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Abstract. Magnetic resonance spectroscopic images (MRSI) carry spa-
tially resolved information about the in vivo metabolism, however, their
evaluation is difficult. Problems arise especially from artifacts and noise,
yielding non-evaluable signals in many voxels. We propose a two-step
approach to the processing of MRSI. In the first step a non-linear classi-
fier is employed in every voxel to determine whether the spectral signal
is evaluable, and if so, the tumor probability is computed in the second
step. Thus, the quality control is strictly separated from the diagnos-
tic evaluation of the spectrum. For an assessment of the proposed ap-
proach we consider MRSI-based brain tumor detection and localization
and a tumor probability mapping by pattern recognition. In a quantita-
tive comparison against the standard operator-controlled processing our
interaction-free approach shows similar to superior performance.

1 Introduction

Magnetic resonance spectroscopy (MRS) allows the study of physiological and
patho-physiological processes in the living tissue. Thus, characteristic changes
in the relative concentration of a number of metabolites can be detected by
MRS. Magnetic resonance spectroscopic imaging (MRSI) also allows for a spatial
mapping of their occurrence. – One of the major applications of MRSI in clinical
routine is in the diagnosis of tumor, in particular in the brain, but also in the
breast or prostate.

MRSI in tumor diagnosis

The standard approach in the analysis of MR spectra is a fitting of resonance-
line shaped template functions to the spectral pattern. The parameters of these
(amplitude, line width, area) provide the basis for the following diagnostic in-
terpretation of the spectrum, e.g. using the value of the resonance line integral



of Choline relative to the integral of Creatine as an indicator for the malignity
of a tissue change. Unfortunately, the robustness of this resonance line “quanti-
tation” is limited in the presence of noise or artifacts within the spectra, and a
visual control by the operator is always required. This effort hampers the rou-
tine use of MRSI, but is compulsory to assess the diagnostic value of an MR
spectrum.

An alternative approach, which is primarily suited for highly resolved (short
echo time) spectra, bypasses the quantitation and uses algorithms from pattern
recognition and machine learning. Tissue type and state of disease are directly
inferred on the spectral pattern, without a model based reduction of the spectral
information. Pattern recognition on the full spectrum, e.g. by a projection of the
spectral image to a “nosologic” or diagnostic map, is more robust than the fitting
of adaptive resonance line functions [1]. Nevertheless, this method also fails in
the presence of spectral artifacts or at low signal-to-noise ratio. So, an inspection
of the spectra is also required here and is limiting a fully automated analysis
also for this approach.

Published examples for the use of MRSI in tumor diagnostic can be found for
both analysis approaches, e.g. in the non-linear classification of brain tumor [2]
(EU-project INTERPRET), or in the quantitation of MR spectroscopic images in
the detection of recurrent tumors after radiation therapy [3]. The most important
obstacle for an application of these automated routines is the lack of a specific
assessment about the confidence in the diagnostic analysis of a spectrum. While
a number of algorithms are available for the diagnostic interpretation of MR
spectra [2,3,4], quality control and the evaluation of confidences still demand a
large amount of operator time and bind the resources of the human expert.

Two step analysis

Using the example of the detection and localization of brain tumor, we pro-
pose in the following a two-step procedure which is able to overcome some of
the mentioned limitations in the automated analysis of MR spectra. In the first
step, we demonstrate the applicability of pattern recognition in the classifica-
tion of evaluable and non-evaluable (“nice vs. noise”) spectra. In the following
diagnostic analysis, we use regression methods from chemometrics for pattern
recognition and the generation of probabilistic tumor-maps with confidence as-
sessment.

Overall, we present an automated processing of MR spectroscopic images
which yields a data product similar to any other standard imaging modality.
Most important in comparison to the standard processing of MRSI, it is not a
collection of localized spectra that need to be interpreted laboriously, but the
mapping of the tumor-related information within the spectral image.

Results of this approach will be compared against the outcome of a operator-
controlled analysis. In order to allow a direct application, the algorithms can be
integrated into the radiation therapy planning software at the German Cancer
Research Center (dkfz) [5].



2 Methods

Data

The data was acquired on a standard MR scanner (Siemens, Magnetom Vision,
1.5T, 1H-MRS, TE 135 ms) at the dkfz. Spectral images of 31 patients with tu-
mor diagnosis (astrocytoma, meningioma, glioma, metastases – confirmed during
follow-up) were available at a spatial resolution of 322 and under a spatial reso-
lution of approx. 1 cm voxel side-length (fig. 1a). Within this data 269 spectra
could be labeled as “tumor”, “tumor border” or “normal state” (69/49/151, fig.
1d). – Spectral images of another 36 patients were classified completely by visual
inspection according to the signal quality and resulted in approx. 37000 spectra
(10% “nice”) for the training of the “nice vs. noise” classifier.

Classifier – quality assessment

While the signal-to-noise ratio can be assessed easily by linear methods, the sep-
aration of the various artifacts demands for the training of a non-linear classifier
(“randomForest” decision tree ensemble [1]). RandomForests extend the idea of
bagging tree ensembles by seeking optimal splits for each tree node on random
subspaces of the data. Outcome of a randomForest classification is either the
binary class membership, or the normalized number of votes from the tree en-
semble, which allows for a subjective readjustment of the rejection threshold.–
Different feature representations of the data (different normalization strategies,
data binning) were tested and optimized according to the classification error. As
the “noise” class of the training data only contained the most frequent artifacts,
it was extended by uniformly distributed random samples of the spanned feature
space of all spectra. This nonparametric outlier detection ensures a proper signal
classification even in the presence of previously unknown artifacts.

Classifier – tumor detection

The character of the binary “normal state vs. tumor” classification problem
allows the application of linear models on the data. In order to overcome the
sparseness of the training problem (256 spectral channels (P ) in the spectral
region of Choline, Creatine and NAA, 269 (N) highly collinear spectra), the
spectral regions relevant for the classification were identified in a first feature
selection by help of the randomForest Gini importance measure (fig. 1d), the
accumulated Gini decrease for all nodes of all trees within the ensemble. A
partial least squares regression (PLS) [1] on these variables was used for the
discrimination of the two tissue types. To allow an assessment of the tumor
probability, a logistic model was build on the score of the PLS subspace (fig.
1c).

The leave-‘one-patient’-out cross-validated PLS score was compared by means
of the receiver-operator-characteristic (ROC) against the results of different stan-
dard approaches [5], all based on resonance line quantitation (line integral ratios
and linear combinations thereof, fig. 1b).



3 Results

Areas with high signal-to-noise ratio were reliably identified, virtually all arti-
facts being present in the data set were separated. An inspection of the leave-’one
patient’-out shows that the cross-validated test error of 1.04 % is most probably
due to ambivalent training labels. The classifier proposed to reject 60 low quality
spectra (16/10/34) from the data set for the tumor classification.

Within that data set, the randomForest Gini importance identified the spec-
tral regions of the metabolites choline and NAA to be relevant for the classifi-
cation. Thus a subset of Psubset = 14 out of the 256 spectral channels was used
for training and evaluation of the binomial PLS model (fig. 1d). The resulting
tumor classifier reached an accuracy of 95.5% in the differentiation between nor-
mal state and both tumor groups, normal and tumor were separated without
error (100% accuracy). These values, however, reduce to 92.5% and 93.3% when
the 60 low quality spectra are included.

Comparing the ROC of this approach with other methods as described in
[5], we find that the automated pattern recognition performs comparable to the
outcome of a quantitation by a human operator (fig. 1b with noise) or better
(fig. 1b without noise). All studied methods tend to show a higher reliability
when low quality spectra are separated by the first step classifier.

4 Discussion

The proposed application of a specific, non-linear classifier for the the separation
of non-reliable spectra is independent from the diagnostic question and the exam-
ined organ. Although we observe optimal results in conjunction with our pattern
recognition approach, such a quality assessment prior to the diagnostic analysis
shows to be beneficial also in conjunction with traditional resonance line quanti-
tation. So far, only information theoretic criteria (e.g. Cramer-Rao-bounds) were
used to assess the quality of a spectrum. Explicit and easily available knowledge
about frequent artifacts which is the base of our noise classifier are disregarded
by these traditional quality measures.

In the specific task of brain tumor detection and localization, we can show
that the fully automated pattern recognition operates as reliably as the operator-
supervised resonance line quantitation. The high degree of automation of both
steps, the trained quality control and the chemometrical tumor recognition, al-
lows for the application of further image processing and the exploitation of spa-
tial relations within the MR spectroscopic image. Promising extensions might
be the automated segmentation of tumor regions or the combination of MRSI
nosologic images with other diagnostic imaging modalities.

The operator-free data processing is a prerequisite for the clinical application
of spectral images with high spatial resolution and therefore thousands of spectra
in each acquisition.
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Fig. 1. a) Tumor probability map; left: PRESS box indicated, right: gold standard (T
(t) - tumor (-border), N - normal), regions which were classified as low quality spectra
were disregarded for display. b) Receiver-operator-characteristic of the presented PLS
based pattern recognition and other methods as described in [5], including(left) and
excluding (right) low quality spectra. c) Transformation of class densities and binomial
tumor-probability in red-green color scale. (here: normal vs. both tumor groups) d):
Average spectral patterns of healthy and tumorous tissue.
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