prob-

abilities po,c(xc) for each edge c ∈ E and the set

of sampled candidates. For the object scale r we
have usually used 5 discrete settings. We employ

hard thresholds for the edge-length, such that if it is

smaller or larger than the any observed edge-length

in the training set, the corresponding probability is
set to zero.

4. Only for non-zero edge candidates, compute the ap-

pearance probability pa,c(xc), c ∈ E.

Figure 4 shows examples of appearance probability maps

and candidate samples.

Fig. 4 Appearance probability maps pa,s(xs,I) and candidate
samples Xs for an image of the HumanEva dataset. From left to

right and top to bottom: headDistal, upperRightArmProximal,
rightElbow, lowerRightArmDistal, rightKnee, lowerRightLegDis-
tal.

By proceeding in a bottom-up manner, only a rel-

evant subset of image sites are considered as possible

sites for the object parts. Furthermore, the graph has a
locality property, as candidates with large distance get

an edge probability of zero, which is used to speed up

subsequent inference. The thresholds Tc, c ∈ V can be
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set by the user. In order to get a good compromise be-

tween missing detections and computational complex-
ity, we have chosen the thresholds at the operating

point where the individual classifiers maximize the F1-

measure [20] on all training features

F1 := 2
#true positive

#positive detections + #positive features

The image graph is the input to the MAP inference
problem, which is to match the model graph to the sub-

graph with minimal energy as described in Section 3.

Missing parts. There are two natural reasons for miss-
ing parts. Firstly, the part can be occluded by another

part or object. Secondly, the part may not be con-

tained in the image section. Moreover, by employing
the thresholds Tc, some of the parts may be missed

during sampling. Therefore, we include a special can-

didate mc for each part and derive corresponding ap-
pearance probabilities, edge-length probabilities, edge-

orientation probabilities, and epipolar probabilities. “Spe-

cial” means that mc has no location, hence feature func-

tions cannot be computed in the usual way.

In Bayesian inference, for each hypothesized miss

in a configuration, we need to marginalize over the im-

age domain to account for the hypothesis. However, the
number of hypotheses already grows combinatorially:

As every possible combination of present and missed

parts is conceivable, the number of hypotheses is 2|V |.

Moreover, computing all the edge terms is computation-
ally unattractive as their number grows quadratically

with the number of image sites or pixels.

Instead, we propose the following, more efficient ap-
proximation. First, instead of marginalization, a com-

mon approximation is to search for the maximally likely

missing part, which also better suits MAP-inference in

Section 3. Note that the highest attainable appearance
probability for the missing part is exactly the threshold

Tc. So we set

pa,c(mc) := Tc, c ∈ V (8)

Next, we define the edge probabilities for the missing

candidate. Assuming that the miss is only caused by the

local appearance probability lying below the threshold,
but that pairwise edge probabilities would not be af-

fected by this “failure” to recognize the part, we argue

that the true part would lead to typical edge probabil-

ities, in which case we define the edge probabilities by
their typical values. We have chosen the mean of each

of the appearance, length, and orientation probabili-

ties for the three types of edge terms using a validation

dataset DV

pa,c(mc) := mean
xc,I∈DV

pa,c(xc, I)

pl,c(mc) := mean
xc,I∈DV

pl,c(xc)

po,c(mc) := mean
xc,I∈DV

po,c(xc)

pe,c(mc) := mean
xc,I∈DV

pe,c(xc)

∀c ∈ E (9)

where the xc denote the true locations of the parts in
the respective image. One might argue that the miss of

the part may originate from other causes, in particular

from occluding objects or self-occlusion, for which the
part appearance probability at the true location will

certainly be below Tc, as well as its edge-appearance

counterparts. So the estimates serve as an optimistic
guess and for experiments that rely on this heuristic, we

have introduced the weight parameter γ ≤ 1 by which

we multiply the appearance probabilities for missing

parts and edges.
We have found that the above heuristic already gives

quite reasonable results and, where model complexity

or an insufficient number of training data did not allow
for maximum likelihood learning as proposed in Sec-

tion 4.13, we successfully used this method instead.

In view of alternative approaches [63,13,11] that
recreate a small number of candidates after few itera-

tions of belief propagation, advantages of our model in-

clude independency of the inference method (any tech-

nique can be used), and feature functions for new can-
didates need not be computed in each step. Natural

occlusion, however, has still to be modeled by an extra

candidate.

3 Inference

In this section, we focus on inference algorithms to com-

pute the Maximum-A-Posterior (MAP) configuration x

by minimizing the energy in (4).
From the viewpoint of inference, the design of a

graphical model amounts to a difficult compromise be-

tween sufficient expressiveness of a model to accom-

modate the complexity of real visual data and com-
putational manageability. As detailed in the previous

section, we restrict our model to a second order MRF

which appears to be sufficiently powerful for represent-
ing contextual relations.

Regarding computational tractability, we investigate

competitively in Section 5 different established infer-
ence techniques including (Loopy) Belief Propagation

3 When performing maximum likelihood learning, we only use

one feature function for a missing node and one feature function
for a missing edge, i.e. the three edge terms are combined.
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(BP) [72] and Tree-Reweighted Belief Propagation (TRBP)

[67]. To this end, we introduce a novel admissible heuris-
tic [6] employing a tree-based lower bound estimate, in

order to compute ground truth (global optimum) with

A∗-search for not too large problem instances.
We sketch TRBP below and then detail A∗-search

tailored to our problem class. For ordinary BP, we refer

to [72].

3.1 Tree-Reweighted Belief Propagation (TRBP)

Wainwright [67] proposed a convex relaxation of the

intractable problem to compute the most likely config-

uration x by minimizing the energy in (4)4

Φ(θ) := min
x

J(x|θT ) = max
x

〈θ, φ(x)〉 . (10)

Representing the parameter vector θ by a convex com-

bination of parameters θT ,

θ =
∑

T∈T

ρT θT , ρT > 0 ,
∑

T∈T

ρT = 1 ,

corresponding to the set T of all spanning trees T ⊂ G

as tractable substructures of the underlying graph G,
the convexity of Φ(·) and Jensen’s inequality yield the

upper bound

Φ(θ) = Φ
(

∑

T∈T

ρT θT

)

≤
∑

T∈T

ρT Φ(θT ) . (11)

Minimizing this upper bound is a convex optimization

problem. The corresponding dual program is the linear

program (LP) [67]

max
ν∈Pν

〈θ, ν〉 , (12a)

Pν := R
|I|
+ ∩

{

ν
∣

∣

∣

∑

j∈Xs

νs;j = 1 ,
∑

j∈Xs

νst;jk = νt;k ,

(12b)

∀s, t ∈ V , ∀k ∈ Xt

}

.

The set Pν in (12b) constitutes a computationally feasi-

ble outer-approximation of the marginal polytope, and

the pseudo-max-marginals ν are related to, and com-
puted by messages propagated along the edges of G

[67]. The basic update equations read

M̂n+1
ts (i) = max

j∈Xt

{

exp

(

θst;ij

ρst

+ θt;j

)

·
∏

v∈N(t)\{s} Mn
vt(j)

ρvt

Mn
st(j)

(1−ρst)

}

, (13)

Mn+1
ts (i) = Mn

ts(i)
1−β · M̂n+1

ts (i)β , (14)

4 In order to conform to the literature and to avoid confusion of
the reader, we temporarily reverse – in this subsection only – the
sign of the representation (4b), J(x|θ) = −

˙

θ, φ(x)
¸

, that is we

maximize the right-hand side. In other sections of the manuscript,
we prefer the energy interpretation of θα.

where ρst denotes the relative frequency 5

of edge st belonging to a tree in T , i.e. st ∈ E(T ) , T ∈
T , and where N(t) is the set of all vertices adjacent to

node t ∈ V .

Algorithm 1 Tree Reweighted Belief Propagation

[ x ] ← TRBP ( θ, ρ, N , β )
1: ∀st ∈ E, i ∈ Xs, j ∈ Xt : M0

st(j)← 1, M0
ts(i)← 1

2: for n = 1 . . . N do

3: for all st ∈ E do

4: Compute updates (13) and (14) for both edge-directions
and all i’s.

5: end for

6: end for

7: for all s ∈ V do

8: xs ← arg maxi∈Xs
exp (θs;i)

Q

t∈N(s) Mts(i)ρst

9: end for

As for standard BP, this algorithm is exact for acyclic
graphs. For cyclic graphs fixed points are related to sta-

tionarity points of the dual LP (12). Convergence can

be enforced by damping the update equations with a
factor β < 1 [67], but cannot be guaranteed in gen-

eral. A modification of TRBP by Kolmogorov [36] con-

verges to a vector satisfying the weak tree agreement
condition. We cannot apply it here because a required

monotonicity property does not hold as we do allow

more general potential functions.

3.2 Global Optima Via Lower Bounds and A∗ Search

The A∗-algorithm is an established technique in order

to cope with very large state spaces in the dynamic pro-
gramming (DP) framework, when searching for a glob-

ally optimal solution to intricate problems – see [31,

47,73,12]. For applications in computer vision we refer
to e.g. [25,12,48,22]. The optimal solution is computed

in terms of the shortest path within a weighted graph

that represents the whole configuration space and the

corresponding costs defined by the objective function.
Its performance depends on devising a heuristic that

estimates the costs of unexplored paths from the cur-

rent node representing a partial solution, to a terminal
node indicating a complete solution. In order to find

the global minimum, the heuristic has to be admissible,

i.e. it has to provide a lower bound. While this ensures
global optimality once the search terminates, its com-

plexity may be exponential in the problem size. Lower

bounds on the runtime can be given in some cases when,

e.g., the estimated error does not grow faster than the

5 Due to the symmetry of complete graphs, we simply have
ρst = |E(T )|/|E|
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logarithm of the true minimal costs, then the time com-

plexity is polynomial [47,56]. It is not clear, however,
how to achieve this in practice.

We detail next the admissible search heuristic, and

subsequently the A∗-search algorithm used to compute
ground truth for evaluating approximate MAP-inference

algorithms. Interestingly, it turned out that for small

problem sizes, e.g. when using small complete graphs
for face detection, our algorithm outperforms BP-based

algorithms not only with respect to optimality (by con-

struction), but also with respect to runtime.

3.2.1 Admissible Search Heuristic

We transform the MAP inference problem to a short-

est path problem with respect to a search tree6 T ∗ =

(V ∗, E∗). To define T ∗, we assume to be given

– a spanning tree T ⊂ G that is used to compute a

lower bound. T is determined depending on the ap-
plication. For instance, in the case of the HumanEva

dataset, we use the tree T that covers the physical

edges displayed in cyan in Figure 2.
– an arbitrary but fixed ordering of all nodes V =

{1, 2, . . . , |V |} of G.

An example tree T ∗ for a simple graph is shown in

Figure 5.

2

1

3

X_2={1,2}

X_1={1,2,3}

X_3={1,2}

[1,1,2] [1,2,2]

[2,1][1,2][1,1] [2,2]

[2,1,2]

[2,2,1][2,1,1][1,2,1][1,1,1]

[2,2,2]

[1] [2] [3]

[3,1] [3,2]

[3,1,2]

[3,1,1]

[3,2,2]

[3,2,1]

Fig. 5 Top: Graph G = (V, E) and state candidates, bottom:

Corresponding search-tree T ∗.

Nodes V ∗ of T ∗ then represent all possible (sub)

configurations xS , |S| = 0, 1, . . . , |V |, where S ⊆ V

respects the order of V . With slight abuse of notation,

we write

v∗ = xv∗ = {x1, x2, . . . , x|v∗|} (15)

to emphasize this identification between nodes v∗ ∈ V ∗

and partial assignment of values to x. Complete con-
figurations xv∗ , |v∗| = |V |, form the leaves of T ∗. We

6 Note that the tree T ∗ and corresponding nodes V ∗ and edges
E∗, that is all variables labelled with a ∗, refer to the config-

uration space for inference. They should not be confused with
spanning trees T ⊂ G or nodes V of the underlying graph G.

denote the root by [ ] (empty configuration). Formally,

we have

V ∗ = {[]} ∪
⋃

s∈V

s
⊗

t=1

Xt ,

where s runs through V in the predefined order.
Nodes u∗, v∗ are adjacent in T ∗, u∗v∗ ∈ E∗, if the

two configurations they represent differ by an additional

single random variable x|v∗|,

E∗ =
{

u∗v∗ ∈ V ∗ × V ∗
∣

∣ |u∗| + 1 = |v∗| , u∗ ⊂ v∗
}

.

Each of these edges carries the weight

w(u∗, v∗) = θt,xt
+

|u∗|
∑

s=1

θst;xsxt
, t = |v∗| , (16)

that equals the additional energy due to extending a
partial solution u∗ to v∗ (recall notation (15))

Lemma 1 For all v∗ ∈ V ∗, the distance d([ ], v∗) in
T ∗ equals the energy J(v∗).

Proof For the unique path with nodes {[ ], v∗
1 , . . . , v∗|v∗|}

in T ∗, we obtain with (16)

d([ ], v∗) =

|v∗|
∑

s=1

w(v∗
s−1, v

∗
s ) =

|v∗|
∑

s=1

(

θs;xs
+

s−1
∑

t=1

θt,s;xt,xs

)

=

|v∗|
∑

s=1

θs;xs
+

∑

ts∈E
s,t≤|v∗|

θt,s;xt,xs
= J(v∗)

Definition 1 For u∗, v∗ ∈ V ∗ with |u∗| ≤ |v∗|, we de-
fine the search heuristic

H(v∗|u∗) := min
x∈X

x|v∗=v∗

[

∑

t∈V
t>|v∗|

θt;xt
+

∑

st∈E
s≤|u∗| , t>|v∗|

θs,t;xs,xt

+
∑

s>|u∗|
t>|v∗|

(

∑

st∈E(T )

θs,t;xs,xt
+

∑

st∈E\E(T )

min
xs∈Xs

θs,t;xs,xt

)]

(17)

Proposition 31. The heuristic (17) is admissible, i.e. it

provides a lower bound of the energy corresponding to

any path from v∗ to a leaf node.

Proof The minimal energy corresponding to a path from

v∗ to a leaf node is

min
x∈X

x|v∗=v∗

∑

t>|v∗|

(

θt;xt
+

∑

st∈E

θs,t;xs,xt

)

(18)

The edge set of the second term can be split in two sets

corresponding to s ≤ |u∗| and s > |u∗|, respectively,

and the latter set can be further split into the set of
tree-edges st ∈ E(T ) and its complement st ∈ E\E(T ).

Minimizing independently the last term with respect to

xs, as in (17), provides a lower bound.
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Rearranging (17),

H(v∗|u∗) := min
x∈X

x|v∗=v∗

[

∑

t∈V
t>|v∗|

(

θt;xt
+

∑

st∈E
s≤|u∗|

θs,t;xs,xt

+
∑

st∈E\E(T )
s>|u∗|

min
xs∈Xs

θs,t;xs,xt

)

+
∑

st∈E(T )
s>|u∗|,t>|v∗|

θs,t;xs,xt

]

(19)

shows that evaluating the lower bound amounts to a

tree-structured inference problem that can be efficiently

carried out using standard message passing.

3.2.2 A∗-Search

We use a heap as data structure in order to handle stor-

age of the large amount of data accumulated during the

search, and for efficiently determining the next partial
configuration v∗ to be extended towards a globally op-

timal solution.

If it happens that the algorithm exceeds the avail-

able memory, we discard 50% of those hypotheses for
the global solutions having the highest energy estimates.

This is not a problem: In practice, because most paths

have very high energies; in theory, because we keep
track of the lowest energy of this set, so as to be able

to verify global optimality after termination.

Algorithm 2 shows the pseudo-code of the A∗-search
used in this paper for the specific case |u∗| = |v∗| −
1. We point out that opt = FALSE after termination

does not imply that the global optimum has not been

found. Rather, it implies that global optimality cannot
be guaranteed.

This algorithm can be easily modified in various

meaningful ways. For example, concerning the heuristic
(17), the tighter bound H(v∗|v∗) could be used, but at

considerably higher computational costs. The other ex-

treme is |u∗| = 0, independently of v∗, i.e. to evaluate
just once the estimates H(v∗|[ ]) that are, of course,

much less tight.

Our experiments indicate that the choice above, |u∗| =

|v∗| − 1, is a good compromise.

4 Model Learning

4.1 Parameter Initialization

Along with the feature functions f described in Sec-

tion 2, we have to learn model parameters λ for the

Algorithm 2 A∗-Search for MAP-Inference

[ x, opt ] ← AStar ( θ, T )

1: v∗ ← [ ], τ ← +∞
2: while |v∗| < |V | do

3: u∗ ← v∗

4: compute H(v∗|u∗) , ∀v∗ , |v∗| = |u∗|+ 1
5: for i ∈ X|u∗|+1 do

6: v∗ ← {u∗, i}
7: insert

˘

v∗, J(v∗) + H(v∗|u∗)
¯

into the heap

8: if size = maxsize then

9: ∆← lowest value of the 50% worst energy estimates
10: τ ← min(τ, ∆)
11: end if

12: end for

13: v∗ ⇐ getMin(heap)
14: end while

15: x← v∗, opt← FALSE
16: if J(x) ≤ τ then

17: opt← TRUE
18: end if

computation of θ. Recall that (5)

θc;xc
=

∑

f∈F

λc,ffc(xc) .

For every vertex and edge, and for each corresponding

feature, a single model parameter has to be estimated.
The reasoning for computing an initial guess is as fol-

lows:

Initially neglecting all structural information given

by the edge terms, we can conceive a detector for rec-
ognizing an object by detecting its parts individually.

Assuming that all part detectors are independent, the

overall probability is the product of the individual prob-
abilities (naive Bayes classifier)

pa,V (x) ∝

∏

c∈V

pa,c(xc) .

We initialize all λ parameters corresponding to vertex

appearance features with 1. Including the edge appear-
ance probabilities gives us a complementary view of the

same probabilistic event. So we could set pa,E(x) ∝
∏

c∈E pa,c(xc). The number of edges is far greater than

the number of vertices, however, and edge features may
overlap by construction, i.e. the independence assump-

tion of the individual classifiers does not hold. There-

fore, if their individual contribution is comparable to
the part probabilities, the overall final probability will

be much lower than the one above, using parts alone.

To account for this, we combine the probabilities in a
“products of expert” model [33]

pa,E(x) ∝

∏

c∈E

pa,c(xc)
λc,a .
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Expecting edge appearance to be of similar quality as

the one for vertices, we set

λc,a :=
|V |
|E| , ∀c ∈ E,

i.e. 2
|V |−1 for a fully connected graph. Assuming further

that length and orientation probabilities are equally in-
formative, their respective λ parameters are initialized

in the same way. Now each type of feature (part appear-

ance, edge appearance, length, orientation) gives rise to
an expert, and the overall probability is again their com-

bination using the “products of expert” model, where

we weighted their contribution based on intuition as
ξa,V = 0.5 for the node appearance, ξa,E = 0.25 for edge

appearance, ξl,E = 0.125 for length, and ξo,E = 0.125

for orientation. In conclusion we define the initial values

of the λ parameters to be

λc,f :=

{

ξa,V , if c ∈ V ,
2

(|V |−1) ξf,E , if c ∈ E ,
(20)

Note that after taking the negative logarithm, the
exponential mixture parameters λc,f become the factors

in the energy formulation.

The effect of the λ parameters on the individual fea-
ture functions corresponds to smoothing of the marginal

statistics of the feature function if λ < 1, and to sharp-

ening of the statistics for λ > 1, see Figure 6.

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Fig. 6 Effect of the λ parameter on the marginal statistics of
a feature function. The figure shows the histogram for the edge

length between the left elbow and left hand of the Human dataset.
Blue: original distribution, red: histogram after λ-smoothing with
λ = 0.3, green: with λ = 1

0.3
, after renormalization.

In practice, the assumptions made here do not strictly

hold, since image patches may overlap and features
are in general not equally informative. Optimization

of the λ parameters can be done in the conditional

random field (CRF) framework by maximizing the log-
likelihood of the ground truth for a set of training sam-

ples [40], as described next.

4.2 Parameter Learning

Given i.i.d. training images with known ground truth

x1, . . . , xD, we maximize the likelihood function

L(λ) =

D
∏

d=1

p(xd|θd)

=

D
∏

d=1





1

Z(θd(λ))
exp



−
∑

α∈Id

θd(λ)αφ(xd)α









(21)

where F , see (5), includes also missing nodes and miss-
ing edges to optimize their respective λ parameters as

well.

While the optimization of equation (21), or equiva-
lently its logarithm, is the commonly applied approach

and a number of algorithms for exact and approximate

solutions have been proposed, see e.g. [64,51,66,43],

there are two shortcomings of this formulation. First,
the number of parameters is large in our case (e.g. 429

for the Human dataset). Secondly, the likelihood func-

tion does not variate smoothly in vicinity of the ground
truth. In particular, when labelling ground truth config-

urations, a user is confronted with the difficult decision

to label a single point on a joint or body part in arbi-
trary views, as well as deciding if a part is still visible or

should be labelled as missed. Without further proof, we

feel that different users will most likely label different

configurations for the same image. To tackle both prob-
lems at the same time, we relax (21) by also including

configurations that are similar to the “ground truth” as

positive examples. For this we weight part candidates
by their distance to their ground truth location xd

s until

reaching a certain distance threshold Ds

ws(i) =











1 − 0.5 · |xs;i−xd
s |

Ds
, if |xs;i − xd

s | < Ds ,

δ , if xs;i missing candidate

0 , otherwise,

(22)

where δ is the penalty for hiding a part. See Figure 4.2

for a visualization of the distance thresholds used.

We maximize a weighted log-likelihood, with ws(i) =
ws(i)

P

j∈Xs
ws(j) , such that ∀s ∈ V :

∑

x ws(xs) = 1 and

W (x) :=
∏

s∈V ws(xs),
∑

x∈X W (x) = 1. The corre-

sponding smoothed log-likelihood function behaves more

gently in the neighborhood of the labelled ground truth,

and is maximized using gradient ascent.

l(λ) =
∑

d

∑

x∈Xd

W (x) · ln p(x|θd)

=
∑

d

∑

x∈Xd

W (x) ·
(

−
〈

θd(λ), φ(x)
〉

− lnZ
(

θd(λ)
)

)
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Fig. 7 Distance thresholds used for the Face and Human

datasets for learning and evaluation. Circles visualize the (uni-
form) maximum distance to the manual ground truth location
(cyan) for a part to be considered a positive hit.

(23)

Note that compared to (21), where each ground truth

configuration xd is used only once, there is now a weighted

summation over the configuration space X d, where we
have used the output after candidate sampling (c.f.

Sec. 2.6) as configuration space X d, thus including the

effects of candidate misses due to suboptimal classifica-
tion.

This can be considered as a minimization of Kullback-

Leibler divergence DKL(W ||p) between a desired distri-
bution given by W (x) and the estimates given by the

model p(x|θ):

DKL(W ||p) =
∑

x

W (x) · ln W (x)

p(x|θ)

=
∑

x

W (x) · lnW (x) −
∑

x

W (x) · ln p(x|θ)

=const −
∑

x

W (x) · ln p(x|θ) .

(24)

The gradients are computed by the partial deriva-

tives as:

∂

∂λc;f

〈

θd(λ), φ(x)
〉

= fd
c (xc) (25)

∂

∂λc;f
lnZ(θd(λ)) = −

∑

xc∈Xd
c

E [φ(x)c,xc
] fd

c (xc) (26)

∂

∂λc;f
l(λ) =

∑

d

(

−
∑

xc∈Xd
c

wd
c (xc)f

d
c (xc)

+
∑

xc∈Xd
c

E [φ(x)c,xc
] fd

c (xc)
)

.

(27)

The computation of E [φ(x)c,xc
] is known to be difficult

for general graphs. However, we can obtain good ap-
proximations using BP/TRBP for fixed λ. The deriva-

tion is the same as in Section 3.1, we only exchange

the max-product- by the sum-product-semiring. Using
this approximate gradient we perform K gradient as-

cent steps to optimize the parameters. The value of the

step size parameter was chosen η = 0.01.

Algorithm 3 Learn parameter λ

[ λ ] ← Learn ( θ[1,...,D],w[1,...,D], λ0, η )
k ← 0
for k = 1, . . . , K do

for d = 1, . . . , D do

∀c ∈ C , ∀xc ∈ Xc , compute bd
c (xc) ≈ E [φ(x)c,xc ] with

TRBP.
end for

for c ∈ C do

for f do

λk+1
c,f
←λk

c,f + η
X

d

X

xc∈Xd
c

h“

−wd
c (xc) + bd

c(xc)
”

fd
c (xc)

i

end for

end for

end for

5 Experiments and Discussion

5.1 Performance measures

Classifier performance. To estimate the performance of
the part classifiers, we used several measures that are

common in literature. In the following definitions, n

indexes test instances and c denotes a particular class-
label. The optimal probability for a test vector x is

denoted by

pc(x) =

{

1, if x ∈ class c

0, otherwise

and the estimated value given by the classifier is de-

noted by p̂c(x).

– Precision recall curves (PR) and area under the curve

(APR).
– Equal error rate (EER), i.e. the error rate at the

point where the false positive rate is equal to the

false negative rate, reported for each class individu-
ally or as mean over all classes.

– Mean cross entropy

MCE = − 1

N · C

N
∑

n=1

C
∑

c=1

pc(xn) ln p̂c(xn)
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The cross entropy is a measure of how good the

estimated probabilities approximate the true prob-
abilities. Cross entropy is defined as

CE = −
N

∑

n=1

p(xn) ln p̂(xn) = H(p) + DKL(p ‖ p̂) .

In this definition we set 0 · ln(0) = 0 as limx−→0 x ·
ln(x) = 0. And as pc(xn) is 0 or 1, depending on the

true class cn of xn, MCE can further be simplified
to

− 1

N · C

N
∑

n=1

ln p̂cn
(xn)

In this case, this directly relates to the negative data

log-likelihood − ln p̂(x1, . . . , xN , c1, . . . , cn), and be-

cause H(p) = 0, also to DKL(p ‖ p̂).
– Confusion matrix gives the outcome of classifica-

tion. Each row gives the instances of an actual class

and each column the instances of the prediction.
We normalize the confusion matrix by its row-sums,

i.e. each row shows how many percent of instances

of that respective class have been predicted as any
of the classes. The diagonal of the confusion ma-

trix gives the accuracy for each class. Cohen’s κ [10]

value is a summary measure for a confusion matrix

and can be interpreted as the level of agreement be-
tween truth and prediction where 1 is total agree-

ment.

Localization performance. To measure the performance

of the whole framework with respect to localizing an
object by its parts, we use the following measures.

For the Face and Human dataset we give

– Number of true positives (TP), i.e. ground truth

is present and the estimated position is within the
distance threshold (c.f. Figure 4.2).

– Number of outliers (OUT), i.e. ground truth is present

and the estimated position is outside the distance

threshold.
– Number of false negatives (FN), i.e. ground truth is

present but the part has been labelled missing.

– Number of true negatives (TN), i.e. ground truth is
occluded and part has been labelled missing.

– Number of false positives (FP), i.e. ground truth is

occluded and part has been labelled present.
– 2D relative localization error for TP: The distance

of the part, after MAP inference, to its ground truth

location normalized by an instance-specific distance.

Normalization for the Face dataset is with respect
to the distance between the eyes, for the Human

dataset it is the mean of the distance between the

left-hip and left-sholder, and the distance between

the right-hip and right-shoulder. We have chosen

these normalization distances because they rarely
suffer from foreshortening.

For the HumanEva dataset we give

– 2D localization error: The distance of the part, after
MAP inference, to its ground truth location in pixel.

– 3D localization error: The distance in mm between

the 3D ground truth location and the 3D location af-
ter triangulation using several synchronized 2D im-

ages.

The 3D localization error is also used for the Spine
dataset.

5.2 Face

The model for the Face dataset consists of 5 parts: left

and right eye, nose, left and right side of the mouth,

see Figure 2. We used the Caltech face dataset [68]
consisting of 450 frontal faces. Frames [1 . . . 89] (4 sub-

jects, 3 male, 1 female, no beards, no glasses) consti-

tute the training set; frames [90 . . . 165] (5 subjects, 4

male – two with beards, 1 female, no glasses) constitute
the validation set; frames [166 . . . 450] (18 subjects, 10

male – one with beard – one with glasses, 8 female)

constitute the test set, where frames [328 . . . 336] have
been rescaled by factor 3 so that the faces appear ap-

proximately at the same scale as the rest and frames

[400, 402, 403] have been omitted from evaluation (ar-
tificial paintings) making a total of 282 test frames.

The shape features are more susceptible to changes in

scale than the appearance features, therefore for infer-

ence we compute the MAP over 5 discrete scale settings
([0.8, 0.9, 1.0, 1.1, 1.2]) for the edge-length features.

Generic background was obtained from 45 images

without people/faces, but featuring scenes where people

normally occur.

Part Detection. Results from the part classifiers are
summarized in Figure 8. Even though classification per-

formance is already very good for the uncalibrated clas-

sifier (mean APR: 0.9771) it further increases after cal-

ibration (mean APR: 0.9989), while the mean equal er-
ror rate drops from 2.80% to 1.52%7. More important

when used as component in a probabilistic model is the

decrease in mean cross entropy, which is even more pro-
nounced: from 4.88% to 1.16%.

7 Note that changes in mean APR and mean EER are due to
renormalization of the probabilities after calibration.
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Fig. 8 Classification results for the Face dataset. The perfor-

mance is shown for the calibrated combined appearance classifier
(7) on the test vectors from the Caltech Face dataset. Top: confu-

sion matrix (rows: true class, columns: estimated class). Bottom:
(zoomed) precision recall graph. The classification performance
is already extremely good for this dataset. Only very few mis-
classifications remain in the background class and between left
and right eyes, which is also reflected in the precision recall graph.
As a comparison, the diagonal of the confusion matrix for the
uncalibrated classifier is 91.39, 91.75, 94.99, 86.52, 93.05, 99.97

(values in %). Respective κ values [10] are 94.5% for uncalibrated
and 96.5% for calibrated.

Learning. We used the CRF learning algorithm [3] to
compute optimal λ parameters on the training and cal-

ibration sets, using BP and TRBP for learning, and

contrast them to the heuristic initialization (20). δ in
eq. (22) was set to 0.5. We also compare a simpler

tree graph in form of a star with the nose as center

to the completely connected graph. To compare λ val-

ues for different learning methods we rescaled them
so that their sum equals one (MAP inference will not

be effected by this). This means for the heuristic (20)

that the sum of all λ values for nodes is
∑

c∈V λc,a =

ξa,V = 0.5 and the sum of all λ values for edges is

analogously ξa,E + ξl,E + ξo,E = 0.5. Interestingly for
the CRF learning these values shifted towards nodes

0.83 for CRF-BP, and 0.61 for CRF-TRBP, and 0.93

for the tree model. The edge terms are effectively zero
for the edge appearance and length features (CRF-BP:

0.01, 0; CRF-TRBP: 0.02, 0.01; tree: 0, 0), compared

to orientation (CRF-BP: 0.16, CRF-TRBP: 0.35, tree:
0.06). The reason for this could be due to the hard

thresholds for edge length employed during sampling

(c.f. Sec. 2.6) false edges already have zero probability

and especially the length term is thus uninformative for
this dataset, whereas orientation could still separate be-

tween left and right for pairwise parts. Also we can see

that more weight is allocated to the edge terms for the
complete graph compared to the tree.

Localization. In Table 2 we show results for the local-

ization performance on the test set for the different

models. Baseline is given by ground truth, i.e. the user
labelling and “baseline” which is the best localization

possible given the reduced image information after can-

didate sampling (c.f. Sec. 2.6) by simply picking the
nearest neighbor to the ground truth for each part in

the set of candidates or the missing candidate if the

ground truth is occluded. The models compared are
summarized in Table 1, they are: the three complete

graphs with the different learning methods (heuristic,

CRF learning with BP, CRF learning with TRBP) (3)-

(5); the tree graph with the heuristic initialization (tak-
ing into account the reduced number of edges in (20))

(6) and CRF learning using BP (7)8. And a decoupled

graph without any structural edge information (8). Re-
sults are very close to optimality stemming from the

good performance of the part-classifiers as indicated by

the 93.5% of true positives obtained with the decoupled
graph. Still more structure does improve the results:

True positive rates increase for the tree models to 96.4%

for the heuristic and 97.5% for the learned model, and

to 96.7% (heuristic), 97.6% (CRF-BP), 98.3% (CRF-
TRBP) for the complete graphs.

Overall there is no significant difference of the mod-
els given by the heuristic and the ones obtained by CRF

learning on this dataset. Albeit the former tends to oc-

clude more parts, it in turn produces less outliers. This
seems a general trade-off and is largely effected by the

user parameters γ for the heuristic (here set to 0.8) and

the penalty δ given to the missing candidate in (22).

Also the tree models show comparable performance ow-
ing to the rigid structure of the faces in the images. We

find that this is a comparatively simple dataset and our

8 Note that for trees the computation of E [φ(x)c,xc ] in (27) is
exact using BP.
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Table 1 Identification numbers (ID) used for the models em-

ployed for the Face and Human evaluation. Baseline is given in
form of hand labelled ground truth, and “baseline” which uses the
nearest candidate to ground truth after sampling part-candidates.
Evaluated are three models with completely connected graphs,

two models on a tree-shaped graph, and a decoupled graph.

ID graph type learning method

(1) ground truth

(2) baseline

(3) complete heuristic
(4) complete CRF-BP

(5) complete CRF-TRBP

(6) tree heuristic

(7) tree CRF-BP

(8) decoupled heuristic

Table 2 Localization performance for the Face test set. Three

models using complete graph as underlying structure have been
learned using the heuristic (3), and CRF with BP (4) and with
TRBP(5). Simpler graphs in form of a star with nose as cen-
ter (“tree”) (6+7) and a completely decoupled graph (8), where

all nodes are independent, are also presented as comparison, c.f.
Tab. 1 for ID. Positive results are in green, errors in red. In bold
is the best number for each column, without (1) and (2). For
discussion see Sections 5.2 and 5.5.

ID TP OUT FN TN FP µd σd

(1) 1409 0 0 1 0 0 0

(2) 1406 3 0 1 0 0.04 0.04

(3) 1362 5 42 1 0 0.08 0.05

(4) 1375 32 1 0 1 0.12 0.08

(5) 1385 22 2 0 1 0.12 0.07

(6) 1358 25 26 0 1 0.10 0.16

(7) 1374 30 5 0 1 0.12 0.08
(8) 1318 91 0 0 1 0.18 0.65

framework performs quite well. For comparable object-
classes with simple structure the presented methods are

well suited for detection.

Example configurations after MAP-inference are shown

in Figure 9.

5.3 Human

As depicted in Figure 2, the model for the Human

dataset consists of 13 parts or joints: head(1), shoul-
ders(2), elbows(2), hands(2), hip(2), knees(2), and feet(2).

We have used a total of 2401 images consisting of images

from private collections, images taken from the Internet
and images of the PASCAL Visual Object Class (VOC)

Challenge 2006 [19] and 2007 [18]. For the non-object

class, we used the same background images as for the

Face dataset. A total of 1243 images was used as train-
ing set to learn the feature functions for appearance

and geometry, 717 images were used as validation set

for the classifier calibration, and 441 images remained

Fig. 9 Images with face configurations (slightly cropped). Rows
1 and 2 (red): 8 worst configurations with respect to the mean

distance to ground truth. 3rd row (blue) configurations with least
parts detected not contained in rows 1 and 2. Last row (green)

4 configurations with highest confidence, i.e. the exponential of
the negative energy or unnormalized probability. We throughout

obtain good performance on this data as only the worst 3 images
can be considered wrong configurations.

as test set. The test images were taken from the PAS-
CAL VOC Challenge 2007 for the Person Layout task.

Part Detection. Confusion matrix and precision recall
graph for the calibrated classifiers are shown in Fig-

ure 10. As a comparison, the diagonal of the confusion

matrix (in % for uncalibrated (“score”) and calibrated
(“calib”) classifiers is

head l-shoul r-shoul l-elbow l-hand r-elbow r-hand

score 87.01 64.57 73.24 18.51 16.47 23.76 19.49

calib 81.04 56.72 67.76 24.36 26.47 26.77 28.53

l-hip r-hip l-knee l-foot r-knee r-foot backgro

score 37.33 37.31 29.63 36.09 33.23 34.18 89.01

calib 31.41 31.23 32.56 38.76 30.75 37.14 91.78

Respective means, i.e. mean accuracy, are 42.84%

and 43.23%. Cohen’s κ values are 44.50% and 44.93%
respectively. Mean APR increases from 42.76% to 45.18%

after calibration. Mean EER drops from 22.09 to 20.77.

As stand-alone classifier there doesn’t seem to be signif-
icant improvement, the classes just seem slightly more

balanced. MCE drops more significantly from 14.9% to

11.2%, but is still much higher than for the Face dataset

(1.16%). There is quite distinctive behaviour for dif-
ferent body parts for this difficult dataset. Especially

hands and elbows, whose appearance vary significantly

due to articulations in the images, give poor results.
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Fig. 10 Classification results for the Human dataset after cal-

ibration. Top: confusion matrix (rows: true class, columns: esti-
mated class). Bottom: precision recall graph. Especially hands
and elbows are difficult to recognize, followed by hip and knees.

In contrast the performance for head, shoulders and background
is much superior. As can be seen from the confusion matrix, this
is also true because of ambiguities between left and right body

parts.

Learning. We used the CRF learning algorithm [3] to

compute optimal λ parameters on the calibration set,

using BP for learning on the complete graph (CRF-
BP) and on a simpler tree graph9. δ in eq. (22) was

set to 0.01. The normalized λ values for the heuristic

again sum to 0.5 for nodes:
∑

c∈V λc,a = ξa,V = 0.5 as
well as for edges: ξa,E + ξl,E + ξo,E = 0.25 + 0.125 +

0.125 = 0.5. The corresponding values for the complete

model (CRF-BP) are: 0.1818 for nodes and 0.8182 for
edges (appearance: 0.0895, length: 0.2164, orientation:

9 Due to the computational burden, we omitted a comparison
to CRF-TRBP

Table 3 Localization performance for the Human test set. Com-

pared are the complete graph learned heuristically (3) and with
CRF-BP (4), the tree graph with heuristic (6) and learned (7),
and the decoupled graph (8), c.f. Tab. 1 for ID. Positive results
are in green, errors in red. In bold is the best number for each
column, without (1) and (2). For discussion see Sections 5.3 and
5.5.

ID TP OUT FN TN FP µd σd

(1) 2381 0 0 791 0 0 0

(2) 1494 887 0 791 0 0.27 0.36

(3) 628 940 813 526 265 0.55 0.58

(4) 734 868 779 541 250 0.41 0.45

(6) 581 1196 604 298 493 0.77 0.74
(7) 709 998 674 456 335 0.54 0.62

(8) 592 1762 27 90 701 0.94 0.79

0.5124). For the tree they are: 0.4247 for nodes and

0.5753 for edges (appearance: 0.0623, length: 0.2194,

orientation: 0.2936). Contrary to the Face dataset, here

the weights actually give more influence to the edge
terms and less influence to the node terms. This is much

more so for the complete graph than for the tree. It

might indicate that shape is actually the more informa-
tive cue for this class as the part appearance performs

so poorly for this difficult data.

Localization To simplify evaluation, we only consider

images containing only one person (244 frames). For in-
put, images are rescaled using the method in Sec. 2.4.

The shape term was optimized over 5 discrete scale set-

tings ([0.9, 0.95, 1.0, 1.05, 1.1]). The results of the local-

ization are summarized in Table 3. And Figure 11 gives
an overview of the number of correct parts per image,

i.e. the number of true positives (TP) plus the num-

ber of true negatives (TN). Clearly using CRF learning
(Sec. 4.2) on the complete graph produces the strongest

model for this dataset.

For this best performing model (CRF-BP), Table 4
shows the localization results for each part individu-

ally. The rigid upper body parts head and shoulders

are detected rather well, with moderate levels of out-
liers. Next come hip, followed by elbows. Most outliers

occur with the hands that are the most difficult parts to

detect, both with respect to appearance and shape due

to articulation. Many of the images only contain partial
configurations, especially images where only the upper

body is visible and the rest is occluded. Our algorithm

can handle these cases, indicated by the high levels of
true negatives for the knees and feet.

Example configurations obtained after MAP-inference

for the learned model are shown in Figure 12.
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Table 4 Localization performance for 244 Human test images, shown for each part individually for the model learned with CRF-BP.

Overall performance for head and shoulders is quite good, whereas the articulating parts, especially hands, are much harder to detect.
This could be expected given the performance of the part classifiers and also the shape features are less discriminative for these parts.

head l-shoul r-shoul l-elbow l-hand r-elbow r-hand l-hip r-hip l-knee l-foot r-knee r-foot total

TP 160.00 94.00 125.00 41.00 31.00 47.00 31.00 58.00 56.00 26.00 22.00 24.00 19.00 734.00
OUT 55.00 51.00 73.00 76.00 94.00 92.00 100.00 79.00 74.00 42.00 26.00 58.00 48.00 868.00

FN 29.00 91.00 40.00 79.00 81.00 58.00 73.00 50.00 63.00 62.00 54.00 52.00 47.00 779.00

TN 0.00 6.00 2.00 25.00 16.00 18.00 16.00 37.00 28.00 87.00 116.00 87.00 103.00 541.00

FP 0.00 2.00 4.00 23.00 22.00 29.00 24.00 20.00 23.00 27.00 26.00 23.00 27.00 250.00

Fig. 11 Number of correct parts (TP+TN) per frame on 244

Human test images. Note, the integral under each curve corre-
sponds to the total number of correct parts. For discussion see
Sections 5.3 and 5.5.

5.4 Inference performance

Throughout the experiments, we checked the perfor-

mance of A∗, BP and TRBP for the Face and the

Human datasets. Due to the strong geometrical con-
straints, graphical inference for face detection is com-

paratively easy. All three methods show good perfor-

mance and suboptimality to this small degree does not

seem to be an issue. Somewhat unexpectedly, in addi-
tion to being globally optimal by definition, A∗ is here

also the fastest method!

For the complex Human problem class, the median

runtime of A∗ with 0.9680 (heuristic model) 0.9890 (CRF-
BP) seconds is still reasonably fast. In a few, unpre-

dictable cases it might however take several minutes.

Regarding optimization performance, we obtain an

ambivalent rating between the methods. For the heuris-

tic models it seems that BP performs worst and we get

A∗ ≥ TRBP ≥ BP ,

whereas the models learned with the CRF framework

are better solved with BP, thus

A∗ ≥ BP ≥ TRBP ,

Fig. 12 Human configurations for the PASCAL VOC Challenge
2007 for the Person Layout task. Top 2 rows (red): configurations
that were too difficult for our approach. Bottom 2 rows (green): 8
Configurations with high confidence. In general, standing humans

without too much occlusion can be localized well.

as is quantitatively shown in Table 5. For the complex
human class, suboptimal inference is an issue, in par-

ticular for TRBP! Figure 13 illustrates this point by

a range of typical examples, where the problems seem

to arise in particular in dealing with occluded/missing
parts: Suboptimal configurations are due to occluding

too few parts for the heuristic model and too many

parts for the learned model.

5.5 Comparison to Tree Graphs

As mentioned in previous sections, we compared the
fully connected graphical models also to simpler tree

structured models. Quantitative results are presented

in Tables 2 and 3 and also in figure 11. Decline in lo-
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(a) Heuristic

(b) CRF-BP

Fig. 13 Images where BP and TRBP do not converge to the
global optimum. The first image of each pair shows the result of
BP or TRBP (yellow graph), the second the global optimum com-

puted with A∗ (cyan graph). When suboptimality occurs, BP and
TRBP have the same problem with handling occlusion: Depend-

ing on the underlying model they produce too many (CRF-BP) or

not enough (heuristic) occluded parts. Images shown are typical
in this respect.

Table 5 Mean values of inference time (in seconds) and confi-

dence (exp of the neg. energy) relative to the optimum given by
A∗ for inference on the same graphs. For BP and TRBP, these
values correspond to 1000 iterations. The small differences in con-
fidence values of all three methods for faces indicate that this class

is comparatively easy to handle. Furthermore, for graphs with a
small number of vertices, A∗ outperforms all methods also with
respect to runtime! For more complex classes like “Human”, the
differences between A∗ and the approximate inference engines is
much more pronounced.

Dataset A∗ BP TRBP

Face time 0.0377 0.2224 0.1463

heuristic confidence 1.0000 0.9801 0.9915

Face time 0.0345 0.1847 0.2488

CRF-BP confidence 1.000 0.9990 0.9975

Face time 0.0413 0.1916 0.2108

CRF-TRBP confidence 1.0000 0.9960 0.9949

Human time 4.7552 1.8276 0.8511

heuristic confidence 1.0000 0.5442 0.6524

Human time 5.6601 0.6552 0.3080

CRF-BP confidence 1.0000 0.9983 0.9092

calization performance is mainly due to our particular

handling of occlusion/missing parts that is quite differ-
ent to other methods: For a tree structured graph if one

of the parts is missing the inferred configuration is the

result of two or more independent subgraphs. For the
Face set with strong part classifiers this usually pro-

duces only marginally worse results, as most parts are

found and there is few occlusion. A few configurations

where missing parts where inferred, however, illustrate
this difficulty for tree-structured graphs, see Fig. 14.

For the Human dataset where the framework has to

deal with highly elevated levels of occlusion this can
cause for example legs to appear inside the body, see

Fig. 15. This shows that for our framework dens graphs

with additional structural information are a necessity.

The confusion between left and right body parts

that are reported by other using tree models (e.g. [21]),
and that usually require sampling from the tree-distribution

and evaluation of another global cost-function, is imma-

terial in our framework, due to our particular shape fea-
tures including absolute angles. This is, however, only

true if articulating parts do not cross as opposed to,

e.g. folded arms.

5.6 HumanEva

The HumanEva dataset [60] consists of several sequences

of four subjects (S1, . . . , S4) performing five different

tasks (walking, jogging, gesturing, boxing and throw-
ing/catching). The sequences for HumanEvaI were taken

with 7 synchronized cameras (3 color, 4 gray-scale), for

HumanEvaII there are 4 synchronized color cameras.
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Fig. 14 Images with face configurations (slightly cropped) for
the tree graph. Rows 1 and 2 (red): 8 worst configurations with
respect to the mean distance to ground truth. 3rd row (blue) con-
figurations with least parts detected not contained in rows 1 and

2. The 8 worst configurations and the first of the last line can be
considered wrong. Compare this to only 2 wrong configurations
in Fig. 9. Problems occur for this dataset in cases when one or
more parts are missing as there is then no structural informa-

tion to other parts. This is especially severe here when the nose
is missing as it is the center of the star-shaped tree. Note that
drawn edges do not correspond to the underlying tree-graph but

are the same as in Fig. 9.

(a) Heuristic

(b) CRF-BP

Fig. 15 Comparison of the tree graphs to their respective fully
connected models. Left images are inferred results using the tree,
right images using the complete graphs. If parts are missing

the tree-graphs get disconnected and independent subgraphs are
matched, leading e.g. to spurious legs inside the body: (a) 1st row,
(b) all except first pair. Also if a body part is not at its usual

location relative to other parts this can cause confusion between

symmetric parts (folded arms, (b) 2nd row, right image.

The sequences are separated into “Training”, “Valida-

tion” and “Test” sets. The respective number of im-
ages in each set are given in [60]. The 2D labelling of

parts (or joints) is similar to our labelling of the Hu-

man dataset, but here they do not correspond to visual
features, but to the back-projection of their 3D coun-

terparts, see Figure 2 for comparison. The 15 parts are

shown in Figure 1. The “Training” images have been
used to train the local appearance classifiers, as well

as the geometry terms. The “Validation” set has been

used for classifier calibration.In Figure 16 the confusion

matrix and the precision recall curves are shown for the
“Validation” set, as ground truth for the “Test” set is

not available to us.

Classifier performance. Overall the classifier performance
is much better than for the Human dataset as more

training data is available and the test set is more similar

to the training set. Mean APR increases from 92.87% to
95.43 for calibrated data, mean EER drops from 3.12%

to 2.35%, Cohen’s κ increases slightly from 89.78% to

90.35%, and MCE decreases significantly from 5.00%
to 1.53%, but note that the test set in this case is the

same as used for calibration.

Due to the complex graphs, no CRF learning has

been performed on this dataset. The presented results
where obtained using only the initialization heuristic in

Sec. 4.1.

Triangulation. The HumanEva dataset is the only dataset
with 3rd-party ground truth data available, which al-

lows objective measurements of the geometrical error.

To obtain a 3D configuration for corresponding syn-
chronized 2D images, we triangulate a 3D configuration

as follows.

1. For all image pairs (Ii, Ij), i, j ∈ {1, . . . ,#cameras},
i < j, of a synchronized frame, and for all parts

s ∈ V that are not occluded in either image, tri-

angulate a 3D point Xs,ij using standard stereo-

triangulation.
2. Calculate the vector-median [69] to find the median

3D position, i.e. the 3D point Xs for part s that

minimizes the sum of Euclidean distances to all can-
didate 3D points,

Xs = min
X

∑

ij

‖X − Xs,ij‖ . (28)

The vector-median has some beneficial properties: the

median Xs lies in the convex hull spanned by {Xs,ij}(ij)

and, like the scalar-median, is robust against outliers [69].

Additionally, it is rotationally invariant. For theoretical

background and implementation details we refer to [3].
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Fig. 16 Classification results for the HumanEva dataset after

calibration. Top: confusion matrix, bottom: PR curve (zoomed).
The confusion matrix is here exemplary for the ambiguities be-
tween left and right body parts.

Localization performance. In Table 6 we summarize the

results of the localization performance for the HumanEvaI
and HumanEvaII dataset, by comparing two approaches:

(1) inferring configurations for each image of a frame

individually, and (2) using the additional epipolar con-
straints and inferring a configuration for all images of

a frame at once (indicated by the extension “e” in the

table). For the second method we used BP for approxi-
mate MAP-inference as these graphs have 7×15 = 105

nodes and inference using A∗ is no longer feasible. Lo-

calization errors are reported for 3D and for 2D. For

the shape terms, global scale r was inferred over 5 dis-
crete scale settings ([0.80.91.01.11.2]). For 2D we also

report the resulting error after back-projection of the

inferred 3D locations which yields large improvements

for the method without epipolar features, but almost no

change in error when including epipolar features from
the start, thus indicating that in deed the inclusion of

epipolar features leads to more consistent 2D config-

urations. Sample configurations for different tasks af-
ter MAP inference are shown in Figure 17. Our results

indicate that if the training and test data come from

similar distributions, as is the case for the HumanEvaI
dataset, then our method works very well in almost all

cases. Also when the test set changes, e.g. when the

subjects have different clothing as is the case for Hu-

manEvaII, but is still similar to the training, we can
achieve competitive results with our method without

using background subtraction, temporal context or 3D

kinematics. Thus our method can be used in contexts
where the camera is not fixed and for (re-)initialization

of tracking algorithms.

Fig. 17 Configurations for the HumanEva test set using MAP

inference on the graphs including epipolar constraints. 3 complete
frames are shown, i.e. all seven images of subject S1 performing
the tasks jogging (rows 1-2), gestures (rows 3-4) and box (rows

5-6). We depict typical errors that can occur for some frames: 1st
set: one foot is consistently matched to a wrong location (near
the other foot). 3rd set: one arm is also matched consistently to
a location near the hip, where it is often found during training

and which leads to false detections in this case.
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Table 6 Localization results for the HumanEvaI (I:) and HumanEvaII (II:) test sets (Combo).

Settings: We took every 20th frame of the test set for each subject S2 to S4 for HumanEvaI and S2 and S4 for HumanEvaII. For
subject S1 the gray-scale images were not available for action “Cobmo”. We chose the “Cobmo” set as it includes all types of activities.
We show the median and the mean error. 3D error is in millimeter, 2D errors are in pixel. If a part is labeled as occluded/missing it
is not taken into account in the error-measure. The extension “e” indicates the model including the epipolar constraints. We report

mean error (µ), standard deviation (σ), median (0.5) and 90 percent quantile (0.9). The bold values indicate the best 3D and 2D error
for each subject.
Discussion: 2D error improves a lot with back projection when using the method without epipolar features. When epipolar features are
included then the back projection method does not seem to change much the 2D errors (except for I:S4 where it apparently produces
one or more outliers – see mean and standard deviation for this case). This could indicate that the additional epipolar features already

enforce consistent results over the individual images so that the back projection can not really improve the 2D error. 3D errors do
not present significant differences neither do 2D errors after back projection or with epipolar features. Overall the resulting errors for

HumanEvaII are a little higher than the ones reported by others [34,9], but without using background subtraction, temporal context

or 3D kinematics. Thus our method is especially attractive for (re-)initialization.

Data 3D 2D 3D→2D
µ σ 0.5 0.9 µ σ 0.5 0.9 µ σ 0.5 0.9

I:S2 39.49 3.28 39.41 43.28 6.68 3.75 5.80 8.01 4.82 1.52 4.64 7.71
I:S3 95.33 48.30 84.21 183.36 15.15 9.63 12.97 29.37 11.74 6.57 10.00 21.09

I:S4 197.96 61.77 192.32 292.84 28.77 12.18 26.36 44.95 24.58 9.74 22.60 36.61

II:S2 207.48 90.85 185.55 338.71 29.75 15.51 26.16 50.66 25.48 13.18 22.65 42.92

II:S4 292.17 103.46 283.49 419.35 46.63 24.32 41.66 77.21 38.82 16.32 36.30 59.35

Data 3De 2De 3De→2D
µ σ 0.5 0.9 µ σ 0.5 0.9 µ σ 0.5 0.9

I:S2 41.26 5.69 42.90 46.19 5.76 1.54 5.45 8.28 5.20 1.42 4.83 7.67

I:S3 92.04 47.89 76.61 180.33 12.17 6.99 9.93 21.91 11.59 6.73 9.36 21.19
I:S4 261.15 381.54 202.77 310.91 25.66 11.19 23.68 39.50 52.83 373.37 24.74 40.58
II:S2 211.40 81.24 200.51 335.77 27.76 12.65 25.42 46.47 27.13 12.11 25.18 45.32
II:S4 290.98 78.56 289.96 397.70 40.04 13.77 37.64 56.94 39.20 13.31 37.16 55.24

5.7 Spine Labeling in 3D Magnet Resonance Images

Our approach is not limited to face or person detection

in 2D images. A related field that we investigate is the
detection and labeling of anatomical structures in med-

ical images. In this context, we experiment with mag-

netic resonance images of the human spine column, in
which we automatically localize and identify the inter-

vertebral discs using the parts-based model described

in this paper. Applications include labeled visualiza-

tion, initialization of segmentation algorithm and sta-
tistical shape analysis for deformation-related patholo-

gies (e.g. scoliosis). The 3D images are low-resolution

(224 × 224 × 180 ≈ 9 · 106 voxels) T1-weighted fast
field-echo images of the total spine. The fact that the

sought discs have ambiguous local appearance, or, due

to pathologies, might be degenerated or missing com-
pletely, is particularly challenging. Therefore, exploit-

ing global context and permitting missing parts in the

model are essential for successful labeling.

We used a simplified version of the described model

for these data. Because of the limited training set of 30
3D-images, we modeled geometric features, i.e. pairwise

part distances or pairwise displacements, as truncated

Gaussians. The model contains 26 vertices correspond-

ing to the center positions of the intervertebral struc-
tures, 23 of them being discs in the anatomical sense

lying between mobile vertebrae. We trained an ensem-

ble of 150 randomized trees without calibration on a set

of volume patches around the ground truth locations

as image features, augmented by resampled, deformed

copies, and background.

Using a leave-one-out procedure for evaluation, the

model was fit to the test image by generating the 10

candidates for each part having the strongest responses
in the tree classifier, and inferring the optimal configu-

ration using A∗. The global scale parameter r was here

estimated based on the first fit and used to refine the ge-
ometry prior, leading to a better subsequent fit by com-

pensating for patient height. Finally, for parts marked

as missing, we predict a position relative to the ones

found in a postprocessing step. Figure 18 shows an ex-
ample result of the procedure, illustrating localization

and labeling of the model’s parts in an unseen image.

We achieved an average part detection rate above
90% and an average part distance to ground truth of

5.1mm. Details are reported in [57].

The computational bottleneck of the detector in this

application is not the inference stage, as one might ex-
pect, but rather the application of the tree classifier on

each of the ∼ 9·106 voxels. Cascaded classifiers and par-

allelization might be viable approaches to resolve this
issue.

6 Conclusions and Outlook

This paper presented a general approach on part-based

object detection using graphical models. Beside appli-
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Fig. 18 MR spine labeling result. Yellow labels show

the MAP estimate(+), green labels represent parts in-
ferred by postprocessing(#), and blue labels show the
ground truth annotation(*), done independently. Larger
dots indicate positions more closely located to the view-
ing plane. We achieved an average part detection rate
above 90% and an average part distance to ground truth
of 5.1mm. Details are reported in [57].

cability to a range of object classes, a key objective of
this work concerns the modelling of articulated objects

where parts do not have a fixed relative geometrical po-

sition. Hence, a major issue in connection with object

detection is the large variability of their appearance,
especially for the Human data. We have tackled this by

using discriminative classifiers and including them in a

probabilistic CRF framework.

We recapitulate important aspects and differences

of our approach compared to related work, especially
in the context of human detection:

– A configuration is completely defined by the loca-

tion of the parts, which in the case of humans are the
joints as opposed to parametrization of the limbs.

We feel that this non-redundant parametrization is

beneficial as the search space for the parameters is

smaller.
– No special form of the input features is assumed.

Hence, the presented framework can easily be ex-

panded using more features. The inclusion is straight-
forward if the features only depend on the configu-

ration of two parts. While having more feature func-

tions certainly makes CRF-learning more difficult,
there is no impact on the MAP-inference, because

feature functions are combined to a single potential

for each node and edge before inference. The exten-

sion to features using triples or more parts is also
conceivable. However, the computational complex-

ity increases rapidly with the number of parts.

– Using feature calibration (Section 2.3) together with
the heuristic for initializing the λ-parameters (20)),

it is not even necessary to re-learn the model.

– The bottom-up process uses information at early
stages to keep the image graphs small for inference,

thus allowing for the computation of structural in-

formation in form of pairwise features without the

suffering from the quadratic complexity that is usu-
ally involved.

– For fully connected model-graphs up to not more

than 15 vertices, exact MAP-inference can be com-
puted in the order of seconds on standard PC using

A∗-search and our novel admissible heuristic pre-

sented in Section 3.2. For larger model-graphs ef-
ficient iterative algorithms using variants of loopy

belief propagation provide often equitable approxi-

mate solutions. But suboptimality may also degrade

detection quality (cf. Fig. 13).

Future Work. Using completely connected graphs for

model representation certainly introduces redundancies

that give the opportunity for averaging out the “noise”
of individual features when inferring difficult object con-

figurations and allows for efficient handling of occlu-

sion (c.f. Sec. 2.6). In some cases, however, we would
like to increase detection speed by removing redundant

computations in the detection phase. In future work we

would like to apply variations of the CRF learning algo-

rithm 3 by the inclusion of additional prior terms on the
λ-parameters that favor sparse solutions and also penal-

ize costly computations. With respect to A∗ and our

proposed heuristic, one opportunity to improve speed
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that we have not yet investigated is optimizing the un-

derlying tree for the heuristic. The trees we have used
correspond roughly to a natural ordering of the parts

as, e.g. given by the kinematic chain for the Human

dataset. In general, other trees might be more efficient
using the most informative parts first. Another aspect

not addressed in this work is the inference of multi-

ple objects. In fact, for the Human dataset we used a
simple greedy method of finding one object at a time

and removing its bounding box for further inference. A

systematic analysis of how to model multiple objects

efficiently in a single framework is part of our ongoing
research.
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