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Abstract. Segmenting retinal tissue deformed by pathologies can be
challenging. Segmentation approaches are often constructed with a cer-
tain pathology in mind and may require a large set of labeled pathological
scans, and therefore are tailored to that particular pathology.
We present an approach that can be easily transfered to new pathologies,
as it is designed with no particular pathology in mind and requires no
pathological ground truth. The approach is based on a graphical model
trained for healthy scans, which is modified locally by adding pathology-
specific shape modifications. We use the framework of sum-product net-
works (SPN) to find the best combination of modified and unmodified
local models that globally yield the best segmentation. The approach fur-
ther allows to localize and quantify the pathology. We demonstrate the
flexibility and the robustness of our approach, by presenting results for
three different pathologies: diabetic macular edema (DME), age-related
macular degeneration (AMD) and non-proliferative diabetic retinopathy.

1 Introduction

Since its introduction in 1991, Optical Coherence Tomography has established
itself as an invaluable diagnostic tool. Early publications focused on the segmen-
tation of healthy retina scans. Various approaches have been devised, rendering
this problem more or less solved. Consequently, recent publications shifted their
attention to the pathological case, with the aim of detecting, assessing and mon-
itoring theses diseases as accurately as possible.

Related work. AMD, a much addressed pathology, e.g. [1], is characterized
by cellular debris called drusen, that accumulates between the retinal pigment
epithelium (RPE) and the underlying choroid, with size and number indicating
the stage of the disease (example in Fig. 1 (b)). While leading to considerable
deformations of the retina, cell layers themselves stay more or less intact in the
early and intermediate stages, considered in the segmentation literature.

Two recent works addressed the more involved problem of segmenting indi-
vidual layers in the presence of DME [2, 3]. Here fluid leaking from damaged
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(a) Mild Diabetic RP (b) Intermediate AMD (c) Advanced DME

Fig. 1: Three pathologies of different difficulty all segmented by the same model,
by adding pathology-specific shape information to a model for healthy scans.

capillaries leads to a swelling of the macular, possibly leading to the destruction
of some layers in the retina (Fig. 1 (c)). The dataset used in both publications
above is very challenging in that regard, and constitutes a harder problem than
intermediate AMD. Both approaches rely on ground truth to a) train a classifier
to find fluid regions and exclude them from the segmentation [2] or b) train
DME specific appearance models [3].

Contribution. We present an approach that is adaptable to different patholo-
gies without the need for ground truth. This is done by using a locally adaptive
extended version of a graphical model trained on healthy data. Based on a sum-
product network that enables tractable globally optimal inference, we find the
optimal combination of regions and modifications and combine them into a fi-
nal segmentation. We demonstrate its capabilities by segmenting three different
pathologies. Besides obtaining accurate segmentations, we are also able to local-
ize the pathological regions. To our knowledge, this is the first time, that a single
approach was tested and evaluated for more than one pathology. The basis of
our approach is sketched in Section 2, followed by introducing our approach in
Section 3 and discussing results in Section 4.

2 Probabilistic Graphical Model

Adopting our previous approach [4], we model an OCT scan y ∈ RM×N (N
A-Scans with M pixels each) and its segmentations b and c respectively. Here
c ∈ NK·N (K boundaries) denotes the discretized version of the continuous
boundary vector b ∈ RK·N , which is the connection between the discrete pixel
domain of y and the continuous boundary domain of b. The graphical model is
given by

p(y, c, b) = p(y|c)p(c|b)p(b). (1)

We will briefly discuss each component, and refer to [4] for more details.

Appearance p(y|c). Appearance of boundaries and layers is modeled via local
class-specific Gaussian densities: The probability of pixel yi,j belonging to a class
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Fig. 2: Workflow: [1.] We segment many local graphical models (introduced in
Sec. 2) being either modified (red) or unmodified (green) (see (8)) for various
subregions of the B-Scan. [2.] We then find the globally optimal combination
L̂1,n(Θ) (10) using SPNs (Sec. 3, first part). [3.] Finally, we fuse the local models

of L̂1,n(Θ) into a smooth segmentation (Sec. 3, second part).

xi,j ∈ {l1, . . . , ln, t1, . . . , tn−1} (see Fig. 3 (a)) is modeled as Gaussian,

p(y|c) =

M∏
i=1

N∏
j=1

p(yi,j |c), p(yi,j |c) = N (ỹi,j |µxi,j
, Σxi,j

), (2)

where the class-label xi,j is determined by the boundary configuration c and ỹi,j
is a patch around pixel yi,j .

Shape p(b). The global shape prior captures typical variations of cell layer
boundaries. The shape vector b is determined by a linear Gaussian model

b = Ws+ µ+ ε, s ∼ N (0, I), ε ∼ N (0, σ2). (3)

The matrix W ∈ RK·N×m maps the low-dimensional vector s ∈ Rm onto b. Each
column of W denotes a certain shape variation that gets added to the mean
shape µ. Given n training segmentations X ∈ Rn×N ·K , W is obtained by the
first m eigenvectors of cov(X) weighted by the corresponding eigenvectors, and
µ simply is X. The marginal distribution of b can then be shown to be

p(b) = N (b;µ,Σ = WWT + σ2I). (4)

MRF Regularization p(c|b). Shape and appearance interact in a Markov
random field over the discrete variable c. It is composed of column-wise chain
models that allow for parallel inference (with more details to be found in [4])

p(c|b) =

N∏
j=1

p(cj |b), p(cj |b) = p(c1,j |b)
K∏
k=2

p(ck,j |ck−1,j , b). (5)

Inference. In [4] we proposed a variational scheme: Design a tractable graphical
model q(c, b) by adding conditional independences, then infer the full distribution
q(b, c) by minimizing the Kullback-Leibler (KL) divergence to p(c, b|y). We de-
coupled the discrete and continuous model components, q(c, b) = qc(c)qb(b) while
keeping the remaining structure intact: That is qc(c) are column-wise MRFs as



in (5) and q(b) = N (b; µ̄, Σ̄). Infering q(c, b) then corresponds to minimizing the
following non-convex optimization problem

min
qc,µ̄,Σ̄

KL(q(c, b)‖p(c, b|y)) =

∫
b

∑
c

q(c, b) log
q(c, b)

p(c, b|y)
. (6)

Plugging in the definitions of q(c, b) and p(c, b|y), one can find explicit update
equations for the parameters of qc and qb. Of interest for this work is the update
step for µ̄, which is of the form

A(µ̄− µ) = Eqc [c]− µ =⇒ Aµ̄ = (A− I)µ+ Eqc [c]. (7)

It links the mean of qc (Eqc [c]) to the mean of qb (µ̄) via the linear mapping
A determined from Σ. We will revert to this equation at the end of the next
Section, see (12). The optimization alternates between solving the MRF qc and
updating the parameters of qb until convergence.

3 Locally Adaptive Priors

The model described above, when trained on healthy data, is not sufficiently
flexible to adapt to unseen pathologies with large deformations. We address this
problem by finding a global optimal combination of locally modified submodels
using the principle of maximum-likelihood and dynamic programming.

Sum-Product Networks. We assume that models of pathological structure
are translation invariant, local and approximately independent. Independence
and locality allow to factorize the full distribution p(y, b, c) into local distribu-
tions, an assumption necessary for SPNs. Translation invariance implies that the
pathology can appear at any horizontal position in the image.

Recall that W in (3) contains typical shape variations of healthy retina layers.
We adapt the graphical model towards an illness, by adding translation-invariant
pathology-specific modes W ill to W :

θill
m,n :=

(
Wm,n W

ill
m,n

)
, θhealthy

m,n := Wm,n. (8)

Here subscript m,n denote the pruning of W to the region [m,n]. Segmenting
various such models for different regions [m,n] with ill and healthy parameters
constitutes step 1 in our workflow (Fig. 2).

Let Lm,n(θzm,n) be the log-likelihood of the segmentation for region [m,n]:

Lm,n(θzm,n) := log q
(
cm,n, bm,n|ym,n, θzm,n

)
, z ∈ {healthy, ill}. (9)

Now let X = {1, x1, x2, ..., xH , N} denote the division of y into H + 1 regions

and let Θ =
{
θz11,x1

, θz2x1,x2
, ..., θ

zH+1

xH ,N

}
denote the corresponding set of shape

modifications. We want to find the combination of submodels with maximal
total log-likelihood

L̂1,N (Θ) = argmax
H,X,θ

L1,x1(θz1x1,x2
) + . . .+ LxH ,N (θ

zH+1

xH ,N
). (10)



The global optimum of this combinatorial problem can be found with dynamic
programming. Let L̂m,n be the optimal selection of X and Θ in region [m,n]. It
can be computed recursively as:

L̂m,n = max

(
max

x∈{m,m+1,...,n}

(
L̂m,x + L̂x,n

)
, max
z∈{ill,healthy}

Lm,n(θzm,n)

)
, (11)

which is the maximum between the single best model over region [m,n] and
the optimal factorization in two adjacent areas. To compute L̂m,n for regions of

width w, we need quantities L̂m,x, L̂x,n for all regions of width < w. Given L̂m,x
and L̂x,n, the complexity is dominated by evaluating Lm,n(θzm,n) (9).

Assuming a minimal width wmin, this suggests an iterative algorithm: first,
compute L̂m,n for regions of width wmin. Then, recursively compute (11) for
regions of increasingly higher w. We can reduce complexity even further, by
increasing and shifting windows with some fixed step size s > 1. Due to the
nature of dynamic programming, many terms L̂m,n get reused during the opti-
mization. To favor more compact subregions, we add a regularization to (10) to
punish models of small size. This algorithm implements globally optimal MAP-
inference in a SPN [5] and constitutes step 2 in our workflow (Fig. 2).

Combining Local Models. Because submodels are found independently, they
usually constitute a non-smooth segmentation of y. To obtain a smooth solution,
we solve a modified version of the full graphical model p(y, b, c) taking into ac-
count the optimal solution (10), corresponding to step 3 in Fig. 2.

The MAP estimate (10) can be interpreted as a graphical model p(y, c, b)
without coupling between subregions. This can be enforced by setting all entries
in Σ to zero that belong to boundary positions in two different regions. Further-
more, for subregions identified as ill, we use the modified shape modes θill

m,n to
calculate the submatrix of Σ via (4). Solving the full graphical model with such
a modified covariance matrix would yield the same segmentation as L̂1,N (Θ).

Now to enforce smoothing while staying close to the SPN solution, we replace
the system of linear equations (7) by the constrained least-squares problem:

min
µ̄
‖Ãµ̄− (A− I)µ− Eqc [c]‖2, subject to Bµ̄ ≤ δ1, (12)

where 1 is a vector of ones. Each row in the constraint matrix B selects two
neighboring entries in µ̄ belonging to two different subregions and restricts their
difference to be less than δ. This enforces a weak coupling between subregions.
Solving the full graphical model with the sparse Σ and the modified update step
for µ̄ then yields a smooth segmentation, as Fig. 3 (b) and (c) demonstrates.

4 Results

We demonstrate the flexibility of our approach by segmenting three different
pathologies, ranging from minor deformations to severe distortions of the retina
structure. We will use the same graphical model for all pathologies, only adapting
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(a) Segmented retina layers. (b) SPN output (c) Smoothed estimate

(d) Large fluid deposit (e) Several small deposits (f) Hyperreflective foci

Fig. 3: (a) The names of the segmented retina layers. Surfaces 1-9 lie in between
layers l1, . . . , l10. (b) A SPN estimate and its smoothed version (c). Note that
Bruch’s membrane (surface 9) gets fitted in a post-processing step, described in
the results section. (d)-(f) Example segmentations from the DME dataset.

the pathological shape modes we add. During inference the graphical model can
pick the strength and the sign of any mode freely.

We trained the healthy model on the same 35 labeled volumes also used in
[4]. As prediction we used the expectation Eqc [c] of c. The error metric is the
unsigned error between labels and the prediction, averaged over all B-Scans in
a volume and A-Scans therein. We used δ = 2 pixel (see (12)) throughout our
experiments. Table 1 summarizes all results.

Diabetic Retinopathy. The dataset of [6] contains 10 subjects (5 B-Scans
each) affected by mild non-proliferative diabetic retinopathy (RP). As only small
deformations occur, we used our graphical model of [4]. Since the dataset lacked
relative positions of B-Scans inside the volume, which we require to select a
shape prior, we estimated the position as following. For each B-Scan we tested
all shape priors and a) used the one with the largest model likelihood and b) the
one with the smallest error. This yielded a lower and upper bound on the true
error, if the information would have been available, which we averaged for the
final result.

AMD. We used an in-house dataset with 8 Spectralis volumes of early and
intermediate AMD and labels for surfaces 1, 8 and 9 for all 19 B-Scans. We
added one mode with the sine function evaluated between 0 and π for surfaces
6-9, simulating the effect of those layers being pushed up by a circular-shaped
fluid deposit underneath. While Bruch’s membrane (surface 9) is supposed to lie
beneath the fluid region, better segmentations where obtained if it was included
in the shape mode. The final segmentation for this surface was given by the



Table 1: Unsigned error for all tested datasets in µm (1px = 3.87 µm). Surface
numbers 1–9 correspond to Fig. 3 (a). ’–’ marks the absence of labels.

Dataset Method Avg. 1 2 3 4 5 6 8 9

RP
Tian et al. [6] 4.48 3.70 4.49 3.84 – 5.75 – – 4.63

Our method 4.08 4.39 4.15 3.84 – 4.65 – – 3.37

AMD Our method 4.90 2.87 – – – – – 6.06 5.77

DME
1-5

Chiu et al. [2] 7.82 6.59 8.38 9.04 11.02 11.01 4.84 5.74 5.91

Karri et al. [3] 9.54 4.47 11.77 11.12 17.54 16.74 4.99 5.35 4.30

Our method 7.71 4.66 6.78 8.87 11.02 13.60 4.61 7.06 5.11

DME
6-10

Chiu et al. [2] 5.81 5.01 6.37 7.46 7.34 7.74 3.88 4.34 4.32

Karri et al. [3] 5.14 3.64 5.95 6.48 6.64 8.00 3.09 4.12 3.17

Our method 5.11 3.62 4.87 5.92 7.50 7.69 3.29 4.83 3.16

conditional mean µa|b = µa− (Kaa)−1Kab(xb−µb) of (4), where xb denotes the
part of the segmentation identified as healthy.

DME. The dataset published by Chiu et al. [2] consists of 10 Spectralis vol-
umes with 11 labeled B-Scans per volume. While volumes 6-10 are mild and
intermediate cases, volumes 1-5 constitute advanced DME cases, with disap-
pearing layers (Fig. 1 (c)) and advanced texture artifacts due to highly reflective
regions characteristic for DME (Fig. 3 (c)).

To reduce sensitivity to the texture artifacts, we added patches of size 7× 7
and 3× 3 (besides the standard 15× 15 patches). To deal with the disappearing
layers, we dropped the segmentation in regions of low intensity if the difference
between surface 1 and 9 exceeded a threshold. As pathology-specific modes we
added a set of connected linear functions to boundaries 1-5, which could only be
adjusted jointly. Furthermore, as DME can be accompanied by a swelling of the
nerve fiber layer (NFL), we added linear functions to surfaces 1 and 2.

Karri et al. [3] also tested their approach on this dataset, but only published
results for volumes 6-10, using the first 5 volumes for training. Using their pub-
lished code (https://github.com/ultrai/Chap_1), we could reproduce their
results for volumes 6-10, as well as reverse training and test set to obtain results
for volumes 1-5. Results are the displayed in the lower half of Table 1. For a fair
comparison, we also applied the mechanism for dropping segmentations.

In general, less difficult volumes 6-10 yield lower errors for all approaches
as expected. Karri’s and our approach perform best. The situation changes for
the more difficult volumes 1-5. Now Chiu’s and our approach perform on par,
beating the one of Karri et al., which lacks sufficient shape regularization [3].

Pathology hinting. Fig. 4 demonstrates another benefit of using a shape prior.
Given a segmentation b, one can calculate the latent variable s, which indicates
how much each mode was utilized (3). The red surfaces indicate the usage of
pathological modes W ill

m,n, plotted below the lowest boundary affected.



Fig. 4: Estimates of fluid regions due to the pathological modes W ill
m,n used.

5 Discussion

We presented a method for the segmentation of pathological OCT data, com-
bining a graphical model and sum-product networks. While our approach yields
state-of-the-art performance, it does not require labeled ground truth data. Fur-
thermore, it can segment several pathologies. To our knowledge, this is a feature
not demonstrated yet by any other approach. Last but not least, it can localize
the pathological area, which could be valuable for practitioners. An evaluation
of this feature will be part of our future work

The current approach was evaluated in 2-D, requiring between 30 and 60
seconds per B-Scan. While all parts of our workflow naturally extend to 3-D,
the number of submodels in step 1 grows exponentially, making a direct conver-
sion too costly. Future work may include mechanisms to prune the SPN search,
reducing the amount of tested submodels. This would benefit the current 2-D as
well as any potential 3-D approach.
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