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Abstract

The compositional nature of visual objects significantly
limits their representation complexity and renders learning
of structured object models tractable. Adopting this mod-
eling strategy we both (i) automatically decompose objects
into a hierarchy of relevant compositions and we (ii) learn
such a compositional representation for each category with-
out supervision. The compositional structure supports fea-
ture sharing already on the lowest level of small image
patches. Compositions are represented as probability dis-
tributions over their constituent parts and the relations be-
tween them. The global shape of objects is captured by
a graphical model which combines all compositions. In-
ference based on the underlying statistical model is then
employed to obtain a category level object recognition sys-
tem. Experiments on large standard benchmark datasets
underline the competitive recognition performance of this
approach and they provide insights into the learned compo-
sitional structure of objects.

1. Introduction

Learning object representations for detection and recog-
nition poses one of the key challenges of computer vision.
This problem becomes especially complex and difficult in
the limit of unconstrained scenes, large intra-class varia-
tions and weak supervision during training. A central con-
cept for learning object models despite these problems is to
exploit the compositional nature of our (visual) world.

In this contribution we investigate methods for learning
the compositional structure of objects and we present an
integration in a category level object recognition system.
The approach learns characteristic compositions of atomic
parts for each category in an unsupervised manner, requir-
ing neither hand segmentations nor object localization dur-
ing training. In the same way higher level compositions
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of compositions are learned. Finally, a Bayesian network
serves as a coherent model that comprises all the compo-
sitional constituents together with object shape. Inference
based on this probabilistic model yields a decomposition of
a scene into a hierarchy of relevant compositions and, fi-
nally, enables localization and recognition of objects. Our
main theme of learning a compositional architecture for ob-
ject recognition substantially extends the recognition sys-
tem of Jin & Geman [14] for license plates, who focused
their study on structural aspects of compositionality and ex-
plicitly excluded the question of learning such systems.

Compositionality (e.g. [10]), which serves as a founda-
tion for this contribution, is a general principle in cognition
and can be especially observed in human vision [3]. Per-
ception has a high tendency to represent complex entities by
means of comparably few, simple, and widely usable parts
together with relations between them. In contrast to mod-
eling an object directly based on a constellation of its parts
(e.g. [8]), the compositional approach learns intermediate
groupings of parts. As a consequence, compositions bridge
the semantic gap between low level features and high level
object recognition by establishing intermediate hidden layer
representations. In conclusion, compositions model cate-
gory-distinctive subregions of an object, which show small
intra-category variations compared to the whole object.

A key idea of the compositional object recognition model
from [21] is to realize feature sharing on the lowest level
on which robust statistics are available. To this end, edge
and color distributions of small image patches, i.e. local-
ized feature histograms [20], have proved to be a feasible
choice. A small codebook of these features is then shared
by all categories and serves as a set of atomic parts. There-
fore, this initial representation layer alone is generic and
far from being category specific. The information that is
relevant for delineating object classes from another comes
from learning relations between parts and using them to
build higher level compositions. These compositions are
then represented by probability distributions over their con-
stituent parts, thereby leading to a probabilistic, hierarchical
scene representation: Distributions over atomic parts yield
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compositions, distributions over compositions yield higher
level compositions of compositions, and so on. Finally,
the spatial arrangement of all compositions is captured in
a probabilistic model, i.e. the compositional shape model,
which yields a statistical scene interpretation. In this model,
all compositions which are present in a scene are coupled by
(i) their spatial arrangement, (ii) by establishing relations
between compositions, which yields higher level composi-
tions, and (iii) by scene context, i.e. by the co-occurrence
of all compositions. The problem of learning object models
is therefore decomposed into learning the individual con-
stituent distributions that represent compositions.

We extend the approaches [21, 22] by revising the learn-
ing and inference of compositions. Foremost, a training
stage is integrated that automatically learns the relevancy
of compositions for the task of discriminating object cate-
gories from another. Moreover, higher level compositions
of compositions are inferred using top-down information
and the coupling of compositions in the graphical model is
extended. Finally, the probabilistic model can be used in a
generative manner so that compositions and thereby an im-
age representation can be estimated given a categorization.

2. Related Work
Typically, the problem of object representation has been

addressed by using local descriptors and modeling their
configuration in a flexible way, e.g. [9, 16, 8, 6, 1, 20, 2]. A
common choice of local image features are template-based
appearance patches (e.g. [1, 8, 6, 16]) and histogram-based
descriptors such as SIFT features [17]. Geometric blur [2]
and localized feature histograms [20] fall in the latter cat-
egory. Moreover, Serre et al. [25] have proposed neuro-
physiologically motivated descriptors and hierarchical de-
compositions of features have been studied in [5].

A simple and robust way to model the configuration of
descriptors are bag of features methods such as [4] that es-
tablish a histogram over all image features. This represen-
tation, however, discards the spatial structure of a scene.
By making the assumption that the spatial structure of ob-
jects is limited in its variation with respect to the image,
Lazebnik et al. [15] can improve the performance of the
bag of features approach using a spatially fixed grid of fea-
ture bags. In this paper we do however address the prob-
lem of automatically learning the structure of objects. At
the other end of the modeling spectrum are constellation
models, e.g. [8, 6, 13], which code spatial relations accord-
ing to the original approach of Fischler and Elschlager [9].
In contrast to such joint models of all image parts (which
are limited in the number of parts for complexity reasons),
[1, 16, 20, 21, 22] aim at utilizing greater numbers of image
constituents. Opelt et al. [23] extract curve fragments from
training images and apply Adaboost to learn strong object
detectors. Feature sharing is conducted in the joint space
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Figure 1. Processing pipeline for scene analysis.

of curves and their relative position to the object center.
In contrast to this, we follow an approach that shares fea-
tures already on the lowest level of small image patches and
learns characteristic combinations of these. By virtue of re-
lations between the parts, such compositions are capable of
representing texture as well as boundary curves [21]. An ex-
ample of a supervised approach to modeling configurations
of parts is given by Felzenszwalb and Huttenlocher in [7].
Furthermore, Jin and Geman [14] present a compositional
architecture with manually built structure for license plate
reading. In their conclusion they put emphasis on the com-
plexity of the future challenge of learning such a composi-
tional model. In this contribution we deal with exactly this
problem in the even less constraint case of large numbers
of natural object classes. Finally, an approach that is based
on establishing coherent spatial mappings between a probe
image and all training images has been taken in [2, 26].

3. Learning a Composition System
Subsequently, we give a brief overview over our ap-

proach to compositional scene analysis (illustrated in Figure
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Figure 2. Learning relevant compositions.

1) before presenting the processing pipeline in detail in later
sections. Given a novel image, small patches are extracted.
They serve as atomic parts in the compositional hierarchy
and for all of them localized feature histograms [20] are
computed. Each image region is then represented by a dis-
crete probability distribution over a small codebook of fea-
ture prototypes which is shared by all objects. As patches
are only local features and the codebook is shared by all
categories, these atomic parts alone are far from being cat-
egory specific. Therefore, compositions of these parts are
established subsequently.

The aim of this paper is not to manually model a set of
grouping laws that lead to characteristic compositions (e.g.
using perceptual grouping), but to develop a learning strat-
egy that automatically learns to establish relevant composi-
tions. Hence we employ a simple, proximity based group-
ing strategy to form candidate compositions. Out of these,
relevant compositions are selected by a relevance model
that has been learned during the training phase. The rele-
vant compositions enter into a Bayesian network where the
individual object hypotheses are coupled by means of the
co-occurrence and spatial distribution of all compositions.
At this stage a large fraction of all possible object catego-
rization hypotheses can already be rejected with high con-
fidence. Conditioned on each of the remaining hypotheses
we seek relevant compositions of compositions (the con-
stituents are compositions themselves) to accumulate addi-
tional evidence for the correct hypothesis. This is a top-
down grouping process which is guided by previously in-
ferred object information. The idea is that for the true hy-
pothesis many compositions can be found which exhibit a
peaked distribution over all categories. In contrast to this,
incorrect object hypotheses are very likely to yield addi-
tional compositions with close to uniform class distribu-

tions. The newly generated compositions enter then into
the Bayesian network together with the compositions from
before to refine the categorization hypothesis.

The learning of relevant compositions is in the spirit of
[21]. However, in this contribution we follow an improved
learning strategy. Moreover, the approach differs from the
one by Opelt et al. in [23] in that a uniform probabilistic
model is used to determine the relevance of compositions.
In addition, our system learns to build a hierarchy of com-
positions and performs feature sharing already on the lowest
level of atomic parts.

3.1. A Shared Representation of Atomic Composi-
tional Parts

The features representing the atomic parts of the compo-
sitional hierarchy should exhibit (i) good localization, (ii)
robustness to local image changes, (iii) low dimensionality,
and (iv) they should be shareable among the different ob-
ject categories. Localized feature histograms [20] have been
shown to provide a satisfactory trade-off between these re-
quirements [21]. Let us therefore give a brief summary of
these features: At salient image locations, which are de-
tected by a scale invariant version of the Harris interest point
detector [18], quadratic patches of size 20 × 20 pixels are
extracted. Each patch is divided up into four equally sized
subpatches with locations fixed relative to the patch center.
In each of these subwindows marginal histograms over edge
orientation and edge strength are computed (allocating four
bins to each of them). Furthermore, an eight bin color his-
togram over all subpatches is extracted. All histograms are
then combined in a common feature vector ei.

By performing a k-means clustering on all feature vec-
tors detected in the training data a k = 200 dimensional
codebook is assembled. For increased robustness of the rep-
resentation, each feature is described by a Gibbs distribution
over the codebook rather than by the closest codebook en-
try: Let dν(ei) denote the squared Euclidean distance of a
measured feature ei to a centroid aν . The local descriptor is
then represented by the following distribution of its cluster
assignment random variable Fi,

P (Fi = ν|ei) :=
exp (−dν(ei))∑
ν exp (−dν(ei))

. (1)

3.2. Composition Candidates

One approach to obtaining category specific composi-
tions of parts is to combine a set of grouping laws in a care-
fully designed, complex grouping algorithm (e.g. [22]). In
this paper we do however follow the idea of [21] and form
a large number of candidate compositions using a simple
proximity based grouping and remove all irrelevant ones
afterwards. Therefore, a learning algorithm can automati-



cally carry out the tedious task of retrieving relevant com-
positions, as will be shown in Section 3.4.

From all image patches that have been extracted as out-
lined in Section 3.1, a subset of 120 is randomly selected.
Each of these parts is then grouped with the parts in its local
neighborhood. We have extracted compositions with vari-
ous neighborhood sizes to be less prone to scale changes. A
validation has however shown that for the Caltech-101 im-
age database most of the relevant compositions originated
from a single grouping radius (30 pixel). This seems rea-
sonable as most objects show characteristic compositions
(such as rudders of airplanes) on this scale (see Figure 4).

All the constituent parts of a composition are then com-
bined and a histogram over the part codebook is estab-
lished. Therefore, a composition is represented as a mix-
ture over the distributions of its parts, Eq. (1). Let Γj =
{e1, . . . , em} denote the grouping of parts represented by
features e1, . . . , em. The composition is then represented
by the random variable Gj which is a bag of features,
i.e. its value gj is a multivariate distribution over the k-
dimensional feature codebook

gj ∝
m∑

i=1

(
P (Fi = 1|ei), . . . , P (Fi = k|ei)

)T

. (2)

Each of the k dimensions is independently standardized to
zero mean and unit variance across the whole training set.
This mixture model exhibits the favorable property of ro-
bustness with respect to variations in the individual parts.

3.3. Using Compositions for Object Localization

Subsequently, all composition candidates gj and the
scene context gI are used to obtain a first estimate of the
object center. gI captures the context of the scene by rep-
resenting the co-occurrence of all compositions that are
present in an image I . Therefore, we use a bag of com-
positions which is a mixture of all the composition distri-
butions, i.e. gI ∝

∑
j gj . To determine the object location

x, the positions xj of all compositions gj are considered as
proposed in [21]. Moreover, c ∈ L denotes a category label
and L is the set of all labels. The position of the object cen-
ter is then estimated by weighting the contribution of each
composition with the probability that it should be observed

x =

∑
j xj

∑
c∈L p(gj |c,gI) P (c|gI)∑

j,c∈L p(gj |c,gI) P (c|gI)
. (3)

The first distribution is estimated using Parzen windows and
the second one using nonlinear kernel discriminant analy-
sis (NKDA) [24]. NKDA uses probabilistic two-class ker-
nel classifiers and performs pairwise coupling to solve the
multi-class problem. In the training phase, when the true
category label is available for images, the second sum re-
duces to the true category c and the distribution over cate-
gories degenerates to a discrete Dirac distribution.

An evaluation on the Caltech-101 database shows that
the estimate of the object center in (3) deviates from the true
center (taking the center of the object bounding box from
hand annotations) by 8.8± 3.8% of the bounding box diag-
onal (averaged over all categories). This is roughly the size
of the atomic images patches and, therefore, exact enough
to couple compositions in the compositional shape model.

3.4. Learning Relevant Compositions of Parts

Subsequently, we present an approach that automatically
learns to retrieve those compositions which are relevant to
distinguish a category from the rest. This sampling is valu-
able for both training and recognition as it discards distract-
ing compositions such as irrelevant background clutter. We
present a Bayesian criterion that defines what relevant com-
positions are and we show how they can be learned in the
training phase. However, to learn the relevant compositions
for category c we first need a set of irrelevant compositions
as a negative set. As there is no proper background set avail-
able, we take a random sample of compositions from all
images of all other categories.

Adopting the Bayesian view point, a composition gj is
relevant for representing objects of some category c if it has
a high likelihood p(gj |χc). The indicator function χc is
defined by χc = 1 iff gj is from an image I of category c,

χc(I) :=

{
1, I shows an object of category c,

0, otherwise .
(4)

Bayes’ theorem implies that

P (χc|gj) =
p(gj |χc) P (χc)

p(gj)
. (5)

Since a priori all categories should be equally likely, P (χc)
can be dropped and we obtain for the likelihood

p(gj |χc) ∝ P (χc|gj) p(gj) . (6)

Now we also incorporate the estimate of the object center x
from Section 3.3 and the position xj of the composition,

p(gj |χc,xj ,x) = p(gj |χc, Sj = x− xj) (7)

∝ P (χc|gj , Sj = x− xj)
× p(gj |Sj = x− xj) .

(8)

Here the relative position of a composition with respect to
the object center is represented by the shift sj = x − xj .
We therefore exploit the fact that compositions are not de-
pendent on their absolute position in an image but that their
probability only depends on their shifts relative to the ob-
ject center. In Equation (6) as well as in (8), the relevance
of compositions factorizes into two distributions. The first



one captures the discriminative power of gj , whereas the
second indicates how reliably it can be detected. To avoid
density estimation of p(gj) and to render learning of com-
positions less prone to overfitting we choose an approach
based on cross-validation (see Figure 2). The idea is to
learn the posterior distribution P (χc|gj , sj) on one part of
the training data and use it to predict the relevance of com-
positions in the other part. Unfavorable compositions with
low prior p(gj |sj) have a low probability to also appear in
the validation set. As a consequence, validation prevents
the learning algorithm from overfitting to the compositions
extracted from the training set. Splitting up the set of train-
ing images for category c into m subsets yields m rounds of
cross-validation. In each round the posterior is estimated on
all compositions from m−1 image subsets against the set of
irrelevant compositions. We solve this two-class classifica-
tion task using NKDA. The classifier is then used to predict
the relevant compositions from the remaining validation set.
By computing the distance to the separating hyperplane of
the kernel classifier, we can also estimate the probability
that a composition is relevant. These estimates yield a rank-
ing of compositions in each validation image and we retain
the top 50% from an image. Section 4.2 presents a visual-
ization of the learned compositions.

3.5. Learning Compositions of Compositions

Direct dependencies between compositions can be incor-
porated by learning groupings of compositions. Therefore,
random tuples of compositions gk, gl are considered and
relations rkl between them are measured (currently we only
use the distance vector, i.e. rkl = xk −xl). Learning which
compositions of compositions are particularly relevant pro-
ceeds along the lines of Section 3.4. We only have to adapt
the relevance score (6) leading to

p(gk,gl, rkl|χc) ∝ P (χc|gk,gl, rkl) p(gk,gl, rkl) . (9)

The new posterior of the category indicator function
P (χc|gk,gl, rkl) is then plugged into the learning algo-
rithm derived in Section 3.4 and illustrated in Figure 2.

3.6. Compositional Shape Model for Binding Com-
positions

Object recognition in novel test images (see Figure 1)
proceeds by forming candidate compositions as described
above and by selecting the most relevant candidates for each
potential category using the classifier of Section 3.4. Based
on this set R1 of relevant compositions gj , the object is lo-
calized using (3). Subsequently, all compositions and the
context descriptor gI from Section 3.3 enter into an ex-
tended version of the compositional shape model [21] (see
Figure 3) to yield a joint hypothesis of the object category

G
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I
X
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rkl GlGk

Figure 3. Bayesian network
that couples compositions,
shape, and image catego-
rization. Shaded nodes de-
note evidence variables.

c ∈ L. This initial hypothesis is given by the posterior

P (c|gI ,x, {gj ,xj}j∈R1) (10)

and will be derived below. For the 10 most likely cate-
gories, a set R2 of compositions of compositions is formed
by means of a top-down grouping: Random candidates are
drawn from the image and those which are not relevant
(cf. Section 3.5) for one of these 10 categories are dis-
carded. Therefore, the initial hypothesis from (10) controls
the grouping of higher order compositions. The category
posterior of all compositions can then be derived by ap-
plying Bayes’ rule and exploiting the conditional indepen-
dences expressed in the graphical model of Figure 3,

P
(
c
∣∣gI ,x, {gj ,xj}j∈R1 , {gk,gl, rkl}<k,l>∈R2

)
=

p
(
{gj ,xj}j |x, c

)
p
(
{gk,gl, rkl}<k,l>|x, c

)
p
(
gI |x, c

)
p
(
{gj ,xj}j , {gk,gl, rkl}<k,l>,gI |x

)
× P

(
c|x

)
. (11)

Now we can neglect the evidence in the denominator as it
is independent of c. Again we exploit the conditional inde-
pendence between compositions conditioned on c and x,

. . . ∝ P
(
c|x

)
· p

(
gI |x, c

)
×

∏
j∈R1

p
(
gj ,xj |x, c

)
×

∏
<k,l>∈R2

p
(
gk,gl, rkl|x, c

)
.

(12)

Applying Bayes’ rule to the likelihoods yields

· · · = P
(
c,gI |x

)
×

∏
j∈R1

P
(
c|x,gj ,xj

)
· p

(
gj ,xj |x

)
p
(
c|x

)
×

∏
<k,l>∈R2

P
(
c|x,gk,gl, rkl

)
· p

(
gk,gl, rkl|x

)
p
(
c|x

) . (13)

Neglecting factors that are independent of c and exploiting
the fact that object categories are independent of object lo-
cation yields

. . . ∝ exp
[
lnP

(
c|gI

)
+

∑
j∈R1

lnP
(
c|gj , Sj = x− xj

)
+

∑
<k,l>∈R2

lnP
(
c|gk,gl, rkl

)]
.

(14)



The first term represents scene context, the second shape
based on compositions, and the third relations between ob-
ject components. The last two distributions are estimated
with NKDA on the training data, whereas the first one has
already been computed for (3). This model does not only
recognize an object, but it also returns a confidence in this
prediction.

4. Evaluation of the Compositional Approach

4.1. Results on Caltech-101

The Caltech-101 image database [6] consists of 101 ob-
ject categories and an additional background class. It con-
tains approximately 30 to 800 images per category which
range from line drawings to photos with clutter. The large
intra-category variations in this database render the catego-
rization of images a challenging task. However, it features
only limited variations in pose. For evaluation we use the
standard experimental setup, namely, we train on 30 sam-
ples per class and test on the rest. We follow the common
practice of averaging retrieval rates per class to avoid a bias
to the easier classes with more samples. Moreover, 5-fold
cross-validation is used to obtain error bars, i.e. the same al-
gorithm is run on 5 different splits of the data into training
and test set.

To evaluate the gain of our compositional approach,
we restrict the categorization system to the bag represen-
tation gI in a baseline experiment. Recognition is then
based on maximizing P (c|gI). This model discards the
learned compositional structure and achieves a retrieval rate
of 35.3 ± 0.8%. In contrast to this, the full compositional
model performs at 58.8± 0.9%. Recently we have ex-
tended the model to incorporate multiple scales by addition-
ally establishing compositions of atomic parts from half and
a fourth of the original image scale. This multi-scale exten-
sion has increased retrieval rate to 61.3± 0.9%. Table 1
gives an overview over the state of the art. Note that the
top ranked methods exploit the peculiarity of this specific
database that the spatial structure of objects is limited in its
variation with respect to the image, e.g. [15] split the image
into a regular grid and concatenate the individual descrip-
tors to a joint one. In contrast to this, our approach aims at
learning the compositional structure of objects.1

[26] [15] [11] [19] [22]
66.2± 0.5 64.6± 0.8 58.2 56 53.0± 0.5

Table 1. Retrieval rates (in percentage) of current approaches on
the Caltech-101 database using 30 training images per category.

1Caltech-256: A preliminary experiment on the newly released
Caltech-256 database [12] (similar in style to Caltech-101 but consisting
of 256 object categories and a class for clutter) achieved 12% retrieval rate
for 5 training images per category compared with roughly 18% reported
by Griffin et al. using the method from [15].

a)

b)

c)

d)

e)

f)
Figure 4. Clustering of relevant compositions. For each category,
the two centroids with highest relevance are illustrated by visual-
izing the closest compositions to that prototype. a) airplanes, b)
bass, c) crayfish, d) dragonfly, e) faces, and f) hawksbill.

In terms of computational cost, training our algorithm on
roughly 3000 and testing on 6000 Caltech-101 images takes
about 15 hours on an ordinary PC. To our knowledge this is
a competitive speed for a structured object model. More-
over, restricting the localized feature histograms to only
grayscale decreases the retrieval rate by roughly 1.5%.

4.2. Analyzing the Learning of Relevant Composi-
tions

The following experiment analyzes the learning of rel-
evant compositions. Therefore, all compositions from the
training data that have been predicted to be relevant for a
category c are clustered. The centroids that contain com-
positions with highest relevance (averaged over all cluster
members) are presented in Figure 4.

4.3. Sampling Compositions Using the Generative
Model

During recognition, inference propagates information
from image features over compositions to an object cate-



a) b)
Figure 5. Compositional image puzzles obtained by sampling
compositions for a) grand piano and b) ferry. Given the position of
the image center and a category label, compositions are sampled
from the generative model. Image patches corresponding to the
inferred compositions are then displayed.

gory label. However, the graphical model from Figure 3
can also be used in a generative mode: Given object cat-
egory c and object position x, compositions and, finally,
image patches can be inferred. To obtain the image repre-
sentation in a region around xj , compositions gj have to be
sampled from the likelihood

p
(
gj |c,x,xj

)
=

P
(
c|gj ,x− xj

)
· p

(
gj |x− xj

)
P

(
c|x,xj

) . (15)

The denominator can be dropped since c is an evidence
variable in this experiment. Moreover, all compositions
that are established in the training images using the ap-
proach from Section 3.2 are distributed according to the
composition prior gj ∼ p(gj |x − xj). Compositions can
therefore be sampled by evaluating the category posterior
P (c|gj ,x− xj) (which has been learned for (14)) on com-
positions of the training data,

p
(
gj |c,x,xj

)
∝ P

(
c|gj ,x− xj

)∣∣
gj from training . (16)

The resulting compositional image puzzles in Figure 5 pro-
vide insights into this generative process. Here composi-
tions have been inferred at points xj on a regular grid (5
compositions have been drawn at each point). The image
patches from the training image that constituted a specific
composition are then displayed (the sampled compositions
can shift a short distance by performing gradient ascent on
the likelihood (16) over xj in a local neighborhood). This
experiment reveals that the composition system has learned
relevant compositions and their spatial relation to the object,
and that it can be used as a generative model for inferring
compositional representations.

4.4. Inferring Missing Object Components

The compositions of compositions which have been in-
troduced in Section 3.5 can be used to infer missing compo-

a) b)
Figure 6. Inferring compositions for a) a cougar face and b) an
elephant. Given only the composition displayed in the box at the
bottom left and the true category label, image patches correspond-
ing to the inferred compositions are shown. The location of the
conditioned composition is marked by a cross in the inferred im-
age.

sitions of an object. Given a composition gk the remainder
of an object can be inferred by drawing compositions gj

from the likelihood

p
(
gj |gk,xk, c,xj

)
=

P
(
c|gj ,gk, rjk

)
· p

(
gj |gk, rjk

)
P

(
c|gk,xk,xj

) .

(17)
Following the line of reasoning from Section 4.3 we obtain

p
(
gj |gk,xk, c,xj

)
∝ P

(
c|gj ,gk, rjk

)∣∣
gj from training .(18)

In Figure 6, a single composition is fixed together with the
object category label. This information is used to infer a
maximum likelihood solution for the remainder of the ob-
ject on the basis of compositions derived from the train-
ing set. As already done in Section 4.3, compositions are
shifted in a local neighborhood using gradient ascent to re-
duce the artifacts that result from sampling on a regular
grid. The spatial structure of objects, which can be ob-
served in the reconstructions, demonstrates that the compo-
sitional model has learned characteristic relationships be-
tween compositions.

4.5. Towards Learning Category Level Segmenta-
tion from Unsegmented Images

Subsequently, the relevance of individual compositions
for categorizing a test image is evaluated. Therefore the
category posterior of the true category,

P
(
c
∣∣gI ,x,gj ,xj ,gk,gl, rkl

)∣∣
c=True Category , (19)

is computed for individual pairs of compositions. In Figure
7 the resulting probability is then encoded in the opaqueness
of the underlying image parts, i.e. alpha blending is used for
visualization of the category relevance of compositions.

5. Discussion
In this contribution, we have presented a composition

system that automatically learns the compositional structure



a) b)

c) d)
Figure 7. Illustration of compositional relevance. The opaqueness
encodes the category posterior evaluated at compositions. The vi-
sualization shows which image patches contributed to recognizing
the object.

of visual objects. The induced representation is based on a
shared codebook of local parts. The semantic gap between
these low level features and high level object recognition
is bridged by establishing intermediate compositions. We
have taken a Bayesian approach to derive a criterion for the
relevance of compositions. A feasible learning algorithm
has then been presented that is controlled by this criterion.
Moreover, compositions have been represented as probabil-
ity distributions over their constituents and all compositions
have been integrated in a Bayesian network. Recognition
is then formulated as an inference problem in this statis-
tical model. The experimental validation has shown that
our composition system is successful in learning the com-
positional structure of objects and that it shows competitive
recognition performance.
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