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Abstract

We describe a unified formulation and algorithm to find an extremely sparse rep-
resentation for Calcium image sequences in terms of cell locations, cell shapes,
spike timings and impulse responses. Solution of a single optimization problem
yields cell segmentations and activity estimates that are on par with the state of
the art, without the need for heuristic pre- or postprocessing. Experiments on real
and synthetic data demonstrate the viability of the proposed method.

1 Introduction

A detailed understanding of brain function is a still-elusive grand challenge. Experimental evidence
is collected mainly by electrophysiology and “Calcium imaging”. In the former, multi-electrode
array recordings allow the detailed study of hundreds neurons, while field potentials reveal the col-
lective action of dozens or hundreds of neurons. The more recent Calcium imaging, on the other
hand, is a fluorescent microscopy technique that allows the concurrent monitoring of the individ-
ual actions of thousands of neurons at the same time. While its temporal resolution is limited by
the chemistry of the employed fluorescent markers, its great information content makes Calcium
imaging an experimental technique of first importance in the study of neural processing, both in
vitro [16, 6] and in vivo [5, 7]. However, the acquired image sequences are large, and in laboratory
practice the analysis remains a semi-manual, tedious and subjective task.

Calcium image sequences reveal the activity of neural tissue over time. Whenever a neuron fires,
its fluorescence signal first increases and then decays in a characteristic time course. Evolutionary
and energetic constraints on the brain guarantee that, in most cases, neural activity is sparse in
both space (only a fraction of neurons fire at a given instant) and time (most neurons fire only
intermittently). The problem setting can be formalized as follows: given an image sequence as
input, the desired output is (i) a set of cells1 and (ii) a set of time points at which these cells were
triggered. We here propose an unsupervised learning formulation and algorithm that leverages the
known structure of the data to produce the sparsest representations published to date, and allow for
meaningful automated analysis.

1.1 Prior Art

Standard laboratory practice is to delineate each cell manually by a polygon, and then integrate their
fluorescence response over the polygon, for each point in time. The result is a set of time series, one
per cell.

1Optical sectioning by techniques such as confocal or two-photon microscopy implies that we see only parts
of a neuron, such as a slice through its cell body or a dendrite, in an image plane. For brevity, we simply refer
to these as “cells” in the following.
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a) Matrix factorization [13, 15, 4, 3, 12] b) Convolutional sparse coding [8, 25, 20, 17, 14]

Figure 1: Sketch of selected previous work. Left: Decomposition of an image sequence into a sum
of K components. Each component is given by the Cartesian product of a spatial component or
basis image Dk and its temporal evolution uk. In this article, we represent such Cartesian products
by the convolution of multidimensional arrays. Right: Description of a single image in terms of a
sum of latent feature maps Dk convolved with filters Hk

Given that the fluorescence signal impulse response to a stimulus is stereotypic, these time series
can then be deconvolved to obtain a sparse temporal representation for each cell using nonnegative
sparse deconvolution [24, 5, 10].

The problem of automatically identifying the cells has received much less attention, possibly due to
the following difficulties [16, 23]: i) low signal-to-noise ratio (SNR); ii) large variation in luminance
and contrast; iii) heterogeneous background; iv) partial occlusion and v) pulsations due to heartbeat
or breathing in live animals. Existing work either hard-codes prior knowledge on the appearance of
specific cell types [16, 22] or uses supervised learning (pixel and object level classification, [23]) or
unsupervised learning (convolutional sparse block coding, [14]).

Closest in spirit to our work are attempts to simultaneously segment the cells and estimate their time
courses. This is accomplished by matrix factorization techniques such as independent component
analysis [13], nonnegative matrix factorization [12] and (hierarchical) dictionary learning [4, 3].
However, none of the above give results that are truly sparse in time; and all of the above have to go
to some lengths to obtain reasonable cell segmentations: [13, 4] recur to heuristic post-processing,
while [3] invokes structured sparsity inducing norms and [15] use an additional clustering step as
initialization. All these extra steps are necessary to assure that each spatial component represents
exactly one cell.

In terms of mathematical modeling, we build on recent advances and experiments in convolutional
sparse coding such as [8, 25, 20, 17, 14]. Ref. [21] already applies convolutional sparse coding to
video, but achieves sparsity only in space and not in time (where only pairs of frames are used to
learn latent representations). Refs. [19, 18] consider time series which they deconvolve, without
however using (or indeed needing, given their data) a sparse spatial representation.

1.2 Contributions

Summarizing prior work, we see three strands: i) Fully automated methods that require an extrin-
sic cell segmentation, but can find a truly2 sparse representation of the temporal activity. ii) Fully
automated methods that can detect and segment cells, but do not estimate time courses in the same
framework. iii) Techniques that both segment cells and estimate their time courses. Unfortunately,
existing techniques either produce temporal representations that are not truly sparse [12, 4, 3] or do
not offer a unified formulation of segmentation and activity detection that succeeds without extrane-
ous clustering steps [15].

In response, we offer the first unified formulation in terms of a single optimization problem: its
solution simultaneously yields all cells along with their actions over time. The representation of
activity is truly sparse, ideally in terms of a single nonzero coefficient for each distinct action of a
cell. This is accomplished by sparse space-time deconvolution. Given a motion-corrected sequence
of Calcium images, it estimates i) locations of cells and ii) their activity along with iii) typical cell
shapes and iv) typical impulse responses. Taken together, these ingredients afford the sparsest, and
thus hopefully most interpretable, representation of the raw data. In addition, our joint formulation

2We distinguish a sparse representation, in which the estimated time course of a cell has many zeros; and a
“truly sparse” representation in which a single action of a cell is ideally represented in terms of a single nonzero
coefficient.
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Figure 2: Summary of sparse space-time deconvolution. Top: Unified formulation in terms of a
single optimization problem. Bottom: Illustration on tiny subset of data. Left: raw data. The
fluorescence level to be estimated is heavily degraded by Poisson shot noise that is unavoidable
at the requisite short exposure times. Middle: smoothed raw data. Right: approximation of the
data in terms of a Cartesian product of estimated cell shapes and temporal activities. Each temporal
activity is further decomposed as a convolution of estimated impulse responses and very few nonzero
coefficients.

allows to estimate a nonuniform and temporally variable background. Experiments on difficult
artificial and real-world data show the viability of the proposed formulation.

Notation Boldface symbols describe multidimensional arrays. We define A ∗B as a convolution of
multidimensional arrays A and mirror(B), with the result trimmed to the dimensions of A. Here,
the “mirror” operation flips a multidimensional array along every dimension. A ~ B is the full
convolution result of multidimensional arrays A and mirror(B). These definitions are analogous to
the “convn” command in matlab with shape arguments “same” and “full”, respectively. ‖ · ‖0 counts
the number of non-zero coeficients, and ‖ · ‖F is the Frobenius norm.

2 Sparse space-time deconvolution (SSTD)

2.1 No background subtraction

An illustration of the proposed formulation is given in Fig. 2 and our notation is summarized in
Table. 1. We seek to explain image sequence X in terms of up toK cells and their activity over time.
In so doing, all cells are assumed to have exactly one (Eq. 1.1) of J << K possible appearances,
and to reside at a unique location (Eq. 1.1). These cell locations are encoded in K latent binary
feature maps. The activity of each cell is further decomposed in terms of a convolution of impulses
(giving the precise onset of each burst) with exactly one of L << K types of impulse responses.
A single cell may “use” different impulse responses at different times, but just one type at any one
time ((Eq. 1.2).

All of the above is achieved by solving the following optimization problem:

min
D,H,f ,s

∣∣∣∣∣∣
∣∣∣∣∣∣X−

K∑
k=1

 J∑
j=1

Dk,j ∗Hj

~

(
L∑

l=1

sk,l ∗ fl

)∣∣∣∣∣∣
∣∣∣∣∣∣
2

F

(1)
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such that

Constraint Interpretation∑
j ‖Dk,j‖0 ≤ 1,∀k (1.1) at most one location and appearance per component∑
l ‖st,k,l‖0 ≤ 1,∀k, t (1.2) only one type of activation at each time per cell

‖Hj‖2F ≤ 1,∀j (1.3) prevent cell appearance from becoming large
‖fl‖22 ≤ 1,∀l (1.4) prevent impulse filter from becoming large

Here, the optimization is with respect to the cell detection maps D, cell appearances H, activity
patterns or impulse responses f as well as “truly sparse” activity indicator vectors s. This optimiza-
tion is subject to the two constraints mentioned earlier plus upper bounds on the norm of the learned
filters.

The user needs to select the following parameters: an upper bound K on the number of cells as
well as the size in pixels H of their matched filters / convolution kernels H; upper bounds J on
the number of different appearances and L on the number of different activity patterns that cells
may have; as well as the number of coefficients F that the learned impulse responses may have.
Considering that we propose a method for both cell detection and sparse time course estimation,
the number of six user-adjustable parameters compares favourably to previous work. Methods that
decouple these steps typically need more parameters altogether, and the heuristics that prior work
on joint optimization uses also have a large number of (implicit) parameters.

While many other approximations such as
∑K

k=1 Dk ~ sk ∗ fk or
∑K

k=1

∑J
j=1 Dk,j ∗Hj ~ sk,j ∗ fj

are conceivable and may make sense in other applications areas, the proposed formulation is the
most parsimonious of its kind. Indeed, it uses a small pool of J shapes and L firing patterns, which
can be combined freely, to represent all cells and their activities. It is owing to this fact that we dub
the method sparse spatio-temporal deconvolution (SSTD).

2.2 SSTD with background subtraction

In actual experiments, the observed fluorescence level is a sum of the signal of interest plus a nui-
sance background signal. This background is typically nonuniform in the spatial domain and, while
it can be modeled as constant over time [15, 24], is often also observed to vary over time, prompting
robust local normalization as a preprocessing step [7, 4].

Here, we generalize the formulation from (1) to correct for a background that is assumed to be
spatially smooth and time-varying. In more detail, we model the background in terms of the direct
product Bs ~ bt of a spatial component Bs ∈ RM×N×1

+ and a time series bt ∈ R1×1×T
+ . Insights

into the physics and biology of Calcium imaging suggest that (except for saturation regimes charac-
terized by high neuron firing rates), it is reasonable to assume that the normalized quantity (observed
fluorescence minus background) divided by background, typically dubbed ∆F/F0, is linearly related
to the intracellular Calcium concentration [24, 10]. In keeping with this notion, we now propose our
final model, viz.

min
D,H,f ,s,Bs,bt

∥∥∥∥∥∥
X−

K∑
k=1

 J∑
j=1

Dk,j ∗Hj

~

(
L∑

l=1

sk,l ∗ fl

)
−Bs ~ bt

� (Bs ~ bt
)∥∥∥∥∥∥

2

F

+ λ‖Bs‖TV such that (1.1)− (1.4), Bs > 0, bt > 0 (2)

with “�” denoting an elementwise division. Note that the optimization now also runs over the
spatial and temporal components of the background, with the total variation (TV) regularization
term3 enforcing spatial smoothness of the spatial background component [2].

In addition to the previously defined parameters, the user also needs to select parameter λ which
determines the smoothness of the background estimate.

2.3 Optimization

The optimization problem in (2) is convex in either the spatial or the temporal filters H, f alone when
keeping all other unknowns fixed; but it is nonconvex in general. In our experiments, we use a block
coordinate descent strategy [1, Section 2.7] that iteratively optimizes one group of variables while

3TV measures the sum of the absolute values of the spatial gradient.

4



Symbol Definition
X ∈ RM×N×T

+ image sequence of length T , each image is M ×N
K ∈ N+ number of cells
J ∈ N+ number of distinct cell appearances
Hj ∈ RH×H×1

+ jth cell appearance / spatial filter / matched filter of size H ×H
Dk,j ∈ {0, 1}M×N×1 indicator matrix of the kth cell for the jth cell appearance
L ∈ N+ number of distinct impulse responses / activity patterns
fl ∈ R1×1×F

+ lth impulse response of length F
sk,l ∈ R1×1×T

+ indicator vector of the kth spike train for the lth impulse re-
sponse

Table 1: Notation

fixing all others (see supplementary material for details). The nonconvex l0-norm constraints require
that cell centroids D and spike trains s are estimated by techniques such as convolutional matching
pursuit [20]; while the spatio-temporal filters can be learned using simpler gradient descent [25],
K-SVD [20] or simple algebraic expressions.

All unknowns are initialized with standard Gaussian noise truncated to nonnegative values. The
limiting number of cells K can be set to a generous upper bound of the expected true number
because spatial components without activity are automatically set to zero during optimization.

3 Experimental Setup

This section describes the data and algorithms used for experiments and benchmarks.

3.1 Inferring Spike Trains

The following methods assume that cell segmentation has already been performed by some means,
and that the fluorescence signal of individual pixels has been summed up for each cell and every time
step. They can hence concentrate exclusively on the estimation of a “truly sparse” representation of
the respective activities in terms of a “spike train”.

Data We follow [24, 5] in generating 1100 sequences consisting of one-sided exponential decays
with a constant amplitude of 1 and decay rate τ = 1/2s, sampled at 30fps with firing rates ranging
uniformly from 1 to 10Hz and different Gaussian noise levels σ ∈ [0.1, 0.6].

Fast non-negative deconvolution (FAST) [24] uses a one-sided exponential decay as parametric
model for the impulse response by invoking a first-order autoregressive process. Given that our
artificial data is free of a nuisance background signal, we disregard its ability to also model such
background. The sole remaining parameter, the rate of the exponential decay, can be fit using maxi-
mum likelihood estimation or a method-of-moments approach [15].

Peeling [5] finds spikes by means of a greedy approach that iteratively removes one impulse response
at a time from the residual fluorescence signal. Importantly, this stereotypical transient must be
manually defined a priori.

Sparse temporal deconvolution (STD) with a single impulse response is a special case of this work
for given nonoverlapping cell segmentations and L = 1; and it is also a special case of [14]. The
impulse response can be specified beforehand (amounting to sparse coding), or learned from the
data (that is, performing dictionary learning on time-series data).

3.2 Segmenting Cells and Estimating Activities

Data Following the procedure described in [4, 12, 13], we have created 80 synthetic sequences
with a duration of 15s each at a frame rate of 30fps with image sizes M = N = 512 pixels.
The cells are randomly selected from 36 cell shapes extracted from real data, and are randomly
located in different locations with a maximum spatial overlap of 30%. Each cell fires according to
a dependent Poisson process, and its activation pattern follows a one-sided exponential decay with
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a scale selected uniform randomly between 500 and 800ms. The average number of active cells
per frame varies from 1 to 10. Finally, the data has been distorted by additive white Gaussian noise
with a relative amplitude (max. intensity − mean intensity)/σnoise ∈ {3, 5, 7, 10, 12, 15, 17, 20}.
By construction, the identity, location and activity patterns of all cells are known. The supplemental
material shows an example with its corresponding inferred neural activity.

Real-world data comes from two-photon microscopy of mouse motor cortex recorded in vivo [7]
which has been motion-corrected. These sequences allow us to conduct qualitative experiments.

ADINA [4] relies on dictionary learning [11] to find both spatial components and their time courses.
Both have many zero coefficients, but are not “truly sparse” in the sense of this paper. The method
comes with a heuristic post-processing to separate coactivated cells into distinct spatial components.

NMF+ADINA uses non-negative matrix factorization to infer both the spatial and temporal prim-
itives of an image sequence as in [12, 15]. In contrast to [15] which uses a k-means clustering of
highly confident spike vectors to provide a good initialization in the search for spatial components,
we couple NMF with the postprocessing of ADINA.

CSBC+SC combines convolutional sparse block coding [14] based on a single still image (obtained
from the temporal mean or median image, or a maximum intensity projection across time) with
temporal sparse coding.

CSBC+STD combines convolutional sparse block coding [14] based on a single still image (ob-
tained from the temporal mean or median image, or a maximum intensity projection across time)
with the proposed sparse temporal deconvolution in Sect. 3.1.

SSTD is the method described here. We used J = L = 2,K = 200, F = 200 and H = 31, 15 for
the artificial and real data, respectively.

4 Results

4.1 Inferring spike trains

To quantify the accuracy of activity detection, we first threshold the estimated activities and then
compute, by summing over each step in every time series, the number of true and false negatives
and positives. For a fair comparison, the thresholds were adjusted separately for each method to give
optimal accuracy. Sensitivity, precision and accuracy computed from the above implicitly measure
both the quality of the segmentation and the quality of the activity estimation. An additional mea-
sure, SPIKE distance [9], emphasizes any temporal deviations between the true and estimated spike
location in a truly sparse representation.

Fig. 3 shows that, unsurprisingly, best results are obtained when methods use the true impulse re-
sponse rather than learning it from the data. This finding does not carry over to real data, where a
“true” impulse response is typically not known. Given the true impulse response, both FAST and
STD fare better than Peeling, showing that a greedy algorithm is faster but gives somewhat worse
results. Even when learning the impulse response, FAST and STD are no worse than Peeling. When
learning the parameters, FAST has an advantage over STD on this artificial data because FAST al-
ready uses the correct parametric form of the impulse response that was used to generate the data
and only needs to learn a single parameter; while STD learns a more general but nonparametric
activity model with many degrees of freedom.

The great spread of all quality measures results from the wide range of noise levels used, and the
overall deficiencies in accuracy attest to the difficulty of these simulated data sets.

4.2 Segmenting Cells and Inferring spike trains

Fig. 4 shows that all the methods from Sect. 3.2 reach respectable and comparable performance in
the task of identifying neural activity from non-trivial synthetic image sequences.

CSBC+SC reaches the highest sensitivity while SSTD has the greatest precision. SSTD apparently
achieves comparable performance to the other methods without the need for a heuristic pre- or
postprocessing. Multiple random initializations lead to similar learned filters (results not shown),
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Accuracy (%)

0 20 40 60 80 100
Precision (%)

0 20 40 60 80 100

STD (learned param.)

STD (fixed param.)

Peeling (fixed param.)

FAST (learned param.)

FAST (fixed param.)

Sensitivity (%)
0 20 40 60 80 100

Sensitivity (%)
0 0.1 0.2 0.3 0.4

SPIKE distance

Figure 3: Sensitivity, precision, accuracy (higher is better) and SPIKE distance (lower is better) of
different methods for spike train estimation. Methods that need to learn the activation pattern per-
form worse than those using the true (but generally unknown) activation pattern and its parameters.
FAST is at an advantage here because it happens to use the very impulse response that was used in
generating the data.

so the optimization problem seems to be well-posed. The price to pay for the elegance of a unified
formulation is a much higher computational cost of this more involved optimization. Again, the
spread of sensitivities, precisions and accuracies results from the range of noise levels used in the
simulations. The plots suggest that SSTD may have fewer “catastrophic failure” cases, but an even
larger set of sequences will be required to verify this tendency.

50 60 70 80 90 100

SSTD

CSBC+STD

CSBC+SC

NNMF+ADINA

ADINA

Sensitivity (%)
50 60 70 80 90 100

Accuracy (%)
50 60 70 80 90 100

Precision (%)
50 60 70 80 90 100

Sensitivity (%)

Figure 4: Quality of cell detection and and the estimation of their activities. SSTD does as well as
the competing methods that rely on heuristic pre- or post-processing.

Real Sequences: Qualitative results are shown in Fig. 5. SSTD is able to distinguish both cells with
spatial overlap and with high temporal correlation. It compensates large variations in luminance
and contrast, and can discriminate between different types of cells. Exploiting truly sparse but
independent representations in both the spatial and the temporal domain allows to infer plausible
neural activity and, at the same time, reduce the noise in the underlying Calcium image sequence.

5 Discussion

The proposed SSTD combines the decomposition of the data into low-rank components with the
finding of a convolutional sparse representation for each of those components. The formalism allows
exploiting sparseness and the repetitive motifs that are so characteristic of biological data. Users
need to choose the number and size of filters that indirectly determine the number of cell types
found and their activation patterns.

As shown in Fig. 5, the approach gives credible interpretations of raw data in terms of an extremely
sparse and hence parsimonious representation.

The decomposition of a spacetime volume into a Cartesian product of spatial shapes and their time
courses is only possible when cells do not move over time. This assumption holds for in vitro
experiments, and can often be satisfied by good fixation in in vivo experiments, but is not universally
valid. Correcting for motions in a generalized unified framework is an interesting direction for future
work. The experiments in section 4.1 suggest that it may also be worthwhile to investigate the use
of more parametric forms for the impulse response instead of the completely unbiased variant used
here.
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Figure 5: Qualitative results on two real data sets. The data on the left column shows mostly cell
bodies, while the data on the right shows both cell bodies (large) and dendrites (small). For each
data set, the top left shows an average projection of the relative fluorescence change across time with
cell centroids D (black dots) and contours of segmented cells, and the top right shows the learned
impulse responses. In the middle, the fluorescence levels integrated over the segmented cells are
shown in random colors. The bottom shows by means of small disks the location, type and strength
of the impulses that summarize all the data shown in the middle. Together with the cell shapes, the
impulses from part of the ”truly sparse” representation that we propose. When convolving these
spikes with the impulse responses from the top right insets, we obtain the time courses shown in
random colors.

Such advances will further help making Calcium imaging an enabling tool for the neurosciences.
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