
Higher-order Segmentation via Multicuts

Jörg Hendrik Kappes∗1, Markus Speth †2, Gerhard Reinelt‡2 and Christoph Schnörr§1

1Department of Mathematics and Computer Science, Image and Pattern Analysis Group, Heidelberg University
2Department of Mathematics and Computer Science, Discrete and Combinatorial Optimization Group, Heidelberg University

Abstract

Multicuts enable to conveniently represent discrete graphical
models for unsupervised and supervised image segmentation,
based on local energy functions that exhibit symmetries. The
basic Potts model and natural extensions thereof to higher-
order models provide a prominent class of representatives,
that cover a broad range of segmentation problems relevant
to image analysis and computer vision. We show how to take
into account such higher-order terms systematically in view
of computational inference, and present results of a compre-
hensive and competitive numerical evaluation of a variety of
dedicated cutting-plane algorithms. Our results reveal ways to
evaluate a significant subset of models globally optimal, with-
out compromising runtime. Polynomially solvable relaxations
are studied as well, along with advanced rounding schemes for
post-processing.

1 Introduction

1.1 Overview, Motivation

The segmentation problem, also known as partitioning, clus-
tering, or grouping, is a fundamental problem of image anal-
ysis. Applications include unsupervised image partition-
ing [5,28], task-specific image partitioning [29], semantic image
segmentation [24, 34], and modularity clustering in network
analysis [12].

Common problem representations are based on a graph G =
(V,E), where nodes V relate to raw data on an image grid or
extracted feature vectors, and edges E define a neighborhood
structure of the nodes. A segmentation of a graph can be
represented either by

(i) assigning to each node v ∈ V a label, or by

(ii) a multicut given by a subset of active edges E′ ⊆ E,
resulting in a partition of the set of nodes V .

One commonly distinguishes supervised and unsupervised seg-
mentation. In the former case, the number of classes repre-
sented by labels is known, together with a function measur-
ing how likely features associated with nodes belong to each
class. In the latter unsupervised case, such information is

∗kappes@math.uni-heidelberg.de
†markus.speth@informatik.uni-heidelberg.de
‡gerhard.reinelt@informatik.uni-heidelberg.de
§schnoerr@math.uni-heidelberg.de

(a) unsupervised segmentation

⇓ with inclusion prior

(b) inclusion prior

(c) supervised segmentation (d) modularity cluster-

ing

Figure 1: The presented framework covers (a) unsupervised
and (c) supervised segmentation problems. In the former case,
the number of components (clusters) of the partition is un-
known. In the latter example, the image is partitioned (la-
belled) by assigning pixels to 12 predefined colors classes, tak-
ing spatial context into account. (b) By including higher order
terms into the graphical model, segments can be enforced to
include each other so as to respect topological prior knowl-
edge. (d) Illustration of another example of a broad range of
applications covered by the framework: graph partitioning by
modularity clustering.

absent. This introduces ambiguities of the representation (i)
since permuting the labels results in the same segmentation.
Representation (ii) does not exhibit such symmetries and is
therefore particularly appealing in the unsupervised case.

Accordingly, this paper focuses on the segmentation prob-
lem as a multicut problem, on the polyhedral representation
of valid multicuts resulting in partitions of a given image
[14, 15, 18], and on a computational approach to take into ac-
count the corresponding constraints efficiently.

Specifically, we consider objective functions for the segmen-
tation problem of the form J(x) =

∑
f ϕf (xne(f)) – see Sec. 2

for details – where all higher-order terms are invariant to la-
bel permutations. For second-order terms this is equivalent
to generalized Potts models that may involve negative cou-
plings between adjacent nodes. Higher-order terms will be
handled by additional auxiliary variables and few additional
constraints that do not interfere with the constraints defining

1

valid multicuts. Consequently, cutting-plane methods can be
uniformly used for all models as demonstrated by comprehen-
sive numerical evaluations.

In this connection, the present paper provides a systematic
comparison of different separation strategies for computer vi-
sion applications. In particular, we find that

(i) odd-wheel inequalities do not tighten the relaxation as
expected, in view of results for highly connected non-
computer vision models [39],

(ii) integer linear programming subroutines work overall
best, but

(iii) novel extensions for separation procedures as suggested
in this paper are indispensable for efficient usage.

Taking these aspects into account improves runtime by at least
a factor of 2.

The supervised segmentation problem will be considered as
well in terms of finding an optimal multicut with at most k
labels, which is known as the multiway cut problem. Compared
to the standard (I)LP representation of such problems our
approach is considerably more memory efficient and able to
provide globally optimal solutions for many computer vision
problems in reasonable runtime [24,26].

Fig. 1 provides an overview and illustrations of the models
studied in this paper.

1.2 Related Work

In the unsupervised case, the multicut polytope has recently
become a focal point of research in computer vision. Major as-
pects of current work include closedness constraints for image
segmentation [5,7], contour completion [36], ensemble segmen-
tation [3,36], and the convex hull of feasible multicuts from the
optimization point of view [25,29,43].

Regarding the latter viewpoint, some authors considered
primal linear program (LP) relaxations solved by cutting-plane
methods [28, 29]. Yarkony [43] suggested a Lagrangian relax-
ation for planar graphs based on a problem decomposition into
binary planar max-cut problems. Others [3, 5, 25, 36] resorted
to integer linear programs (ILPs) as inner-loop solver within
the cutting-plane formulation. While this has exponential run-
time in the worst case, it may be expected to work fast in many
applications. A comparison of these methods and variants was
missing so far, however.

In the supervised case, representation (i) above prevails
for the image segmentation problem [30]. Accordingly, the
marginal polytope has become a focal point of research with
respect to relaxations and approximate inference for image
labeling [32,41,42].

Alternatively, greedy move-making algorithms like α-
expansion [11] or FastPD [33] have become established meth-
ods that are widely applied.

Methods that solve the multiway cut problem [14] have
been considered somewhat misleadingly as computationally in-
tractable for computer vision problems [10]. While in general
this problem is known to be NP-hard [17], for few special cases,
e.g., for planar graphs, exact polynomial-time algorithms are
known [16,35].

A connection of some relaxation of the second-order multi-
way cut problem to variational approaches using anisotropic
variants of total variation, and to the linear programming re-
laxation over the local polytope, has been pointed out by Os-
okin et al. [40] and Nieuwenhuis et al. [37].

Recently, the authors [25] presented a cutting-plane ap-
proach to solve the multiway cut problem for various prob-
lem instances from computer vision. Globally optimal results
for benchmark datasets were reported [24, 26] that compare
remarkable well also in terms of runtime to state-of-the-art
methods for approximate inference.

1.3 Contribution

We present a general framework for multicut problems, which
includes Potts models as a special case. For the first time, we
systematically compare different types of cutting-plane meth-
ods for the multicut problem in connection with computer vi-
sion applications.

Our framework also includes higher-order problems based
on a new class of so-called generalized higher-order Potts func-
tions. This class comprises all functions that are invariant to
label permutations and thus provides a natural generalization
of Potts functions.

We present several separation procedures and algorithmic
variants that lead to significant speedups and either are able
to solve the problems to optimality or to provide an approxi-
mative solution in guaranteed polynomial time with bounded
integrality gap.

Comprehensive numerical evaluations demonstrate the basic
properties of our approach and enable us to rank the different
variants.

1.4 Organization

We start in Sec. 2 with the problem formulation followed by
introducing multicuts and corresponding problem transforma-
tions in Sec. 3. In Sec. 4 we extend the framework to higher-
order models and show how corresponding higher-order terms
can be taken into account in a memory-efficient way by ex-
ploiting symmetries.

We detail separation procedures for finding violated con-
straints in Sec. 5 and show how they can be implemented ef-
ficiently. Rounding mechanisms will be discussed in Sec. 5.3.
We conclude the framework with our cutting-plane method
presented in Sec. 5.4.

Finally, we provide numerical evaluations for a large number
of different models in Sec. 6, including second- and higher-
order models in the supervised and unsupervised case, followed
by concluding remarks in Sec. 7.

2 Problem Formulation

2.1 Basic Definitions

We consider discrete energy minimization problems given in
terms of a factor graph G = (V,F , E), that is a bipartite graph

2

with a set of variable nodes V, a set of factors F , and a corre-
sponding relation E ⊆ V × F associating variables to factors,
cf. [31].

Variable xv assigned to node v ∈ V takes values in a discrete
label-space Xv. We will use the shorthands XA =

⊗
v∈AXv

and xA = (xv)v∈A for A ⊆ V, in particular X = XV and
x = xV . In cases where all Xv are equal we denote this label
set by L.

Each factor f ∈ F has an associated function ϕf : Xne(f) →
R, where

ne(f) = {v ∈ V | (v, f) ∈ E} (1)

denotes the neighborhood of the factor f , i.e., xne(f) are the
variables comprising f . We define the order of a factor by the
cardinality |ne(f)|, e.g., pairwise factors have order 2, and the
order of a model by the maximal order among all factors. We
denote the set of all factors of order N 3 r ≥ 1 by Fr. The
energy function of the discrete labeling problem is then given
by

J(x) =
∑
f∈F

ϕf (xne(f)), (2)

where values of the variables x are also called labelings. We
consider the problem to find a labeling with minimal energy,
i.e.,

x̂ ∈ arg minx∈XJ(x), (3)

for specific classes of energy functions.
By using factor graph models we take the structural prop-

erty of energy functions explicitly into account. Additionally,
we will also consider properties of the functions ϕf . Specif-
ically, we assume that any function with order greater than
one is invariant to label permutations.

Definition 2.1 (Label permutation invariant functions). A
function ϕ : LN → R is called invariant to label permutations
if ∀x, x′ ∈ LN with xi = xj ⇔ x′i = x′j the equality ϕ(x) =
ϕ(x′) holds.

Many problems of interest are covered by models involving
functions of this class.

Below, we will use for any predicate τ the corresponding
indicator function

I(τ) =

{
1, if τ is true,

0, otherwise.
(4)

2.2 Supervised Case

In the supervised case we deal with energy functions (2),

min
x∈X

∑
f∈F1

ϕf (xne(f)) +
∑
r≥2

∑
f∈Fr

ϕf (xne(f)), (P1)

where ϕf (·) is permutation invariant for all factors f ∈
Fr, r ≥ 2. Second-order models of this kind are known as
Potts models, with Fr = ∅ for r > 2 and

ϕf (xne(f)) = βf I(xne(f)1 6= xne(f)2), ∀f ∈ F2,

where βf ∈ R is the coupling constant of factor f , and
ne(f)i, i = 1, 2, denotes the i-th neighbor of f . We focus
on related higher-order models separately in Sec. 4.

2.3 Unsupervised Case

Contrary to the supervised problem (P1), in the unsupervised
case the set of first-order factors is empty and the number of
labels equals the number of variables:

min
x∈{1,...,|V |}|V |

∑
r≥2

∑
f∈Fr

ϕf (xne(f)). (P2)

In the second-order case, (P2) is known as the pairwise cor-
relation clustering problem, where a set of nodes V has to
be partitioned into clusters such that the sum of the costs of
node-pairs in different clusters is minimized. As shown in [25]
for the second-order case, solving problem (P2) with solvers
commonly used for problem (P1), e.g., TRWS [32], does not
work, since the large state-space and label permutation invari-
ant functions cause large sets of optimal solutions.

We study in this paper efficient methods for solving both (P1)
and (P2) in the general case.

3 Multicuts

3.1 Basic Definitions

For an undirected graph G = (V,E), E ⊆ V × V , let

{S1, . . . , Sk} be a partition of V , i.e.,
⋃k
i=1 Si = V , Si∩Sj = ∅,

and Si 6= ∅. We call the edge set

δ(S1, . . . , Sk) := {uv ∈ E | ∃i 6= j : u∈Si and v∈Sj} (5)

a multicut and the sets Si the shores of the multicut. To obtain
a polyhedral representation of multicuts, we define incidence
vectors χ(E′) ∈ {0, 1}|E| for each subset E′ ⊆ E:

χe(E
′) =

{
1, if e ∈ E′,

0, if e ∈ E \ E′.

The multicut polytope MC(G) then is given by the convex hull

conv {χ(δ(S1, . . . , Sk)) | δ(S1, . . . , Sk) is a multicut of G} .

Fig. 2 shows an example. For further details on the geometry
of this and related polytopes, we refer to [18].

The multicut problem is to find a multicut in a weighted
undirected graph G = (V,E,w), w ∈ R|E|, for which the sum
of the weights of edges cut is minimal. Since all vertices (ex-
treme points) of the multicut polytope correspond to multi-
cuts, this amounts to solving the linear program

min
y∈MC(G)

∑
e∈E

we ye. (P3)

In order to apply linear programming techniques, we have to
represent MC(G) as intersection of half-spaces given by a sys-
tem of affine inequalities. Since the multicut problem is NP-
hard [21], we cannot expect to find a system of polynomial
size. But, as we will see later, partial systems may already
support effectively solving the multicut problem.

Before discussing how problem (P3) can be solved efficiently,
we will show how the problems (P1) and (P2) can be trans-
formed into problem (P3).

3

1 2

3

(a) Graph (K3)

y12

y13

y23

(b) Multicut polytope for K3

Figure 2: (a) Illustration of the fully connected graph with
three nodes K3. (b) Illustration of the multicut polytope
MC(K3), which has five vertices. Vertices of the polytope
correspond to valid partitions and all other points of the poly-
tope correspond to convex combinations of valid partitions.
For large graphs the multicut polytope becomes huge and the
describing system of inequalities intractable [18].

t1 t2 t3

(a) Multicut graph
for (P1)

(b) Multicut graph
for (P2)

Figure 3: Construction of G = (V,E,w) for a 4 × 4-grid for
(a) the supervised case with L = {1, 2, 3} and (b) the unsu-
pervised case. Red edges are part of the multicut, i.e., they
separate shores. Blue edges join nodes of the same shore of
the partition.

3.2 Multicuts for Second-order Models

To reformulate problem (P2) in the second-order case into a
multicut problem we make use of the one-to-one correspon-
dence between a partition and a multicut. A given factor
graph G defines an undirected weighted graph G = (V,E,w)
with V = V, E = {(ne(f)1, ne(f)2) | f ∈ F2}, and we =∑
f∈F2,ne(f)=e

βf for all e ∈ E. Accordingly, the cost of a
multicut is the sum of all βf over factors f connecting dif-
ferent shores, which equals the costs of (P2) – see [14] for a
formal proof and Fig. 3(b) for an illustration.

Concerning problem (P1) for the second-order case we as-
sume without loss of generality that Xv = L = {1, . . . , |L|}
for all v ∈ V. Any labeling x ∈ X defines a partition
of V. To write a second-order problem (P1) as a multi-
cut problem (P3), we introduce additional terminal nodes
T = {tl | l ∈ L} =

{
t1, . . . , t|L|

}
and define the undirected

graph G = (V,E) by V = V ∪ T , E = {(ne(f)1, ne(f)2) | f ∈
F2} ∪ {(t, v) | t ∈ T, v ∈ V } ∪ {(ti, tj) | 1 ≤ i < j ≤ |L|},
cf. Fig. 3(a). Thus each internal node v ∈ V is connected to
all terminal nodes t ∈ T by terminal-edges (t, v).

The terminal nodes represent the |L| labels l ∈ L, and label l

is assigned to variable xv if the terminal-edge tlv is not part of
the multicut, i.e., tl and v are in the same shore. Since a single
label only should be assigned to each variable, |L|−1 terminal-
edges incident to each internal node v have to be part of the
multicut. This is enforced by |V| additional constraints given
by (22) below where we will take a closer look to classes of
valid constraints. Edges between terminal nodes have weight
0 but are enforced to belong to different shores by additional
constraints (23), which results in the so-called multiway cut
polytope.

It remains to define the weights of terminal edges. Let 11>

be the matrix of all ones and I be the identity matrix, both
of size |L| × |L| and

gv(l) =
∑

f∈ne(v)∩F1

ϕf (l), l ∈ L. (6)

Then the weights wtlv, l ∈ L, v ∈ V , are given by
wt1v

...

wt|L|v

 =
1

|L| − 1
(11> − I)

gv(1)

...

gv(|L|)

 . (7)

As before we set we =
∑
f∈F2,ne(f)=e

βf for internal edges e.

4 Multicuts for Higher-order Models

We turn to higher-order models. First, we specify a class of
higher-order functions that can be treated efficiently. Next,
after detailing a reduction approach, we show how such func-
tions can be incorporated into a multicut framework. Finally,
a relevant subclass of functions will be considered that can be
handled even when these functions comprise factors of orders
larger than several hundreds.

4.1 Label Permutation Invariant Functions

4.1.1 Definition

An important class of functions are label permutation invari-
ant functions, whose values only depend on the partitioning
of the variables rather than on the labeling, as specified by
Def. 2.1. They generalize Potts functions in a natural way and
are especially suited to be handled by the multicut approach.

Each possible partition of N variables is uniquely repre-
sented by a binary vector over all N(N − 1)/2 variable-pairs.
But not each binary vector χ ∈ {0, 1}N(N−1)/2 corresponds to
a partition, cf. Fig. 2. The number of possible partitions is
much smaller and given by the Bell numbers B(N) [1]. This
observation raises the issue of an efficient representation of
these functions, independent of the number of labels.

Let us denote for i = 1, . . . , B(N) by χNi ∈ {0, 1}N(N−1)/2

the indicator vector of the i-th partitioning of N variables.
Furthermore, we define a mapping τN : NN → {0, 1}N(N−1)/2

from a variable-labeling to the partition indicator. With this
we can represent any label permutation invariant function over
N = |A| variables parameterized by β ∈ RB(N)

ϕGP (xA|β) = βi if τ |A|(x) = χ
|A|
i . (8)

4

We call such functions generalized higher-order Potts func-
tions since they generalize (second-order) Potts functions.

4.1.2 Reduction Theorem

In order to incorporate generalized higher-order Potts func-
tions into our multicut framework, we introduce the following
reduction theorem. The basic idea of this theorem is widely
used in integer nonlinear optimization, dating back to the work
of Glover and Woolsey [22].

Theorem 4.1 (Reduction Theorem). Any pseudo-Boolean
function g : {0, 1}M → R given by g(z) =

∏
i∈B+ zi·

∏
i∈B−(1−

zi), with |B+ ∪ B−| = M and B+ ∩ B− = ∅, can be trans-
formed into an optimization problem with
(a) a single Boolean auxiliary variable s ∈ {0, 1} and two lin-
ear inequalities

min
z∈{0,1}M , s∈{0,1}

s (9)

s.t. Ms ≤
∑
i∈B+

zi +
∑
i∈B−

(1− zi) (10)

s ≥ 1−M +
∑
i∈B+

zi +
∑
i∈B−

(1− zi) (11)

or (b) a single auxiliary variable s ∈ [0, 1] and M + 1 inequal-
ities

min
z∈{0,1}M , s∈[0,1]

s (12)

s.t. s ≤ zi ∀i ∈ B+ (13)

s ≤ (1− zi) ∀i ∈ B− (14)

s ≥ 1−M +
∑
i∈B+

zi +
∑
i∈B−

(1− zi). (15)

Proof. The function g(z) takes the value 1 if and only if ∀i ∈
B+ : zi = 1 and ∀i ∈ B− : zi = 0, and otherwise g(z) = 0.
It remains to show that the systems of inequalities together
with s ∈ {0, 1} or s ∈ [0, 1] restrict the feasible set such that
s = g(z).

Let k denote the number of vanishing terms of g(z): k =
|{i ∈ B+ | zi = 0} ∪ {i ∈ B− | zi = 1}|.
(a) Inequalities (10) and (11) imply

s ≤ 1− k

M
, s ≥ 1− k s∈{0,1}⇒

s = 1 if k = 0,

s = 0 if k > 0.

(b) Inequalities (13)–(15) yield

(13)− (14) ⇒ s ≤ 0
s∈[0,1]⇒ s = 0 if k > 0,

(15) ⇒ s ≥ 1
s∈[0,1]⇒ s = 1 if k = 0.

A crucial observation is that case (b) of the reduction the-
orem implies integrality of s if all zi ∈ {0, 1}, whereas in case
(a) this has to be enforced separately by s ∈ {0, 1}. Conse-
quently, case (b) leads to tighter relaxations by only enforcing
s ∈ [0, 1].

000 011 101 110 111

(a) Generalized higher-order Potts

000

(b) Higher-order Potts

Figure 4: Higher-order label permutation invariant functions
are dealt with by problem reduction and additional binary
auxiliary variables (Sec. 4). Corresponding constraints (black
lines) enable to represent exactly the original higher-order
problem. Panel (a) shows an example of a generalized Potts
function of order three. Panel (b) shows an example of a Potts
function of order three.

While reduction (b) thus seems to be preferable, due to a
lower number of constraints, method (a) can be nevertheless
appealing for some (I)LP-solver techniques, e.g., dual simplex.
In our experiments, we therefore use all M + 2 constraints
(10),(11) and (13), (14) (note that (11) equals (15)), and let
the solver choose the active constraint set.

4.1.3 Reduction

In order to apply Theorem 4.1 to a label permutation invariant
function (8) of orderN = |A| we rewrite it as a pseudo-Boolean
function

ϕGP (xA|β) =

B(N)∑
i=1

βi ·

N(N−1)
2∏
j=1

l
(
[χNi]j , [τ

N (x)]j
)

︸ ︷︷ ︸
gi(τN (x))

(16)

with

l(b1, b2) =

{
1− b2, if b1 = 0,

b2, if b1 = 1.
(17)

We apply the reduction theorem to each of the B(N) bi-
nary functions gi(z), z = τN (x). Consequently, a function
ϕGP (xA|β) of order N requires B(N) auxiliary variables.
These auxiliary variables are connected to the node-variables
via the Boolean expressions l(·, ·) in (17) and correspond to
the edge-variables y used in the multicut representation (P3).
By this, we also get rid of difficulties caused by ambiguities of
the node-label representation of a partition.

If an expression l(·, ·) has no corresponding edge e in G, we
add this edge to G with weight zero.

Summing up, to include an label permutation invariant fac-
tor of order N into our multicut framework, we require at
most N(N − 1)/2 edge variables, B(N) auxiliary variables,
and B(N) · (N(N − 1)/2 + 2) linear inequalities. These num-
bers are upper bounds, of course. In many cases more compact
representations are obtained.

We observed in numerous experiments that additionally en-
forcing that all auxiliary variables corresponding to a higher-
order term sum up to 1 significantly speeds up optimization.
This entails to complement a single equality constraint for each
higher-order term.

Fig. 4(a) illustrates an example of a factor of order three.
The reduction requires B(3) = 5 auxiliary variables corre-
sponding to possible partitions and, correspondingly, they are

5

denoted by 000, . . . , 111 in the figure. Constraints generated
by the reduction theorem relate these auxiliary variables to
the original higher-order problem. A single additional edge
shown dotted in Fig. 4(a), has to be added to the graph G in
this example.

4.2 Higher-order Potts Functions

4.2.1 Definition

A subclass of label permutation invariant functions are func-
tions taking the value α0 if all variables xA with A ⊆ V
have the same label (are in the same shore) and α1 otherwise.
We call such functions higher-order Potts functions since they
constitute the simplest generalization of (second-order) Potts
functions to the higher-order case. Such functions are general
enough to model the costs of a hyper-graph partitioning [28],
in which the cost for a hyper-edge is included in the overall
cost function if the hyper-edge connects at least two shores:

ϕHOP (xA|α) =

{
α0, if ∀i, j ∈ A : xi = xj ,

α1, else.
(18)

4.2.2 Reduction

We can reformulate such functions in a pseudo-Boolean form:

ϕHOP (xA|α) = α1 + (α0 − α1)
∏
e∈EA

(1− ye) (19)

where EA is a subset of the edges of G that spans A. If GA =
(A,E ∩ (A × A)) is disconnected we have to add some edges
with weight 0. We point out our empirical observation that
using a spanning graph that includes all edges of GA, instead
of an arbitrary spanning-tree, leads to shorter runtimes.

As before, we apply the reduction theorem to add a higher-
order Potts function as part of a model at hand. This only
requires a single auxiliary variable. Fig. 4(b) provides a sketch
for a function of order three.

5 Cutting-Plane Approach and Sep-
aration Procedures

5.1 Approach

Determining a multicut with minimal costs is NP-hard in gen-
eral [21]. However, if given data induce some structure then
it is plausible to expect such problems to be easier solvable in
practice, than problems without any structure.

We use a cutting-plane approach to iteratively tighten an
outer relaxation of the form

arg miny∈Y
∑
e∈E

we ye. (20)

Here, Y ⊇ MC(G) is superset of the multicut polytope MC(G)
(cf. (P3)) or {0, 1}|E| ⊃ Y ⊇ MC(G) ∩ {0, 1}|E| in the integer
case. In each step we solve a problem relaxation in terms of
a linear or integer linear program, detect violated constraints
from a pre-specified finite list (cf. Sec. 5.2) and augment the

a b c

d

e

f g h

i

2

1

3

1
5 4

−1

−3

−5

−3

−5

−8

−2

−9

Figure 5: Edges labelings have to be constrained in order to be
consistent. The active edges are shown dashed in the figure.
This edge labeling is inconsistent since it does not respect the
transitivity of the corresponding relation: being in the same
segment. For example, the red path implies by transitivity
that e and g are in the same segment, in conflict to the edge-
label of the edge eg.

constraint system accordingly. This procedure is repeated un-
til no more violated constraints are found.

After each iteration we obtain a lower bound as the solution
of the (I)LP and an upper bound by mapping the obtained
solution to the set of feasible points (rounding, cf. Sec. 5.3).

5.2 Relaxation, Constraints

5.2.1 Initial Constraints

We start with a polytope that enforces any edge-variable ye to
be lower and upper bounded by 0 and 1, respectively,

ye ∈ [0, 1], ∀e ∈ E (21)

In presence of terminal nodes, we additionally enforce for each
non-terminal node v ∈ V \ T that exactly one incident edge is
inactive, i.e.,∑

t∈T
ytv = |T | − 1, if T 6= ∅, ∀v ∈ V \ T. (22)

Furthermore, we add the compulsory constraints

ytt′ = 1, ∀t, t′ ∈ T, t 6= t′, (23)

forcing different terminal nodes to belong to different shores.

5.2.2 Integer Constraints

A more restrictive alternative to (21) are the integer con-
straints

ye ∈ {0, 1}, ∀e ∈ E. (24)

Note that not every vector y ∈ {0, 1}|E| belongs to the mul-
ticut polytope. Hence, even enforcing Boolean variable values
may lead to inconsistent edge-labelings, cf. Fig. 5. In general,
using constraints (24) renders inference problems more diffi-
cult. On the other hand, finding violated constraints can be
much simpler for Boolean-valued variables than for less tight
non-Boolean relaxations. This may well compensate the addi-
tional costs1 for solving an ILP instead of an LP.

1Note, sometimes solving the ILP is even faster than the LP.

6

5.2.3 Cycle Constraints

The problem of inconsistent edge-labelings has been con-
sidered in the literature, either motivated by closing con-
tours [5, 36] or as tightening the multicut polytope relaxation
via cycle constraints [15, 25, 28, 39]. In both cases inconsis-
tent cycles are detected. If integer constraints are enforced
an inconsistent cycle is a cycle that contains exactly a single
active edge, which obviously violates transitivity. This can be
generalized to the relaxed non-Boolean case ye ∈ [0, 1] [15].

A system of cycle inequalities that necessarily has to be
satisfied by consistent labelings, is given by∑

e∈P
ye ≥ yuv ∀uv ∈ E, P ∈ Path(u, v) ⊆ E. (25)

It is well known [15] that if and only if the cycle {uv} ∪ P
is chordless, then the constraint is facet-defining for the un-
derlying polytope or, speaking less technically, “effective” for
enforcing labeling consistency.

While for fully connected graphs, (25) can be represented
by a polynomial number of triangle constraints [12,15,23], the
separation procedure reduces to a sequence of shortest path
problems in the general case [15]. Given y, the naive approach
searches for each edge uv ∈ E the shortest path from u to v in
the weighted graph Gy = (V,E, y). If this path is shorter than
yuv, then it represents the most violated constraint of the form
(25) for uv. Using a basic implementation of Dijkstra (as we
do) the cost for one search is O(|V |2). The cost can be reduced
to O(|E|+ |V | log |V |) by using Fibonacci heaps.

To reduce the number of shortest path searches we exploit
the following three ideas:

Efficient Bounds on the Shortest Path (B): Instead of
searching for each edge uv ∈ E the shortest path from u to v
in a positive weighted graph G = (V,E, y), we can calculate a
lower bound on the path length for all uv ∈ E in O(|E|+ |V |).
To this end, we determine the connected components in the
graph G′ = (V, {e ∈ E | ye < γ}). If two nodes u, v ∈ V
are not in the same connected component, the shortest path
from u to v is greater than or equal to γ. Choosing γ = 1
yields a preprocessing procedure that enables to omit many
shortest path searches. Furthermore, if the edge between two
nodes has weight 0, this is obviously the shortest path since
all edge-weights ye are non-negative.

Shortest Path in Binary Weighted Graph (I): If the
edge weights are either 0 or 1, then simple breadth-first search
can be applied instead of the Dijkstra algorithm. The com-
putational effort can be further reduced, as before but with-
out additional costs, by restricting the search to the graph
G0 = (V, {e ∈ E | ye = 0}). Since any path including an edge
with weight 1 cannot be shorter than the edge between the
two nodes which is 0 or 1.

Finding Chordless Shortest Paths / Facet-Defining
Constraints (F): A path between the two nodes forming an
edge is called chordless if the cycle consisting of the path and
the edge has no chord. Shortest path search can be easily ex-
tended so as to determine the shortest chordless paths: Every
node except for the end-node is not updated by the Dijkstra
algorithm if the path from this node to the starting node is
chordal. This increases the costs by a factor bounded by |V |.

corr-clustimage-seg image-seg3 mod-clust
0

0.5

1

re
la

ti
ve

ru
n
ti

m
e

(%
)

MC-C (baseline) MC-CB MC-CF MC-CFB
MC-I-C(baseline) MC-I-CI MC-I-CFB MC-I-CIFB

Figure 6: Comparison of the proposed extensions (marked by
the postfixes B, I, and F) on the runtime. For the relaxed case
(MC-C∗) (first four bars) we observe that bounding clearly im-
proves runtimes for image-based data, this is not true for third-
order image segmentation and modularity clustering. Using
only facet-defining constraints decreases the runtime for all
four datasets, most significantly for modularity clustering. If
we enforce integrality (MC-I-C∗) during the cutting-plane pro-
cedure (last four bars), the use of specialized search methods
(CI) reduces the runtime significantly.

In view of cycle constraints, the corresponding constraints are
facet-defining.

Our experiments, discussed by Fig. 6 and in Sec. 6, spot
that joint application of bounding procedures, facet-defining
constraints (chordless paths) and dedicated search methods
for binary weighted graphs, leads to better runtimes in nearly
all cases.

5.2.4 Terminal Cycle Constraints

We can further reduce the costs for shortest path searches
based on the following lemma.

Lemma 5.1. In the presence of terminals there exists no cycle
C with more than three nodes that is chordless and contains a
terminal node.

Proof. Let C be a cycle with more than three nodes that con-
tains a terminal node t, and select an edge uv in C with
u, v 6= t. The tu, tv ∈ E by definition, hence the cycle is
chordal.

As a result of Lemma 5.1, we ignore all cycle constraint of
a length greater than 3 that includes a terminal node. All
facet-defining cycle constraints that include a terminal node
are then given by

ytu + ytv ≥ yuv, ∀uv ∈ E, t ∈ T, (26)

ytu + yuv ≥ ytv, ∀uv ∈ E, t ∈ T, (27)

ytv + yuv ≥ ytu, ∀uv ∈ E, t ∈ T, (28)

together with (23). As a consequence we only have to search
for general cycle constraints on the graph without terminal
nodes, that has |T | · |V | fewer edges!

7

5.2.5 Multi Terminal Constraints

Călinescu et al. [13] suggested another class of non-facet-
defining linear inequalities that further tightens the outer poly-
tope relaxation:

yuv ≥
∑

t∈S
(ytu − ytv) , ∀uv ∈ E,S ⊆ T. (29)

Intuitively, these constraints enforce each non-terminal edge
to be at least as active as all its terminal edge-pairs indicate.
Since

∑
t∈T (ytu − ytv) = 0, we only consider differences in

the direction u → v. An alternative representation of (29)
exploiting symmetry is

yuv ≥
∑

t∈T

1

2
|ytu − ytv| . (30)

In order to see why multi terminal constraints are useful, let
us consider a tiny toy example of a model with two variables
and four labels. Overall, the multiway cut polytope has eight
terminal edges (t, 1)t∈T , (t, 2)t∈T and a single edge (1, 2) be-
tween the two nodes. We inspect few values of y and check if
(29) is implied by (26)–(28) or not.

(yt,1)t∈T (yt,2)t∈T (26)–(28) (29)

(1, 1, 1, 0) (1, 1, 0, 1) ⇒ 1 ≤ y12 ≤ 1 1 ≤ y12
(1, 1, 1

2 ,
1
2) (1, 1, 1

2 ,
1
2) ⇒ 0 ≤ y12 ≤ 1 0 ≤ y12

(1
2 ,

1
2 , 1, 1) (1, 1, 1

2 ,
1
2) ⇒ 1

2 ≤ y12 ≤
3
2 1 ≤ y12

(1, 2
10 ,

3
10 ,

5
10) (1, 1

10 ,
2
10 ,

7
10) ⇒

2
10 ≤ y12 ≤

3
10

2
10 ≤ y12

In the third example (row) above, multi terminal constraints
tighten the relaxation. It can be shown that these constraints
may tighten the relaxation only if at least four terminal nodes
are present.

5.2.6 Odd-Wheel Constraints

While cycle constraints are only sufficient to obtain optimal
solutions if integer constraints are enforced, we may tighten
the relaxation in the case ye ∈ [0, 1] by adding more complex
constraints.

One such a class of constraints for which the separation pro-
cedure can be carried out efficiently, are odd-wheel constraints.
A wheel W = (VW , EW) is a graph with a selected center node
c ∈ VW . All other nodes are connected with the center, and the
remaining edges build a cycle containing all nodes in VW \{c}.
An odd-wheel is a wheel with an odd number of non-center
nodes. The odd-wheel constraints are given by∑

uv∈EW ,u,v 6=c

wuv −
∑

v∈VW \{c}

wcv ≤
⌊
||VW | − 1|

2

⌋
(31)

for all odd-wheels W = (VW , EW).
Deza et al. [19] proved that odd-wheel constraints are facet-

defining for ||VW |−1| ≥ 3. As described in detail by Deza and
Laurent [20] and Nowozin [38], the search for violated odd-
wheel constraints can be reduced to a polynomial number of
shortest path searches, if the current solution does not violate
any cycle constraints.

In our experiments, we found that with increasing sparsity,
odd-wheel constraints tighten the relaxation less. This is intu-
itively plausible since in densely connected graphs significantly
more odd-wheels exist that could be violated. Since the overall

101 011

110

(a) Nearest label rounding

101 011

110

ρ

(b) Derandomized rounding

Figure 7: Illustration of the two rounding schemes for the
multiway cut problem for the vector (ytv)t∈T . Nearest label
rounding (a) assigns each point in the simplex to the nearest
vertex. Fig. (b) shows exemplarily one iteration of derandom-
ized rounding for ρ = 0.75.

gain was not better than with the previously proposed meth-
ods, we did not spend time to search for heuristics to speed
up computation, as we did for the cycle inequalities.

5.3 Rounding Fractional Solutions

Relaxations of the integer-valued multicut problem yield so-
lutions that may be fractional and therefore infeasible. The
objective value then will be a lower bound of the optimal value.
The procedure to map an infeasible solution to the feasible set
is called rounding. Furthermore, for the resulting multicut, a
corresponding node-labeling has to be determined.

5.3.1 Supervised Case

In the presence of terminal nodes, we assign to each node-
variable the label of the terminal node to which it is connected
by means of ytv = 0 in the integer-valued case. This idea
extends to the general case by assigning to node v the label l
with the lowest edge-value ytlv, i.e., the nearest corner in the
corresponding simplex, cf. Fig. 7:

xv = arg mint∈T ytv ∀v ∈ V \ T. (32)

This heuristic nearest label rounding method has two draw-
backs, however. Firstly, it does not provide any performance
guarantee. Secondly, nearby nodes that favor two or more
labels nearly equally might be randomly assigned to differ-
ent labels due to numerical inaccuracy. This is particularly
problematic in case of positive coupling strengths where ho-
mogeneously labeled regions are preferred.

Contrary to this local procedure, Călinescu et al. [13]
suggested a randomized rounding procedure that provides
optimality bounds for Potts models with positive coupling
strengths. Given a threshold ρ ∈ [0, 1], they iterate over all
labels in a fixed order and assign label l to node v if ytlv ≤ ρ
and no label was assigned to v before. In case no label was
assigned to node v in the end, then the last label with respect
to the ordering of the labels is assigned to v. This rounding
procedure is sketched by Fig. 7(b).

A randomized rounding procedure would apply this for all
ρ ∈ [0, 1] and select the labeling with the lowest energy. Since
[0, 1] is uncountable, Călinescu et al. suggested a derandomized
version. This is based on the observation that we only have to
consider |V \T |·|T | different threshold parameters, namely the

8

(a) Data (b) Nearest (c) P.-derand. (d) Derand.

Figure 8: Illustration of the rounding results (nearest label,
pseudo-derandomized and derandomized) after solving the LP
relaxation with terminal, multi-terminal, and cycle inequali-
ties for the instances inpainting and clownfish from [24]. De-
randomized and pseudo-derandomized rounding gives similar
results. Simple rounding to the nearest label can give inferior
results (top row). But for real applications differences of the
labelings are marginal (last row).

values of the terminal edge variables ytv. Since this set can still
be quite large, we also consider a heuristic approximation that
we call pseudo-derandomized rounding, using a small number
of equidistant thresholds, in practice: 0, 0.01, 0.02, . . . , 0.99, 1.

Concerning tightness of the relaxation, Călinescu et al. [13]
pointed out that the integrality ratio of the relaxed LP for
the second-order multiway cut problem with positive coupling
strengths, exploiting cycle, terminal and multi-terminal con-
straints, is 3

2 −
1
k . This is superior to the α-expansion algo-

rithm [11] and the work of Dahlhaus et al. [16], which guaran-
tees only a ratio of 2− 2

k .

Empirically, we observe for these types of models that deran-
domized rounding and pseudo-derandomized rounding usually
lead to results that are slightly better than when using nearest
label rounding. While pseudo-derandomization does empiri-
cally not give results worse than original derandomization, it
is much faster, but does not come along with theoretical guar-
antees. Fig. 8 shows results for two instances taken from [24].
While for the synthetic instances rounding matters, for real
world examples the differences are negligible.

5.3.2 Unsupervised Case

In absence of terminal nodes, we compute in the integer-valued
case the connected components of G0 = (V, {e ∈ E | ye = 0}),
enumerate them by #CCG0

, and assign to each node-variable
as label the number of its connected component

xv = #CCG0(v), ∀v ∈ V. (33)

It is easy to see that the labeling-costs J(x) (2) are greater
than or equal to the multicut costs 〈w, y〉 and equal if y is a
valid multicut.

If y is not integral we first have to map y to a vertex of the
multicut polytope. To this end, we determine the connected
components of G≤κ = (V, {e ∈ E | ye ≤ κ}) and define the

10.90.80.70.60.50.40.30.20.10
0

1

2

3

threshold (κ)

re
la

ti
ve

er
ro

r
(%

)

image-seg image-seg3 corr-clust mod-clust

Figure 9: Illustration of the impact of the choice of κ on
the distance of the energy of the integer solution obtained
by rounding to the optimal value. For modularity clustering
(mod-clust) and third-order image segmentation (image-seg3)
we scaled the bars by a factor of 0.1. The results show that one
should choose κ < 0.5. Empirically the optimal value lies in
[0.2, 0.3] but also 0 (more precisely 10−8) gives nearly similar
results.

feasible projection ŷ by

ŷuv =

{
0, if #CCG≤κ(u) = #CCG≤κ(v),

1, else.
(34)

The labeling then is given by

xv = #CCG≤κ(v), ∀v ∈ V. (35)

Since the connected component procedure will tend to remove
dangling edges, it seems to be reasonable to select κ smaller
than 0.5. This was empirically confirmed by our experiments.
Fig. 9 shows the relative error of the rounded solutions after
enforcing cycle constraints for different problem-classes with
various values of κ.

5.4 Multicut Cutting-Plane Algorithm

Algorithm 1 provides a compact description of our complete
multicut approach, summarizing the present section. In addi-
tion to the specification of the objective function in terms of
a factor graph model G, we expect a proper2 list of separation
procedure sets S as input parameters. For example, S1 could
represent simple cycle constraints separation, S2 integrality
constraints, and S3 cycle constraints separation specialized to
integer solutions.

As specified by algorithm 1, we construct the weighted undi-
rected graph G, introduce auxiliary variables for higher-order
factors (as detailed in previous sections), and initialize the
constraint set C by a simple outer relaxation of the feasible
set.

For each separation procedure set in the list S, we apply all
separation procedures in Si to find violated constraints and
add these to C until no more are found. Then we proceed with
the next set Si+1.

2A list of separation procedures is called proper if the separation pro-
cedures that are included once are also included when proceeding further
down the list. For proper lists the obtained relaxation is well-defined. All
lists used in our experiments are proper.

9

Algorithm 1 Multicut-Algorithm

1: Given: G = factor graph model,
S = proper list of separation procedure sets.

2: Construct G = (V,E,w) from G.
3: Initialize the constraint set C as described in Sec. 5.2.1.
4: for i = 1, . . . , |S| do
5: repeat
6: Solve ŷ ∈ arg miny∈C〈w, y〉,
7: C̄ = violated constraints found by separation proce-

dures Si for ŷ,
8: C = C ∪ C̄,
9: until C̄ == ∅.

10: end for
11: Compute a labeling x ∈ X based on ŷ.

The (integer) linear program in line 6 is solved by CPLEX
12.2, a standard off-the-shelf LP-solver. Finally, we compute
an optimal node-labeling x ∈ X from the multicut solution y.

The implementation of Alg. 1 turned out to be involved, due
to several pitfalls necessitating some care. We will therefore
make our code publicly available. Furthermore, when solving
the (I)LP one should not expect that the solution is feasi-
ble. Sometimes we observe negative values of ye and therefore
project solutions always to [0, 1]|E|. Also Boolean constraints
were sometimes slightly violated. Most importantly, due to nu-
merical reasons, constraints should only be added if they are
significantly violated, i.e., the constraint a ≤ b is only added
if a ≤ b− ε does not hold. Ignoring this may not only lead to
infinite loops for some instances, but may also significantly in-
crease runtime. The parameter ε should be chosen depending
on the precisions of the (I)LP solver. We use ε = 10−8.

6 Experiments

6.1 Set-Up, Implementation Details

We implemented the separation procedures and reduction
methods described above using C++ and the OpenGM2-
library [4] for the factor graph representation, and CPLEX
for solving ILPs and LPs in the inner loop of the iteration.

Our multicut approach encompasses a variety of algorithms
which differ in the used inequalities, in the separation proce-
dures, and in the order these procedures are applied. The
abbreviations for single separation procedures are listed as
Tab. 1.

For example, MC-CFB-I-CIF indicates:

• application of the multicut algorithm (MC) based on

• searching for violated facet-defining cycle inequalities
(CF) using bounding (B),

• enforcing integer constraints (I), and finally

• searching for facet-defining cycle inequalities violated
by the current Boolean solution (CIF), based on
Breadth-First-Search instead of the Dijkstra algorithm
(cf. Sec. 5.2.3).

Table 1: Abbreviations for the separation procedures.
I integer constraints
C cycle inequalities separation
CF facet-defining cycle inequalities separation
CI cycle inequalities separation for ILP
CIF facet-defining cycle inequalities separation for ILP
OW odd-wheel inequalities separation
T terminal inequalities separation
MT multi terminal inequalities separation
TI terminal inequalities separation for ILP
*B bounding for the shortest path search was used

We report for each dataset results averaged over all its in-
stances:

1. the mean runtime: runtime,

2. the mean value of the integer solution after rounding:
value,

3. the mean lower bound: bound,

4. how often the method found an integer solution with an
objective value not larger than 10−6 compared to the over-
all best method for this instance: best, and

5. how often the method provided a gap between the objec-
tive value of the integer solution and the lower bound,
that was smaller than 10−6: ver. opt, which we interpret
as globally optimal for our instances.

In the unsupervised case, we compared the proposed meth-
ods with our implementation of the Kernighan-Lin (KL) algo-
rithm [27] for the second-order case, as well as with iterative
conditional mode (ICM) [8] and Lazy Flipper (LF) [6]. For
planar graphs, an optimal segmentation with only four labels
exists, and methods for the supervised case can be applied.

In the supervised case, we compared with TRWS [32], α-
expansion [11] and FastPD [33] – using in each case code pro-
vided by the respective authors of these papers. Furthermore,
we compared to commercial LP- and ILP-solvers in the nodal
domain, LBP, TRBP, and α-fusion, as provided by OpenGM2.

6.2 Probabilistic Image Segmentation

The probabilistic image segmentation framework was sug-
gested by Andres et al. [5] and belongs to the class of unsuper-
vised image segmentation problems. These problem instances
involve 156 · · · 3764 superpixels. For all pairs of adjacent su-
perpixels, the likelihood that their common part of the super-
pixel boundary is part of the segmentation, is learned offline
by a random forest. This results in a Potts model with posi-
tive and negative coupling constraints. While the connection
to Potts models is not mentioned in [5], they use a similar
optimization scheme as in the present work. They introduced
a higher-order model as well as a second-order one. Only the
latter has been made publicly available in [24].

Second-order Case. As shown in Tab. 2, for this dataset,
we profit from using ILP subproblems. This reduces the mean
runtime to less than 3 seconds and is therefore empirically

10

Table 2: Second-order probabilistic image segmentation [5,24]

algorithm runtime value bound best ver. opt

KL 4.96 s 4608.57 −∞ 0.0% 0.0%
ICM 6.03 s 4705.07 −∞ 0.0% 0.0%
LF1 2.35 s 4705.01 −∞ 0.0% 0.0%
LF2-L4 0.13 s 4627.38 −∞ 0.0% 0.0%
LF3-L4 3.16 s 4581.83 −∞ 0.0% 0.0%
LF4-L4 176.47 s 4555.73 −∞ 0.0% 0.0%

TRWS-L4 0.84 s 4889.23 4096.53 0.0% 0.0%

MC-C 14.02 s 4447.47 4442.34 35.0% 35.0%
MC-CB 4.71 s 4447.47 4442.34 35.0% 35.0%
MC-CF 11.35 s 4447.47 4442.34 35.0% 35.0%
MC-CFB 5.16 s 4447.47 4442.34 35.0% 35.0%

MC-C-OW 14.08 s 4447.41 4442.34 35.0% 35.0%
MC-CB-OW 4.81 s 4447.41 4442.34 35.0% 35.0%
MC-CF-OW 11.45 s 4447.41 4442.34 35.0% 35.0%
MC-CFB-OW 5.19 s 4447.41 4442.34 35.0% 35.0%

MC-I-CI 2.78 s 4442.64 4442.64 100.0% 100.0%
MC-I-CIF 2.20 s 4442.64 4442.64 100.0% 100.0%
MC-C-I-CI 15.00 s 4442.64 4442.64 100.0% 100.0%
MC-CFB-I-CIF 5.69 s 4442.64 4442.64 100.0% 100.0%

faster than LP-based cutting-plane methods and the heuristic
KL-algorithm. ICM and LF perform worse than KL. With in-
creasing search space LF outperforms KL. For a search-depth
greater than 1 we make use of the fact that the instances are
planar and an optimal solution with four labels exists. The
same trick is used to make TRWS applicable. Additionally, we
fix the first variable and initialize messages randomly. Even
this does not help to prevent TRWS from running into poor
local fix-points. In both cases the label reduction is marked
by the postfix L4.

Concerning the multicut approach, odd-wheel constraints
only marginally improve the results. LP-based cutting-plane
methods find the optimal solution for 35 of 100 instances and
are slower than ILP-based methods, too.

Higher-order Case. The third-order models from [5] are
hard to solve with relaxations, hence rounding becomes more
important, cf. Fig. 9. The additional third-order factors favor
smooth boundary continuation. Since this sometimes conflicts
with local boundary probabilities, the problem becomes more
involved.

As shown in Tab. 3, local search methods give better re-
sults than relaxed solutions after rounding. Our exact multicut
scheme was able to solve all instances to optimality. Notably,
one instance was significantly harder than all others and took
more than half of the overall runtime for MC-I-C and MC-I-
CFB.

Overall, a few instances are significantly harder than others.
This is apparent by the large difference of the mean runtime
to the median runtime (the latter is shown in parentheses in
Tab. 3).

6.3 Higher-order Hierarchical Image Seg-
mentation

The hierarchical image segmentation framework was suggested
by Kim et al. [28] and also belongs to the class of unsupervised
image segmentation problems. Contrary to the work of An-
dres et al. [5], they learn their model-parameters by a struc-
tured support vector machine (S-SVM). Furthermore, higher-

Table 3: Third-order probabilistic image segmentation [5]

algorithm runtime value bound best ver. opt

ICM 10.79 (8.11) s 6030.49 −∞ 0.0% 0.0%
LF 4.17 (3.11) s 6030.29 −∞ 0.0% 0.0%

MC-C 43.82 (9.33) s 6657.32 5465.15 0.0% 0.0%
MC-CB 42.86 (9.26) s 6657.32 5465.15 0.0% 0.0%
MC-CF 26.68 (8.06) s 6658.28 5465.15 0.0% 0.0%
MC-CFB 25.00 (6.64) s 6658.28 5465.15 0.0% 0.0%

MC-C-OW 43.71 (11.16) s 6657.12 5465.29 0.0% 0.0%
MC-CB-OW 43.38 (9.66) s 6657.12 5465.29 0.0% 0.0%
MC-CF-OW 27.62 (8.15) s 6658.08 5465.29 0.0% 0.0%
MC-CFB-OW 25.55 (7.40) s 6658.08 5465.29 0.0% 0.0%

MC-I-C 689.79 (41.43) s 5627.52 5627.52 100.0% 100.0%
MC-I-CFB 469.87 (33.02) s 5627.52 5627.52 100.0% 100.0%
MC-I-CI 119.64 (31.73) s 5627.52 5627.52 100.0% 100.0%
MC-I-CIF 72.81 (27.39) s 5627.52 5627.52 100.0% 100.0%
MC-C-I-CI 125.33 (33.63) s 5627.52 5627.52 100.0% 100.0%
MC-CFB-I-CIF 82.00 (25.60) s 5627.52 5627.52 100.0% 100.0%

Table 4: Higher-order hierarchical image segmentation [28].

algorithm runtime value bound best ver. opt

ICM 1.90 s −585.60 −∞ 0.0% 0.0%
LF 1.00 s −585.60 −∞ 0.0% 0.0%

MC-C 0.23 s −625.97 −628.89 19.9% 13.7%
MC-CB 0.12 s −625.97 −628.89 19.9% 13.7%
MC-CF 0.20 s −625.97 −628.89 19.9% 13.7%
MC-CFB 0.11 s −625.97 −628.89 19.9% 13.7%

MC-C-OW 0.24 s −625.98 −628.89 20.1% 14.0%
MC-CB-OW 0.14 s −625.98 −628.89 20.1% 14.0%
MC-CF-OW 0.21 s −625.98 −628.89 20.1% 14.0%
MC-CFB-OW 0.13 s −625.98 −628.89 20.1% 14.0%
MCR [28] 0.38 s −624.35 −629.03 16.4% 10.2%

MC-CI 1.14 s −628.16 −628.16 100.0% 100.0%
MC-CIF 1.04 s −628.16 −628.16 100.0% 100.0%
MC-C-CI 0.85 s −628.16 −628.16 100.0% 100.0%
MC-CFB-CIF 0.62 s −628.16 −628.16 100.0% 100.0%

order Potts terms force selected regions to belong to the same
cluster. The 715 instances of this dataset, published as part
of [24], contain factors of order up to a few hundred and 122–
651 variables.

The results are summarized as Table 4. Surprisingly, our
LP-based methods perform better than the original algorithm
used in [28], even though the algorithms are identical. Maybe
this was caused by the different LP solver they used, or by
some floating-point problems inside their separation proce-
dure. The use of odd-wheel constraints marginally improves
the results. Best results are obtained by using integer cutting-
planes after having solved the LP. The use of the bounding
as part of the post-processing reduces runtime by a factor of
2. The differences to only using facet-defining constraints are
negligible.

6.4 Modularity Clustering

We also considered a clustering problem from outside the field
of computer vision, which contrary to the previous models
considered so far, involves a fully connected graph. Modular-
ity clustering [12] means the problem of clustering an undi-
rected unweighted graph into ”meaningful” subsets, which
amounts to optimization problems related to fully connected
Potts model. For our experiments, we used the datasets3 dol-

3http://www-personal.umich.edu/~mejn/netdata/

11

Table 5: Modularity clustering [12]

algorithm runtime value bound best ver. opt

KL 0.01 s −0.5251 −∞ 2/4 0/4
ICM 0.12 s 0.0000 −∞ 0/4 0/4
LF 0.05 s 0.0000 −∞ 0/4 0/4

MC-C 47.99 s −0.5204 −0.5294 1/4 1/4
MC-CB 48.33 s −0.5204 −0.5294 1/4 1/4
MC-CF 1.02 s −0.5204 −0.5294 1/4 1/4
MC-CFB 0.91 s −0.5204 −0.5294 1/4 1/4

MC-C-OW 72.05 s −0.5282 −0.5282 4/4 4/4
MC-CB-OW 72.42 s −0.5282 −0.5282 4/4 4/4
MC-CF-OW 12.26 s −0.5282 −0.5282 4/4 4/4
MC-CFB-OW 11.60 s −0.5282 −0.5282 4/4 4/4

MC-I-C 152.20 s −0.5282 −0.5282 4/4 4/4
MC-I-CI 14.57 s −0.5282 −0.5282 4/4 4/4
MC-I-CIF 6.31 s −0.5282 −0.5282 4/4 4/4
MC-I-CCFDB 6.56 s −0.5282 −0.5282 4/4 4/4
MC-C-I-CI 58.24 s −0.5282 −0.5282 4/4 4/4
MC-CFB-I-CIF 1.31 s −0.5282 −0.5282 4/4 4/4

phins, football, karate, and lesmis, with 62, 115, 34, and 77
data-points, respectively.

As shown in Tab. 5, for modularity clustering, the use of
facet-defining inequalities as well as odd-wheel constraints sig-
nificantly improves the results. We attribute this to the high
connectivity of the graph. In such dense graphs more likely vi-
olated odd-wheel inequalities exist. Likewise, more non-facet-
defining cycle inequalities exist as well, and adding those only
blows up the system of inequalities.

As observed by Nowozin and Jegelka [39], odd-wheel in-
equalities usually tighten sufficiently the polytope. Further-
more, we observed for this dataset, as in [39], numerical prob-
lems if the allowed feasibility and optimality tolerances were
set too large. However, the experiments showed that our pro-
posed integer cycle inequalities perform better than odd-wheel
separation, especially if we start from the LP-relaxation with
cycle inequalities, cf. Tab. 5.

6.5 Supervised Image Segmentation

An elementary approach to supervised image segmentation,
or image labeling, is to apply locally a statistical classifier,
trained offline beforehand, to raw image data or to locally
extracted image features. This is complemented by a non-
local prior term, the most common form of which favours short
boundaries of the segments partitioning the image domain.
Such terms can be approximated by pairwise Potts terms [9]
and lead to an energy function of the form∑

f∈F1

− log(pne(f)(xne(f)|I)) +
∑
f∈F2

β I(xne(f)1 6= xne(f)2).

As recently shown by Kappes et al. [26], such models can be
evaluated globally optimal and very fast by first determining
partial optimality, leading to a reduced inference problem in
terms of remaining unlabelled connected image components,
followed by solving each of these smaller problems indepen-
dently.

We use the labels “*” to mark when these preprocessing
steps were applied and “†” to mark whenever the memory
requirement exceeded 12 GB.

Table 6: Supervised image segmentation [2]

algorithm runtime value bound best ver. opt

MC-T-MT-I-T 149.43 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT-I-T 1.86 s 308 472 274.3 308 472 274.3 3/3 3/3
ILP † † † † †
ILP* 1.91 s 308 472 274.3 308 472 274.3 3/3 3/3

MC-T-MT 115.14 s 308 472 274.3 308 472 274.3 3/3 3/3
MC*-T-MT 1.76 s 308 472 274.3 308 472 274.3 3/3 3/3
LP † † † † †
LP* 2.17 s 308 472 274.3 308 472 274.3 3/3 3/3
TRWS [32] 150.47 s 308 472 310.6 308 472 270.4 2/3 1/3
TRWS* 3.90 s 308 472 274.3 308 472 274.3 2/3 2/3

FastPD [33] 0.45 s 308 472 275.0 −∞ 2/3 0/3
FastPD* 1.62 s 308 472 274.7 −∞ 2/3 0/3
α-Exp [11] 6.42 s 308 472 275.6 −∞ 2/3 0/3
α-Exp* 1.72 s 308 472 274.3 −∞ 3/3 0/3

As dataset we used the color segmentation instances of Ala-
hari et al. [2]. The results are summarized as Table 6.

While standard (I)LP solvers often suffer from their large
memory requirements, the multicut approach outperformed all
other approaches. Since for all instances the local polytope re-
laxation returned optimal integer solutions, MC-T-MT could
solve them in polynomial time. When we resorted to the model
reduction *, the subproblems became small for these problem
instances, and (I)LP solvers could be conveniently applied.
Our multicut approach then was only marginally faster. De-
spite global optimality, however, the runtime was comparable
to algorithms for approximate inference that do not guarantee
global optimality.

6.6 Higher-Order Supervised Image Seg-
mentation

We studied image segmentation with junction regularisation as
problem instances that benefit from the application of higher-
order generalized Potts functions.

Rather than merely penalizing the boundary length of seg-
ments, this approach aims at improving segmentation results
by additionally penalizing points where the boundaries of three
or more segments meet:

ϕI(x1, x2, x3, x4) =

{
λ, if |{x1, x2, x3, x4}| > 2,

0, else.
(36)

The overall cost for labeling then is given by∑
f∈F1

ϕ1
f (xne(f)) +

∑
f∈F2

ϕ2
f (xne(f)) +

∑
f∈F4

ϕI(xne(f)),

where ϕ1 denotes the L1-norm of the difference between in-
tensity of a pixel and a pixel-label, ϕ2 the same second-order
terms as in the pairwise case, and F4 the set of all factors over
four pixels that build a cycle in the image grid.

Setting λ to 0 yields standard second-order model with
boundary length regularization, whereas setting λ→∞ yields
a model that enforces segments to be surrounded by one single
segment.

Fig. 1(b) illustrates this property of the model. The stan-
dard second-order approach, cf. Fig. 1(b), top, produces many
small artefacts, e.g., in “a”, “x”, and “v” , and often opens

12

Table 7: Supervised image segmentation with inclusion priors
algorithm runtime value bound best ver. opt

ICM 0.03 s 1556.20 −∞ 0/10 0/10
LBP-LF2 12.20 s 1400.62 −∞ 8/10 0/10
α-FUSION 0.07 s 1587.13 −∞ 0/10 0/10

LBP 12.28 s 1800.67 −∞ 3/10 0/10
TRBP 13.93 s 2000.67 −∞ 2/10 0/10

LP 25.04 s 3900.59 1400.33 1/10 1/10
MC-T-MT 18.55 s 1739.29 1399.49 1/10 0/10

ILP 7.33 s 1400.57 1400.57 10/10 10/10
MC-T-MT-I-T 66.58 s 1400.57 1400.57 10/10 10/10

the surrounding segment (e.g., left of “a” and right of “i”).
Invoking the fourth-order regularizer, cf. Fig. 1(b), bottom,
eliminates many of these artefacts and results in a significantly
better segmentation.

The results of an empirical evaluation for 10 synthetic 32×32
images are summarized as Table 7.

Approximate inference methods performed quite good, but
among those only LBP-LF2 (Lazzy Flipper initialed with the
solution of LBP) was able to provide nearly optimal results.
While the multicut approach is on par when relaxations were
considered, it became quite slow compared to a ILP applied to
labeling in the nodal domain, when a globally optimal solution
was enforced.

We believe there are two major reasons: First, the relaxation
“prefers” less integral solutions due to the higher-order terms
and therefore becomes harder to solve for LP-based methods.
Second, we observe that CPLEX solves the ILP mainly by
branching and probing in order to avoid solving LPs. This is
also the reason why ILP is faster than LP.

While an in-depth study of such aspects is beyond the scope
of the present paper, our findings indicate ways to further
improve the multicut approach in such advanced settings.

7 Conclusion

We presented an approach based on multicuts to solve a broad
range of supervised and unsupervised segmentation problems
to optimality in reasonable runtime. We showed, in partic-
ular, how to extend the approach higher-order models based
on a class of label invariant functions that generalize Potts
functions in a natural way. Such models enable to model
higher-order interactions concisely by taking its symmetries
into account.

We devised several dedicated separation procedures and
demonstrated a corresponding significant impact on runtime.
A systematic comparison of different cutting-plane procedures
for computer vision applications enabled us to improve run-
times for all models compared to the state of the art. A
discussion of polynomially solvable relaxations of the unsu-
pervised segmentation problems complemented our study, to-
gether with advanced rounding schemes.

Acknowledgements. This work has been supported by
the German Research Foundation (DFG) within the program
“Spatio-/Temporal Graphical Models and Applications in Im-
age Analysis”, grant GRK 1653.

References

[1] Martin Aigner. Combinatorial Theory. Springer, 1979.

[2] Karteek Alahari, Pushmeet Kohli, and Philip H. S. Torr. Dy-
namic hybrid algorithms for MAP inference in discrete MRFs.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 32(10):1846–1857, 2010.

[3] Amir Alush and Jacob Goldberger. Ensemble segmentation
using efficient integer linear programming. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 34(10):1966–
1977, 2012.

[4] Björn Andres, Thorsten Beier, and Jörg H. Kappes.
OpenGM2, 2012. http://hci.iwr.uni-heidelberg.de/

opengm2/.

[5] Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe,
and Fred A. Hamprecht. Probabilistic image segmentation
with closedness constraints. In Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV), 2011.

[6] Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe,
and Fred A. Hamprecht. The lazy flipper: Efficient depth-
limited exhaustive search in discrete graphical models. In
Proceedings of the European Conference on Computer Vision
(ECCV), 2012.

[7] Björn Andres, Thorben Kröger, Kevin L. Briggman, Winfried
Denk, Natalya Korogod, Graham Knott, Ullrich Köthe, and
Fred A. Hamprecht. Globally optimal closed-surface segmen-
tation for connectomics. In Proceedings of the European Con-
ference on Computer Vision (ECCV), 2012.

[8] Julian Besag. On the statistical analysis of dirty pictures.
Journal of the Royal Statistical Society, Series B, 48(3):259–
302, 1986.

[9] Yuri Boykov and Vladimir Kolmogorov. Computing geodesics
and minimal surfaces via graph cuts. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV),
2003.

[10] Yuri Boykov, Olga Veksler, and Ramin Zabih. Markov ran-
dom fields with efficient approximations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 1998.

[11] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approxi-
mate energy minimization via graph cuts. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 23(11):1222–
1239, 2001.

[12] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke,
Martin Hoefer, Zoran Nikoloski, and Dorothea Wagner. On
modularity clustering. IEEE Transactions on Knowledge and
Data Engineering, 20(2):172–188, 2008.

[13] Gruia Călinescu, Howard Karloff, and Yuval Rabani. An im-
proved approximation algorithm for multiway cut. Journal of
Computer and System Sciences, 60(3):564–574, 2000.

[14] Sunil Chopra and M. R. Rao. On the multiway cut polyhedron.
Networks, 21(1):51–89, 1991.

[15] Sunil Chopra and M. R. Rao. The partition problem. Mathe-
matical Programming, 59(1–3):87–115, 1993.

[16] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou,
Paul D. Seymour, and Mihalis Yannakakis. The complexity of
multiway cuts (extended abstract). In Proceedings of the ACM
Symposium on Theory of Computing (STOC), 1992.

13

[17] Elias Dahlhaus, David S. Johnson, Christos H. Papadimitriou,
Paul D. Seymour, and Mihalis Yannakakis. The complexity of
multiterminal cuts. SIAM Journal on Computing, 23(4):864–
894, 1994.

[18] Michel M. Deza, Martin Grötschel, and Monique Laurent.
Complete descriptions of small multicut polytopes. In Pe-
ter Gritzmann and Bernd Sturmfels, editors, Applied Geom-
etry and Discrete Mathematics: The Victor Klee Festschrift.
American Mathematical Society, 1991.

[19] Michel M. Deza, Martin Grötschel, and Monique Laurent.
Clique-web facets for multicut polytopes. Mathematics of Op-
erations Research, 17(4):981–1000, 1992.

[20] Michel M. Deza and Monique Laurent. Geometry of Cuts and
Metrics. Springer, 1997.

[21] Michael R. Garey and David S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman & Co., 1979.

[22] Fred Glover and Eugene Woolsey. Converting the 0-1 polyno-
mial programming problem to a 0-1 linear program. Operations
Research, 22(1):180–182, 1974.

[23] Martin Grötschel and Yoshiko Wakabayashi. A cutting plane
algorithm for a clustering problem. Mathematical Program-
ming, 45(1):59–96, 1989.

[24] Jörg H. Kappes, Björn Andres, Fred A. Hamprecht, Christoph
Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong Kim,
Bernhard X. Kausler, Jan Lellmann, Nikos Komodakis, and
Carsten Rother. A comparative study of modern inference
techniques for discrete energy minimization problems. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2013.

[25] Jörg H. Kappes, Markus Speth, Björn Andres, Gerhard
Reinelt, and Christoph Schnörr. Globally optimal image parti-
tioning by multicuts. In Proceedings of the International Con-
ference on Energy Minimization Methods in Computer Vision
and Pattern Recognition (EMMCVPR), 2011.

[26] Jörg H. Kappes, Markus Speth, Gerhard Reinelt, and
Christoph Schnörr. Towards efficient and exact MAP-inference
for large scale discrete computer vision problems via combina-
torial optimization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013.

[27] Brian W. Kernighan and Shen Lin. An efficient heuristic pro-
cedure for partitioning graphs. The Bell Systems Technical
Journal, 49(2):291–307, 1970.

[28] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and
Chang D. Yoo. Higher-order correlation clustering for image
segmentation. In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), 2011.

[29] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and
Chang D. Yoo. Task-specific image partitioning. IEEE Trans-
actions on Image Processing, 22(2):488–500, 2013.

[30] Jon Kleinberg and Éva Tardos. Approximation algorithms for
classification problems with pairwise relationships: Metric la-
beling and Markov random fields. In Proceedings of the An-
nual IEEE Symposium on Foundations of Computer Science
(FOCS), 1999.

[31] Daphne Koller and Nir Friedman. Probabilistic Graphical Mod-
els: Principles and Techniques. MIT Press, 2009.

[32] Vladimir Kolmogorov. Convergent tree-reweighted message
passing for energy minimization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 28(10):1568–1583,
2006.

[33] Nikos Komodakis and Georgios Tziritas. Approximate la-
beling via graph cuts based on linear programming. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
29(8):1436–1453, 2007.

[34] Victor Lempitsky, Andrea Vedaldi, and Andrew Zisserman. A
pylon model for semantic segmentation. In Proceedings of the
Annual Conference on Neural Information Processing Systems
(NIPS), 2011.

[35] Dániel Marx. A tight lower bound for planar multiway cut
with fixed number of terminals. In International Colloquium
on Automata, Languages and Programming (ICALP), 2012.

[36] Yansheng Ming, Hongdong Li, and Xuming He. Connected
contours: A new contour completion model that respects the
closure effect. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2012.

[37] Claudia Nieuwenhuis, Eno Töppe, and Daniel Cremers. A
survey and comparison of discrete and continuous multilabel
segmentation approaches. International Journal of Computer
Vision. to appear.

[38] Sebastian Nowozin. Learning with Structured Data: Applica-
tions to Computer Vision. PhD thesis, Technische Universität
Berlin, 2009.

[39] Sebastian Nowozin and Stefanie Jegelka. Solution stability in
linear programming relaxations: Graph partitioning and un-
supervised learning. In Proceedings of the International Con-
ference on Machine Learning (ICML), 2009.

[40] Anton Osokin, Dmitry Vetrov, and Vladimir Kolmogorov.
Submodular decomposition framework for inference in asso-
ciative Markov networks with global constraints. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2011.

[41] David Sontag and Tommi Jaakkola. New outer bounds on the
marginal polytope. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), 2007.

[42] Martin J. Wainwright and Michael I. Jordan. Graphical mod-
els, exponential families, and variational inference. Founda-
tions and Trends in Machine Learning, 1(1–2):1–305, 2008.

[43] Julian Yarkony, Alexander Ihler, and Charless C. Fowlkes.
Fast planar correlation clustering for image segmentation. In
Proceedings of the European Conference on Computer Vision
(ECCV), 2012.

14

