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Semi-global matching, originally introduced in the context of dense stereo,
is a very successful heuristic to minimize the energy of a pairwise multi-label
Markov Random Field defined on a grid. We offer the first principled expla-
nation of this empirically successful algorithm, and clarify its exact relation to
belief propagation and tree-reweighted message passing. One outcome of this
new connection is an uncertainty measure for the MAP label of a variable in a
Markov Random Field.

1 Introduction

Markov Random Fields (MRFs) have become a staple of computer vision. Prac-
titioners appreciate the ability to provoke nonlocal effects by specifying local
interactions only; and theoreticians like how easy it is to specify valid nontrivial
distributions over high-dimensional entities. Unfortunately, exact maximum a
posteriori (MAP) inference is tractable only for special cases. Important exam-
ples include binary1 MRFs with only submodular potentials (by minimum st-cut
[10]), multilabel MRFs with potentials that are convex over a linearly ordered
label set (minimum st-cut [7]), tree-shaped MRFs (by dynamic programming),
Gaussian MRFs (by solving a linear system) and non-submodular binary pair-
wise MRFs without unary terms defined over planar graphs (by perfect matching
[15]). Many real-world problems have been cast as (and sometimes strong-armed
to match) one of these special cases. Inference in more general MRFs, such
as non-tree shaped multilabel MRFs, is NP-hard and heuristics such as alpha-
expansion [1], damped loopy belief propagation [4] or tree-reweighted message
passing [17, 9] are often used.

One heuristic that has become very influential, especially in the context of
dense disparity from stereo, is Semi-Global Matching (SGM). It is trivial to
implement, extremely fast, and has ranked highly in the Middlebury [16], and the
KITTI benchmarks [3] for several years. While intuitive, this successful heuristic
has not found a theoretical characterization to date.

The present work establishes, for the first time, the precise relation of SGM
to non-loopy belief propagation on a subgraph of the full MRF, and to tree-
reweighted message passing with parallel tree-based updates [17]. This allows
SGM to be viewed in the light of the rich literature on these techniques, . Based
on these insights, we propose a lower bound based uncertainty measure that may
benefit downstream processing.

1 in the sense that nodes can take one of two possible labels
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2 Notation and Background

2.1 Markov Random Fields

Computer Vision problems are often cast in terms of MRFs. Throughout this
paper we focus on pairwise MRFs, defined on an undirected graph G=(V, E).
Each node p ∈ V is a random variable which can take values dp from a finite set
of labels Σ. Here we assume that all variables have the same label space. Then a
labeling D ∈ Σ|V | is an assignment of one label for each variable. The best label-
ing D∗ corresponds to the solution with the lowest energy argminD∈Σ|V | E(D),
with

E(D) =
∑
p∈V

ϕp(dp) +
∑

(p,q)∈E

ϕp,q(dp, dq) (1)

where ϕp(·) is a unary term defined over the node p, and ϕp,q(·, ·) is a pairwise
term defined over the edge (p,q).2

2.2 Min-Sum Belief Propagation (BP)

Min-sum Belief Propagation [11, 18] is an efficient dynamic programming algo-
rithm for exact energy minimization on MRFs whose underlying graph is a tree.
It calculates each node’s energy min marginal (EMM), or belief βp(dp), by send-
ing messages along the edges. As soon as node p has received messages from all
its neighbors but node q, it can send the following message to q:

mp→q(dq) = min
dp∈Σ

(
ϕ(dp) + ϕ(dp, dq) +

∑
(k,p)∈E,k6=q

mk→p(dp)
)

(2)

The belief for each node is calculated from all the messages entering into it:

βp(dp) = ϕ(dp) +
∑

(k,p)∈E

mk→p(dp) (3)

If we consider a certain node r to be the root of the tree, then the BP
algorithm can be divided into 2 parts. In the inward pass only the messages
that are flowing inwards from the leaves towards r are calculated. Then, the rest
are calculated in the outward pass. To calculate r’s own belief, βr(dr), only the
inward pass is necessary.

The belief βp(·) is also known as node p’s EMM which means βp(`) is the
energy of the best labeling where node p takes label `.

2 We will drop the indices in ϕ(dp) and ϕ(dp, dq) as they are clear from the function
inputs.
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2.3 Tree-Reweighted Message-Passing (TRW-T)

Tree-reweighted message-passing with tree-based updates (TRW-T [17]) is an
approximate energy minimization algorithm for general MRFs. It works by it-
eratively decomposing the original MRF into a convex sum of tree MRFs, op-
timizing each tree separately, and recombining the results. The result of each
iteration is a reparametrization of the original MRF, which is a different MRF
that has the same energy function E, but different unary and pairwise terms, ϕ.

TRW-T can be applied to an MRF with an underlying graph G = (V, E),
potentials ϕ, and a set of trees {T 1, . . . , TNT } which are all sub-graphs of G,
such that each node and edge in G belongs to at least one tree3. Each tree
T i = (V i, E i) has a weight ρi so that

∑NT
i=1 ρ

i=1. The node weight ρp is defined
as the sum of weights of all trees that contain node p. Edge weights ρpq are
defined similarly.

In each iteration of TRW-T, the following steps are performed:

1. An MRF is defined for each tree by defining tree unary and pairwise terms
for each node and edge, by:

ϕi(dp) =
1

ρp
ϕG(dp), ϕi(dp, dq) =

1

ρpq
ϕG(dp, dq) (4)

where by ϕi we denote the unary and pairwise terms for the tree T i, and by
ϕG we denote the terms of the full MRF.

2. The min-sum belief propagation algorithm is performed on each tree T i sep-
arately, generating an EMM βi(p) for each node p. A reparametrization of

the tree MRF is defined, where the unary terms are: ϕ̃ip , βi(p).
3. The reparametrizations of the tree MRFs are aggregated to produce a re-

parametrization for the graph-MRF. For the unary terms, this is done by:

ϕ̃Gp =
∑

i:p∈V i

ρiϕ̃ip (5)

It is hoped, though not guaranteed, that repeated iterations of this process will

flow potential from the entire graph into the global unary terms ϕ̃Gp , and turning
them into EMMs. The final label map can then be found by choosing, for each
node, the label that minimizes its unary term:

d∗p = argmin
dp∈Σ

ϕ̃Gp (dp) (6)

It is important to note that there are no convergence assurances for TRW-T.
This means that the energy of the labeling that is produced after each iteration
is not guaranteed to be lower, or even equal, to the energy of the previous
labeling. Kolmogorov’s TRW-S [9] improves upon TRW-T and provides certain
convergence guarantees, but can not be related to SGM directly.

3 In the presentation of the algorithm in [17] spanning trees are used, but as mentioned
in [9], this is not necessary
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Tree Agreement and Labeling Quality Estimation From the description
of the TRW-T process it follows that the graph-MRF’s energy function EG is a
convex combination of the tree energy functions Ei, i.e. EG(D) =

∑NT
i=1 ρ

iEi(D).
Recall we’re interested in MAP inference, i.e. finding the labeling with the min-
imal energy:

min
D∈Σ|V |

EG(D) = min
D∈Σ|V |

NT∑
i=1

ρiEi(D) ≥
NT∑
i=1

min
Di∈Σ|V |

ρiEi(Di)︸ ︷︷ ︸
ELB

(7)

We get a lower bound on the minimum graph energy by allowing each tree energy
to be minimized separately. TRW-T iteratively computes this lower bound, de-
noted by ELB , by running BP on each tree. Notice that the inequality becomes
equality iff the best labelings of all trees agree on the label assigned to every
node. If this occurs, TRW-T can stop and the labeling that is found is indeed
the best labeling D∗. The lower bound can be used for estimating how good a
given labeling D is. For any labeling D it holds that E(D) ≥ E(D∗). From this
it follows that E(D) ≥ ELB . If the relative difference between E(D) and ELB is
small, that could indicate that D is a good labeling. TRW’s reparametrizations
aim to adjust the unaries such that ELB approaches E(D∗)

2.4 Semi-Global Matching (SGM)

As part of the Semi-Global Matching algorithm [5] for dense stereo matching,
Hirschmüller presented an efficient algorithm for approximate energy minimiza-
tion for a grid-shaped pairwise MRF. It divides the grid-shaped problem into
multiple one-dimensional problems defined on scanlines, which are straight lines
that run through the image in multiple directions. Inference in each scanline is
performed separately, and the results are then combined to produce a labeling
(in stereo: disparity map) for the image.

We denote by p=(x, y) the location of a pixel, and by r=(dx, dy) the direction
of a scanline. SGM’s processing of a scanline consists of the following recursive
calculation:

Lr(dp) = ϕ(dp) + min
dp−r∈Σ

{
Lr(dp−r) + ϕ(dp−r, dp)

}
(8)

We denote the set of all scanline directions by R, and its size by |R|, which is
typically 8 or 16. The aggregation of scanline results is accomplished by simple
summation:

S(dp) =
∑
r∈R

Lr(dp) (9)

Finally, a pixel labeling is obtained by defining:

dSGM
p = argmin

dp∈Σ
S(dp) (10)
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Directed scanlines

4 undirected lines without shadow

(a) The Union Jack, (b) All the scanlines that go (c) The corresponding
a tree-shaped graph through the red pixel p Undirected Lines

(in 8 directions)

Fig. 1. The Union Jack, its 8 scanlines and 4 Undirected Lines. When performing
inference for the red pixel, SGM ignores all the greyed-out nodes and edges of the
original MRF.

3 Synthesis

The qualitative nature of the connection between SGM and BP as well as TRW-
T may already have emerged in the foregoing. We now make it quantitative.

3.1 Relation between SGM and BP on Union Jack

Claim 1: S(dp), the effective label costs computed at a pixel p by 8-
directional SGM are identical to the min-marginals computed on a Union
Jack (see below) centered at pixel p, up to (easily correctable) over-counting
of the unary term at p.

SGM’s treatment of each scanline is similar to a forward pass of min-sum belief
propagation (BP) on it, flowing messages from the first pixel on the scanline to
the last. To be exact, SGM’s processing of a scanline amounts to the Forward
Algorithm [13], a close relative of min-sum BP. 4 The relation between the two
algoriths is given by:

m(p−r)→p(dp) = Lr(dp)− ϕ(dp) (11)

In this section we focus on the common case where SGM is used with scanlines
in 8 directions. For each pixel p we define the Union Jack of p as the union of
all scanlines that pass through p. The Union Jack is a tree with 8 branches that

4 In terms of message passing on a factor graph , one variant represents factor-to-node
messages, while the other gives node-to-factor messages
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meet only at p itself, see Figure 1(a). By performing the inward pass of BP on
the Union Jack, we can calculate β(dp), the EMM for p on its Union Jack :

β(dp) = ϕ(dp) +
∑
r∈R

m(p−r)→p(dp) (12)

We’ll next show that the function S(dp) calculated by SGM for pixel p is
almost identical to β(dp). We note that each message m(p−r)→p(dp) is calculated
from a single scanline, on which equation (11) applies:

β(dp) = ϕ(dp) +
∑
r∈R

(
Lr(dp)− ϕ(dp)

)
=
(∑

r∈R
Lr(dp)

)
− (|R|−1)ϕ(dp) = S(dp)− 7ϕ(dp) (13)

From the last line we can see that the function S(dp) that SGM calculates
for a pixel p is similar to p’s EMM calculated on its Union Jack. The difference
is that SGM over-counts the unary term ϕ(dp) 7 times. This can easily be fixed
by adding a final subtraction stage to SGM.

In summary, it turns out that (over-counting corrected) SGM assigns to each
pixel the label it would take in the best labeling of its Union Jack. This can be
seen as an approximation of the label it would take in the optimal labeling of
the entire graph. Unfortunately, finding that label would require calculating the
EMM of each pixel relative to the entire graph, which generally is intractable.

Performing BP on each Union Jack separately would be inefficient, as many
calculations are repeated in different Union Jacks. SGM avoids this by reusing
the messages Lr computed on each scanline for all Union Jacks that contain it.

3.2 Relation between SGM and TRW-T

Claim 2: Performing over-counting corrected SGM on an MRF with energy

E =
∑
p∈V

ϕ(dp) +
∑

(p,q)∈E

ϕ(dp, dq) (14)

is equivalent to performing one iteration of TRW-T on an MRF with energy

Ẽ =
∑
p∈V

ϕ(dp) + C0

∑
(p,q)∈E

ϕ(dp, dq) (15)

where C0 > 0 is a constant, e.g. for 8-directional SGM, C0 = 1
4

The SGM algorithm closely resembles a single iteration of TRW-T. In both, we
perform BP on trees, and then aggregate the results into an approximate belief
for each pixel. Next we choose for each pixel the label that minimizes its own
approximate belief.
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Where SGM differs significantly from TRW-T is in the way the graph MRF’s
energy terms are used to define the tree MRF terms. SGM simply copies the
terms, while TRW-T weighs them as to make the graph terms a convex sum of
the tree terms (equations (4)). This reveals that SGM is not directly equivalent
to a single iteration of TRW-T on the same MRF. Instead, performing SGM on
a specific MRF is equivalent to performing one iteration of TRW-T on an MRF
whose pairwise terms are multiplied by a constant C0 (equation (15)).

At first glance, the conclusion from claim 2 seems to be that SGM is in
fact different from TRW-T, since applying both algorithms to the same MRF
will generally produce different results. However, in a real-life setting this is not
necessarily the case. In many application scenarios, the energy function is defined
as E = EData+λESmoothness, and λ is learned from a training set. In these cases,
the difference between the two algorithms will disappear, since a different value
of λ will be learned for each, in such a way that λTRW = C0λSGM .

To fully define TRW-T we must specify the set of trees T that we use for
TRW-T, and their weights ρ. We define T to be the set of SGM’s Undirected
Lines, with equal weights ρ0 for all trees. An Undirected Line (UL) is simply a
scanline, except no direction of traversal is defined. Each UL corresponds to two
opposite-directed scanlines, r and r (see figure 1(b)-(c)). Using equation (11),
we can show that performing BP on the UL is very closely related to running
SGM on both r and r:

βr(dp) + ϕ(dp) = Lr(dp) + Lr(dp) (16)

where βr(dp) is the belief calculated for pixel p by running BP on the UL
corresponding to scanline r. SGM’s output S(dp) can be explained as a sum
of the beliefs calculated for pixel p on each UL passing through it, with some
over-counting of the unary term:

S(dp) =
∑
r∈R

Lr(dp) =
∑

r∈R+

βr(dp)︸ ︷︷ ︸
S̃(dp)

+
|R|
2
ϕ(dp) (17)

where R+ is the group of ULs, and S̃(dp) is the output of an over-counting
corrected version of SGM.
Proof of Claim 2: We wish to show that the labeling created by SGM for
an MRF with energy E (equation (14)) is the same as the labeling created

by one iteration of TRW-T on an MRF with energy Ẽ (equation (15)). Let

us first introduce a scale factor C1 > 0 to define Ê = C1Ẽ. Ê and Ẽ have
the same labeling after an iteration of TRW-T, as the argmin is unaffected by
scaling (equation (6)). We will now show how to choose C0 and C1 to make the
tree MRFs equal. Note that SGM simply copies the potentials ϕ = ϕG, whereas

TRW-T weighs them according to equation (4). Here ρp = ρ0
|R|
2 , and ρpq = ρ0ε,

where ε is the number of ULs in which each edge appears (for 8 directional SGM,
ε = 1).
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The unary potential ϕ̂i(dp) in a tree of TRW-T applied to Ê is then given
as

ϕ̂i(dp) =
1

ρp
ϕ̂G(dp) =

1

ρp
C1ϕ

G(dp). (18)

Thus, to make ϕ̂i(dp) = ϕ(dp) hold, we need to choose C1 = ρp = ρ0
|R|
2 . This

leaves C0 to be determined by the pairwise potential:

ϕ̂i(dp, dq) =
1

ρpq
C0ϕ̂

G(dp, dq) =
1

ρpq
C1C0ϕ

G(dp, dq) (19)

=
ρ0
|R|
2

ρ0ε
C0ϕ

G(dp, dq) =
|R|
2ε
C0ϕ

G(dp, dq) (20)

Again, if we want the equality to hold, we have to set C0 = 2ε
|R| . For 8 directional

SGM this yields C0 = 1
4 .

We have now shown that, given C0 and C1 as above, all tree MRFs are equal
for TRW-T (Ê) and SGM (E). The next steps of both algorithms are the same:

1. Peform BP on all trees
2. Sum the beliefs from all scanlines that pass through a pixel (TRW-T equa-

tion (5), SGM equation (17))
3. Choose the label that minimizes each belief (TRW-T equation (6), SGM

equation (10))

Since the same steps are applied to the same trees, the final labeling is also the
same for E and Ê, and thus also for Ẽ. ut

Summing up, SGM amounts to the first iteration of TRW-T on a MRF with
pairwise energies that have been scaled by a constant and known factor.

4 Implications

Belief propagation was one of the earliest techniques for performing inference in
graphical models. Comprehensive literature on its properties exists. Given the
formal link that we presented in the previous section, one can now draw from
this vast repertoire when examining or improving on SGM. We pointed out that
SGM can be treated like a first step of TRW-T, which uses BP at its core.
We now exploit the lower bound computed by TRW-T to construct a per pixel
uncertainty measure for the depth map.

We propose a novel uncertainty measure for SGM that is based on SGM’s
relation to TRW-T. For this we interpret the difference between sum of local
optima (lower bound) and global optimum as scanline disagreement.

Many uncertainty measures have been presented in the past. For instance
[2, 12] model uncertainty based on the image acquisition process. Other eval-
uations focus on measures that only look at the resulting energy distribution
by disparity per pixel [6]. While most of the latter examine the cost curve (of
cost vs. disparity) around the optimal disparity, they cannot take into account
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how this curve was computed as they do not assume any knowledge about the
optimization technique. The evaluations in [6] show that none of the different
measures is a clear favorite.

Kohli on the other hand derives a confidence measure from the min-marginals
of an MRF optimization using dynamic graph cuts [8]. His measure σdp is given
by the ratio of the current max-marginal and the sum of all max-marginals for
a certain node. For this ratio, transforming from EMMs to max-marginals is
feasible as the partition function cancels out.

σdp =
exp(−βp(dp))∑

d̃p∈Σ exp(−βp(d̃p))
(21)

In contrast, our proposed measure depends on the Union Jack optimal solution
given by SGM, and its lower bound found by applying TRW-T. For this we
decompose the Union Jack into eight half scanlines that start at the image bor-
der and end in p. Following TRW-T’s reparametrization for this decomposition
yields equal weights for all trees (lines) ρi = 1

8 . Every node and edge appears
only once, thus ρs = ρst = 1

8 , only the root is replicated in all eight scanlines,
ρp = 1. The energy per half scanline can then be related to the energy EiSGM (D)
computed by SGM as

Ei(D) =
∑
s∈V i

1
ρs
ϕs(ds) +

∑
(s,t)∈Ei

1
ρst
ϕst(ds, dt) (22)

= ϕp(dp) +
∑

s∈V i\p

8ϕs(ds) +
∑

(s,t)∈Ei
8ϕst(ds, dt) (23)

= 8EiSGM (D)− 7ϕp(dp) (24)

According to equation (7), the weighted sum of optimal solutions of the
subproblems now yields a lower bound to the optimal Union Jack energy EUJ :

min
D∈ΣN

EUJ(D) ≥
8∑
i=1

min
Di∈ΣN

ρiEi(Di) =

8∑
i=1

min
Di∈ΣN

(
EiSGM (Di)− 7

8ϕp(dip)
)

(25)

⇒ min
dp∈Σ

(
S(dp) − 7ϕ(dp)

)
≥

8∑
i=1

min
dip∈Σ

(
Li(dip)− 7

8ϕp(dip)
)

(26)

An obvious case when this lower bound is tight, is when all directions choose
the same label dp. This allows us to interpret the difference between the left and
right hand side of (26) as disagreement between the half scanlines that end in
p. Figure 2 shows a qualitative evaluation of the difference between the left and
right hand side for the Tsukuba scene from the Middlebury benchmark [14]. One
would expect the disagreement to be large at object borders which impose depth
discontinuities, but there are also some other uncertain regions in the background
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on the cupboard (see the purple frame). There the untextured material causes
ambiguous disparities, which is nicely highlighted in the uncertainty heat map.

Fig. 2. Left: Cropped Tsukuba image from the Middlebury Benchmark. Center: Heat
map visualization of our proposed uncertainty measure. Right: The uncertainty mea-
sure introduced by Kohli [8].

This difference between sum of scanline optima and Union Jack optimum can
easily be exploited as uncertainty measure. This only incurrs a small overhead of
computing the right hand side of (26) by finding the minimum for each direction
independently, so searching over |Σ| disparities for |R| directions, and aggregat-
ing them. In figure 2 we compare Kohli’s uncertainty, computed from Union Jack
EMMs and transformed to the energy domain 1− log(σ), with our proposed un-
certainty measure. The difference between confident and less confident regions is
much smoother in Kohli’s measure, rendering more parts uncertain, but making
it harder to e.g. point a user or algorithm towards regions to investigate. This
can be explained by the different interpretations of both measures. A low uncer-
tainty in our measure indicates that we cannot find a much better solution in
terms of energy, whereas in Kohli’s measure this means that the distribution of
max-marginals has a high peak at the current label. It is obvious that for SGM
our proposed measure is much easier to interpret.

5 Conclusion

In this work we have derived the formal link between SGM and BP, as well as
TRW-T, allowing for a new interpretation of SGM’s success and affording new
insights. As a specific example, we propose an uncertainty measure for the MAP
labeling of an MRF. This characteristic is based on the energy difference between
the labeling found and a lower bound, and can be computed efficiently alongside
SGM. Such uncertainty measures can be useful for downstream processing of a
MAP result. We envision that these insights may encourage the application of
SGM as a highly efficient, and now also well-motivated, heuristic to new prob-
lems beyond dense stereo matching.
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