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Brain extraction from magnetic resonance imaging (MRI) is crucial for many neuroimaging workflows. Current
methods demonstrate good results on non-enhanced T1-weighted images, but struggle when confronted with
other modalities and pathologically altered tissue. In this paper we present a 3D convolutional deep learning
architecture to address these shortcomings. In contrast to existing methods, we are not limited to non-
enhanced T1w images. When trained appropriately, our approach handles an arbitrary number of modalities in-
cluding contrast-enhanced scans. Its applicability to MRI data, comprising four channels: non-enhanced and
contrast-enhanced T1w, T2w and FLAIR contrasts, is demonstrated on a challenging clinical data set containing
brain tumors (N = 53), where our approach significantly outperforms six commonly used tools with a mean
Dice score of 95.19. Further, the proposedmethod at leastmatches state-of-the-art performance as demonstrated
on three publicly available data sets: IBSR, LPBA40 andOASIS, totaling N=135 volumes. For the IBSR (96.32) and
LPBA40 (96.96) data set the convolutional neuronal network (CNN) obtains the highest average Dice scores,
albeit not being significantly different from the second best performing method. For the OASIS data the second
best Dice (95.02) results are achieved, with no statistical difference in comparison to the best performing tool. For
all data sets the highest average specificity measures are evaluated, whereas the sensitivity displays about
average results. Adjusting the cut-off threshold for generating the binary masks from the CNN's probability output
can be used to increase the sensitivity of the method. Of course, this comes at the cost of a decreased specificity
and has to be decided application specific. Using an optimized GPU implementation predictions can be achieved
in less than one minute. The proposed method may prove useful for large-scale studies and clinical trials.

© 2016 Elsevier Inc. All rights reserved.
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Introduction

Brain Extraction, a.k.a. skull stripping, from magnetic resonance im-
aging (MRI) data is an essential step in many neuroimaging applica-
tions, amongst others surgical planning, cortical structure analysis
(Fischl et al., 1999; Thompson et al., 2001), surface reconstruction
(Tosun et al., 2006) and thickness estimation (MacDonald et al.,
2000), as well as image registration (Klein et al., 2010a; Woods et al.,
1993) and tissue segmentation (de Boer et al., 2010; Menze et al.,
d; nT1w, non-enhanced T1w;
d; FLAIR, fluid attenuated inver-
; MFP, max-fragment-pooling.
f Neuroradiology, Heidelberg

k).
2014; Shattuck et al., 2001; Wang et al., 2010; Zhang et al., 2001; Zhao
et al., 2010). It is desirable to automate this procedure to reduce
human rater variance and eliminate time-consuming manual process-
ing steps that potentially impede not only the analysis, but also the
reproducibility of large-scale (clinical) studies.

It has been shown that several factors affect the outcome ofmethods
devised for removing non-brain tissue. These include imaging artifacts,
different MRI scanners and protocols that in turn lead to contrast and
intensity variations. Further, anatomical variability, as well as age and
the extent of brain atrophy, e.g. due to neurodegeneration, have been
reported as influencing the results of current brain extraction methods
(Fennema-Notestine et al., 2006). The problem becomes even more
severe when considering MR brain scans of pathological conditions
such as brain tumors. The disease and its treatment-related changes,
e.g. resection cavities and radiation effects usually considerably alter
the brain structure. The voxel intensity distribution is impaired either
by the disease itself, for instance due to a large edema, or due to admin-
istration of contrast agent during the examination (Speier et al.,
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2011).This usually leads to a decreased segmentation accuracy of
existing methods.

Histologically the border of the brain is defined at the transition of
myelination from oligodendroglia to Schwann cells. This microscopy
delineation cannot be captured in MR images yet. Thus, under physio-
logical conditions alone, detecting the boundaries of the brain inMR im-
ages is considered a difficult problem (Iglesias et al., 2011; Wang et al.,
2014). This is due to the complex nature of the data that is often of
low contrast and resolution, and contains partial volume effects leading
to ill-defined boundaries. Moreover, the problem itself is not well de-
fined because the “ground truth” (GT) varies based on the guidelines
specified for the manual delineation by experts (Eskildsen et al.,
2012). These include gross differences, such as the decision whether
or not to include the brain stem (Iglesias et al., 2011), but alsomore sub-
tle choices regarding the in- or exclusion of the cerebral sinuses and
what demarcation of sulci depth is appropriate for the study at hand.

Previous work

Myriad methods have been proposed in the last decades (Eskildsen
et al., 2012; Galdames et al., 2012; Iglesias et al., 2011; Rex et al.,
2004; Smith, 2002; Speier et al., 2011; Wang et al., 2014), emphasizing
the important nature of the brain extraction problem that has yet to be
solved satisfactorily in a generic and robust way (for a comprehensive
listing of existing methods please see Eskildsen et al. (2012)). Most
methods work well for deep structures of the brain. The delineation of
the cortical surface, which exhibits a large degree of morphological var-
iability across humans (Rex et al., 2004), is more challenging. Of course,
an even larger variability is introduced by pathological changes, like
multiple sclerosis or brain tumors.

In this study we compare the proposed method to six popular algo-
rithms that are freely available and commonly used for comparison
(Galdames et al., 2012; Iglesias et al., 2011; Wang et al., 2014). The
Brain Extraction Tool2 (BET) is a fast and versatile method that uses a
deformable model (Smith, 2002). In this method a spherical mesh is
initialized at the center of gravity and then expanded towards the sur-
face of the brain. Forces based on local intensity values guide this pro-
cess. Intensity and shape variations related to tumor presence might
hinder the evolution of the mesh (Speier et al., 2011). Nevertheless,
BET performs quite well on these kinds of images.

Another popular method is the Hybrid Watershed Algorithm3

(HWA), combining edge detection with a deformable surface model
that takes atlas-derived shape restrictions into account (Segonne et al.,
2004). This method has problems with data sets containing brain
tumors. The reason is two-fold. Firstly, thewatershed edge detection re-
quires an approximately constant “basin”, i.e. intactwhitematter (WM)
regions, to function properly. This is usually not true for tumor data.
Secondly, the shape restrictions are derived from an atlas of healthy
subjects and do not necessarily hold for more diversified cancerous
data.

3dSkullStrip4 is another software package devoted to skull stripping.
It is a modified version of BET. The modifications are designed to cope
with some known drawbacks of BET, e.g. leakage into the skull and
incorrect inclusion of eyes and ventricles. Furthermore, not only points
inside the surface, but also points lying outside it are used to guide the
evolution of the mesh. Signal alterations due to tumor presence tend
to interfere with the modified pipeline as well.

Brain Surface Extractor5 (BSE) utilizes a pipeline of anisotropic diffu-
sion filtering (Perona and Malik, 1990), Marr-Hildreth (Mexican hat)
edge detection and morphological operations to accomplish the task.
Anisotropic diffusion filtering is an edge-preserving filtering technique
2 Part of FMRIB's Software Library (FSL): http://fsl.fmrib.ox.ac.uk/.
3 Part of the FreeSurfer package: http://freesurfer.net/.
4 Part of the AFNI package: http://afni.nimh.nih.gov/.
5 Part of BrainSuite: http://brainsuite.org/.
that smoothens small gradientswhile preserving strongones. This oper-
ation is supposed to facilitate edge detection; and yet this parameter-
sensitive method struggles if confronted with data of tumor patients
(Speier et al., 2011). For normal images it has been reported that this
technique works better, the higher the quality of the data. Thus, if
quality requirements are met, it is able to achieve results with a high
specificity (Fennema-Notestine et al., 2006).

A more recently published tool is the Robust Learning-Based Brain
Extraction6 (ROBEX) presented by Iglesias et al. (2011). After standard-
izing signal intensities and applying a bias field correction, a discrimina-
tive model is combined with a generative model. This is accomplished
by training a random forest (Breiman, 2001) to detect voxels that are lo-
cated on the brain boundary. The RF prediction is used as a cost function
for fitting a shape model (point distribution model), followed by a re-
finement step that grants small free deformations outside the model.
An extension has been proposed for scans containing brain tumors
(Speier et al., 2011). To this end, an adaptive thresholding algorithm is
employed at the brain boundary to detect resection cavities,
complemented by a Random Walker algorithm that prevents leakage
into the ventricles.

Another contemporary method proposed by Eskildsen et al. (2012)
is entitled Brain Extraction Based on nonlocal Segmentation Technique
(BEaST). This multi-resolution, patched-based framework uses the
sum of squared differences metric to determine a suitable patch from
a library of priors. For this procedure it is important to perform spatial
and intensity normalization of the data (input and prior library).
Further, the library needs to be representative of the given data for the
segmentation to work optimally and therefore should be manually cu-
rated. By design the user is able to add custom priors to the library.
When populating the library appropriately, the method shows state-
of-the art performance for several data sets, amongst others for the
Alzheimer's Disease Neuroimaging Initiative (Mueller et al., 2005).
However, the authors state that “[…] pathologies, such as tumors and
lesions, may impose a problem for the segmentation”.

Most of the existing methods work well on certain datasets, but fail
on others. Except ROBEX (and to some extent BEaST), all the described
methods have numerical parameters. In our experience, to obtain rea-
sonable results for real-world images, as for instance can be found in a
clinical setting, a case-specific parameter tuning is frequently required.
It is also not unlikely that contrast agent (not to speak of tumor images)
either reduces the segmentation accuracy of the enumerated tools or re-
quires labor-intensive parameter tweaking. Another restriction is that
the methods have been designed to primarily work with T1w data. A
notable exception is BET, which can additionally or solely work with
T2w and related (e.g. T2*-, diffusion-weighted) images.
Our approach

Our motivation for devising a novel brain extraction algorithm was
multifaceted. We aimed at establishing a method that requires minimal
to noparameter tuning and still handles images from clinical routine, i.e.
from a wide age range, possibly including (motion) artifacts, contrast
agent and pathologically altered brain tissue. Further, we demanded
that it should work with any single modality or the combination of
several modalities (e.g. T1, T2, T2-FLAIR, etc.) because it seems intuitive
to take all the available information into account if the task is to discrim-
inate between brain and non-brain tissue.

DeepNeural Networks have gainedmore andmore popularity in the
recent past because they achieve state-of-the-art performance formany
applications. For a recent review please see LeCun et al. (2015). Next to
applications like speech and textmining they are especially effective for
image segmentation tasks (Krizhevsky et al., 2012; Long et al., 2015),
and thus seem to be predestined for the given classification problem.
6 http://www.nitrc.org/projects/robex.
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Table 1
CNN architecture details.
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Layer
8

Filter size 4 5 5 5 5 5 5 1
Number
of filters

16 24 28 34 42 50 50 2
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For an impression of what kind of other neuroimaging problems can be
solved by deep learning, please see Plis et al. (2014). One advantage
over other classifiers is that there is no need for humans to design fea-
tures as they are learned from the data during training. This automatic
feature tuning is one reason for their remarkable accuracy.

For our purposes we implemented a 3D Deep Convolutional Neural
Network (CNN). Besides demonstrating its favorable performance on
three publicly available data sets (IBSR (Rohlfing, 2012), LPBA40
(Shattuck et al., 2008) and OASIS (Marcus et al., 2007), comprising a
total of N = 135 brain scans) commonly used for benchmarking of
skull stripping algorithms, we conduct an experiment with our own
data set of recurrent brain tumors (N= 53). Instead of only considering
T1w data, we used four modalities (non-enhanced and contrast-
enhanced T1, T2 and T2-FLAIR) for training and prediction. An expert
generated the ground truth brain masks for this experiment.

Material and methods

Data sets

In total we used N = 188 scans for evaluation. The first data set
IBSR_V2.0 came from the Internet Brain Segmentation Repository7

(IBSR) and consisted of N = 18 nT1w scans (0.94 × 1.5 × 0.94 mm)
from healthy subjects (Rohlfing, 2012). The images were provided
with manual expert segmentations of gray matter and white matter,
whose union served as ground truth for our experiments.

The second data set was taken from the LONI Probabilistic Brain
Atlas project8 and was entitled LPBA40 (Shattuck et al., 2008). It
contained N = 40 nT1w scans (0.86 × 1.5 × 0.86 mm) of healthy sub-
jects. Again, the union of the manually delineated tissue classifications
served as a GT.

The third publicly available data set comprises the first two discs of
the Open Access Series of Imaging Studies (OASIS) project9 (Marcus
et al., 2007). The reason for taking the first two discs only, correspond-
ing to N = 77 nT1w data sets (1 × 1 × 1 mm), was to make our results
comparable to Iglesias et al. (2011). In contrast to the previously
described data sets, this data comprises not only healthy subjects, but
includes 20 subjects that were categorized as demented and possibly
suffering from Alzheimer's disease. Here, human experts did not create
the brain masks. Instead, a customized automatic methodwas used and
experts only checked the results (Marcus et al., 2007). The quality of the
masks is not as good as for the other data sets but it was sufficient in
order to demonstrate the general applicability and robustness of our
approach.

The fourth data set was acquired at our institution and consisted of
N = 53 multimodal images from patients suffering from recurrent
GlioblatomaMultiforme (GBM). All subjects providedwritten informed
consent based on institutional guidelines and the local review board.
The sequences comprised nT1w, ceT1w, T2w and FLAIR images. The
data acquisition was performed on a 3 Tesla MR-System (Magnetom
Verio, Siemens Healthcare, Erlangen, Germany) with the following
specifications: nT1w and ceT1wMagnetization Prepared Rapid Acquisi-
tion Gradient Echo (MPRAGE) sequence with TE = 3.4 ms, TR =
1740 ms and a voxel resolution of 1 × 1 × 1 mm; T2-weighted Turbo
Spin Echo (TSE) imaging (T2) with TE = 85 ms, TR = 5520 ms and a
voxel size of 0.63 × 0.63 mm, slice spacing 5 mm; FLAIR TSE imaging
with TE = 135 ms, TR = 8500 ms and a voxel size of 0.94 × 0.94 mm,
and slice spacing of 5 mm. A neuroradiologist generated the brain
masks using the interactive learning and segmentation toolkit (ilastik),
a semi-automatic tool that utilizes a random forest for segmentation
(Sommer et al., 2011). Before binarizing, the RF pseudo probabilities
were smoothed using a guided filter (He et al., 2013) with the Gaussian
7 http://www.cma.mgh.harvard.edu/ibsr/.
8 https://ida.loni.usc.edu/.
9 http://www.oasis-brains.org.
gradient magnitude image (sigma = 1.0 voxels) of the corresponding
ceT1w scan as reference. For the guided filter the parameters were set
to radius = 1.2 voxels and epsilon = 0.001. A second expert manually
reviewed and approved the obtained results. For the construction we
used the following definition of a brain mask. We included all cerebral
and cerebellar white and gray matter as well as the brainstem (pons,
medulla). We excluded CSF in ventricles (lateral, 3rd and 4th) and the
quadrigeminal cistern, aswell as in themajor sulci and along the surface
of the brain. Further, dura mater, exterior blood vessels, the sinuses and
the optic chiasm were excluded. All other non-brain tissue was also
discarded. For an additional experiment a senior neuroradiologist man-
ually segmented the ventricular system (inferiorly confined by the 4th
ventricle at the level of foramina of Luschka, and superiorly limited by
the roof of the lateral ventricles) for half of the data (N = 26). This
was realized using the wand tool of 3D Slicer (Fedorov et al., 2012). In
an automated postprocessing step the segmented ventricular system
was aligned with the ventricular system of the brain masks.

Convolutional neural network

Convolutional neural networks are the architecture of choice for an-
alyzing structural data like images and 3D-volumes. In each layer the
input data is convolved by a number of local filters (with a size of
5 × 5 pixels for image data) followed by a nonlinear transformation of
the results. Several layers are then stacked on top of each other, where
each receives the output of the previous layer as its input. This “deep”
stacking gave birth to the name deep learning. Optionally, the outputs
of some layers are down-sampled. With relatively low computational
effort this increases the field of view of each neuron, i.e. the effectively
analyzed area, and introduces translation invariance. During training
the filters of the CNN are optimized to minimize a given loss function.
A frequently used loss function is the Kullback–Leibler divergence. It
measures the discrepancy between the CNN's prediction (i.e. the output
of the very last layer of the CNN) and the labels/ground-truth of the
training data.

Implementation
The deep learning architecture that was used for our experiments

contains seven convolutional hidden layers and one convolutional
soft-max output-layer (see Table 1 for details). The receptive field
(input for each predicted pixel) of this model is 533 pixels, providing
sufficient context for achieving a decent performance level.We evaluat-
ed different architectures while focusing on the speed of prediction and
training, and only found empirically negligible effects on accuracywhen
adding or removing one hidden layer (less than 0.5% difference).

The transformations of the input consist of a succession of spatial 3D
convolutions and a voxel−/point-wise non-linear transformation (also
referred to as activation or squashing function) of the results of the
convolutions. In our casewe use the absolute value function,which per-
forms, according to our experiments, on par with the rectified linear
function (ReLu), often used in the literature (Krizhevsky et al., 2012;
Nair and Hinton, 2010).

The only deviation from this pattern is in thefirst and last layer: after
convolving the input to the CNN with the 16 different filters of the first
Layer input
size [voxels3]

65 31 27 23 19 15 11 7

Layer output
size [voxels3]

31 27 23 19 15 11 7 7

http://www.cma.mgh.harvard.edu/ibsr/
https://ida.loni.usc.edu
http://www.oasisrains.org
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layer and applying the activation function, we down-sample the result
with 23 voxel wide windows and keep only the highest value per 23

cube. This procedure is known as max-pooling. It reduces the size of
the intermediate representations and allows for a far wider field of
view of the overall architecture. The final layer does not apply the
activation function, but instead combines the two linear filter responses
per voxel with the soft-max function to generate pseudo-probabilities
as votes for the two given classes: brain and non-brain tissue.

During training we construct mini-batches consisting of four 653

voxel large cubes of the data. As the receptive field of the CNN is only
533 voxels, it will predict ((65− 53) / 2 + 1)3 = 73 voxels for a given
653 cube (thus we provide 73 labels at the correct positions, for a total
of 1372 labels per mini-batch). The divisor (2) is a result of the max-
pooling in the first layer. If we had provided cubes of size 673, the
CNNwouldmake predictions for 83 points per cube; if we had provided
533 cubes, it would predict only 1 voxel per cube. The reason for provid-
ing more than 533 voxels is that the computation (per predicted voxel)
is much more efficient, the larger the input volume is.

The filters of the CNN are initialized as described by Glorot and
Bengio (2010). We train the network using stochastic gradient de-
scent, which takes on average about 10 h. Initially, the learning rate
is chosen to be 1e −5. This value was determined empirically and
was the highest possible value that did not cause learning to diverge.
The learning rate is halved automatically when the loss on the train-
ing set does not decrease for 5000 update steps. Training ends after
the tenth reduction.

Our CNN is “fully-convolutional”, i.e. it can predict a variable number
of voxels in one pass (depending on the input size). For predictions, we
feed the CNN with volumes of size 1803 voxels, resulting in 1283 pre-
dicted voxels in one forward pass utilizing a technique called max-
fragment pooling (Masci et al., 2013). For training we chose not to use
max-fragment-pooling as it increases the computational load of a single
parameter-update/optimization step by one order of magnitude and
thus significantly slows down training. The difference to training with
MFP is that each update step only uses every second voxel of the
training labels/ground truth along the spatial axes, instead of a dense
volume. This effectively smaller “batch size” introduces more noise
into the stochastic gradient descent optimization of the filters, but this
is in our experience not detrimental.

It is no problem to apply any fully-convolutional neural network to
data with varying sizes: the number of voxels in the training or test
data does not significantly influence the predictions. On the other
hand, testing the CNN on data with a significantly different resolution
(cm/voxel) than the data used for trainingwill have a noticeable impact
on the quality of predictions. But it is easy to accommodate to this case
by employing data augmentation. During training the network could be
fed the same data scaled to varying resolutions.

The network is implemented in python utilizing the theano library
(Bastien et al., 2012; Bergstra et al., 2010), whereby the 3D convolution
as well as the max-fragment prediction are custom, highly optimized
routines that are not part of the library.
Other methods—parameter and version

The CNN was compared to BET (FSL 5.0.8), BEaST (1.15), BSE (build
#:2162), ROBEX (v1.2), HWA (stable5) and 3dSkullStrip (AFNI_2011_
12_21_1014). For a brief description of the corresponding methods,
please see the Introduction or refer to their original publications. As sug-
gested formost of the data sets by the authors of the respectivemethods
(Galdames et al., 2012; Iglesias et al., 2011), we used default parameters
throughout the experiments. For the evaluation of BEaST on the publicly
available data setswe only used the example prior library includedwith
the package. For the tumor experiment we additionally populated the
library with custom priors derived from our data set. This version was
denoted as BEaST*.
Data pre- and postprocessing

No further processing was applied to the publicly available data sets.
Our institutional tumor data set was processed as follows. First, the N3
bias field correction (Sled et al., 1998) was applied to nT1w, ceT1w
and T2w images, but not to the FLAIR images. Next, all four modalities
were resampled to a resolution of 1 × 1 × 1 mm3. For bias field correc-
tion and resampling the FreeSurfer (Fischl, 2012) tools nu_correct (ver-
sion 1.10) and mri_convert (stable5) were employed. Finally, all
sequences were intra-individually registered to the respective nT1w
volume using a 6-DOF linear registration as implemented in FLIRT
(Jenkinson et al., 2002). A senior neuroradiology resident visually con-
firmed the registration accuracy.

Before feeding the data to the CNN, each volume was rescaled to
be within the range [0.0, 1.0]. This rescaling reduced the number of
outliers produced by the model. In order to further boost the robust-
ness of our model, we modified the input volumes on the fly, as seen
by the CNN during training, by shifting all gray-values and scaling
them by a small amount. For shifting we added a random value in
the range of [−0.05, 0.05] to the training block; for scaling, we mul-
tiplied all voxels in a block by a random value in the range of [0.85,
1.3]. This ensured that the model learned to focus on relative varia-
tions in the data instead of learning the exact gray-value of brain
vs. non-brain regions (as those might vary significantly). Usually
the CNN outputs a single connected brain mask. However, as a safety
measure we included a postprocessing step that identified the larg-
est connected component and discarded all smaller (disconnected)
ones. We also included an optional flag that “fills” the obtained
brain masks in order to remove enclosed holes. This flag was used
for the publicly available data sets but not for the tumor experiment,
as here the GT deliberately contains holes that correspond to the
ventricles.

Experiments

Publicly available data sets
Weevaluated the performance of the CNNand the othermethods on

three publicly available data sets. For this purpose we performed 2-fold
cross validation by randomly creating two overall folds mixing scans
from all data sets and evaluated against the GT. In a second approach
we trained on two of the available data sets and evaluated on the re-
maining one. This was performed for all combinations.

Tumor experiment
The tumor data set was evaluated independently using 2-fold cross

validation. For the CNN we used the multi-modal data, whereas the
nT1w scans were used to compute the brain masks with all other
methods. Next to the out-of-the-box version of BEaST, we also
evaluated a version denoted as BEaST*. Here we used the CNN training
data to populate the custom prior library.

Measures for comparison

Using the notion of true positive (TP), true negative (TN), false pos-
itive (FP) and false negative (FN) permitted several measures of com-
parison to be determined. FNs were defined as voxels that are
removed by a method, yet are present in the reference mask. FPs, on
the other hand, were defined as voxels which have been predicted in-
correctly as brain tissue. TP voxels corresponded to correctly identified
brain tissue, whereas TN voxels comprised correctly identified non-
brain tissue.

Volumetric measures already utilized in several studies (Fennema-
Notestine et al., 2006; Galdames et al., 2012; Iglesias et al., 2011; Rex
et al., 2004; Wang et al., 2014) were used to compare a predicted
brain segmentation Pwith the associated referencemask R. TheDice co-
efficient (Dice, 1945) is probably themostwidespreadmeasure used for
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the comparison of two segmentations. The ratio is defined as twice the
size of the intersection of the twomasks normalized by the sum of their
combined sizes:

D ¼ 2 P∩Rj j
Pj j þ Rj j ¼

2TP
2TP þ FP þ FN

:

The coefficient takes values in the range [0.0, 1.0], where 1.0 is
obtained for identical segmentations. In addition Sensitivity
(TP/(TP+FN)) and Specificity (TN/(TN+FP)) scores were computed.

Visualization of absolute error, false positives and false negatives
To visualize the spatial distribution of errors and emphasize areas

with systematic problems we computed average maps of FPs, FNs and
absolute errors. First, both the reference mask and the predicted mask
were resampled (FreeSurfer's mri_convert) to a resolution of
1 × 1 × 1mmand binarized (fslmaths). Next, a linear 6-DOF registration
using FLIRT (Jenkinson et al., 2002)was utilized to register the reference
mask on the 1 mm MNI152 T1w average brain mask (Grabner et al.,
2006). This linear registrationwas followed by a non-linear transforma-
tion using elastix (Klein et al., 2010b). The transformation matrices of
both steps were stored.

After computing the FP, FN and absolute error maps between refer-
ence and predicted mask, these maps were mapped into MNI space
using the stored transformation matrices. For each method and data
set, the particular error maps were combined to yield an average map.
For display purposes the natural logarithm of the 3D volumes collapsed
(averaged) along each axis was plotted.

Statistical analysis

All statistics were computed using R version 3.1.3 (R Core Team,
2014).

Results

Publicly available data sets

We evaluated the performance of our deep neural architecture for
brain extraction in comparison to several popular algorithms. Combined
results (mean and standard deviation) for the IBSR, LPBA40 and OASIS
data sets are presented in Table 2. Bold values indicate best result in a
given category; underlined values are the second best result of the re-
spective category. Supplementary Fig. 1 shows corresponding boxplots
(median values) including outliers.

Dunnett's test was used to compare the CNN with the other
methods. It revealed significant differences (p b 0.003) for the Dice
score between our method and all other groups except Robex. For
sensitivity there were significant differences in comparison to Robex
(p b 0.05) and BEaST (p b 0.001), as well as to HWA (p b 0.01), the
top scoring algorithmof this category. Significant differences of specific-
ity were found comparing CNN to BSE (p b 0.001), HWA (p b 0.001) and
BET (p b 0.02). The network required slightly less than 3 GB of GPU-
Memory (NVIDIA Titan with Kepler™ architecture) and allowed us to
Table 2
Combined results for the IBSR, LPBA40 and OASIS data sets. Bold values indicate the best
result; underlined values represent the second best result of the respective category.

Dice Sensitivity Specificity

CNN 95.77 (±0.01) 94.25 (±0.03) 99.36 (±0.003)
BEaST 89.96 (±0.12) 87.89 (±0.12) 98.54 (±0.01)
BET 93.05 (±0.03) 95.47 (±0.05) 97.71 (±0.02)
Robex 95.30 (±0.02) 95.99 (±0.03) 98.81 (±0.01)
3dSkullStrip 92.34 (±0.04) 91.88 (±0.07) 98.45 (±0.01)
HWA 91.37 (±0.03) 99.06 (±0.01) 95.88 (±0.01)
BSE 78.77 (±0.10) 95.57 (±0.06) 85.12 (±0.12)
predict a single volume in less than 40 s on average (IBSR 26.3 s ±
0.01 s; LPBA40 36.51 s ± 0.08 s; OASIS 40.99 s ± 0.17 s). Training
took roughly 15 h. The runtimes of the compared methods are listed
in Supplementary Table 1.

Because the data sets differ in quality and demographic properties,
we also looked at the groups individually. The boxplots are depicted in
Fig. 1; a detailed statistical evaluation can be found in Supplement S1.
Our method obtained the highest average specificity measure for all
data sets and the highest average Dice score for the IBSR and LPBA40
data sets, albeit not showing statistical significance to the second best
performingmethod. For the OASIS data set, the second best Dice results
were achieved, showing no statistical difference in comparison to the
best performing tool Robex. HWA demonstrated top performance
with respect to sensitivity for all data sets that could not be met by
any method.

Training on two data sets and evaluating on the remaining had an
impact on the median Dice score for two of the three data sets. For
IBSR, i.e. training on LPBA40 and OASIS, there are no major differences
observable. For OASIS and LPBA40 a decrease of theDice scorewas pres-
ent. However, we are able to demonstrate that a brief re-training of the
neural network with one data set of the respective target domain suffi-
ciently compensated for this loss of accuracy (Supplementary Fig. 1).

Fig. 2 shows the absolute error of the LPBA40 data for the different
methods in MNI space. The illustration emphasizes the performance of
the proposed method and also captures the strengths and weaknesses
of the existing methods well. For details please see the Discussion sec-
tion. The absolute error maps for the other two data sets, as well as
false negative and false positive maps for the various data sets, can be
found in the supplementary material.

Brain tumor experiment

In this experiment we evaluated the performance of the CNN brain
extraction on a challenging multimodal MRI data set containing brain
tumors (N = 53). Again Dunnett's test was used to compare the CNN
with the other methods. It revealed significant differences (p b 0.01)
for the Dice score and specificity measure (p b 0.001) between our
method and all other methods. Robex demonstrated the highest sensi-
tivity. In an auxiliary experiment we demonstrated that the ventricular
system,which is not detected by the comparedmethods, only has a neg-
ligible effect on these results (Supplementary Figure 10). Results are
summarized in Table 3 and Fig. 3. Note, varying the cut-off threshold
used for generating the binarymasks from the CNN's probability output
can be used to increase the sensitivity of the method (Supplementary
Figure 12). Of course, this comes at the cost of a reduced specificity. In
comparison to sensitivity and specificity, varying the threshold has a
weaker effect on the Dice score (Supplementary Figure 13). Prediction
times were 58.54 s ± 2.75 s.

Qualitative examples of the results are depicted in Fig. 4. The brain
masks of the CNN (red), the second best performing method
3dSkullStrip (w.r.t. the Dice score, yellow) and the ground truth
(cyan) are outlined in a single image. It nicely can be seen how the
CNN learned to detect the resection cavities.

Discussion

We present a deep 3D convolutional neural network for brain ex-
traction in MRI images. In comparison to existing methods, this
learning-based approachmatches at least state-of-the-art performance.
Trained appropriately it handles arbitrary multi-channel modalities. In
the tumor experiment these modalities comprised non-enhanced and
contrast enhanced T1w, T2w and FLAIR images, but in principle can in-
clude any conceivable modality, even non-MRI channels. For instance,
even skull stripping of CT images could be performed. Further, the ap-
proach is generic enough to work with images from all kind of different
species, e.g. non-primates like mice (Wang et al., 2014).



Fig. 1. Evaluation scores for three data sets. Median is displayed in boxplots; black dots represent outliers outside 1.5 times the interquartile range of the upper and lower quartile, respectively.
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Fig. 2. Absolute error maps for the LPBA40 data. Results emphasize the excellent performance of the CNNwith comparatively very low error rates in regions of the anterior and posterior
cranial fossa, the paranasal sinuses, the clivus and orbits. Further, the strengths andweaknesses of the existingmethods are in good agreementwith findings reported in the literature. For
display purposes we visualized the natural logarithm of the error.
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Table 3
Mean and standard deviation for the tumor data set. CNN is comparedwith Dunnett's test
to the othermethods. Bold values indicate the best result; underlined values represent the
second best result of the respective category. BEaST* denotes that data set specific priors
were included in its library.

Dice Sensitivity Specificity

CNN 95.19 (±0.01) 96.25 (±0.02) 99.24 (±0.003)
BEaST* 84.64 (±0.16) 89.23 (±0.19) 97.62 (±0.01)
BEaST 83.55 (±0.16) 91.31 (±0.2) 96.88 (±0.01)
BET 77.54 (±0.08) 95.26 (±0.1) 93.53 (±0.02)
Robex 86.33 (±0.03) 99.78 (±0.002) 95.87 (±0.01)
3dSkullStrip 88.7 (±0.03) 99.25 (±0.005) 96.81 (±0.008)
HWA 78.28 (±0.09) 97.76 (±0.13) 93.56 (±0.01)
BSE 86.46 (±0.05) 96.42 (±0.02) 96.49 (±0.02)
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In comparison to other learning-based approaches, one clear advan-
tage of neural networks is that no features have to be hand-crafted. In-
stead, suitable features for the given task arise during training
automatically (Plis et al., 2014). Further, in contrast to voxel-wise
classifiers, neural networks are based on image patches and, thus, take
neighborhood information (possibly across modalities, tumor experi-
ment) into account. The large field of view of the CNN favors continui-
ties and the extracted brains are usually in one piece. Yet, if the
ground truth used for training contains holes, e.g. the ventricles are ex-
cluded, this can also be learned by the architecture (cf. Fig. 4).

In the first experiment we demonstrated that the proposed ap-
proach achieves the highest average specificity scores for all three pub-
licly available data sets, aswell as the highest Dice score for the IBSR and
Fig. 3. Performance of the methods on the tumor data set. Results were evaluated against
human GT segmentations. For the Dice and Specificity measure, the CNN significantly
outperforms the existing methods. BEaST* denotes that data set specific priors were
included in the library.

Fig. 4. Example segmentations for the tumor data set. Brainmasks generated by the neural
architecture compare favorably to themasks generated by all othermethodsw.r.t theDice
score and specificity measure (cf. Table 3). Masks generated by the CNN are outlined in
red, the ones generated by the method with the second best Dice score (3dSkullStrip) in
yellow and the expert constructed GT in cyan.
LPBA40 data. For the latter two human-delineated ground truth exists.
For OASIS, another public data set with automatically generated and
subsequently manually validated GT, we achieved second highest Dice
scores that are not statistically different from the best scoring method
of the respective category. However, the evaluation of the IBSR and
LPBA40 data revealed an increased false negative rate for the CNN (Sup-
plementary Figs. 4 and 6), leading to a reduced sensitivity measure (Fig.
1, Supplementary Tables 3 and 4). BEaST (Eskildsen et al., 2012), one of
themethods used for comparison, displayed a similar behavior. The rea-
sons for this most probably can be attributed to the fact that we did not
populate its prior library with representative examples of the given
data. The prior library that per default is included with the package is
rather small. A reduced sensitivity measure may for example have an
impact on cortical thickness computations and has to be addressed in
future research. As the CNN does not generate a binary segmentation,
but probability values instead, one possibility to cope with this short-
coming is to adjust the cut-off threshold (currently at 0.5). Of course,
this comes at the cost of a reduced specificity (cf. Supplementary
Figure 12).

Except Robex (and to some extent also BEaST), our method was the
only parameter-free tool amongst the methods used for comparison. It
has to be noted that the other methods were applied with their default
parameter settings. Thus, it is very likely that a case-specific tuning
would improve their results. Needless to say, this is not a very practical
approach.

For the competing tools, the qualitative results are in good agree-
ment with previously published findings (except BEaST, see above).
For instance, it is known that BET often produces false positive regions
ventral to the brain stem (Iglesias et al., 2011). This problem can be
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seen nicely in Fig. 2 (and Supplementary Figs. 2 and 5). Further, it can be
seen in these figures that 3dSkullStrip exhibits similar problematic re-
gions to BET. This is not surprising, as it is essentially amodified version
of the same tool. Anotherwell-known result thatwewere able to repro-
duce is that HWA is the method with the highest sensitivity
(Fennema-Notestine et al., 2006; Shattuck et al., 2009), at the cost of a
reduced specificity with erroneous inclusion of dura and other non-
brain tissue. Further, it is known that BSE used with default parameters
leads to results with a very low specificity, especially on the OASIS data
set (Galdames et al., 2012). These problems are revealed exemplarily in
Supplementary Figs. 3, 5 and 8. It is also known that existing methods
especially struggle to delineate particular anatomical structures such
as the sagittal sinus and posterior fossa, displaying the highest false pos-
itive rates in these areas (Galdames et al., 2012). In comparison to
existing methods, Fig. 2 shows very low error rates for our method in
the regions of the anterior and posterior cranial fossa, the paranasal si-
nuses, the clivus and orbits. This is highly relevant in a clinical setting
as these areas are important, for instance,when planning radiation ther-
apy. Although it displays superior performance in the aforementioned
regions, the CNN still exhibits isolated false positives within the cranial
sinuses (Supplementary Figs. 3 and 5). One reason might reside in the
GT, as even for human raters these regions are challenging. For the
OASIS data, caudal parts of the cerebellum display elevated false posi-
tive rates (not only) for the CNN predictions (Supplementary Figure 8).
Manual inspection revealed that the CNN results in these regions (and
possibly also the results of other methods) are more likely to be correct
than the supplied GT used for reference and training. This is not unex-
pected as the GT for this particular data is automatically generated
and thus seems to suffer from a loss of quality in these well-known
problematic areas.

It was previously proposed that different skull strippingmethods be
combined, to cope with their weaknesses and combine their strengths,
using a meta-algorithm (Rex et al., 2004). For our setting it is a conceiv-
able option to take the brain masks generated by several algorithms,
combine them with e.g. STAPLE, an expectation–maximization
algorithm designed to probabilistically estimate the underlying true
segmentation (Warfield et al., 2004), and then use this segmentation
for training the deep neural network. This would be a feasible approach
if the goal were to automatically train the CNN with larger amounts of
training data, usually beneficial for deep learning architectures, and
avoid tedious manual segmentations that can take up to 6–8 h for a
1 mm3 isotropic volume (Eskildsen et al., 2012). Further work will
evaluate this approach.

It has been reported in the literature that scanners from different
vendors have an impact on the outcome of the brain extraction
(Fennema-Notestine et al., 2006; Rex et al., 2004). Therefore, a practical
guide for the application of the proposed method would be to collect
training data retrospectively from several studies that utilized similar
scanners and protocols, and then train a CNN tailored to the conditions
of the respective (home) institution or the multicenter clinical trial.
When dealing with patient data, one immediate advantage is that e.g.
contrast-enhanced T1w images or even exotic in-house custom se-
quences could be employed. Another possibility is to take a previously
trained network and adapt it to the target domain. Already re-training
the neural network with a single data set from the target domain has
a beneficial effect on the Dice score (Supplementary Figure 11).

This scenario was mimicked by our second experiment. We took
N = 53 multimodal MRI images, four channels comprising nT1w,
ceT1w, T2w and FLAIR images, from patients suffering from brain tu-
mors. For this challenging data set experts semi-automatically generat-
ed the GT as specified in the method section Our method significantly
outperformed the other methods regarding Dice score and specificity
(Fig. 3 and Table 3). Regarding the sensitivity measure, it performed
about average. However, varying the threshold when generating
the binary masks can be used to tune between sensitivity and speci-
ficity (Supplementary Figure 12) and to optimize the Dice score
(Supplementary Figure 11 and 13). As the compared methods per
default include the ventricles as part of the brain, we assessed the
impact of the ventricular system on the measures for a subset of
the data. For this purpose, we combined the output of each method
with manual segmentations of the ventricles. For all three measures
only a negligible effect is detectable (Supplementary Figure 10). We
also evaluated BEaST including data set specific priors in its library
(denoted BEaST*). This only led to a mild increase in performance
and affirmed the concerns of the authors, that this method might
have troubles with lesions like brain tumors (Eskildsen et al.,
2012). Representative examples of the output of the neural network,
the second best performing method 3dSkullStrip as well as the GT
are demonstrated in Fig. 4. Resection cavities were nicely delineated
by the method. On the other hand, the CSF within the deep sulci was
not always captured as detailed as in the GT. We ascribe this to the
regularization properties of the architecture. Of course, registration
errors of the multimodal sequences may act as an error source as
well. However, we only performed an intermodal intra-subject reg-
istration that is usually less problematic than an inter-subject regis-
tration or a registration to a template.

In future work, we plan to further improve the method. One idea is
to employ an edge-preserving filter during pre-processing, e.g. the
guided filter (He et al., 2013), to facilitate the learning. Next, it is also
a conceivable option to extend the method to not only distinguish be-
tween brain and non-brain tissue, but to directly segment various
other healthy and non-healthy tissue types like graymatter and lesions.
In fact, we were able to win the 2014 brain tumor segmentations chal-
lenge (BRaTS)with a similar architecture (Urban et al., 2014). However,
for this endeavor more annotated training data needs to be available
and the size of the network might have to be increased.

Conclusions

In this paper we presented a 3D convolutional deep learning
architecture for brain extraction of MR images. The described method
yields at least state-of-the-art performance (Dice score and specificity)
and addresses several problems of existing methods. Our method is
not limited to non-enhanced T1w images but can also deal with
contrast-enhanced scans. Secondly, when trained appropriately, the ap-
proach handles an arbitrary number of modalities. This was demon-
strated on a challenging clinical data set of patients suffering from
brain tumors. We believe that the proposed approach will prove to be
useful for large-scale studies, as well as clinical trials.

Acknowledgments

We thank Andreas Bartsch for inspiring discussions and detailed
comments on themanuscript draft as well as the anonymous reviewers.
This workwas supported by a postdoctoral fellowship from theMedical
Faculty of the University of Heidelberg.

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.neuroimage.2016.01.024.

References

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I.J., Bergeron, A., Bouchard, N.,
Bengio, Y., 2012. Theano: New Features and Speed Improvements.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J.,
Warde-Farley, D., Bengio, Y., 2010. Theano: A CPU and GPU Math Expression
Compiler.

Breiman, L., 2001. Random forests. Mach. Learn. 45, 5–32.
de Boer, R., Vrooman, H.A., Ikram, M.A., Vernooij, M.W., Breteler, M.M., van der Lugt, A.,

Niessen, W.J., 2010. Accuracy and reproducibility study of automatic MRI brain tissue
segmentation methods. NeuroImage 51, 1047–1056.

http://dx.doi.org/10.1016/j.neuroimage.2016.01.024
http://dx.doi.org/10.1016/j.neuroimage.2016.01.024
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0005
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0010
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0010
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0015
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0020
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0020


469J. Kleesiek et al. / NeuroImage 129 (2016) 460–469
Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology
26, 297–302.

Eskildsen, S.F., Coupe, P., Fonov, V., Manjon, J.V., Leung, K.K., Guizard, N., Wassef, S.N.,
Ostergaard, L.R., Collins, D.L., Alzheimer's disease Neuroimaging, I., 2012. BEaST:
brain extraction based on nonlocal segmentation technique. NeuroImage 59,
2362–2373.

Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J.C., Pujol, S., Bauer, C.,
Jennings, D., Fennessy, F., Sonka, M., Buatti, J., Aylward, S., Miller, J.V., Pieper, S.,
Kikinis, R., 2012. 3D slicer as an image computing platform for the quantitative
imaging network. Magn. Reson. Imaging 30, 1323–1341.

Fennema-Notestine, C., Ozyurt, I.B., Clark, C.P., Morris, S., Bischoff-Grethe, A., Bondi, M.W.,
Jernigan, T.L., Fischl, B., Segonne, F., Shattuck, D.W., Leahy, R.M., Rex, D.E., Toga, A.W.,
Zou, K.H., Brown, G.G., 2006. Quantitative evaluation of automated skull-stripping
methods applied to contemporary and legacy images: effects of diagnosis, bias
correction, and slice location. Hum. Brain Mapp. 27, 99–113.

Fischl, B., 2012. FreeSurfer. NeuroImage 62, 774–781.
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M., 1999. High-resolution intersubject averag-

ing and a coordinate system for the cortical surface. Hum. Brain Mapp. 8, 272–284.
Galdames, F.J., Jaillet, F., Perez, C.A., 2012. An accurate skull stripping method based on

simplex meshes and histogram analysis for magnetic resonance images. J. Neurosci.
Methods 206, 103–119.

Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward
neural networks. Proceedings of the International Conference on Artificial Intelli-
gence and Statistics (AISTATS). Society for Artificial Intelligence and Statistics.

Grabner, G., Janke, A.L., Budge, M.M., Smith, D., Pruessner, J., Collins, D.L., 2006. Symmetric
atlasing and model based segmentation: an application to the hippocampus in older
adults. Med. Image Comput. Comput. Assist. Interv. 9, 58–66.

He, K., Sun, J., Tang, X., 2013. Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell.
35, 1397–1409.

Iglesias, J.E., Liu, C.Y., Thompson, P.M., Tu, Z., 2011. Robust brain extraction across datasets
and comparison with publicly available methods. IEEE Trans. Med. Imaging 30,
1617–1634.

Jenkinson, M., Bannister, P., Brady, M., Smith, S., 2002. Improved optimization for the ro-
bust and accurate linear registration and motion correction of brain images.
NeuroImage 17, 825–841.

Klein, A., Ghosh, S.S., Avants, B., Yeo, B.T., Fischl, B., Ardekani, B., Gee, J.C., Mann, J.J., Parsey,
R.V., 2010a. Evaluation of volume-based and surface-based brain image registration
methods. NeuroImage 51, 214–220.

Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P., 2010b. Elastix: a toolbox for
intensity-based medical image registration. IEEE Trans. Med. Imaging 29, 196–205.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet Classification with Deep
Convolutional Neural Networks. Neural Information Processing Systems, Lake
Tahoe, Nevada, USA.

LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. Nature 521, 436–444.
Long, J., Shelhamer, E., Darrell, T., 2015. Fully Convolutional Networks for Semantic

Segmentation. CVPR.
MacDonald, D., Kabani, N., Avis, D., Evans, A.C., 2000. Automated 3-D extraction of inner

and outer surfaces of cerebral cortex from MRI. NeuroImage 12, 340–356.
Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L., 2007. Open

access series of imaging studies (OASIS): cross-sectional MRI data in young, middle
aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19, 1498–1507.

Masci, J., Giusti, A., Ciresan, D., Fricout, G., Schmidhuber, J., 2013. A Fast Learning Algo-
rithm for Image Segmentation with Max-Pooling Convolutional Networks. IEEE,
pp. 2713–2717.

Menze, B., Reyes, M., Van Leemput, K., 2014. The multimodal brain tumorimage segmen-
tation benchmark (BRATS). IEEE Trans. Med. Imaging.

Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q.,
Toga, A.W., Beckett, L., 2005. The Alzheimer's disease neuroimaging initiative.
Neuroimaging Clin. N. Am. 15 (869–877), xi–xii.

Nair, V., Hinton, G.E., 2010. Rectified Linear Units Improve Restricted Boltzmann
Machines. pp. 807–814.
Perona, P., Malik, J., 1990. Scale-space and edge detection using anisotropic diffusion. IEEE
Trans. Pattern Anal. Mach. Intell. 12, 629–639.

Plis, S.M., Hjelm, D.R., Salakhutdinov, R., Allen, E.A., Bockholt, H.J., Long, J.D., Johnson, H.J.,
Paulsen, J.S., Turner, J.A., Calhoun, V.D., 2014. Deep learning for neuroimaging: a val-
idation study. Front. Neurosci. 8, 229.

R Core Team, 2014. R: A Language and Environment for Statistical Computing.
Rex, D.E., Shattuck, D.W., Woods, R.P., Narr, K.L., Luders, E., Rehm, K., Stoltzner, S.E.,

Rottenberg, D.A., Toga, A.W., 2004. A meta-algorithm for brain extraction in MRI.
NeuroImage 23, 625–637.

Rohlfing, T., 2012. Image similarity and tissue overlaps as surrogates for image registra-
tion accuracy: widely used but unreliable. IEEE Trans. Med. Imaging 31, 153–163.

Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., Fischl, B., 2004. A hybrid
approach to the skull stripping problem in MRI. NeuroImage 22, 1060–1075.

Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack,
R.A., Bilder, R.M., Toga, A.W., 2008. Construction of a 3D probabilistic atlas of human
cortical structures. NeuroImage 39, 1064–1080.

Shattuck, D.W., Prasad, G., Mirza, M., Narr, K.L., Toga, A.W., 2009. Online resource for val-
idation of brain segmentation methods. NeuroImage 45, 431–439.

Shattuck, D.W., Sandor-Leahy, S.R., Schaper, K.A., Rottenberg, D.A., Leahy, R.M., 2001.
Magnetic resonance image tissue classification using a partial volume model.
NeuroImage 13, 856–876.

Sled, J.G., Zijdenbos, A.P., Evans, A.C., 1998. A nonparametric method for automatic correc-
tion of intensity nonuniformity in MRI data. IEEE Trans. Med. Imaging 17, 87–97.

Smith, S.M., 2002. Fast robust automated brain extraction. Hum. Brain Mapp. 17,
143–155.

Sommer, C., Straehle, C., Kothe, U., Hamprecht, F.A., 2011. Ilastik: interactive learning and
segmentation toolkit. Biomedical Imaging: From Nano to Macro. 2011 IEEE Interna-
tional Symposium on, pp. 230–233.

Speier, W., Iglesias, J.E., El-Kara, L., Tu, Z., Arnold, C., 2011. Robust skull stripping of clinical
glioblastoma multiforme data. Med. Image Comput. Comput. Assist. Interv. 14,
659–666.

Thompson, P.M., Mega, M.S., Woods, R.P., Zoumalan, C.I., Lindshield, C.J., Blanton, R.E.,
Moussai, J., Holmes, C.J., Cummings, J.L., Toga, A.W., 2001. Cortical change in
Alzheimer's disease detected with a disease-specific population-based brain atlas.
Cereb. Cortex 11, 1–16.

Tosun, D., Rettmann, M.E., Naiman, D.Q., Resnick, S.M., Kraut, M.A., Prince, J.L., 2006.
Cortical reconstruction using implicit surface evolution: accuracy and precision
analysis. NeuroImage 29, 838–852.

Urban, G., Bendszus, M., Hamprecht, F.A., Kleesiek, J., 2014. Multi-modal brain tumor
segmentation using deep convolutional neural networks. Proceedings MICCAI BraTS
(Brain Tumor Segmentation Challenge), Boston, Massachusetts, pp. 31–35.

Wang, L., Chen, Y., Pan, X., Hong, X., Xia, D., 2010. Level set segmentation of brainmagnet-
ic resonance images based on local Gaussian distribution fitting energy. J. Neurosci.
Methods 188, 316–325.

Wang, Y., Nie, J., Yap, P.T., Li, G., Shi, F., Geng, X., Guo, L., Shen, D., Alzheimer's Disease
Neuroimaging, I., 2014. Knowledge-guided robust MRI brain extraction for diverse
large-scale neuroimaging studies on humans and non-human primates. PLoS One 9,
e77810.

Warfield, S.K., Zou, K.H., Wells, W.M., 2004. Simultaneous truth and performance level es-
timation (STAPLE): an algorithm for the validation of image segmentation. IEEE
Trans. Med. Imaging 23, 903–921.

Woods, R.P., Mazziotta, J.C., Cherry, S.R., 1993. MRI-PET registration with automated
algorithm. J. Comput. Assist. Tomogr. 17, 536–546.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images through a hidden
Markov random field model and the expectation–maximization algorithm. IEEE
Trans. Med. Imaging 20, 45–57.

Zhao, L., Ruotsalainen, U., Hirvonen, J., Hietala, J., Tohka, J., 2010. Automatic cerebral and
cerebellar hemisphere segmentation in 3D MRI: adaptive disconnection algorithm.
Med. Image Anal. 14, 360–372.

http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0025
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0025
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0030
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0030
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0030
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0035
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0035
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0040
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0040
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0040
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0045
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0050
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0050
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0055
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0055
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0055
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0060
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0060
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0060
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0065
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0065
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0065
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0070
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0070
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0075
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0075
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0075
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0080
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0080
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0080
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0085
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0085
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0090
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0090
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0095
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0095
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0095
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0100
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0105
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0105
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0110
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0110
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0115
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0115
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0115
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0120
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0120
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0120
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0125
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0125
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0130
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0130
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0135
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0135
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0140
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0140
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0145
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0145
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0150
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0155
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0155
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0160
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0160
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0165
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0165
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0170
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0170
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0175
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0175
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0180
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0180
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0185
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0185
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0190
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0190
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0195
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0195
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0195
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0200
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0200
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0200
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0205
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0205
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0205
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0210
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0210
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0215
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0215
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0215
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0220
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0220
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0220
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0225
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0225
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0225
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0230
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0230
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0230
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0235
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0235
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0240
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0240
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0240
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0245
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0245
http://refhub.elsevier.com/S1053-8119(16)00030-6/rf0245

	Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
	Introduction
	Previous work
	Our approach

	Material and methods
	Data sets
	Convolutional neural network
	Implementation

	Other methods—parameter and version
	Data pre- and postprocessing
	Experiments
	Publicly available data sets
	Tumor experiment

	Measures for comparison
	Visualization of absolute error, false positives and false negatives

	Statistical analysis

	Results
	Publicly available data sets
	Brain tumor experiment

	Discussion
	Conclusions
	Acknowledgments
	Appendix A. Supplementary data
	References




