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Abstract: Digital staining for the automated annotation of Mass Spectrometry

Imaging (MSI) data has previously been achieved using state-of-the-art classifiers

such as random forests or support vector machines (SVMs). However, the training

of such classifiers requires an expert to label exemplary data in advance. This pro-

cess is time-consuming and hence costly, especially if the tissue is heterogeneous. In

theory, it may be sufficient to only label few highly representative pixels of an MS

image, but it is not known a priori which pixels to select. This motivates active learning

strategies in which the algorithm itself queries the expert by automatically suggesting

promising candidate pixels of an MS image for labeling. Given a suitable querying

strategy, the number of required training labels can be significantly reduced while

maintaining classification accuracy. In this work, we propose active learning for con-

venient annotation of MSI data. We generalize a recently proposed active learning

method to the multi-class case and combine it with the random forest classifier. Its

superior performance over random sampling is demonstrated on Secondary Ion Mass

Spectrometry data, making it an interesting approach for the classification of mass

spectrometry images.
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Mass Spectrometry Imaging (MSI) (Caprioli et al., 1997; McDonnell and Heeren, 2007) allows a

detailed analysis of the spatial distribution of proteins, peptides, lipids or metabolites (Seeley and

Caprioli, 2008b; Chaurand et al., 2002). With recent efforts to standardize proteomics experiments

(Taylor et al., 2007; Slany et al., 2009; Franck et al., 2009; Green et al., 2010), MSI continuously

moves closer to clinical application (Fournier et al., 2008; Seeley and Caprioli, 2008a,b; Walch

et al., 2008). In many of these recent studies, the MS image is spatially partitioned into coherent

regions associated with cancer or healthy tissue, or regions corresponding to different cell types.

Manual analysis requires the expert to inspect multiple m/z channel images. Moreover, analyzing

the channel images independently may not even be sufficient for discriminating tissue types with

similar molecular signatures. For these reasons and with data sizes of up to several gigabytes

(Eijkel et al., 2009) direct manual analysis becomes tedious or infeasible, emphasizing the need for

automated methods.

Previous studies have shown that unsupervised methods such as hierarchical clustering (Deininger

et al., 2008), principal component analysis (PCA) (van de Plas et al., 2007) or probabilistic latent

semantic analysis (pLSA) (Hanselmann et al., 2008) are useful for segmenting MS images into

spectrally coherent regions based on their molecular signatures only. At the same time they are

intrinsically limited by their inability to learn from expert annotations. One consequence is the

lack of clear criteria for model optimization (Cord and Cunningham, 2008). If the underlying

mathematical assumptions are inept for the data at hand, the user has very limited influence on

the segmentation outcome.

Many recent studies have thus considered supervised approaches and demonstrated that, given a

set of spatially resolved annotations or (immunohistochemical) expert labels, supervised classifiers

can be used for automated discrimination of tissue types (Yanagisawa et al., 2003; Schwartz et al.,

2005; Schwamborn et al., 2007; Gerhard et al., 2007; Hanselmann et al., 2009b). Even so, technical

and biological variability between experiments often remains significant (Meyer and Stühler, 2007).

Depending on the precise application, this limits the classification accuracies that can be achieved,

especially in studies where the size of the training set is small. In such scenarios, where training

of classifiers that generalize well to new MSI data is difficult, more robust and reliable results

might be obtained by training the classifier anew for each separate MSI set. However, labeling

of MSI data is time-consuming, and, consequently, very expensive. It is thus desirable to reduce

the number of required labels (i.e. labeling time for the expert) without jeopardizing classification

accuracy. This motivates the application of semi-supervised learning techniques (SSL) (Zhu, 2005;
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Chapelle et al., 2006; Bruand et al., 2011), active learning (AL) strategies (see Settles (Settles,

2009) for a review) or hybrid approaches (Rajan et al., 2008).

SSL methods typically base their classification output on two sources of information: the la-

bels given by the user and the underlying structure of the unlabeled data points. An interesting

and highly interactive method for MALDI MSI analysis was recently published by Bruand et al.

(Bruand et al., 2011). While SSL approaches can exploit the information hidden in the unlabeled

observations, they lack a concept for guiding the labeling expert. In contrast, in active learning,

the algorithm iteratively queries the expert to label that observation for which additional knowl-

edge may be most beneficial for improving the classifier’s performance. By labeling the samples

(observations) of a data set in a smart order, a high performance level can often be obtained

with fewer training samples. Although active learning methods have shown excellent performance

in many fields such as speech recognition (Riccardi and Hakkani-Tür, 2006), image classification

(Joshi et al., 2009), remote sensing (Li et al., 2010; Mitra et al., 2004; Tuia et al., 2009), and

biomedical imaging (Doyle and Madabhush, 2010; Oh et al., 2011), only few researchers have ap-

plied them to mass spectrometry data (Zomer et al., 2004; Iyuke, 2011; Shi et al., 2010). None of

these publications is on mass spectrometry imaging.

In this paper, we generalize a recently proposed active learning strategy (Röder et al., 2012)

to the multi-class setting, and combine it with the random forest classifier (Breiman, 2001), which

has previously been used for efficient classification of MSI data (Hanselmann et al., 2009b). We

show on real world MS images that our approach results in high classification accuracies after

only a few learning steps and is thus suitable for efficient annotation of MSI data sets. We further

demonstrate that the algorithm has an inbuilt capacity for novelty detection, alerting the expert to

previously unlabeled but distinct classes rather than blindly making a prediction. Given the same

number of labels, our querying strategy outperforms traditional non-active learning by up to 10%

in sensitivity and 2–4% in positive predictive value. In our experiments, random sampling requires

more than twice as many labels to achieve the same performance level. Finally, our strategy does

not suffer from the high variability between runs that are characteristic for the random sampling

approach.
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Methods

Active Learning

Active learning aims at achieving steep learning curves, i.e. high classification accuracies after seeing

as few labeled training examples as possible. It is motivated by the observation that a classifier can

benefit more from judiciously chosen and informative training examples than from large numbers

of redundant and hence less informative examples (Schohn and Cohn, 2000). Typically, active

learning approaches are iterative and “guide” the labeler in the sense that the algorithm chooses

observations for which it needs labels (Settles, 2009). In each round, the algorithm requests a label

for that observation (pixel) x of an (MS) image that has the maximum training utility value (TUV)

in the set U of all unlabeled observations, and is thus expected to contribute most to improving the

classifier’s performance. After label assignment, the classifier is trained with the augmented label

set, all unlabeled observations are reclassified, and the algorithm continues by presenting its next

query. These steps are repeated until either the human expert is satisfied with the classification

result or a predefined stopping criterion is met.

A meaningful TUV function balances two strategies: exploration of the feature space and

refinement of the current decision boundary. The aim of exploration is to sample from those

regions of feature space from which so far only few training examples are available. The rationale

is that a test sample can only be classified well if enough (local) evidence is available. Whereas

exploration thus seeks good sample coverage of the whole feature space, the refinement strategy

tries to improve the classifier by sampling points that are close to the decision boundary, i.e. for

which approximately equal probability for two or more classes is present. Fig. 1 illustrates these

strategies for the binary case.

The proposed active querying strategy can be illustrated with the following thought experiment:

consider three different points in a feature space, and do not assume that the true decision boundary

comes from a simple parametric class, such as a hyperplane. Points 1 and 2 lie on the currently

estimated decision boundary, point 3 lies far away from it. There are many labels available in the

vicinity of point 1, few in the neighborhood of point 2 and none surrounding point 3. Let x(i) with

i ∈ {1, 2, 3} denote the three points.

A pure refinement strategy would favor points {1, 2} over 3. An exploratory strategy would

take more interest in 3 than in {1, 2}. We use a strategy that prefers {2, 3} over 1, for the following

reasons: Point 3 is interesting, because we know nothing about its true class (remember that
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Figure 1: The figure illustrates the training utility value (TUV) of a candidate point in a binary
classification setting. In (pure) decision boundary refinement, or uncertainty learning, candidate
points with equal amounts of evidence for either class are preferred, regardless of how much evidence
there is. In (pure) exploration, the candidate points receive a high score if the (local) evidence
for both classes is low. Only the absolute “amount” of evidence is considered, its consistency is
neglected. On the right, the newly proposed TUV function is shown for different parameter settings,
where the evidence for classes 1 and 2 is measured by α1 ∈ {1, . . . , 25} and α2 ∈ {1, . . . , 25}. We
observe that our TUV function reconciles exploration and decision boundary refinement (also see
also Supplementary Material B).

we do not assume a simple parametric model for the decision boundary). Point 2 is interesting

because the location of the decision boundary is based on an estimate of p̂(Y |x(2)) which – being a

random variable of itself – is of necessity imprecise when based on only few labeled points. There

is thus some potential to be informed, or surprised, by an additional label at point 2. Point 1 is

uninteresting because its estimate p̂(Y |x(1)) is based on a large number of nearby training examples,

and we do not expect the decision boundary to change substantially in response to yet another

label at that point. Finally, we factor the marginal density p̂(x) of all labeled and unlabeled points

into the proposed training utility value. The reason is that estimating the decision boundary well is

only relevant in populated regions of feature space. The vehicle used to capture the above intuition

is a second order distribution, that is, the distribution of the probabilistic point estimate p̂(Y |x).

This distribution and its use in a training utility value are defined next.

Training Utility Value Function

Above, we have informally discussed favorable properties of the TUV function. This section ap-

proaches the problem from a more theoretical perspective and may be skipped by the less mathe-

matically interested reader.

Let (X ,Y) = {(x(1), y(1)), ..., (x(N), y(N))} be the set of N training samples, i.e. mass spectra

x(k) with M channels and corresponding class labels y(k) ∈ {1, . . . , d}. Let further L be a loss

function, i.e. a function that quantifies the penalty associated with an incorrect classification. The
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Figure 2: Each vertex of the simplex S
3 corresponds to one of the d = 3 classes of interest. The

mapping function θ (cf. eq. (3)) maps each point on the simplex to one of these classes. In the
canonical case, each point is assigned to the closest vertex and hence to the class associated with
that vertex. Figuratively, threshold point T (which lies in the center of the simplex) is used to
partition S

3 into three parts S
3
j , j = 1, . . . , 3. S

3
j is the Voronoi region associated with the j-th

vertex. The posterior estimate for a test point can now be interpreted as a point on this simplex.
In the TUV for Random Forests section, we further describe how a Dirichlet-distribution can
be employed to describe the second-order distribution of the posterior. Color-coding is used to
show an example for such a second order distribution, where blue indicates low and red indicateds
high probability. A uniformly-colored simplex would correspond to an uninformative prediction.
In contrast, in the example the plotted Dirichlet distribution is concentrated in part S

3
2 of the

simplex, indicating a preference for class two.

lowest achievable classification error, for a given loss function L, data distribution p(x, y) and

classification rule θ, is given by the overall expected risk
∫

X
R
(
π(x)

)
p(x) dx. The conditional risk

for misclassifying a point at position x is given by

R
(
π(x)

)
:= EY |x

(

L
(

Y = y, θ
(
π(x)

))
)

(1)

π(x) :=
[

p(Y = 1|x), . . . , p(Y = d|x)
]T

(2)

Here, L(y, z) is the loss associated with a prediction z if the true class label is y; π(x) ∈ S
d is the

vector of class conditional probabilities for each of the d classes which, thanks to the normalization

constraint
∑

y∈Y p(y|x) = 1, lies in the unit simplex S
d with d vertices (see Fig. 2 for an example

with d = 3 vertices). Finally, θ is a classification rule S
d 7→ {1, . . . , d} which maps any point in

the simplex to one of the d classes. The canonical mapping function θ employs the winner-takes-

all strategy, i.e. maps each point from the simplex to its closest vertex (and hence to the class

associated with that vertex).
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In practice, the true class conditional probabilities π(x) are not known, but need to be estimated

from training data (Hastie et al., 2009). Classifiers such as logistic regression or polychotomous

logistic regression offer point estimates q0y(x) := p̂(Y = y|x), y ∈ Y which can be compiled in a

d-dimensional vector q0(x) = [p̂(Y = 1|x), . . . , p̂(Y = d|x)] ∈ S
d. Plugging this point estimate into

the conditional risk gives

R
(
q0(x)

)
:=
∑

y∈Y

L
(

y, θ
(
q0(x)

))

· q0y(x) (3)

This quantity is the key ingredient of uncertainty sampling, which has been presented in many

variants (Baum, 1991; Tong and Koller, 2000; Scheffer et al., 2001). This class of active learning

algorithms seeks to reduce the estimated expected risk by querying additional labels near the

decision boundary, where the conditional risk is greatest. The implicit hope is that additional

labels may drive the updated class conditional probability towards one of the simplex vertices,

that is, to obtain unequivocal evidence for the dominance of one class. Uncertainty sampling is

very simple to implement and widely used, but it is a pure exploitation / refinement strategy: it will

never explore uncharted regions of feature space. Indeed, it will spend all of its queries around the

current decision boundary. In addition, uncertainty sampling only relies on a point estimate of the

posterior distribution and does not consider the uncertainties of the class conditional probability

estimates themselves. This “second-order” uncertainty is implicitly taken into account in schemes

such as error reduction sampling (Roy and McCallum, 2001; Zhu et al., 2003). However, such

look-ahead schemes require a (rank-one) update of the current classification boundary and turn

out to be relatively expensive.

The novelty in Ref. (Röder et al., 2012) is that it makes explicit, and capitalizes on, the

uncertainty of the class-conditional probability itself. The latter, like any estimate that is obtained

from finite training data, is subject to uncertainty. The prerequisite for their procedure is that the

classifier must provide not merely a point estimate q0(x) for the class conditional probability, but

a full second-order distribution over q(x) as expressed by a probability density function g
(
q(x)

)
.

More specifically, an estimated second-order distribution over the class-conditional probability can

be written as

g
(
q(x)

)
:=

∂G
(
q(x)

)

∂q(x)
(4)

G
(
q(x)

)
:= Pr

(

p̂(Y = 1|x) ≤ q1(x) ∧ . . . ∧ p̂(Y = d|x) ≤ qd(x)
)

(5)
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with density g and cumulative distribution function G.

If such a second-order distribution is available, the point estimate q0(x) can be identified with

q0(x) ≡ Eq

(
q(x)

)
and R

(
q0(x)

)
from Eq. (3) can be rewritten as R

(

Eq

(
q(x)

))

.

Now, in Ref. (Röder et al., 2012) we argue that this estimate is overly conservative and tends

to overrate the utility of samples whose intrinsic (i.e. Bayesian) uncertainty is high. We contrast

it with the following distributional estimate, which measures the risk at location x arising from

intrinsic uncertainty and insufficient training combined,

Eq

(

R
(
q(x)

))

:=
∑

y∈Y

∫

L
(

y, θ
(
q(x)

))

· qy(x) · g
(
q(x)

)
dq(x) (6)

We further argue that the extent by which these estimates differ, when weighted with the esti-

mated marginal density p̂(x) (to take into account the importance of location x), is a good training

utility value (TUV), or measure of interestingness, for yet unlabeled observations. Specifically, we

posit

TUV (x) = p̂(x)

(

R
(

Eq

(
q(x)

))

− Eq

(

R
(
q(x)

))
)

(7)

and show superior active learning curves when averaging over a large number of datasets.

This TUV function can be seen to naturally balance both exploration and refinement, see Fig. 1.

In particular, unlike uncertainty sampling strategies, this criterion eventually desists from querying

further labels near the decision boundary in areas where multiple labels are already available: These

areas exhibit high intrinsic uncertainty that cannot be removed by additional label queries. Also,

the proposed criterion does not have additional parameters as required by heuristic strategies that

alternate between exploration and exploitation phases (Brinker, 2003).

To summarize this discussion: in areas with few labels, and in the absence of a parametric model

that is known to govern the true posterior probability of a class, the estimate of the class condi-

tional probability is of necessity imprecise. This uncertainty is reflected in a broad second-order

distribution, which leads to lower values of Eq

(

R
(
q(x)

))

as compared to the more conservative

R
(

Eq

(
q(x)

))

. If, on the other hand, the local evidence is high, the second-order distribution is

narrow, yielding similar values for both terms. An example is given in Supplementary Material A.
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Figure 3: The random forest classifier is an ensemble of decision trees where the single trees
are constructed from bootstrap samples. At each node of a tree, the feature that allows for the
best class separation is chosen (with respect to the subset of features selected for that node).
The corresponding partitioning of the feature space is shown with the decision boundary plotted
in purple. The collection of trees forms the random forest whose classification is based on the
majority votes of the individual trees.

Random Forests

The random forest (Breiman, 2001) (cf. Fig. 3) is a state-of-the-art ensemble classifier which com-

prises ntree decision trees. Each individual tree constitutes a crisp classifier and is constructed from

a bootstrap sample of size N of all available training samples. Tree construction starts at the root

node and proceeds down toward the leaf nodes. In each node, a subset of the M features (i.e. mass

channels) is chosen at random (a typical subset size being
√
M), and the feature that allows for the

best class separation of the samples in the node is selected. After splitting the node, the algorithm

continues on the next level until all nodes are pure, i.e. contain samples with consistent class labels.

All samples which are not part of the bootstrap sample, the so-called out-of-bag samples, can be

used to obtain a performance estimate for the classifier. A query sample is classified by putting

it down each of the trees in the ensemble until it reaches the leaf nodes. The distribution over

classes obtained for a single query sample cannot strictly be interpreted as a posterior probability,

but does give an indication of how certain the classifier is in its prediction. Many studies have

shown that the random forest classifier is robust to overfitting and label noise (Breiman, 2001; Saf-
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fari et al., 2009), delivers state-of-the-art prediction accuracy (Caruana et al., 2008; Ulintz et al.,

2006), can handle a large number of input variables (Lin and Jeon, 2006; Breiman, 2004), allows for

fast training, and is robust with respect to the exact choice of the two hyperparameters: number

of trees, and size of the random feature subset evaluated at a node (Pardo and Sberveglieri, 2008).

TUV for Random Forests

We now combine the TUV with the random forest classifier in a multi-class setting. As discussed

above, given a test sample the random forest classifier provides a distribution over tree votes. To

obtain both a density estimate and a meaningful measure for the uncertainty (pure leaves suggest

perfect certainty and are hence misleading), we train the random forest with all labeled examples

from previous learning rounds plus a predefined fraction of samples from a uniformly distributed

auxiliary class “0”. After training, all hitherto unlabeled MSI samples are classified. Among these

points the next query candidate is selected.

The number of trees vi(x) voting for the d + 1 classes (i = 0, 1, . . . , d) can now be interpreted

as an indicator for how certain the classifier’s assessment for x is. Simply put: The more trees

vote for the auxiliary class, the weaker the local evidence for the other classes and thus the higher

the uncertainty of the classifier. At the same time, the relative number of votes for the remaining

classes is an indicator how far x lies from the decision boundary. Generalizing the Beta distribution

from Ref. (Röder et al., 2012) to multiple classes, we model the probability density function g(q)

(cf. eq. (5)) with a Dirichlet distribution, which is parameterized by the number of trees voting for

classes 1 to d. This yields g(q) = Dir(q|α) where α ∈ N
d
+, αy = 1+ vy(x), and

∑d

i=1 αi = d+ntree

(see Fig. 2). The complete mathematical derivation is detailed in Supplementary Material B.

Fig. 1 and Supplementary Material C show that this choice yields a TUV function that obeys

both exploration and refinement principles. Computation of the TUV requires Monte Carlo integra-

tion over parts of the simplex. An efficient implementation is discussed in Supplementary Material

D-E; MATLAB code is available from http://hci.iwr.uni-heidelberg.de/MIP/Software. An overview

of the active learning method is given in algorithm 1.

Experiments

Data. We used secondary ion mass spectrometry (SIMS) data acquired from orthotopic human

breast cancer xenografts (MCF-7) grown in mice. For data acquisition, a Physical Electronics
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Algorithm 1 : Overview of our active learning procedure. The user interacts with the algorithm
by answering the label queries in step 5.

Query label for observation x with the largest density in feature space
for k = 1 to maxIterations do

1. Uniformly sample from the bounding box enclosing all observations in feature space and
label the obtained auxiliary samples as “0” (frequency controlled by resampling parameter)
2. Combine user-labeled samples and “0”-samples to train a random forest classifier with d+1
classes
3. Classify all unlabeled observations x ∈ U , i.e. all observations to which the user has not
yet assigned a label
4. Drop random forest votes for class “0” to obtain d-dimensional vectors α for all unlabeled
observations x ∈ U with αi = 1+vi(x), i = 1, . . . , d where d is the number of classes and vi(x)
is the number of trees that vote for class i given observation x
5. Query user label for that observation x that has the highest training utility value (TUV)
among all yet unlabeled observations (i.e. maxx∈U TUV (x), cf. Eq. (7) and Supplementary
Material D)

end for

TRIFT II TOF SIMS equipped with an Au+ liquid metal ion cluster gun was used. The tumor

samples were embedded in gelatin, flash-frozen, cryo-sectioned to ≈ 10µm and thaw-mounted on

a cold indium tin oxide-coated glass slide. The tissues were not washed prior to SIMS analysis,

which was confined to a mass range of 0–2000 Da. The spectral resolution was rebinned to 0.1

Da and the range between 0–400 Da was selected, resulting in 4009 mass channels. Due to the

large amount of data processed in this study, short acquisition times of 2 seconds per spot were

used. Consequently, the spatial resolution had to be rebinned to 35 × 35µm per pixel in order to

guarantee a reasonable number of ion counts in each mass spectrum.

Three out of the six slices used in a previous study (Hanselmann et al., 2009b, 2008) were

selected for evaluation of our active learning method - one from the bottom (entitled S4), middle

(S7) and top (S11) of the stack of available parallel slices of the tumor. The spectra in the

three data sets were baseline corrected by channelwise subtraction of the minimum, normalized

by their total ion count, and features were extracted with a peak picker based on local maximum

detection. The dimensionality of the resulting spectra varied from 64 to 69 for the three sets. Crisp

gold standard labels were obtained by Hematoxylin-Eosin (HE) staining of parallel slices and five

classes of interest were identified: necrotic tumor, viable tumor, tumor interface, gelatin, glass/hole

(see (Hanselmann et al., 2009b) and Supplementary Material F for a more detailed description).

All observations (pixels) for which label information is available were used in the evaluation of the

methods. The class distribution among the labels corresponding to these observations determines

the (maximum) number of different regions/classes in the segmentation result. Since section S4

only contains labels for four of the five classes, S4 was segmented into four regions. In contrast,
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S7 and S11 were segmented into five regions.

Evaluation Criteria. We compared our active learning approach (AL-RF) to random sam-

pling (RS) that in each learning step randomly queries the label of a hitherto unlabeled observation.

Random sampling was used for comparison as it is known to be “surprisingly effective, being com-

petitive with more complex approaches” (Cawley, 2011) and performs reasonably well in many

studies (Guo and Schuurmans, 2008; Settles and Craven, 2008). It has thus been established as

the de facto baseline strategy to compare new active learning algorithms to. Prediction accuracy

was measured by sensitivity (SE) and positive predictive value (PPV). Sensitivity is defined as

SE = TP
TP+FN

where TP is the number of true positives and FN is the number of false negatives.

The positive predictive value estimates the ratio of samples that are correctly classified as class

k among all samples that are classified as k, that is PPV = TP
TP+FP

where FP is the number of

false positives. We averaged the obtained SE and PPV rates over all four (slice S4), respectively

five classes (slices S7, S11).

Due to the non-deterministic nature of the RS strategy and the Monte Carlo integration, we

repeated the active learning method and the random sampling approach 100 times and averaged

the obtained results in each learning step. To obtain reliable quality estimates, in addition, we

repeated the random forest training and classification in each learning step five times. We drew

300 samples to perform the Monte Carlo integrations and employed stratified sampling to balance

the labels in the training set. In both approaches, the learning was started with an empty set

of labeled points (in practical applications a number of initial labels might already be given, as

it is e.g. also possible in AMASS (Bruand et al., 2011)), exactly one label was queried in each

active learning step where the ground truth label map served as oracle, and a 0-1 loss function was

assumed.

Results

Fig. 4 and Supplementary Material G-H report the obtained classification accuracies on the three

MSI datasets. Results are given for both querying strategies and an increasing number of learning

steps. Ideally, the learning curves are steep, such that high classification accuracies are obtained

after only few learning steps. Since this is typically achieved by first querying the labels that have

the highest potential of increasing the classifier’s performance, it is also insightful to examine which

training points the methods select within a fixed number of learning steps (here: 100). Intuitively,

some of the classes are easier to distinguish than others, which is likely to manifest itself in the
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Figure 4: Learning curves obtained for random sampling (blue) and our active learning approach
(red). Accuracies are measured by sensitivity (top row) and positive predictive value (bottom row).
In each learning step, one additional label is queried. The plots show the median as well as the
band between the 95% quantile and the 5% quantile for the 100 repeats. In contrast to random
sampling, our active learning approach exhibits significantly lower variance between the different
learning runs and the band around the median gets thinner over the course of iterations. At the
same time, it significantly outperforms random sampling.

training point selection of the active learning strategy. Results are shown in Fig. 5, and a step-by-

step example for slice S7 is given in Supplementary Material I. In detail, the following results were

obtained for slices S4, S7, and S11:

Slice S4. Fig. 4 and Supplementary Material G reveal that our active learning scheme (AL-

RF) performed similarly to random sampling (RS) in the first few learning steps and significantly

outperformed RS as soon as more than ≈ 20 learning steps were executed. Due to the steeper

learning curve, AL-RF improved on RS by about 10% in sensitivity after 100 iterations. RS needed

more than 200 learning steps (i.e. twice as many labels) to achieve the same performance level.

For a large number of learning steps, RS eventually collected a sufficient number of samples from

all classes and hence converged towards the sensitivity rates obtained with AL-RF. However, the

margin was still more than 5% after 200 iterations (cf. Supplementary Material H). Regarding

positive predictive value, AL-RF slightly outperformed RS in the first ≈ 70 learning steps, that is,

in the regime which is most interesting for a learning from sparse annotations.

Slice S7. Over the whole range of the first 200 iterations and especially for low numbers
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of learning steps, our approach outperformed RS with respect to PPV. At the same time, it

significantly outperformed RS regarding sensitivity, leading to a gain of more than 10% after 100

and also after 200 learning steps. Again, RS required more than twice as many labels to reach the

performance level of AL-RF after 100 steps. The sensitivity of the RS algorithm increased very

slowly such that after 500 iterations the sensitivity was still at a comparably low level of 86%.

Fig. 5 reveals that RS resulted in a classifier that mostly confused the necrotic class (indicated

in red) with the viable class (light green). In contrast, AL-RF yielded significantly better results.

Gelatin and glass spectra did not pose a challenge for either strategy.

Slice S11. Regarding sensitivity as well as positive predictive value, the results obtained

for slice S11 proved to be highly similar to the results for slice S7. AL-RF again outperformed

RS with respect to both sensitivity and positive predictive value. After 100 and 200 learning

steps it resulted in SE and PPV rates which were approximately 9% respectively 4-6% higher

than the results yielded with RS. Fig. 5 shows that RS again failed to achieve good classification

performance for the necrotic class. AL-RF performed significantly better, but still confused several

necrotic samples with viable cancer and some with glass. Apparently, additional learning steps are

necessary to learn to reliably discriminate necrotic and viable tumor in this data set.

Discussion

Classification Performance. Given a fixed number of learning steps AL-RF resulted in positive

predictive values which were slightly higher or comparable to the ones obtained with RS. At the

same time, AL-RF significantly outperformed RS with respect to sensitivity by up to 10%, as soon

as more than 15–20 labels were queried. It also exhibited significantly lower variance between runs,

as can be seen from Fig. 4. The main conclusion is that AL-RF has the potential to reduce labeling

times without trading for classification accuracy.

Training Point Selection. Fig. 5 shows that RS largely failed to discriminate necrotic from

viable tumor tissue. The necrotic area has only small spatial extent, such that random sampling

only selected few corresponding training points. In comparison, AL-RF selected more than twice

as many necrotic samples on slices S7 and S11. This choice seems reasonable, since discriminating

viable and necrotic tumor is the most challenging task of our classification problem. In any case,

AL-RF yielded a significantly better classification result with respect to these classes (cf. Fig. 5).

Whereas the necrotic and viable tumor samples are rather close in feature space, the non-tissue

classes gelatin and glass have little spectral overlap, which simplifies their classification. Indeed,
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Figure 5: The classification results after 100 learning steps with our active learning method (AL-
RF) and random sampling (RS). To obtain the crisp classification, we first averaged the probability
maps gathered in the 100 repeats and then took the maximum likelihood estimate in each pixel.
On the right, the selected training points for a representative learning run are plotted (we refrain
from plotting the training points for all 100 repeats to keep the images uncluttered). Since the
area of the necrotic class is comparatively small in slices S7 and S11, random sampling only selects
very few training points for that class, leading to a bad classification result. In contrast, AL-RF
requests more training samples for that class, yielding a superior classification. At the same time,
it samples less points from the gelatin and glass classes, which have less overlap with the other
classes in feature space than e.g. necrotic and viable tissue and are thus easier to learn.
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AL-RF queried far fewer samples from these classes than RS, and the corresponding areas in Fig.

5 are less densely sampled. We conclude that AL-RF seems to construct training sets which are

consistent with our expectations and prior knowledge about the classification task at hand.

Influence of the Number of Trees. There is some freedom in the exact choice of the

second-order distribution. The Dirichlet, as a member of the exponential family with the correct

support, is a canonical choice. While it allows the combination with the successful random forest

classifier, using the tree votes as parameters introduces a certain shortcoming: When increasing

the overall number of trees in the ensemble, the parameters specifying the Dirichlet distributions

grow larger, which results in a narrower distribution. Thus, ultimately the uncertainty estimate

is dependent on the number of trees. However, the number of trees in a random forest is fixed,

typically between 100 and 200. Our experiments demonstrate that for this choice our criterion

works well in practice.

Method’s Assumptions. Supervised learning can only be as good as the labels provided,

and it is thus important for the expert to ensure that the assigned labels are correct. This requires

a certain level of interaction between the active learning approach and the microscopy software.

Unsupervised Segmentation can Assist the Labeling Process. Alternatively, PCA or

pLSA scores may be used as overlays when assigning labels. These low-dimensional summaries of

the MSI data often reveal structures that are not apparent from individual channel images but are

often visible in the stained images (see Supplementary Material J for details).

Computation Time. Training of the random forest and subsequent classification took less

than 1s on a standard desktop PC (2 GHz dual core processor with 2 GBytes of RAM). Computing

the risk estimates for all unlabeled observations (cf. Supplementary Material C) required another

1.5-2s. Performance improvements may be achieved by employing an online version of the random

forest classifier (Saffari et al., 2009; Fuchs and Buhmann, 2009) or by querying multiple labels in

each iteration (Cebron and Berthold, 2009), but this is beyond the scope of this paper. While a

speed-up is always desirable, the measured computation times are clearly below the time that an

expert typically needs for labeling the query point.

Future Work. Since AL-RF is based on the random forest classifier, which was shown to work

well on complex MALDI signatures by several studies (see e.g. (Wu et al., 2003)), and since the

results for discriminating similar tissue classes such as viable and necrotic tissue are encouraging,

we expect that AL-RF may also become an interesting tool for MALDI MSI analysis. Confirming or

refuting this belief is an interesting avenue of future research. Also, the analyzed xenograft tumors
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are rather homogeneous in nature. Thus, it will be interesting to analyze tissue types which are

characterized by spectrally more overlapping signatures. Due to the reasons given above, we believe

that AL-RF is suitable for this task.

Conclusions

Due to the enormous amount of data produced by modern-day instruments, routine clinical ap-

plication of mass spectrometry imaging will not be possible without computational analysis (Eid-

hammer et al., 2007). Robust training of supervised classifiers requires a set of expert labels that

reflects the variability between patients and instrument settings. The high variability encountered

in practice jeopardizes reproducibility and motivates the collection of expert labels for each newly

acquired MSI data set. However, labeling is time-consuming and thus expensive. Consequently,

novel algorithms are needed that yield the highest possible classification accuracies and at the same

time require as little user-interaction as possible. We have demonstrated, how active learning can

be used for the efficient annotation and classification of SIMS data. We have further demonstrated

that it outperforms random sampling by a large margin if only a small number of labels are made

available for training. Harvesting this potential is worthwhile as mass spectrometry imaging is

moving closer to clinical application.
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Supplementary Material

A: Working Example

Consider a binary classification example with class labels {−1;+1}. Assume that the unknown

true posterior distribution q+1(x) is given by two point masses of 0.5 at 0.2 and 0.9.

Then, a point estimate for the posterior class probability can be obtained from

p̂(+1|x) =
∫ 1

0

qgx(q+1(x))dq (8)

which for 0-1 loss yields

p̂(Y = +1|x) = 0.2 · 0.5 + 0.9 · 0.5 = 0.55. (9)

It follows that q0(x) = [0.45, 0.55]. The classifier assigns classes -1 and +1 according to

θ
(
p̂(Y = 2|x)

)
= sgn

(
p̂(Y = +1|x)− 0.5

)
. (10)

Thus, with Eq. (3) from the manuscript and Supplementary Material D (see below) we obtain

R
(
q0(x)

)
=
∑

y∈Y

L
(

y, θ
(
q0(x)

))

· q0y(x) (11)

= min
ỹ∈{−1;+1}

∑

y∈{−1;+1}

L(y, ỹ) · q0y(x) (12)

= min
ỹ∈{−1;+1}

{1 · 0.55, 1 · 0.45} = 0.45. (13)

This is the best we can do if only a point estimate of the true posterior distribution is available.

Additional knowledge can be obtained by querying labels at x or its neighborhood.

Now assume that the true posterior distribution g
(
q(x)

)
is known. Using Eq. (6) of the

manuscript we obtain

Eq

(

R
(
q(x)

))

=
∑

y∈{−1;+1}

∫

L
(

y, θ
(
q(x)

))

· qy(x) · g
(
q(x)

)
dq(x) (14)

= 1 · (1− 0.9) · 0.5 + 1 · 0.2 · 0.5 = 0.15, (15)

where we have used that i.e. q−1(x) = 1 − q+1(x). Thus, here the classic risk estimate is over-

18



pessimistic. Whereas R
(
q(x)

)
is large, Eq

(

R
(
q(x)

))

is much smaller, rendering x attractive for

selection. From this example, it also becomes clear that the TUV is non-negative.

B: Derivation of the Second-order Distribution Estimate

Dirichlet Distribution is Conjugate to Multinomial Distribution

Let π̃(x) = [p(Y = 0|x), . . . , p(Y = d|x)]T be the vector of true class conditional probabilities for

each of the d + 1 classes and let vi(x) be the number of trees voting for class i where i = 0 is

the auxiliary class. v(x) can be modeled as a realization of a multinomially distributed random

variable with density

Mult
(
v0(x), . . . , vd(x) | π̃;ntree

)
=

(
ntree

v0(x), . . . , vd(x)

) d∏

i=0

π̃
vi(x)
i (16)

where ntree =
∑

i vi(x) is the total number of trees. The Dirichlet distribution, given by

Dir(π̃ | α) =
Γ
(
∑d

i=0 αi

)

∏d

i=0 Γ (αi)

d∏

i=0

π̃αi−1
i (17)

for α = [α0, . . . , αd]
T is conjugate to the multinomial distribution (Casella and Berger, 2002), and

uniform on the simplex for αi = 1, i = 0, . . . , d. Thus, applying Bayesian inference and multiplying

the multinomial with the uniform prior yields the posterior distribution estimate (Bishop, 2007)

g
(
π̃ | v0(x), . . . , vd(x)

)
∝ Mult

(
v0(x), . . . , vd(x) | π̃;ntree

)
·Dir(π̃ | 1, ..., 1) (18)

with

g
(
π̃ | v0(x), . . . , vd(x)

)
= Dir

(
π̃ | 1 + v0(x), . . . , 1 + vd(x)

)
. (19)

In this work we treat the output of the random forest as a realization of the true posterior which

is unknown. We note, however, that RF is not known to be consistent (Biau et al., 2008).

Dropping the Votes for the Reference Class

We are now interested in the distribution estimate for the scenario where the reference class (class

0) is dropped. It is known (Casella and Berger, 2002; Abramowitz and Stegun, 1965) that for

stochastically independent and Gamma-distributed Y (k) ∼ Gamma(αk, 1), k = 0, . . . , d it holds
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that

(

Y (0)

∑d

k=0 Y
(k)

,
Y (1)

∑d

k=0 Y
(k)

, . . . ,
Y (d)

∑d

k=0 Y
(k)

)

∼ Dir(α0, . . . , αd). (20)

Thus, defining

W (i) :=
Y (i)

∑d

k=0 Y
(k)

, i = 0, . . . , d (21)

yields that

(W (0), . . . ,W (d)) ∼ Dir(α0, . . . , αd). (22)

We show that it follows that (W̃ (1), . . . , W̃ (d)) ∼ Dir(α1, . . . , αd) where W̃ (i) = W (i)
∑

d
l=1 W (l) .

Proof: Using equation (21) we obtain:

(

W (1)

∑d

l=1 W
(l)

, . . . ,
W (d)

∑d

l=1 W
(l)

)

=





Y (1)
∑

d
k=0 Y (k)

∑d

l=1
Y (l)

∑
d
k=0 Y (k)

, . . . ,

Y (d)
∑

d
k=0 Y (k)

∑d

l=1
Y (l)

∑
d
k=0 Y (k)



 (23)

=

(

Y (1)

∑d

l=1 Y
(l)

, . . . ,
Y (d)

∑d

l=1 Y
(l)

)

(24)

which is again Dirichlet-distributed with parameters α1, . . . , αd (Casella and Berger, 2002).
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C: Risk Reduction

Fig. 6 shows the expected risk reduction for adding a test point x to the set of training data,

depending on its prediction result by the random forest. It demonstrates that our TUV criterion

considers both exploration and boundary refinement.

Figure 6: The figure shows the expected risk reduction TUV (x) = (R(Eq(q(x)))− Eq (R(q(x))))
for the 3-class case. The density p(x) was fixed to 1 in both examples. We further fixed α1 to
1 and 3 respectively (from left to right). Note that the TUV is symmetric in the parameters αi

such that fixing α2 or α3 instead leads to the same results. The highest TUV scores are obtained
for α2 and α3 equal to 1 respectively 3, i.e. for uniform parameters (see contour plot in bottom
plane). The TUV thus obeys the principle of exploitation/boundary refinement. Since the point
αi = 3 ∀i corresponds to a lower level of uncertainty than the point αi = 1 ∀i (note that less local
evidence is available), the maximum on the right is lower than the one on the left. It thus also
obeys the concept of exploration. Also note that the TUV is symmetric with respect to the two
varying parameters. Equal values for α2 and α3 lead to higher TUVs than differing values.
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D: Implementing the TUV Criterion

Computing Risk Estimates

Evaluation of the risk estimate R
(
q0(x)

)
(see eq. (3) of the manuscript) is straightforward. If the

canonical mapping function θ is used that maps each point in the simplex to its closest vertex

and under the assumption of 0-1 loss, i.e. L(y, ỹ) = 1∀y 6= ỹ and L(y, y) = 0, we simply need to

compute

R
(
q0(x)

)
=
∑

y∈Y

L
(

y, θ
(
q0(x)

))

· q0y(x) = min
ỹ∈Y

∑

y∈Y

L(y, ỹ) · q0y(x). (25)

Computation of the distributional risk estimate Eq (R(q(x))) is more involved. Using a Dirichlet

second-order distribution g(q), the formula for the distributional estimate for the conditional risk

at x can be rewritten as follows:

Let B(α) =
∏d

l=1 Γ(αl)/Γ(
∑d

l=1 αl) be the multinomial Beta function. From the manuscript

we have

Eq

(

R
(
q(x)

))

:=
∑

y∈Y

∫

L
(

y, θ
(
q(x)

))

· qy(x) · g
(
q(x)

)
dq(x). (26)

Plugging in g(q) = Dir(q|α) with α ∈ N
d
+, αy = 1 + vy(x), and αT1 = d + ntree, where vy(x)

is the number of trees voting for class y given x and 1 is a unit vector, we obtain

=
∑

y∈Y

∫

L
(

y, θ
(
q(x)

))

· qy(x) ·
[ 1

B(α)

d∏

l=1

ql(x)
αl−1

]

dq(x). (27)

Let ey ∈ N
d be a unit-length vector where only the yth entry is equal to one. Then the above

equation can be rewritten as

=
∑

y∈Y

∫

L
(

y, θ
(
q(x)

))

· B(α+ ey)

B(α)
· 1

B(α+ ey)

d∏

l=1

ql(x)
(α+ey)l−1

︸ ︷︷ ︸

=:Dir

(
q(x)|α+ey

)

dq(x). (28)

which – using theorem 1 (cf. Supplementary Material E) – is equivalent to

=
∑

y∈Y

∫

L
(

y, θ
(
q(x)

))

· αy
∑

k

αk

·Dir
(
q(x)|α+ ey

)
dq(x). (29)
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Under the assumption that L(y, y) = 0, a final rewrite of eq. (29) yields

=
∑

ỹ∈Y

∑

y∈Y
y 6=ỹ

L(y, ỹ)
αy
∑

k

αk

∫

Sd
ỹ

Dir(q(x)|α+ ey)dq(x)

︸ ︷︷ ︸

∗

, (30)

where S
d
ỹ denotes the yth part of the simplex, i.e. the part that belongs to class ỹ (see fig. 3 of the

manuscript).

Integration over Part S
d
ỹ of the Simplex

We use Monte Carlo integration (Hammersley, 1960) to approximate term (*) in eq. (30) which

has to be calculated for each observation x (see Active Learning section of the manuscript). For

each x we sample nsample times from the corresponding Dirichlet distribution. For the experiments

in the manuscript, nsample = 300 was used.

Sampling from a Dirichlet distribution can efficiently be performed using Minka’s Fastfit tool-

box (Minka, 2004). Sampling from a d-dimensional Dirichlet distribution with parameters αx boils

down to drawing one sample from each of the d Gamma distributions Gamma(αi, 1) with subse-

quent normalization by division with the sum. Since Minka’s code is fast, it can in theory be used

to sequentially draw samples from Dirichlet distributions with different parameterizations α. How-

ever, performing these calculations independently for all observations x is still very time-consuming.

We speed up the procedure by exploiting the fact that in our scenario the parameterizations of the

individual Dirichlet distributions are highly similar. Since αi = 1+ vi(x), i = 1, . . . , d, where vi(x)

represents the number of trees voting for the classes i, it follows that αi ∈ {1, 2, . . . , ntree + 1},

that is the range of parameters is limited.

We can thus reuse the Gamma samples as follows: Assume, that for each observation x we

want to draw nsample d-dimensional samples s(k), k = 1, . . . , nsample from a Dirichlet distribution

parameterized by vector α to perform the Monte Carlo integration. Therefore, we first draw nsample

samples from Γ(k), k = 1, . . . , (ntree + 1) and store the results in a (ntree + 1)× nsample matrix C

which serves as a lookup table. Then, the nsample requested samples are “constructed” from C by

first selecting the d rows from the lookup table that correspond to the parameters α(i), i = 1, . . . , d

and storing them in a d × nsample matrix S. Next, we randomly permute each row of S to avoid

bias in case of non-unique αi and do a column-wise normalization of S such that each column

contains one Dirichlet sample s(k), k = 1, . . . , nsample
1.

1In our experiments, the procedure described above led to a significant speed-up factor of ≈ 100. We propose to
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Given a threshold point T , we then determine for each of the nsample samples s(k), k =

1, . . . , nsample to which part Sdj of the simplex S
d it belongs (see fig. 3 in the manuscript). The set

Zj of samples s̃ that fall in part Sdj can be expressed by (Hanselmann et al., 2009a)

Zj =

{

s̃ ∈
{

s(1), . . . , s(nsample)
}
∣
∣
∣
∣
1− s̃j

s̃j + s̃k
< 1− Tj

Tj + Tk

∀k ∈ {1, ..., d} \ {j}
}

. (31)

Note that the assignment of a point to a corner of the simplex can efficiently be found in d − 1

pairwise comparisons. In each step, we compare the ratios in (31) with respect to two dimensions,

e.g. k = 1 and j = 2. The dimension for which the inequality holds (here 1 or 2) is declared the

“winner” which in the next step is compared to the next dimension (k = winner({1, 2}), j = 3)

and so on.

In case of 0-1 loss the threshold point resides in the center of the simplex such that the formula

simplifies and we only have to determine the column-wise maxima of U in order to calculate the

assignments.

E: Theorem 1

Proposition: Let B(α) =
∏d

l=1 Γ(αl)

Γ(
∑

d
l=1 αl)

be the multinomial Beta function. Then it holds that

B(α+ ey)

B(α)
=

αy
∑

k αk

. (32)

Proof:

B(α+ ey)

B(α)
=

Γ(α1) · . . . · Γ(αy + 1) · . . . · Γ(αd)

Γ(α1 + . . .+ (αy + 1) + . . .+ αd)
(33)

· Γ(α1 + . . .+ αy + . . .+ αd)

Γ(α1) · . . . · Γ(αy) · . . . · Γ(αd)
(34)

=
Γ(αy + 1)

Γ(αy)
· Γ(

∑

k αk)
∑

k αkΓ(
∑

k αk)
=

αyΓ(αy)

Γ(αy)
· 1
∑

k αk

(35)

=
αi

∑

k αk

(36)

where we use the iterative definition of the Gamma function (Bishop, 2007), that is Γ(n + 1) =

nΓ(n).

construct C (and thus S) anew in each turn of the active learning procedure.
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F: Labels

Figure 7: The gold standard labels for the three MSI data sets (bottom row) are obtained from
Hematoxylin-Eosin (H&E) staining of parallel slices (top row). The labeling is only partial: labels
for the five tissue classes of interest are color-coded whereas black and white indicates that no label
information is available.
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G: Mean Sensitivities and Positive Predictive Values

Figure 8: Comparison of the sensitivities and positive predictive values obtained with random
sampling (blue) and our active learning approach (red) (averaged over 100 repeats). On all sets,
our method outperforms random sampling with respect to sensitivity and positive predictive value.
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H: Performance After Fixed Numbers of Learning Steps

set criterion method 50 100 150 200
S4 SE RS 65.3 73.0 77.7 81.4

AL 75.6 82.4 84.8 86.4
PPV RS 76.8 83.7 86.1 87.3

AL 79.4 84.2 86.1 87.2
S7 SE RS 78.3 80.6 82.0 83.1

AL 85.5 90.3 92.2 93.6
PPV RS 83.5 89.5 92.0 93.1

AL 88.4 92.2 93.7 94.8
S11 SE RS 70.1 75.2 77.3 78.6

AL 77.3 84.3 87.0 88.1
PPV RS 77.7 83.1 86.3 87.9

AL 83.4 89.0 90.8 92.1

Table 1: Average sensitivities and positive predictive values for the three datasets after 50, 100, 150
and 200 learning steps. Our active learning approach significantly outperforms random sampling
on all sets.
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I: Intermediate Steps of the Active Learning Algorithm

Figure 9: Here, we present intermediate steps for a single run of our active learning algorithm.
The top row displays the classification results obtained after learning steps 5-8 (color coding as in
Fig. 7). The bottom row shows the corresponding training utility value (TUV ) maps where light
areas correspond to high TUV s, i.e. points with high possible risk reduction. For instance, in step
5 the TUV is high for the observations corresponding to the necrotic, viable and glass classes, and
a sample from the viable area is selected (indicated by the question mark). Consequently, in the
next step the classification result for that class slightly improves and the respective TUV values
decrease. Whereas the TUV values for the necrotic class also decrease since the viable and necrotic
class are close in feature space, the TUV values for the glass area stay high, such that in the next
step, a glass sample is picked, leading to significant improvement in the classification accuracy of
that class.
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J: Unsupervised Segmentation can Assist the Labeling Process

Probabilistic latent semantic analysis (pLSA) is an unsupervised learning technique which has

successfully been employed for the segmentation of mass spectrometry images (Hanselmann et al.,

2008). It has also been added to the latest release of Bruker’s ClinProTools software (Deininger

et al., 2012). Like all unsupervised learning techniques, pLSA does not make use of label infor-

mation, but performs the analysis on the observed data only. It thus requires less user interaction

since no labels have to be provided. On the other hand, it disregards the extra information which

may be available and improve the segmentation result.

Unsupervised learning methods can assist the labeling process: PCA or pLSA scores may be

used as overlays when assigning labels. These low-dimensional summaries of the MSI data often

reveal structures that are not apparent from individual channel images but are often visible in the

stained images.

Choosing the optimal number of components/segments k∗ to decompose the MS image into is

a challenging task which is specific to unsupervised learning methods. Usually, k∗ has to be set

manually or needs to be estimated from the data. However, in our case labeling information is

available and we know that the expected number of classes is four (S4) respectively five (S7, S11).

Not surprisingly, setting the number of components accordingly yielded the best segmentation

results. In our experiments, we have thus set k∗ = 4 for S4 respectively k∗ = 5 for S7 and S11 and

in each case have used all spectra of the set for which label information was available.

Fig. 10 shows that pLSA delivers surprisingly good results on all data sets, given that no label

information was used in the decomposition. Many of the segments from the ground truth label

maps in Fig. 7 are correctly reconstructed (e.g. the glass regions in S4, S7, S11 or the gelatin

region in S11). At the same time, we notice that the pLSA algorithm has severe problems in

discriminating the two tissue classes (necrotic and viable tumor). Whereas one might argue that

in case of S4 the discrimination is possible from components 2 and 3, none of the five components

created from S7 and S11 is discriminative for necrotic and/or viable tumor. Comparing the pLSA

results with the segmentations given in Fig. 5 of the manuscript confirms that the supervised

active learning algorithm is significantly more accurate in classifying necrotic and viable tumor.

pLSA, as any other unsupervised learning method, is based on mathematical assumptions about

the properties of the “clusters” within a data set. Internally, it relies on a distance metric that

- pLSA being an unsupervised method - cannot be tweaked by the provided label information.

Thus, good results can only been obtained as long as its general assumptions fit the characteristics
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of the data at hand. This is a principle limitation of unsupervised methods. In our examples,

pLSA seems to work well for classes which are distant in feature space but seem to work less well

if (some of) these classes are close or even overlap.

Figure 10: Segmentation results obtained from probabilistic latent semantic analysis (pLSA). Com-
parison with the ground truth labels given in Fig. 7 reveals that overall the pLSA results are very
good, given that no label information was used. The components found on S4 seem to correspond
to the classes glass, tissue (most likely viable), tissue (most likely necrotic), and interface. The
complementarity of components 2-4 is not very well expressed, which may be due to the proximity
of these classes in feature space. Whereas this result is encouraging, we also observed shortcomings
of the method. For slice S5 we obtained five components which seem to match to glass, gelatine
(1), gelatine (2), interface, and tissue (necrotic and viable tumor) regions. Whereas glass and
gelatin are well identified, we were not able to better separate necrotic from viable tissue, even
for different numbers of pLSA components. The same holds true for slice S11. Here component
1 picks up some signal variation. At the same time, pLSA again misses to separate necrotic from
viable tumor.
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Hanselmann, M., Köthe, U., Kirchner, M., Renard, B., Amstalden, E., Glunde, K., Heeren, R., and Hamprecht, F. (2009b).

Toward digital staining using imaging mass spectrometry and random forests. Journal of Proteome Research, 8(7),

3558–3567.

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning: Data Mining, Inference, and

Prediction. Springer, second edition.

Iyuke, F. (2011). Active Learning for the Prediction of Asparagine and Aspartate Hydroxylation Sites on Human

Proteins. Master’s thesis, Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, Canada.

Joshi, A., Porikli, F., and Papanikolopoulos, N. (2009). Multi-class active learning for image classification. Proc. of the

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages 2372–2379.

Li, J., Bioucas-Dias, J., and Plaza, A. (2010). Semisupervised hyperspectral image segmentation using multinominal logistic

regression with active learning. IEEE Trans. on Geoscience and Remote Sensing, 48(11), 4085–4098.

32



Lin, Y. and Jeon, Y. (2006). Random forests and adaptive nearest neighbors. Journal of the American Statistical Society,

101, 578–590.

McDonnell, L. and Heeren, R. (2007). Imaging mass spectrometry. Mass Spectrometry Reviews, 26, 606–643.

Meyer, H. and Stühler, K. (2007). High-performance proteomics as a tool in biomarker discovery. Proteomics, 7 Suppl 1,

18–26.

Minka, T. (2004). Fastfit toolbox for MATLAB, version 1.2. http://research.microsoft.com/en-

us/um/people/minka/software/fastfit/. accessed March 2009.

Mitra, P., Shankar, B., and Pal, S. (2004). Independent component analysis for the extraction of reliable protein signal

profiles from maldi-tof mass spectra. Pattern Recognition Letters, 25(9), 1067–1074.

Oh, S., Lee, M., and Zhang, B.-T. (2011). Ensemble learning with active example selection for imbalanced biomedical data

classification. 5th IAPR Intern. Conf. on Pattern Recognition in Bioinformatics, Lecture Notes in Computer Science

(LNCS), 6282, 316–325.

Pardo, M. and Sberveglieri, G. (2008). Random forests and nearest shrunken centroids for the classification of sensor array

data. Sensor and Actuators, 131, 93–99.

Rajan, S., Ghosh, J., and Crawford, M. (2008). An active learning approach to hyperspectral data classification. IEEE

Trans. on Geoscience and Remote Sensing, 46(4), 1231–1242.

Riccardi, G. and Hakkani-Tür, D. (2006). Active learning: Theory and applications to automatic speech recognition. IEEE

Trans. on Speech and Audio Processing, 13(4), 1–8.
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