
Optimization Methods and Software
Vol. 00, No. 00, Month 200x, 1–14

RESEARCH PAPER

COAL: A Generic Modelling and Prototyping Framework for

Convex Optimization Problems of Variational Image Analysis

Dirk Breitenreicher, Jan Lellmann, and Christoph Schnörr

Image and Pattern Analysis Group & HCI

Dept. of Mathematics and Computer Science, University of Heidelberg

{breitenreicher,lellmann,schnoerr}@math.uni-heidelberg.de
(Received 00 Month 200x; in final form 00 Month 200x)

We present COAL, a flexible C++ framework for modelling and solving convex optimization
problems in connection with variational problems of image analysis. COAL connects solver
implementations with specific models via an extensible set of properties, without enforcing
a specific standard form. This allows to exploit the problem structure and to handle large-
scale problems while supporting rapid prototyping and modifications of the model. Based on
predefined building blocks, a broad range of functionals encountered in image analysis can be
implemented and be reliably optimized using state-of-the-art algorithms, without the need to
know algorithmic details. We demonstrate the use of COAL on four representative variational
problems of image analysis.

Keywords: image processing, variational modelling, convex optimization, sparse large-scale
programming

AMS Subject Classification: 90C25, 68U10, 62M40, 68T45

1. Introduction

Motivation and Related Work Variational approaches pervade the literature on
image processing and related aspects of machine learning and pattern recogni-
tion [3, 17–19]. Such approaches are generally based on making models of observed
data and prior knowledge mathematically explicit through a joint optimization
criterion, providing a sound basis for algorithm design. In particular, all kinds of
convex optimization approaches have been established as major components of
various models in the recent years, since they can be solved globally optimal even
for many large-scale problems, which allows to separate modelling questions from
optimization issues.
Choosing the best solver for a specific model is not straightforward however,

due to the vast amount of work published on both mathematical programming
and optimization-based image analysis, see e.g. [2, 4, 16, 18]. Available solvers and
software are often explicitly tailored to a specific problem formulation which raises
some issues:

• Commonly a self-contained description is lacking, hidden parameters are involved
or the solver is not thoroughly analysed;

• Improvements of the model may entail substantial modifications of the optimiza-
tion process;

• Transferring methodological progress from one application area to another one
is a tedious task.

ISSN: 1055-6788 print/ISSN 1029-4937 online
c⃝ 200x Taylor & Francis
DOI: 10.1080/03081080xxxxxxxxx
http://www.informaworld.com



2

As a consequence, researchers interested in modelling advanced problems of image
analysis require specific knowledge in algorithmic optimization in order to use,
modify and combine models. This constitutes a considerable entry threshold which
may drive them to abandon variational models altogether, and to resort to the
heuristics they were originally trying to overcome.
In contrast to such model-specific solvers, more generic optimization algorithms

and frameworks supporting higher-level languages provide greater flexibility and
concise representation, and thus are more suitable for model development [1, 11,
15]. From the viewpoint of image analysis, however, there are significant drawbacks.

• Tools that provide an integrated modelling language such as AMPL1 [9],
CVX [10], and YALMIP [14] transform the problem to an explicit, in-memory
intermediate standard form representation. Such representations do not scale
very well to the large-scale problems typical for low-level image analysis, such as
variational image labelling (Fig. 1) or video processing.

• Using solver packages directly, such as LAPACK, SeDuMi, CPLEX, MOSEK
[15], TFOCS [1], or FastInf [11], one can usually avoid the explicit representation
by using callback interfaces. This however requires a reformulation of the problem
in a specific standard form, which is error-prone [14] and laborious to modify,
introduces extra variables, and ignores specific problem structure.

• Higher-level languages such as MATLAB and Mathematica require a complete
re-implementation once a decision has been made to use research code outside
the lab in a real application scenario. This again is an involved and error-prone
process. Moreover, any modifications of the model beyond this stage requires
extensive modifications of the production code.

Therefore, we see a need for a framework that supports modelling of optimization-
based approaches to image analysis and combines the speed and low memory foot-
print of a lower-level language such as C++ with the ease of use, reusability, and
conciseness of higher-level modelling languages.

Contribution We present the Convex Optimization Algorithms Library (COAL), a
flexible algorithmic framework written in C++, that connects solvers – relying on
certain generic properties of the problem, such as differentiability, linearity, specific
constraint forms etc. – to models that exhibit these properties. COAL addresses
the issues raised above as follows:

• COAL neither enforces nor relies on an explicit representation. Instead, it sup-
ports a compact problem implementation based on implicit representations wher-
ever possible, similar to using callbacks. In particular, it efficiently handles large-
scale problems.

• Using an extensible set of properties allows to formulate problems as close as pos-
sible to their native mathematical formulation. This enables the solver to access
all information available about the problem, as long as a corresponding interface
has been implemented. While COAL is not a complete modelling language, it
allows to build complex problems from simple building blocks in a plug-and-play
fashion, without transforming them to a standard form.

• COAL is implemented in C++ and relies on a fast lower-level linear algebra
subsystem. Overall performance is only slightly lower than for customized im-
plementations. Therefore, a re-implementation can be avoided when moving from
modelling to production. Nevertheless, due to the modularity of the higher-level

1AMPL, CPLEX, Mathematica, MATLAB, and MOSEK are trademarks of their respective corporations.



3

Figure 1. Application of the proposed framework to exemplary multi-class labelling problems (Sect. 3.1).
Top: histogram-based 3-class segmentation using total variation regularization where image regions charac-
teristic for these classes have been marked by the user (top-left). The resulting partition of the input image
is shown top-right. Bottom: 16-class depth-from-stereo problem. A truncated linear distance regularizer
was used to infer the 16 different depth values in the scene (bottom-right). Solvers in COAL rely on few
generic properties of the objective functions available through interfaces, which makes them suitable for a
large class of models and facilitates the reuse of model components (Sect. 2).

optimization layer it is easy to add additional constraints, change the solver, or
add new functions if the problem specification changes.

We introduce COAL as a prototyping framework to support convex variational
modelling of image analysis problems. However, similar problems commonly occur
in many areas of image processing, computer vision and machine learning. There-
fore the application of COAL in other fields is conceivable.
Since COAL is implemented in C++, it can be easily used to extend most high-

level languages such as MATLAB or Mathematica, and scripting languages such
as Python.
Rather than to replace existing dedicated solvers or to outperform them in terms

of efficiency, the primary motivation for our work is to provide a framework that
facilitates the interaction between modelling and optimization, and supports pro-
totyping, reproducibility of results, competitive evaluations, benchmarking, and
ranking of models.

Organization We outline COAL’s basic structure in Sect. 2 and show how we ad-
dressed the issues discussed above. The practicability of COAL is demonstrated in
Sect. 3 on four prototypical problems from variational image analysis: multi-class
labelling, framelet-based inpainting, compressive sensing, and multi-view recon-
struction. In Sect. 4 we provide a conclusion and point out availability of COAL.



4

Require: a signal y to be inpainted, a matrix A such as a gradient or framelet operator
[5], a set of indices Ω of points to be inpainted.

1: g(x)← 1
2∥Ax∥22

2: h(x)← δ(x) =

{
0, if x(i) = y(i) for all i /∈ Ω,

+∞, otherwise.

3: f(x)← g(x) + h(x)
4: Minimize f

Figure 2. Original specification of the pseudo-code required to solve the image inpainting problem
(Sect. 3.2). Realizing the approach in COAL requires minimal problem-specific code (Fig. 3).

Require: y, A, Ω as in Fig. 2, a solver s.
m = size(A, 1);
n = size(A, 2);
ConstantVector v(0.0, m);
DenseVector l(n), u(n);

1: ...initialize l, u such that l(i) = u(i) = y(i) for i /∈ Ω and ±∞ otherwise...
2: LeastSquaresFn g(A, v);
3: BoxFn h(l, u);
4: AutoSumFn f (&g, &h);
5: s.Solve(&f);

Figure 3. Solving the image inpainting problem (Sect. 3.2) using COAL. With the exception of the tem-
porary variables, the required C++ code corresponds almost line by line to the pseudo-code in Fig. 2.

2. Structure and Main Components of COAL

COAL consists of three main components:

• a template-based lower-level linear algebra subsystem providing the basic data
structures,

• a set of predefined building blocks, or functions, for formulating problems, and

• a set of solvers, each covering a broad range of problems, and relying on a
common set of function properties.

As outlined in the introduction, this structure aims at optimizing the trade-off
between rapid prototyping and computational efficiency.
We aim at providing a tool for quick modelling and optimization for non-expert

C/C++ users. In particular, the syntax should be non-cluttered and intuitive,
with a similar ease of use as higher-level languages such as MATLAB. Therefore
we based the modelling part of the library on traditional object orientation using
virtual inheritance, as opposed to more intricate template mechanisms.
On the other hand, the performance-critical linear algebra subsystem uses a

template mechanism similar to FLENS [12]. The latter introduces additional com-
plexity in the back end, but allows for efficient and concise expressions on the user
side, and better compile-time optimizations.
Both the high-level and low-level part encourage implicit, problem-specific rep-

resentations. Problems of moderate complexity such as image inpainting [18] (algo-
rithm sketched in Fig. 2) can be realized in COAL in a straightforward way using
only a few lines of code (Fig. 3).
In the following, we provide a more detailed description of the three main parts

of the library: functions, solvers, and the linear algebra subsystem.

2.1. Functions

Many approaches for solving image analysis and computer vision problems are
based on balancing a performance criterion with prior knowledge by minimizing



5

Figure 4. An examplary inheritance and usage diagram for a simple differentiable objective function in
the COAL framework. Problems are uniformly represented as functions implementing certain interfaces,
such as gradient- and function value computation while solvers use these interfaces in order to access
specific function properties.

an objective function f(x) over some constraint set C of feasible solutions:

min f(x) s.t. x ∈ C . (1)

While the subdivision into objective and constraint set is intuitive, it is often not
unique and leads to redundant code and data structures for solving equivalent but
differently formulated problems.
Instead, we adopt the unifying representation often encountered in the optimiza-

tion literature, where constraints x ∈ C are not explicitly represented, but rather
specified as part of the objective: minimize f(x) = g(x) + δC(x), where δC is the
indicator function,

δC(x) =

{
0, x ∈ C ,

+∞, x ̸∈ C . (2)

Consequently, in COAL every problem is represented as a function f : Rn 7→
R ∪ {+∞}, whose minimum should be computed. Each function class inherits
from the Function base class and provides several interfaces that correspond to
properties of the underlying mathematical functions.

Interfaces All knowledge about the specific problem is introduced by means of
interfaces: for instance, functions may be composed of a sum of simpler functions
(ISum), differentiable functions may provide a method to evaluate the gradient
(IGradient), or the user may be able to explicitly compute proximal/backward
steps [7] (IBackwardStep).
Using this approach, we reduce the interaction between solvers and functions to a

small set of interfaces (sketched in Fig. 4). This increases interoperability between
solvers and functions, and maximizes code reuse, since functions that implement a
certain set of interfaces can automatically be used by a wide range of solvers.
Some properties, such as differentiability, are usually fixed at compile time, while

others can dynamically change at run time depending on the input data: for ex-
ample, linear regression problems of the form f(x) = 1

2∥Ax − b∥22 can be trivially
solved if the matrix A, coming from the specific problem instance, has diagonal or
triangular form, while the general case is much more involved.
These concepts are supported by a run-time interface mechanism. Properties are

accessed using expressions such as intf<IGradient>(f)->Gradient(x). Using the
same mechanism, functions may provide reformulations in terms of standard forms
such as linear programs, second-order cone programs, or saddle-point problems
(Sect. 2.2) for solvers that rely on these representations.



6

Custom Functions and Properties When implementing a custom function, the
user generally has to reflect about its structure and to decide which interfaces
can be supported. For common cases such as the sum of simpler functions with
known properties, COAL provides composite function adapters such as AutoSumFn,
that automatically infer many properties from properties of the contained parts.
Interfaces can be freely added on the function and solver side as required. For
instance, the interface to evaluate LeastSquaresFn is defined by the source code:

1: class LeastSquaresFn : public Function, protected IEvaluatable {
2: ...
3: virtual double Evaluate(const ConstVectorRef& x) const {
4: // code for evaluating the least squares function
5: }
6: DefineInterfaces_(
7: Interface_(IEvaluatable, this);
8: );
9: };

Subsequently, each instance f of a LeastSquaresFn can be evaluated via the prop-
erties mechanism intf<IEvaluatable>(f)->Evaluate(x).

2.2. Solvers

In view of the previous discussion, we postulate that solvers should be formulated
in their most general form. As an example, consider a simple projected-gradient
solver minimizing a function g over some convex constraint set C, hence minimizing
f = g + δC , in the COAL framework.
While this could be implemented using a “project onto set” interface for the

constraints, it is better to regard the projection operation as a specific instance
of a proximal/backward step on δC : by designing the solver to just rely on the
more general backward step operation, it becomes applicable for the far larger
class of problems of the form f = g+h, where h can be any function on which the
backward step can be performed. This generalized method is known as forward-
backward splitting in the operator splitting framework [7, 8], and is obtained at no
additional cost when implementing the scheme in COAL.
Below we provide the code for an exemplary forward-backward solver. The vari-

ables control, step, point are the class internal control structure, a step-size
parameter, and a storage container:

1: class ForwardBackward : public Solver {
2: ...
3: virtual Status Solve(const Function* f) {
4: const ISum::FunctionArray* fct = &intf<const ISum>(f)->Functions();
5: const IGradient* grad = intf<const IGradient>((*fct)[0]);
6: const IBackwardStep* bw = intf<const IBackwardStep>((*fct)[1]);
7:

8: int k = 1;
9: do {

10: axpyi(-step, grad->Gradient(*point), *point);
11: copy(bw->BackwardStep(*point, step), *point);
12:

13: control->Accept("k", k);
14: ++k;
15: } while (!control->Terminate());
16:

17: return status.SetCode(Status::Solved);
18: }
19: virtual ConstVectorRef Solution() const {



7

20: return *point;
21: }
22: virtual void SetParameter(const string& s, const parameter_type& p) {
23: ... // set solver parameters such as step-size or control
24: }
25: };

Currently Supported Solvers In the current implementation we settled on two
generic problem classes. First, since many generic convex solvers rely on a certain
conic program form (cf. [2]), we implemented the quadratic form with second-
order cone constraints. It includes second-order cone programs (SOCP) and linear
programs (LP) as special cases, and assumes the structure

min
x

x⊤Qx+ q⊤x

s.t. Ax ≤ b, Cx = d, l ≤ x ≤ u, x ∈ K ,
(3)

where K denotes a set of second-order cones. In addition, we provide an interface
for the saddle-point formulation

min
x∈C

max
v∈D
{h(x) + ⟨v,Ax⟩ − g(v)} , (4)

where h(x) and g(v) are convex functions in the primal and dual domain. This
formulation has the advantage of explicitly formalizing the dual variables while
keeping the number of slack variables minimal.
In the back end, COAL currently includes three prototypical solvers: an interface

to the commercial – but free for academic use – MOSEK package [15], Nesterov’s
efficient first-order optimization scheme [16], and a simple but powerful primal-dual
solver [6], which generalizes the previously presented forward-backward scheme [7,
8]. Including new algorithms and solvers in future versions is straight-forward, by
creating a class which derives from Solver and implements the required interface
functions Solve, Solution, and SetParameter.

2.3. Linear Algebra Subsystem

In order to cope with large-scale real-world data, the lower-level matrix/vector data
structures and elementary operations have to be sufficiently fast. COAL builds on
a sub-library that provides a basic set of data structures, that can also be used
independently of the modelling part.
For maximum efficiency, we rely on a C++ template mechanism inspired by

the FLENS library [12]. Costly virtual function calls are completely avoided. New
matrix and vector types are introduced by defining a corresponding class, and
specializing functions that compute basic operations on these matrices or vectors,
such as element access of matrix-vector products.
COAL includes basic types for dense matrices based on BLAS, sparse matrices,

and several special types such as constant, diagonal, and block matrices.
The library strongly encourages the introduction of new types as required, in

particular in cases where matrices have a specific or sparse structure or can be im-
plemented without explicitly allocating storage. Third-party data structures can
be easily interfaced by providing a wrapper. COAL includes such a wrapper for
working transparently with the MATLAB “mex” matrix type in MATLAB exten-
sions.



8

The approach is fully scalable in the sense that getting new types up and running
requires the user to implement only very few functions to access the size and the
elements of the matrix. If required, performance can be gradually increased by
providing fast substitutes for the generic fallbacks, such as for vector addition or
matrix-vector multiplication.
For instance, a ScaledIdentityMatrix of size s × s could be implemented as

follows:

1: class ScaledIdentityMatrix : public ConstViewBase<ScaledIdentityMatrix>
2: {
3: ...
4: double c; mindex dim;
5:

6: DiagonalMatrix (const double c_in, index s)
7: : c(c_in), dim(s, s) { }
8: const mindex& size() const {
9: return dim;

10: }
11: double operator()(index i) const {
12: return ((i-1)%dim(1)==(i-1)/dim(1)) ? c : 0.0;
13: }
14: double operator()(index i, index j) const {
15: return (i==j) ? c : 0.0;
16: }
17: bool contains (const double* location) const {
18: return false;
19: }
20: };

All matrix-vector operations are encapsulated in templated kernel classes, which
can be specialized to provide faster implementations. As an example, the follow-
ing code speeds up the generic matrix-vector inner product x⊤Qy for Q of type
ScaledIdentityMatrix by specializing inner_kernel:

1: template<typename TX, typename TY>
2: struct inner_kernel::implementation<TX, ScaledIdentityMatrix, TY>
3: {
4: double operator()(const inner_kernel&, const TX& x,
5: const ScaledIdentityMatrix& Q, const TY& y) {
6: return Q.c * dot(x,y);
7: }
8: };

Here the COAL function dot(·,·) implements the standard dot product for two
vectors.

3. Case Studies

In this section, we consider different applications from the field of computer vision,
and show how they can be solved using COAL. For each of the problems, we state
the model, provide the code for constructing the model and calling the solver, and
show some numerical results.

3.1. Image Labelling

Model Many problems in image analysis and computer vision can be reduced to
the basic problem of assigning, to each point x in the image, one of l discrete
labels {1, . . . , l}. This is typically achieved by minimizing an energy consisting of a



9

local data fidelity term and a regularization term that enforces spatial coherence.
Applications include segmentation, stereo matching, photo montage, and many
more [18].
For many interesting regularizers, such as the total variation (TV), the multiclass

labelling problem can be relaxed to a variational problem of the form

min
x∈C
{⟨x, s⟩+Ψ(Lx)} . (5)

Here the primal constraint set C is a product of unit simplices. The data term
is described by the vector s, while the regularization is encoded in the matrix
L (usually exhibiting gradient-like structure), and in the positively homogeneous,
lower semi-continuous function Ψ.
Using Fenchel duality, the problem can be naturally reformulated as a saddle-

point problem [13],

min
x∈C

max
v∈D
{⟨x, s⟩+ ⟨Lx, v⟩} , (6)

where the structure of Ψ is encoded in the dual constraint set D. This class of prob-
lems includes linear programming relaxations of classical pairwise Markov random
fields, as well as more recent higher-order labelling and lifting approaches [6, 13].

Implementation Implementing and optimizing (6) in COAL reduces to specifying
the matrix L, implementing functions that represent the primal and dual constraint
sets, and providing a method to project onto these sets. The linear terms are
handled out-of-the-box. The actual C++ code for building the model and passing
it to the solver is as follows:

1: LinearFn dataterm(im);
2: TVFn reg(dims, D);
3: SimplexFn constraints(dims);
4: AutoSumFn primalPart(&dataterm, &constraints);
5: AutoPrimalDualForm problem(&primalPart, &reg);
6:

7: FastPrimalDual s;
8: s.SetParameter("tau_primal",step);
9: s.SetParameter("tau_dual",step);

10: s.SetParameter("start",ConstantVector(1.0/dims.Components(), dims.NTotal()));
11: s.Solve(&problem);
12: copy(s.Solution(), y)

where im represents the image, step encodes an appropriate step-size parameter
and dims is a user defined struct containing additional information such as number
of variables or number of components, to simplify notations.
Although the gradient matrix D could be provided as a standard dense matrix,

this would be very inefficient in terms of memory. Instead, letting A define the
desired properties of the regularizer, we use an implicit representation in terms of
a block matrix, where each block contains a gradient operator:

1: BlockMatrix D;
2: for (int i = 1; i <= dims.Components; ++i) {
3: BlockMatrix* row = new BlockMatrix();
4: for (int j = 1; j <= dims.Components(); ++j) {
5: GradientMatrix* g = new GradientMatrix(s1, s2,
6: GradientMatrix::Neumann, A(i,j));
7: row->Append(*g, 2);
8: }



10

9: D.Append(*row, 1);
10: }

Constructing D in this manner fully retains its sparse structure, thereby decreasing
memory requirements and increasing performance.

Results Figure 1 shows exemplary applications to 3-class image segmentation
based on colour histograms with total variation regularization, and depth-from-
stereo using 16 depth labels and truncated linear regularization.
Although the applications are conceptually different, once the data term s has

been computed and the matrix L has been assembled, the models can be solved
using the same code base, and one of the available solvers [6, 16].

3.2. Image Inpainting

Model Another prototypical problem in computer vision is the image inpainting
problem [5, 18]. For a given signal y with missing data at pixels specified by a set
of indices Ω, a “likely” signal x should be reconstructed such that for i /∈ Ω, xi = yi
(Fig. 2). This can be cast into the constrained least squares problem

min
x

1

2
∥Ax∥22 s.t. xi = yi, ∀i /∈ Ω , (7)

where y defines the image to be reconstructed, Ω specifies the inpainting region and
A refers to a matrix, such as a framelet matrix, that introduces prior knowledge [5].

Implementation To realize the problem in COAL (Fig. 3), the user has to provide
the problem structure, i.e., to specify l, u such that the information encoded in
Ω can be written as a box constraint l ≤ x ≤ u, where l(i) = u(i) for all i /∈ Ω
and l(i) = −∞, u(i) = +∞ otherwise, as well as the filter matrix A, either as
explicit values or implicitly in terms of an algorithm for computing the matrix-
vector product. Due to its large-scale nature, representing A explicitly is typically
infeasible [5], therefore we chose an implicit representation. Given an input image
im and output image y, as well as a lower and upper bound l, u that encode the
inpainting region, the procedure to solve the inpainting problem is as follows:

1: CubicFrameletMatrix A (size(im,1), size(im,2));
2:

3: BoxFn constraint (l, u);
4: LeastSquaresFn lsq (A, ConstantVector(0.0, size(A,1)));
5: AutoSumFn problem (&lsq, &constraint);
6:

7: Nesterov s;
8: s.SetParameter("start", ConstantVector(0.0, size(A,2)));
9: s.Solve(&problem);

10: copy(s.Solution(), y);

The final code is very close to the original algorithm in Fig. 3.

Results For solving (7), we use the efficient first-order algorithm from [16]. Be-
sides specifying the stopping criterion, no additional problem-specific code is re-
quired, since the problem is decomposed automatically such that the solver can
be applied (see Fig. 5). The final result for the 256 × 256 input image, with a



11

Figure 5. Prototypical use of the proposed software framework for the problem of image inpainting
(Sect. 3.2). We used a simplified framelet approach [5] without sub-sampling. The underlying mathe-
matical problem of recovering the white regions (left) can be modelled efficiently using COAL (Fig. 3).
Variants such as replacing the least squares objective (middle) by a robust Huber kernel (right) can be
evaluated by changing a single line of code.

524288 × 65536 matrix A (cf. [5]), is determined in a few minutes using a single
core Pentium 4 3.00 GHz machine.
A particular benefit of using COAL is the flexibility during the prototyping

stage. As the least squares objective (7) tends to be sensitive to sharp edges,
robust distance measures such as the Huber kernel [5] have been proposed. Such
modifications can be evaluated easily, in this case by changing line 4: in the above
source code to HuberFn g(A, v), where v = ConstantVector(0.0, size(A,1)).

3.3. Multi-View 3D Reconstruction

Model We now consider the problem of multi-view reconstruction. Given a set
of projected 2D measurements along with corresponding camera parameters, the
objective is to reconstruct the three-dimensional shape of the object (Fig. 6). Math-
ematically, this problem can be modelled using an ℓ1 objective with second-order
cone constraints [20, Eqn. (5)] as

min
x
∥Dx∥1 , s.t. Ax = b, l ≤ x, x ∈ C , (8)

where D,A refers to a matrix and b, l are vectors. C denotes a set of cones specified
by a set of indices I ∈ Nm,n such that x ∈ C if ∀ i = 1, . . .m, xIi,1 ≥ (

∑n
k=2 x

2
Ii,k

)
1

2 ,

cf. [20] and the references therein.

Implementation Starting from this formulation, the user can combine the individ-
ual parts in COAL directly using the provided functions, in an analogue fashion to
Fig. 3. The corresponding source code is given by

1: AffineEqFn constraint (A, b);
2: L1Fn l1 (D, ConstantVector(0.0, size(D,1)));
3: SecondOrderConeFn cone (cone_index, size(A,2));
4: BoxFn box (l, BoxFn::Lower);
5: AutoSumFn problem (&l1, &constraint);
6: problem.Append(&box);
7: problem.Append(&cone);
8: AutoConicForm conic_form (&problem);
9:

10: Mosek msk;
11: msk.Solve(&conic_form);



12

Figure 6. Application of COAL to the multi-view 3D reconstruction problem [20]. Given a set of sample
views (prototypical views depicted on the left, middle), the objective is to reconstruct the corresponding
3D point cloud (right, Sect. 3.3). The problem can be prototyped and solved in COAL with only a few
lines of code.

where cone_index represents C by means of a set of indices for each constraint.
We point out that it is not necessary to manually introduce slack variables for

the ℓ1 objective in order to arrive at formulation (3), as is the case when using
standard solvers such as [15]. Instead, COAL handles the introduction of slack
variables automatically (Line 8:), since AutoSumFn is capable of merging the con-
tained functions into a single SOCP suitable for solvers such as MOSEK. This
makes the error-prone task of manual problem reformulation obsolete.

Results Although the library is only moderately tuned in its current form, the final
≈ 5000 3D points (Fig. 6), causing D to be a diagonal 146513 × 146513 matrix
and A ∈ R98592×146513 being sparse with 410800 non-zero elements, are delivered in
less than one minute when using the MOSEK interface. This is comparable to the
time reported in [20] where a Douglas-Rachford like splitting algorithm was used
to optimize different reformulations of (8). In order to further increase runtime
performance, exploiting problem specific structures (e.g., fill-in patterns of sparse
matrices) and parallel computation could be considered.

3.4. Sparse Representation

Model Mathematically related to the image inpainting problem is the sparse rep-
resentation problem, where the goal is to select a small set of atoms from a large
dictionary a1, . . . , an ∈ Rm such that a given signal f ∈ Rm is well-approximated
by their weighted sum, where typically m ≪ n. We consider this application to
compare the runtime and memory requirements of COAL to a problem-specific
native C++ implementation.
The sparse representation problem is often solved by considering the mathemat-

ical problem

min
x∈Rn

1

2
∥Ax− f∥22 + µ∥x∥1 , (9)

where A = (a1, . . . , an), ∥ · ∥1 is the non-smooth ℓ-1 norm measuring sparsity of
the argument and µ refers to a user control parameter.

Implementation To solve (9), we consider the primal-dual algorithm [6]. Given
A, f, µ, the optimization problem can be implemented in COAL as follows:



13

100 200 300 400 500
m

0.005

0.010

0.050

0.100

0.500

1.000

sec

cu stom ized im p l.

COAL im p l.

100 200 300 400 500
m

1

10

100

1000

kB

cu stom ized im p l.

COAL im p l.

Figure 7. Comparison of COAL to a customized implementation of (9) in terms of runtime (left) and
memory (right) complexity. Although the flexibility of COAL comes at the cost of additional overhead for
small scale settings, for moderate- to large-scale settings COAL is on par, both memory- and performance-
wise.

1: LeastSquaresFn lsq (A, f);
2: L1Fn l1 (IdentityMatrix(size(A,2)), ConstantVector(0.0, size(A,2)), mu);
3: AutoPrimalDualForm problem (&lsq, &l1);
4:

5: FastPrimalDual solver;
6: solver.Solve(&problem);

Results Figure 7 shows a comparison of COAL to a custom C++ implementa-
tion of the primal-dual algorithm to solve (9), by means of runtime and memory
complexity, where the number of rows of A varies between 1 and 500, keeping
n = 2m.
The flexibility of COAL to handle arbitrary matrix types comes at the cost of

additional runtime and memory for small scale settings (i.e. m < 100). However,
with increasing problem size this overhead becomes negligible such that COAL im-
plementations can fully compete with hand-tuned, custom implementations, with
the advantage of greatly improved reusability.

4. Summary and Further Work

We introduced a new software framework to support optimization, evaluation
and design of variational and energy-based approaches without requiring detailed
knowledge of specific numerical methods. Our approach aims at a good trade-off
between rapid prototyping and computational efficiency. Although users need to
have a basic understanding of the problem’s properties that are relevant to opti-
mization, using COAL obviates the need to gather specific algorithmic optimization
and implementation experience as a prerequisite for studying advanced models.
In contrast to specialized optimization packages, COAL does not enforce a spe-

cific problem formulation, but is based on an extensible interface concept and allows
to compose models from simpler components. In contrast to generic modelling lan-
guages, it fully supports problem-specific implicit representations and enables the
solver to fully exploit the problem structure.
In further work, we plan to extend the library with additional solvers and func-

tions to provide a wider variety of different optimization schemes, applicable to a
broad range of mathematical models relevant to image analysis. Additionally, we
want to further enhance the library by adding high-level concepts such as expres-
sion templates, and plan to investigate the possibility of transferring the current
concepts to multi-core processors and GPU hardware.



14 REFERENCES

As the theory and computational approaches to image analysis consolidate, there
will be an increasing need for higher-level software environments supporting the
investigation of increasingly complex systems. With COAL we aim to take a timely
step in this direction.
COAL will be made publicly available under an open source license on our web-

site1 in the near future.

References

[1] Becker, S., Candès, E. J., and Grant, M. Templates for convex cone problems with applications
to sparse signal recovery. Math. Programming Comput. 3, 3 (2011), 165–218.

[2] Ben-Tal, A., and Nemirovski, A. Lectures on Modern Convex Optimization. MPS-SIAM Series on
Optimization, 2001.

[3] Bennett, K., and Parrado-Hernández, E. The interplay of optimization and machine learning
research. J. Mach. Learning Res. 7 (2006), 1265–1281.

[4] Boykov, Y., and Funka-Lea, G. Graph cuts and efficient N-D image segmentation. Int. J. Com-
put. Vision 70, 2 (2006), 109–131.

[5] Cai, J., Chan, R., and Shen, Z. A framelet-based image inpainting algorithm. Applied and Com-
putational Harmonic Analysis 24 (2008), 131–149.

[6] Chambolle, A., and Pock, T. A first-order primal-dual algorithm for convex problems with appli-
cations to imaging. J. Math. Imaging Vis. 40, 1 (2011), 120–145.

[7] Combettes, P. L., and Pesquet, J.-C. Proximal splitting methods in signal processing. In Fixed-
Point Algorithms for Inverse Problems in Science and Engineering. Springer, New York, 2010.

[8] Combettes, P. L., and Wajs, V. R. Signal recovery by proximal forward-backward splitting. Mul-
tiscale Model. Simul. 4, 4 (2005), 1168–1200.

[9] Fourer, R., Gay, D. M., and Kernighan, B. W. AMPL: A Modeling Language for Mathematical
Programming. Duxbury Press, 2002.

[10] Grant, M., and Boyd, S. CVX: Matlab software for disciplined convex programming.
http://cvxr.com/cvx, 2010.

[11] Jaimovich, A., Meshi, O., and Elidan, G. FastInf: An efficient approximate inference library.
J. Mach. Learning Res. 11 (2010), 1733–1736.

[12] Lehn, M. FLENS – a flexible library for efficient numerical solutions in C++.
http://flens.sourceforge.net.

[13] Lellmann, J., Becker, F., and Schnörr, C. Convex optimization for multi-class image labeling
with a novel family of total variation based regularizers. In Int. Conf. Comput. Vision (2009).

[14] Löfberg, J. YALMIP: A toolbox for modeling and optimization in MATLAB. In Proc. CACSD
Conf. (2004).

[15] The MOSEK optimization package. www.mosek.com.
[16] Nesterov, Y. Smooth minimization of non-smooth functions. Math. Prog. 103, 1 (2004), 127–152.
[17] NIPS 3rd international workshop on optimization for machine learning, 2010.

http://opt.kyb.tuebingen.mpg.de.
[18] Paragios, N., Chen, Y., and Faugeras, O. D., Eds. Handbook of Mathematical Models in Computer

Vision. Springer, 2005.
[19] Wainwright, M., and Jordan, M. Graphical models, exponential families, and variational inference.

Found. Trends Mach. Learning 1, 1-2 (2008), 1–305.
[20] Zach, C., and Pollefeys, M. Practical methods for convex multi-view reconstruction. In Proc. Eu-

rop. Conf. Comput. Vision (2010).

1http://ipa.iwr.uni-heidelberg.de


