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ABSTRACT
We present ADINA, an automated pipeline for analyzing and
identifying neuronal activity from calcium imaging data to in-
vestigate neuronal activity patterns. This entails the detection
and classification of cell centroids and of calcium transients
(events) that reappeared during different activity periods as
memory consolidation. Specifically, the pipeline implements
a sparse dictionary learning to infer the most relevant Ca2+

patterns, an image segmentation procedure using a wavelet–
transform and watershed to identify single cells, and an es-
timation of the transient signals by means of sparse coding
exploiting spatial and temporal sparsity. We validate our auto-
mated approach on artificial and two different calcium imag-
ing sequences from mice hippocampal slice cultures acquired
with fluorescence and confocal microscopes. Our approach
achieves ca. 94% sensitivity on average for correctly detect-
ing events, thus improving significantly the estimation of cell
signals relative to published procedures.

Index Terms— Calcium Imaging, Cell Sorting, Dictio-
nary Learning, Sparse Coding, Segmentation

1. INTRODUCTION

Calcium imaging is an increasingly popular technique for
monitoring simultaneously the neuronal activity of hundreds
of cells at single cell resolution. This makes it an essential
tool for studying complex patterns of distributed activity in
neuronal networks of local circuits of the brain like decision
making or conciousness (Fig. 1). However, as [1] noted, the
extraction of this information is hampered by several com-
plications: 1) low signal-to-noise ratio (SNR); 2) uneven
background; 3) misleading fluorescence signals due to strong
light scattering; and 4) overlapping neurons.

In addition to the challenges described above, computa-
tional techniques for rapid and reliable extraction of neuronal
activity patterns from complex 4-dimensional (space and
time) data sets still need major improvement [1]. Most ap-
proaches involve the delineation of regions of interest (cells,
or parts of cells) by eye [2] or in a semiautomated fash-
ion [3]. However, this procedure is subjective and does not
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Fig. 1. Identification of neuronal activity. a) Maximum intensity projection
across a sequence of 1000 frames using false color plots. b) Centroids and
contours of 30 detected cells and c) the respective Ca2+ transient signals.

scale to large–scale imaging data. Several algorithms have
been proposed in the past to assign local calcium transients
to distinct cells based on machine learning [4], matrix de-
composition [5, 6] or image processing techniques [1]. All
these works focus mainly on detecting the location of cell
centroids on which transient signals are extracted from the
raw data over time, and are dependent on a specific imaging
technique. For instance, Maruyama et al. [6] and Mukamel et
al. [5] decompose calcium imaging data into constituting
signal sources, that is, spatial and temporal components. The
former uses non–negative matrix factorization (NMF) which
cannot discriminate cells that are highly correlated in the
temporal domain. Hence, the latter combines principal com-
ponent analysis (PCA) and independent component analysis
(ICA) with a subsequent image segmentation to extract single
cells; however, its performance suffers when the point spread
function is very anisotropic, as in fluorescence microscopy.

Therefore, in this paper, we present an automated pipeline
for monitoring the activity of multiple cells from calcium
imaging data recorded by different microscopes, e.g. confo-
cal or epi–fluorescence (Fig. 2). We focus on the detection
and classification of cell centroids and of cell shape (“cell
sorting”) (Fig. 1b), and the inference and analysis of Ca2+

transients signals (events) (“transient analysis”) (Fig. 1c).
The extraction of cellular signals from calcium imaging data
is very challenging since calcium events do not fit individual
cell identities and also single image pixels may represent
more than one distinct cell or noise. Although the cell identi-
ties have non–specific appearance and shape, we can exploit
that these events are sparsely distributed in both space and
time. Hence, our cell sorting relies on a flexible matrix factor-



Fig. 2. Workflow for identifying neuronal activity. Sparse dictionary learning produces a set of basis functions to describe the spatial patterns of single or
grouped cells. These basis functions are segmented into unique single cells for which transient signals are inferred by sparse coding. The final cell sorting and
transient signals are visualized together with raw data for validating the results.

ization based on sparse dictionary learning [7] that exploits
this sparsity, allows more flexibility to adapt the represen-
tation to the data and does not impose orthogonality of the
basis functions. This is combined with a versatile image
segmentation that improves the detection of cell shape.

Our transient analysis infers the transient events using
sparse coding [7] to exploit both the spatial information of
the extracted cells and cell sparsity in space and time. This is
in constrast to [1, 4, 5, 6] who use only the raw data extracted
from the cell centroids. Inferring transient signal has the ad-
vantage that these events are inferred accurately and makes it
easier for detecting and interpreting visually when cells spike
or not than inspecting directly raw data; furthermore it is com-
putationally efficient given the segmented cells.

2. AUTOMATED CELL DETECTION

2.1. Workflow Overview

The identification of cellular activity relies on two main steps:
cell sorting, and extracting the calcium transient signal over
time. Most approaches [1, 4, 5, 6] mainly focus on the first
step since transient signals are extracted from the raw data
over time for each cell centroid detected without considering
its spatial formation as shape, intensity and etc. Therefore,
we choose to address both steps because the same idea of
matrix decomposition can be applied to infer calcium tran-
sient events considering the spatial information of the de-
tected cells. This make it easier to detect and interpret events,
e.g. cell detection or transient waveforms, than to observe di-
rectly raw data. Specifically, the cell sorting consists of com-
bining a sparse dictionary learning [7] to decompose raw data
into a few constituent signals and an image segmentation;
whereas the transient analysis is performed by modeling raw
data as a linear combination of few non–zero cells extracted
previously. In the following we discuss the details of each
step.

2.2. Sparse Dictionary Learning for extracting cellular
signals

The extraction of cellular signals is formulated as a sparse
dictionary learning, thus allowing more flexibility to adapt
the representation to the data, exploiting sparsity occurred
in the data and not imposing that the basis vectors be or-
thogonal. Dictionary learning should allow to model fluo-
rescence calcium images as a combination of few dictionary
elements, each of which should be associated with a group of
co–activated cells (basis functions). Specifically, we assume
that the vectorized data X ∈ RN×T , where T is the num-
ber of frames and N is the number of pixels in an image, is
decomposed into two low rank matrices: spatial component
D ∈ RN×K = [d:1, . . . ,d:K ] and the temporal component
U ∈ RT×K = [u:1, . . . ,u:K ]; where K is the number of
dictionary elements, and d:k and u:k represent the spatial and
temporal description of the kth group of cells1. This decom-
position consists of finding the most representative basis func-
tions and its temporal description to describe the complete
data inducing sparsity over time and space. This is achieved
by minimizing:

min
D∈D,U

‖X−DUT ‖2F + λU
K∑
j=1

‖u:j‖1 s.t.

D ,
{
D ∈ RN×K |∀j, ‖d:j‖22 + γ‖d:j‖1 ≤ 1

}
, (1)

where λU is a regularization parameter that induces sparsity
in the temporal coefficients; γ induces sparsity in the dictio-
nary elements; ‖ ·‖F is the Frobenius norm; andD is the con-
vex set of columns that satisfies the constraint which prevents
D from becoming arbitrarily large. An approximate solution
of Eq. (1) can be found by alternating between the two vari-
ables, minimizing over one variable while keeping the other
one fixed. The details of the optimization are explained in [7]

1d:k represents the kth column vector of matrix D using MATLAB no-
tation.



Fig. 3. Extraction of single cells. a) kth basis function; b) the basis function
smoothed up to the 5th wavelet scale; c) events detected with non–maximal
suppression and d) final definition of cell boundaries.

and to solve Eq. (1) we used the publicly available SPAMS
package [7].

2.3. Image Segmentation and Transient analysis

Once basis functions are extracted, we address the problem
of distinguishing overlapping and correlated cells since the
sparse dictionary learning yields basis functions that may con-
tain more than one cell as shown in Fig. 3A: overlapping cells
or those with correlated activity typically are associated with
the same basis function. The identification of candidates of
individual cells is optimized for all d:k in D by three steps as
follows (Fig. 3):

1. The standard deviation (SD) σk of only those pixels
whose intensities do not belong to calcium event is es-
timated for each basis d:k;

2. a wavelet transform proposed by [1] is computed up to
level 5 to enhance those regions/pixels that belong to
neurons above the background noise;

3. each basis k is segmented by a non–maximal suppres-
sion given a certain noise level, i.e. t · σk with t =
3, . . . , 6, followed by a watershed algorithm to extract
regions belonging to individual cells; then heuristics
described in [1] are applied to detect candidate cells.

Finally, all the candidate cells extracted are refined in or-
der to identify unique individual cells since one cell could ap-
pear at different basis functions. Specifically, a 2D-Gaussian
is fitted for each region of candidate cells; instead of a Maha-
lanobis distance, the similarity for determining whether two
candidate cells describe the same active cell or not is equal to
the area of the product between their fitted Gaussians. This
similarity takes both distributions into account as follows:

S(j, q) =
exp

(
− 1

2 (µj − µq)T (Σj + Σq)
−1(µj − µq)

)
2π
√
|Σj + Σq|

,

(2)
where µj and µq is the centroid of the jth and qth candidate
cell, respectively, and Σj and Σq is the full covariance ma-
trix of the jth and qth candidate cell. Hence, two candidates
are fused to describe a single candidate cell if this similarity
is greater than a threshold. This process runs until no more

Fig. 4. Results of the algorithm sensitivity (%) for Cell Sorting [5] (left)
and our approach(right).

changes occurre, thus obtaining a new basis of individual cells
denoted as DS .

Instead of extracting the intensities of the raw data over
time at the centroid of the individual cells or considering U,
we address the estimation of the temporal component to re-
construct the data X in Eq. (1) keeping fixed the basis func-
tions of single cells DS . This allows to again exploit sparsity
in time and the spatial information of the individual cells DS

by minimizing:

min
US
‖X−DS [US ]T ‖2F + λS

T∑
t=1

‖uSt:‖1 (3)

where uSt: is the temporal coefficients of the individual cells
at the tth frame and λS is the regularization parameter which,
for large values, makes sure that only few cells are used in the
reconstruction of the tth frame.

3. RESULTS

Artifical Sequences: For evaluation, we created artificial se-
quences with 450 frames of size 512 × 512 pixels. The data
is created by randomly selecting cell shapes from 36 different
active cells extracted from real data, and locating them into
different locations with an overlap of up to 30%. Each cell
is randomly assigned to a single or multiple groups of neu-
rons that fire approximately at the same time. The existence,
distribution, and activity patterns of each cell is known. In
order to quantify the algorithm performance, we compute the
sensitivity used in [1] that is the ratio of correctly detecting
events to the number of all embedded events. We always use
five groups, but vary the average number of cells per group
between 1 to 10. In addition, we add random Gaussian noise
σnoise with a relative amplitude,RA = Imax−Imean

σnoise
, between

1 and 20, where Imax and Imean are the maximum and mean
intensity amplitude, respectively.

As shown in Fig. 4, our method achieves a sensitivity of
94.3% on average and discriminates robustly individual cells
for different levels of correlated cell activity and of noise. The
best sensitivity achieved by Cell Sorting [5] is 83.1% for dif-
ferent noise levels, but its performance is reduced when the
average number of cells per group increases.
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Fig. 5. Cell sorting and transient analyis using Cell Sorting [5] (left) and our approach (right) for different real sequences recorded by epi–fluorescence
microscopy (top) and confocal microscopy (bottom).

Real Sequences: We applied the automated pipeline
to epifluorescent and confocal calcium imaging data sets
from different mice (C57BL6) hippocampal slice cultures
that lacks ground truth due to the challenge of annotating
neurons. As shown in Fig. 5, our method is able to distin-
guish overlapping cells and highly correlated cells, and also
extracts smooth and regularly shaped cells. Also, as shown
in Fig. 5, exploiting spatio–temporal sparsity and the shape
cell information allows our approach to infer accurately the
transient events, thus making it easier for interpreting vi-
sually when cells spike or not than inspecting directly raw
data. Hence, we have confirmed that our method is able to
detect automatically, and differentiate between, overlapping
and highly correlated cells on different calcium imaging data.
This is an improvement over [5] which does not work as well
on epi fluorescent data.

4. CONCLUSIONS & DISCUSSION

We have presented an automated pipeline for identifying cell
activity from calcium imaging data, and reported its perfor-
mance on artificial and real sequences. In contrast to previ-
ous work, our approach formulates cell sorting and transient
analysis in the same framework. This formulation allows to
exploit sparsity both in the spatial and the temporal domain,
and works with confocal and even epi–fluorescent raw data
(which is easier to record and is readily implemented in in-
vivo studies).

In the future, we plan to improve the pipeline as: 1) im-
prove sparse dictionary learning for only extracting single
cells; 2) enhance robustness of detecting calcium transients
against background signals. In addition, we plan to set indi-

vidual thresholds for individual cells for correlating the rate
and the intensity of action potentials in order to detect which
kind of cell shows this calcium transient.
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