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Abstract Parameter estimation plays a dominant role in a wide number of image
processing and computer vision tasks. In these settings, parameterizations can be
as diverse as the application areas. Examples of such parameters are the entries of
filter kernels optimized for a certain criterion, image features such as the velocity
field, or part descriptors or compositions thereof. Subsequently, approaches for
estimating these parameters encompass a wide range of techniques, often tuned to
the application, the underlying data and viable assumptions. Here, an overview of
parameter estimation in image processing and computer vision will be given. Due to
the wide and diverse areas in which parameter estimation is applicable, this review
does not claim completeness. Based on selected key topics in image processing and
computer vision we will discuss parameter estimation, its relevance, and give an
overview over the techniques involved.

1 Introduction

In most image processing and computer vision tasks, one starts off with visual data
such as an image or a sequence thereof. Of course, more general modalities are
also becoming increasingly more common. These include spectral image sequences
for example in satellite remote sensing or volumetric or even spectral volumetric
time series, for example in state-of-the-art medical imaging devices. Cheap con-
sumer devices are also transitioning beyond simple 2D capturing apparatuses. The
Microsoft Kinect device, which captures intensity images and the scene depth at the
same time, is an example of this. Also, first consumer grade cameras that capture
light fields are on the horizon. All of these devices require adapted image processing
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and computer vision algorithms. Common to all of them is the classical inverse
problem they lead to: n-dimensional data is acquired and some model parameters
need to be estimated to best describe the data. Of course, the model will strongly
depend on the application, as will the metric in which ”best” is described by some
sort of optimality condition. In this contribution, some common problems in image
processing and computer vision will be described. Common methodologies for
solving the resulting parameter estimation problem are presented.

This article is organized into two main parts, the first focusing on parameter
estimation in low-level image processing, the second on high-level computer
vision. In Sect. 2.1, parameter optimization for filter kernels will be introduced.
The estimation of image motion or optical flow is outlined in Sect. 2.2. The
reconstruction of images and optical flow fields is discussed in Sects. 2.4 and 2.5
respectively. The estimation of confidence and situation measures for optical flows is
presented in Sect. 2.3. The segmentation of images based on their underlying motion
is touched upon in Sect. 2.6. A combination of such approaches in a single functional
is presented in Sect. 2.7 which is concerned with joint estimation of optical flow,
segmentation and denoising of image sequences.

Parameter estimation in high level computer vision is presented in Sect. 3.
Central to the analysis are key modeling decisions which are explained in Sect. 3.1.
In Sect. 3.2 a compositional approach to object categorization is presented. The
problem of object detection in cluttered scenes is discussed in Sect. 3.3.

2 Low-Level Image Processing

2.1 Optimization of Filter Kernels

A fundamental operation in image processing represents the filtering of intensity
images. Such filtering is used for computing derivative filters of first order for
motion estimating and for edge detection, and second or higher order for feature
extraction of curvature information. Filter design is a well-established area in time-
series signal processing and subject of standard textbooks [103, 107, 113]. The
extension from 1-D signal processing to image processing is not trivial, however.
This is largely due to uncertainty of design criteria for higher-dimensional signals
and much more involved mathematical problems.

For edge detection and motion estimation, the computation of precise gradients
of image intensities is vital. It can be show that the highly accurate computation
of both, orientation and magnitude of gradients, are not feasible. Therefore, design
choices have to be made. Very often, subspace problems, which are orthogonal to
the gradient directions have to solved. Hence the precise direction of the gradients
is more important that their magnitude. Making such a design choice leads to the
formulation of a optimization problem, yielding the appropriate filter kernels. These
filters are discretized by finite differences using convolution kernels optimized with
respect to the model assumptions, scales and/or noise present in the data.
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2.2 Optical Flow Estimation

For the estimation of motion from digital image sequences, a number of differ-
ent techniques has been proposed. Generally, they can be categorized into four
groups:

1. The class of gradient based techniques relies on computing spatio-temporal
derivatives of image intensity, which can either be of first order [46,65] or second
order [93, 115].

2. Region-based matching may be employed when under certain circumstances
(aliasing, small number of frames, etc.) it is inappropriate to compute derivatives
of grey-values. In this approach the velocity is defined as a shift giving the best
fit between image regions at different times [7, 55, 80].

3. The energy-based methods rely on the output energy of velocity-tuned filters.
These methods are often referred to as frequency-based methods owing to their
design in the Fourier domain [1, 50, 62].

4. Another class of methods is called phase-based, because velocity is defined in
terms of phase behavior of band-pass filter output and phase information is used
to estimate the optical flow [51, 122].

Overviews of these estimators including error analysis can be found in [11,
12, 60]. One widely used technique to estimate the local optical flow v.t; x/
corresponding to an image sequence u W Œ0; 1! ! ˝ ! R on an image domain
˝ " Rn (n D 2; 3) is the first order gradient based approach [46,65]. Together with
phase based techniques [51], this approach offers the best performance with respect
to accuracy [11,53]. Here, constancy of gray values u.t; x.t// along trajectories x.t/
is assumed, leading to the constraint equation

0 D d
dt

u.t; x.t// D ru.t; x.t// # v.1; x.t// C @t u.t; x/ : (1)

This constraint equation is generally known as the brightness change constraint
equation (BCCE). The BCCE gives us one constraint for two unknowns for image
sequences or three unknowns for volume sequences. Thus it is an ill posed problem,
which is also known as the aperture problem and only the component of the velocity
orthogonal to gray-value structures can be computed from (1). Let us assume that v
is at least locally constant. One approach to solve the aperture problem for locally
constant v was presented by Guichard [59]. The aperture problem can also be
solved locally with the Lucas–Kanade approach [82,83] or with the structure tensor
approach [21] which minimizes the local energy functional

Z 1

0

Z

˝

w.x $ y; t $ s/ .ru.s; y/ # v.s; y/ C @t u.s; y//2 dy ds : (2)

Here w. # ; # / is a window function, indicating the local spatio-temporal neighbor-
hood. These local approaches offer relatively high robustness with respect to noise
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Fig. 1 On a traffic scene plotted motion vectors indicate regions, where a local flow estimater
achieves reliable results. For significantly large regions the velocity can not be computed

and allow for a computation of confidence and type measures, which characterize
the quality of estimates. Generally, they do not lead to dense flow fields (cf. Fig. 1).
However, global variational estimators as discussed below lead by design to fully
dense flow fields but are known to be more sensitive to noise.

2.2.1 Global, Variational Methods for Optical Flow Estimation

The study of variational methods in optical flow estimation started with the classical
work of Horn and Schunk in 1984 [65]. They considered minimizers of the energy
functional

EŒv! D
Z

˝

Œ.@t u; ru/ # .1; v/!2 C ˛jrvj2ıx (3)

acting on image intensities u W Œ0; 1! ! ˝ ! R at decoupled time steps t 2 Œ0; 1!.
Thereby they implicitly assume the optical flow field v W Œ0; 1! ! ˝ ! Rn to be
spatially smooth. Here, the scalar ˛ denotes the constant weighting parameter of
the regularizer. Nagel and Enkelmann [94] replaced the second, regularizing term
˛jrvj2 by a quadratic form

Z

˝

rv # J " Œu!rvıx (4)

which involves the local structure tensor J " Œu! of the image (" indicates the involved
filter width) and allows for a significant change in v across image edges indicated
by steep image gradients. Alternatively, one can replace the quadratic regularization
by a BV type regularization

R
˝ jrujıx as presented by Cohen [36] or other convex

regularizers as considered by Weickert and Schnörr [123]. Connections to shape
optimization have been exploited by Schnörr [108]. Weickert et al. [26] proposed a
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combination of local flow estimation and global variational techniques to combine
the benefits of robustness and dense field representation, respectively. A broader
comparison of different regularization techniques involving quasi-convex function-
als has been given by Hinterberger et al. [63]. In particular they consider W 1;p-
approximation or BV type functionals. Applying multi-grid methods in the solution
of the Euler Lagrange equations for the above combined global-local method was
presented by Bruhn et al. [25]. In all these approaches the choice of the regulariza-
tion terms basically determines the class of admissible flow fields. A rigorous anal-
ysis of assumptions on the flow field under which global minimizers of the non reg-
ularized variational problem can be found was given by Lefébure and Cohen [76].

In general, numerical algorithms for the minimization tend to get stuck in local
minima. Alvarez et al. [84] proposed to consider a scale space approach to solve
this problem. Starting to correlate coarse representations of subsequent images in
an image sequence via an optical flow field or a deformation, one proceeds on suc-
cessively finer representation until the actual fine scale images are properly matched.

2.3 Confidence and Situation Measures for Optical Flows

In order to detect artifacts and erroneous flow vectors in optical flow fields, one
can analyze confidence and situation measures. Confidence measures are used to
estimate the correctness of flow fields, based on information derived from the image
sequence and/or the displacement field. Based on proposed techniques, two kinds
of confidence measures can be distinguish: situation and confidence measures.
Situation measures are used to detect locations, where the optical flow cannot be
estimated unambiguously. This is contrasted by confidence measures, which are
suited for evaluating the degree of accuracy of the flow field based. Situation mea-
sures can be applied e.g., in image reconstruction [87], to derive dense reliable flow
fields [110] or to choose the strength of the smoothness parameter in global methods
(e.g., indirectly mentioned in [72]). Confidence measures are important for quanti-
fying the accuracy of the estimated optical flow fields. A successful way to obtain
robustness to noise in situation and confidence measures is also discussed in [70].

Confidence measures employed are generally chosen as innate to the flow
estimation technique. By combining flow methods with non-inherent confidence
measures [70] were able to show considerable improvements for confidence and
situation measures. Altogether the results of the known measures are only partially
satisfactory as many errors remain undetected and a large number of false positive
error detections have been observed. Based on a derived optimal confidence map
they obtain the results in Fig. 2 for Lynn Quam’s Yosemite sequence [61], and the
Street [90] test sequences.

For variational methods, the inverse of the energy after optimization has been
proposed as a general confidence measure in [27]. For methods not relying on
global smoothness assumptions, e.g., local methods, a new confidence measure
based on linear subspace projections was proposed in [69]. The idea is to derive a
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Fig. 2 Comparison of optimal confidence measure (left) to best known confidence measure (right)
for Yosemite and Street sequences

spatio-temporal model of typical flow field patches using e.g., principal component
analysis (PCA). Using temporal information the resulting eigenflows represent
complex temporal phenomena such as a direction change, a moving motion
discontinuity or a moving divergence. Then the reconstruction error of the flow
vector is used to define a confidence measure.

2.4 Image Restoration

An active field of research is the restoration of damaged paintings or, in case
of digital images, the reconstruction of blank image regions based on image
information outside this area. It was first proposed by Masnou and Morel [87] and
named “disocclusion.” The term “inpainting” was introduced by Bertalmio et al.
[17], Ballester et al. [9] proposed a variational approach based on the continuation
of contours of equal luminance in the image, also called isophote lines. A variational
approach based on level set perimeter and mean curvature was presented by
Ambrosio and Masnou in [3]. Other approaches have been proposed for image
inpainting, e.g., TV-inpainting and curvature-driven diffusion inpainting suggested
by Chan and Shen [34, 35].

In general the problem of inpainting is stated as follows: Given an image u0 W
˝ ! R and an inpainting domain D " ˝ , one asks for a restored image intensity
u W ˝ ! R, such that uj˝nD D u0 and ujD is a suitable and regular extension of
the image intensity u0 outside D. The simplest inpainting model is based on the
construction of a harmonic function u on D with boundary data u D u0 on @D.
This model is equivalent to the minimization of the Dirichlet functions EharmonŒu! D
1
2

R
Dkruk2ıx for given boundary data, as can be derived from Dirichlet’s principle.

Due to standard elliptic regularity the resulting intensity function u is smooth
inside D. This means that edge information present on the boundary will not be
restored in the inpainted area. An overview on first order variational functionals
related to this problem has been given by Chan and Shen [31, 32]. To resolve this
shortcoming, TV-type inpainting models have been proposed [29, 30]. They are
based on the functional ETVŒu! D 1

2

R
Dkrukıx, which allows for steep transitions

on some edge contour. The resulting image intensity is a Bounded Variation (BV)
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function and thus characterized by jumps along rectifiable edge contours. In a weak
sense, it solves the geometric PDE h D 0 with Neumann boundary conditions,
where h D div .kruk"1ru/ is the mean curvature on level sets or edge contours.
Thus the resulting edges will be straight lines.

This issue of straight lines has been overcome in later work by [30,33]. Here, the
functional of the energy is based on the curvature of the intensity level curves. This
enforces a smooth transition between the level curves. The equations obtained from
such models are highly nonlinear and of higher (fourth) order. Recently, Bredies
et al. [24] proposed an approach for higher order TV which significantly improves
on stair-casing effects often found in TV regularization. Such an approach has been
applied to denoising depth images of Time-of-Flight (ToF) imagers [78].

In many applications the assumption of a sharp boundary @D of the corrupted
region turns out to be a significant restriction. In fact the reliability of the given
image intensity gradually deteriorates from the outside to the inside of the inpainted
region. This can be reflected by a relaxed formulation of the variational problem.
One considers the functional

e#Œu! D
Z

˝

ju $ u0j H# C $.1 $ H#/krukpıx ; (5)

where $ > 0, p D 1 or 2, and H# is a convoluted characteristic function %D and
# > 0 indicates the width of the convolution kernel.

Frequently, one aims for a better continuation of image structures from outside
the destroyed region. Mumford [92] phrased this problem in terms of a minimization
of elastic energy of curves or surfaces M treated as elastic rods or shells and C 1

continuity conditions on @D. Morel and Masnou [86, 88] have further exploited the
relation to a minimization of the Willmore functional

EŒ M ! D 1

2

Z

M
h2 da; (6)

where h is the mean curvature of the manifold M . They explicitly construct
continuations of level lines in an occluded image region D as parameterized
minimizers of the Willmore energy. Ambrosio and Masnou [4] revisited this
problem in the context of geometric measure theory and derived minimizers of an
implicit formulation of the Willmore energy

EŒu! D
Z

D

div
! ru

jruj

"2

jrujıx: (7)

General properties of such variational problems have been discussed by Bellettini
et al. in [13]. Chen et al. [35] presented a finite difference relaxation algorithm for
this Willmore functional and applied it to image inpainting. Esedoglu and Shen
[44] proposed a phase field approximation of the Willmore energy and used a
parabolic relaxation in their concrete minimization algorithm. Bertalmio et al. [16]
and Ballester et al. [9] relaxed the Willmore functional and studied the simultaneous
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extension of the image’s normal field & D ru
jruj and the intensity u. This resulted to

the minimization of the energy

EŒ&; u! D
Z

D

.jr.t;x/uj $ & # ru/ C .div &/p.a C bjrG % uj/ıx ; (8)

where G is a Gaussian smoothing kernel. For & they impose the constraint j& j & 1.
Obviously, the first energy integrant is zero if & coincides with the image normal.
Thus, for p D 2 the second term approximates the Willmore energy on the ensemble
of level sets on D. Dirichlet boundary conditions for u and & are assumed.

A different approach has been considered by Bertalmio, Bertozzi and Sapiro
[18] connecting fluid dynamics and image inpainting. A vorticity formulation of
the stationary Navier–Stokes equations with zero viscosity can be written in terms
of the stream function '

r?' # r(' D 0 ; (9)

where r? denotes the orthogonal gradient and v D r?' the velocity field of the
flow. The connection to image processing is drawn by replacing ' by the image
intensity u. One tries to find a solutions of the above equation under boundary
conditions for the intensity u and the direction of level lines r?u. In terms of
physics, this can be thought of as the solution to the transport of the outside
image into the hole D which solves the stationary Navier–Stokes equations. The
corresponding algorithm is based on a third order, parabolic relaxation

@t u $ r?u # r(u D 0 : (10)

Recently, texture inpainting has attracted attention. Bertalmio et al. [19] proposed
a technique to first decomposed the image into texture and structure and then prop-
agated into the inpainting domain both these classes in different ways. This idea to
decompose texture and structure is also applied in [58]. Some statistical approaches
have been presented in [40] to perform a texture synthesis and structure propagation.

2.5 Optical Flow Reconstruction

In Sect. 2.2 a number of different approaches for estimating optical flow have been
presented. Even the most advanced techniques cannot accurately estimate correct
flow fields under all conditions. A powerful tool for detecting and removing incor-
rect flow vectors from the flow field are confidence measures [27, 70]. Discarting
erroneous flow vectors results in accurate but sparse motion fields. However, many
applications require dense flow fields. This reconstruction of missing vectors in
optical flow fields is based on information from the surrounding areas is addressed
in this section. The tasks is similar to that addresses in the previous section for image
reconstruction, where it was called “inpainting.”
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The reconstruction of motion fields has lately been proposed in the field of video
completion. In case of large holes with complicated texture previously used methods
are often not suitable to obtain good results. Instead of reconstructing the frame itself
by means of inpainting, the reconstruction of the underlying motion field allows for
the subsequent restoration of the corrupted region even in difficult cases.

Hence, the reconstruction of motion fields called “motion inpainting” was first
introduced for video stabilization by Matsushita et al. in [89]. The idea is to continue
the central motion field to the edges of the image sequence where the field is lost
due to camera shaking. This is done by a basic interpolation scheme between four
neighboring vectors and a fast marching method. An extension of inpainting to
higher dimensional surfaces has also been presented [10].

The reconstruction of optical flow fields can be accomplished by a simple
extension of these inpainting functionals for images, e.g., TV-inpainting on two
dimensional vector fields. However, these methods sometimes fail in situations
where the course of the motion boundary is unclear, e.g., if round motion boundaries
or junctions occur. Since image edges often correspond to motion edges the
information drawn from the image sequence can be important for the reconstruction,
especially in such cases where the damaged vector field does not contain enough
information to uniquely determine the optical flow of motion boundaries.

Hence, in the special case of optical flow, the image sequence provides a source
of information in addition to the corrupted vector field, which can be used to guide
the reconstruction process in ambiguous cases. Optical flow fields have been used
for the reconstruction of images in [15]. The resulting functional is nonlinear and
can be minimized by means of the finite elements method. This techniques compares
favorably to diffusion based and TV inpainting methods, see Fig. 3.

2.6 Motion Segmentation

A common task in image processing is the segmentation of images. Image segmen-
tation in its typical form is the process of assigning a label to every image pixel
in a way that pixels with the same label share certain visual characteristics. Image
segmentation is closely related to the task of classification. For classification, one
tries to assign to each pixel in the image a label or object class, where the classes are
agreed in advance. These labels can also be probabilities of the pixel to belonging
to certain objects. Depending on the cues that distinguish the object of interest from
the background, segmentation can be based on features such as edge information,
intensity, color, texture or motion. Well known approaches are:

• Variational Approach (Mumford and Shah functional [91], Geodesic active
contours [68], Segmentation from motion[37–39]).

• Multi-resolution techniques (Pyramid linking [104], Wavelet coefficient analysis
[73, 79, 116]).

The segmentation from motion can be achieved by iterative algorithms based on
interleafed motion estimation steps and segmentation steps [111]. Well known
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Fig. 3 Comparison of the proposed inpainting algorithm to diffusion and TV inpainting; the
numbers indicate the average angular error within the corrupted regions after reconstruction;
(a) Original corrupted Marble sequence, (b) Reconstruction result of diffusion based motion
inpainting, (c) Reconstruction result of TV based motion inpainting, (d) Reconstruction result of
image based motion inpainting. Taken from [15]

techniques are furthermore a layered representation of image sequences [119–
121], variational approaches, for instance motion competition [38], and other
techniques such as tensor voting [95,96] or algebraic methods for multi-body motion
models [117]. The iterative algorithm introduced by [111] describes a probabilistic
relaxation framework for robust multiple motion estimation and segmentation.
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[119–121] present a set of techniques for segmenting images into coherently moving
regions in a layered representation. Cremers and Soatto [38, 39] gave an extension
of the Mumford and Shah functional from intensity segmentation to motion based
segmentation in terms of a probabilistic framework implemented by level sets. The
geometric prior favors motion boundaries of minimal length and the likelihood
term takes into account the orthogonality between the spatio-temporal gradient and
the velocity vector. The classical pyramid linking segmentation, as discussed in
[28, 105], is based on the Gaussian pyramid of the image. Several improvements
were introduced by [104]. Instead of using a Gaussian pyramid, they propose a
continuous scale-space. The segmentation by clustering in the feature space has
been described by [116]. The feature extraction is based on local variance estimates
of the wavelet coefficients of the image.

2.7 Joint Estimation of Optical Flow, Segmentation
and Denoising

Rather than denoising images, computing optical flow and performing a segmen-
tation step, all separately, all these components can be combined and computed
concurrently [106, 114]. This approach is based on an extension of the well known
Mumford–Shah functional which originally was proposed for the joint denoising
and segmentation of still images. Given a noisy initial image sequence u0 W D ! R
on the space-time domain D D Œ0; T ! ! ˝ the following energy is considered

EMSoptŒu; w; S ! D
Z

D

$u

2
.u $ u0/

2 d L C
Z

DnS

$w

2

#
w # r.t;x/u

$2 d L

C
Z

DnS

)u

2
kr.t;x/uk2 d L C

Z

DnS

)w

2
kPıŒ*!r.t;x/wk2 d L C+ H d .S/

for a piecewise smooth de-noised image sequence u W D ! R, and a piecewise
smooth motion field w D .1; v/ and a set S " D of discontinuities of u and w. $u

and $w are the weighting factors for the fidelity terms of u and w, while )u and )w

are those for the smoothness terms respectively. The first term models the fidelity
of the denoised image-sequence u, the second term represents the fidelity of the
flow field w in terms of the optical flow equation (1). The smoothness of u and w
is required on DnS and finally, the last term is the Hausdorff measure of the set S .
A suitable choice of the projection PıŒ*! leads to an anisotropic smoothing of the
flow field along the edges indicated by * [106].

The model is implemented in [106,114] using a phase-field approximation in the
spirit of Ambrosio and Tortorelli’s approach [5]. Thereby the edge set S is replaced
by a phase-field function * W D ! R such that * D 0 on S and * ' 1 far from
S . As in the original Ambrosio–Tortorelli model, a scale parameter # controls the
thickness of the region with small phase field values. The Euler–Lagrange equations
of the corresponding parameters yield a system of three partial differential equations
for the image-sequence u, the optical flow field v and the phase field *:
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Fig. 4 Noisy test sequence: From top to bottom frames 9 and 10 are shown. (a) original image
sequence, (b) smoothed images, (c) phase field, (d) estimated motion (color coded). Taken from
[114]

Fig. 5 Pedestrian video: frames from original sequence (left); phase field (middle); optical flow,
color coded (right) [114]

$div.t;x/

!
)u

$u
.*2Ck#/r.t;x/u C $w

$u
w.r.t;x/u#w/

"
Cu D u0

$#(.t;x/* C
!

1

4#
C )u

2+
kr.t;x/uk2

"
* D 1

4#

$)w

$w
div.t;x/

#
PıŒ*!r.t;x/v

$
C .r.t;x/u # v/r.x/u D 0

(11)

Neumann boundary conditions are considered in this application. For details on this
approximation and its discretization, we refer to [106].

In Fig. 4 we show results from this model on a noisy test-sequence where one
frame is completely missing. But this does not hamper the restoration of the correct
optical flow field shown in the fourth column, because of the anisotropic smoothing
of information from the surrounding frames into the destroyed frame.

Furthermore, in Fig. 5 we consider a complex, higher resolution video sequence
showing a group of walking pedestrians. The human silhouettes are well extracted
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and captured by the phase field. The color–coded optical flow plot shows how the
method is able to extract the moving limbs of the pedestrians.

3 High-Level Computer Vision

Object recognition in images and videos poses one of the long standing key
challenges of computer vision. The problem itself is twofold since recognition
involves localizing instances of an object class in novel, cluttered scenes (detection)
and classifying these instances as belonging to one of several potential classes (cate-
gorization). Developing appropriate object models, which represent the appearance
and geometry of each object class and thereby help to distinguish objects from
another, constitutes the central problem of recognition. It is common practice to
automatically learn these models from unsegmented training images [47, 56, 99],
from bounding box segmentations [85, 100], from segmented training images [77],
or from manually annotated training images [45]. Since the complexity of object
models has to scale with the complexity of object classes, object detection and
categorization become particularly challenging when object categories are featuring
large intra-class variability. Additionally, the complexity of this problem depends on
several other factors, such as the level of supervision during training, the between-
class similarity, and the constraints that can be imposed on scenes (e.g., constraints
on variation in scale or viewpoint).

3.1 Key Modeling Decisions

Visual recognition can be pursued on different levels of semantic granularity.
One extreme strategy is exemplar detection (e.g., [81]), where exactly the same
query object is sought in scenes with different environmental conditions such as
background, lighting, occlusion, viewpoint etc. The other extreme is category-
level object recognition where all instances of a category are to be recognized.
Therefore, the granularity of the set of categories controls the complexity of the
recognition task as it defines the within-class variability. Influential papers such
as [6, 47] have focused research in the field of category-level object recognition
on principled probabilistic object models with semi-local feature descriptors. The
general goal is to represent objects by learning local appearance features and their
spatial configuration and comprising both in a common model. Within this coarse
fundamental modeling framework, the current approaches to object categorization
can be characterized by the core modeling decisions they make.

1. Local Descriptors: A classical way to capture image region information are
appearance patches, i.e., subsampled image patches that are vector quantized
into a large codebook (e.g.,[2,47,77]). Complex edge histogram features such as
SIFT features [81] are another popular choice. In [98] we have proposed a low
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dimensional representation of image patches that is based on compact local edge
and color histograms of subpatches. Another popular descriptor is geometric
blur [14]. This feature weights edge orientations around a feature point using
a spatially varying kernel. Moreover, edge contour based methods have been
proposed in [48, 102]. Opelt et al. [102] extract curve fragments from training
images and they apply Adaboost to learn strong object detectors.

2. Spatial Model: A second choice concerns the model that combines all local
features with their spatial distribution to represent object shape. It should be
emphasized that this notion of shape is not based on the object boundary but on
the geometry of object parts that are distributed all over the object. Object models
have to deal with two problems, simultaneously. On the one hand individual
local appearance descriptors in a test image are to be matched against those
from a learned model. On the other hand the co-occurrence and the spatial
relations between individual features have to be taken into account to represent
the global object geometry. The simplest approach is, therefore, to histogram
over all local descriptors found in an image (e.g., [41]) and to categorize the
image directly based on the overall feature frequencies. On the one hand such
bag of features methods offer robustness with respect to alteration of individual
parts of an object (e.g., due to occlusion) at low computational costs. On the other
hand they fail to capture any spatial relations between local image patches and
they often adapt to background features. By making the restricting assumption
that the spatial structure of objects is limited in its variation with respect to
the image, Lazebnik et al. [75] can improve the performance of the bag of
features approach using a spatially fixed grid of feature bags. At the other end
of the modeling spectrum we find constellation models: Originally, Fischler
and Elschlager [49] have proposed a spring model for coupling local features.
Inspired by the Dynamic Link Architecture for cognitive processes, Lades et al.
[71] followed the same fundamental idea when proposing their face recognizer.
Lately increasingly complex models for capturing part constellations have been
proposed [47]. However the complexity of such a joint model of all parts causes
only small numbers of parts to be feasible. To incorporate larger numbers of
parts, [2, 77] use a simpler object model and a comparably large codebook
of distinctive parts. Leibe and Schiele [77] use a probabilistic Hough voting
strategy to distinguish one category from the background. In [99] we advance
the idea of large numbers of parts by grouping parts prior to spatially coupling
the resulting compositions in a graphical model. Conflicting categorization
hypotheses proposed by compositions and the spatial model are then reconciled
using probabilistic inference in the underlying Bayesian network. The processing
pipeline for this automatic scene analysis is presented in Fig. 6. Finally, Berg
et al. [14] describe and regularize the spatial distortion resulting from matching
an image to a training sample using thin plate splines.

3. Hierarchies: For a long time, research on object recognition has aimed at
building hierarchical models [52]. Despite this effort, many popular current
methods such as [41, 47, 77] are single layered. Recently, probabilistic latent
semantic analysis (pLSA) [64] has become popular (e.g.,[109]), where a hidden
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Fig. 6 Processing pipeline for automatic scene analysis. Key steps: Feature extraction, perceptual
grouping to form compositions, selection of relevant compositions, object localization and
recognition, and top-down grouping to form compositions of compositions which then yield an
update of object hypotheses

representation layer of abstract concepts is introduced. Other examples for
hierarchical approaches are the feature hierarchies of [43], the hierarchical parts
and structure model of [23] or the deep compositional hierarchies of [101].

4. Learning Paradigm: Another modeling decision is related to the learning
paradigm, i.e.,pursuing a generative versus a discriminative approach. Generative
models have been very popular in the vision community, e.g., [2,14,22,47,77,98,
112]. They naturally establish correspondences between model components and
image features. Discriminative approaches are for instance [41] and [118]. To
recognize faces in real-time Viola and Jones [118] use boosting to learn simple
features which are based on local intensity differences.

5. Degree of Supervision: Similar to the influential paper by Fergus et al. [47]
several other approaches (e.g.,[2, 41, 99]) have been proposed that only need
training images (showing objects and even background clutter) and the overall
category label of an image. The restriction of user assistance is desirable for
scaling methods up to large numbers of categories with large training sets. A
system that can be trained in an unsupervised manner is for instance that of [56],
whereas Felzenszwalb and Huttenlocher have taken a supervised approach to
object detection in [45]. Furthermore, Jin and Geman [67] present a composi-
tional architecture with manually built structure for license plate reading. In their
conclusion they emphasize the complexity of the future challenge of learning
such a compositional model. In [97] we have addressed exactly this problem in
the even less constraint case of large numbers of natural object classes.
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3.2 A Compositional Approach to Object Categorization

Despite the complexity of the recognition challenge, learning of object representa-
tions from a small number of samples is possible due to the compositional nature
of our (visual) world. As Attneave [8] points out, the visual stimulus is highly
redundant in the sense that there exist significant spatial interdependencies in visual
scenes. Compositionality (cf. Geman’s work [54]) serves as a fundamental principle
in cognition and especially in human vision [20] that exploits these dependencies. It
refers to the prominent ability of perception to represent complex entities by means
of comparably few, simple, and widely usable parts. Additional information that is
missing in the individual parts is added by incorporating relations between them.
The compositional approach presented in [97] automatically learns characteristic
compositions of atomic parts. A visualization of relevant compositions by clustering
is shown in Fig. 7. Perceptual grouping is applied to obtain candidate compositions.
The statistics of relevant compositions that are both reliable and discriminative are
then learned from the training data. To avoid overfitting to spurious compositions,
cross-validation is performed.

3.3 Object Detection in Cluttered Scenes

Object detection in cluttered natural scenes requires matching object models to the
observations in the scene. Since the objective function for matching is a highly non-
convex function over scale space, the task of finding good matches is an extremely
challenging optimization problem. The two leading approaches to this problem are
sliding windows, e.g.,[42, 118], and voting methods, which are based on the Hough
transform [66]. Sliding windows scan over possible locations and scales, evaluate
a binary classifier, and use post-processing such as non-max suppression to detect
objects. The computational burden of this procedure is daunting although various
techniques have been proposed to deal with the complexity issue, e.g.,cascaded
evaluation [118], interest point filtering, or branch-and-bound [74]. In contrast to
this, Hough voting [66] parametrizes the object hypothesis (e.g.,the location of the
object center) and lets each local part vote for a point in hypothesis space.

In [100] we have shown that object scale is an inherently global property, which
makes local scale estimates unreliable and, thus, leads to a scale-location-ambiguity.
An illustration of this approach is presented in Fig. 8. When the Hough transform
is extended to provide hypotheses for location and scale, each local feature casts
votes that form lines through scale space rather than just a single point as in current
voting methods [48, 77, 102]. Since all points on a voting line are statistically
dependent, they should agree on a single object hypothesis rather than being treated
as independent votes. Ideally, all points on an object would yield lines that intersect
in a single point. Due to intra-category variation, and background clutter, the points
of intersection are, however, degraded into scattered clouds. Finding these clusters
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Fig. 7 Visualization of relevant compositions by clustering. For each category, the two prototyp-
ical compositions with highest relevance are illustrated by visualizing the closest compositions to
that prototype. (a) airplanes, (b) bass, (c) crayfish, (d) dragonfly, (e) faces, and (f) hawksbill

becomes difficult since their number is unknown (it is the number of objects in the
scene) and because the assignment of votes to objects is not provided (segmentation
problem). To address these issues we frame the search for globally consistent
object hypotheses as a weighted, pairwise clustering of local votes without scale



328 C.S. Garbe and B. Ommer

a b c

d

Fig. 8 Voting in scale space with scale-location-ambiguity. The circle indicates the spatial support
of a local feature. Based on the descriptor, the difference of object scale between (a) and (b) is not
detectable. Thus, a local feature casts votes for the object center on all scales, (c). These votes lie
on a line through scale space, since the position of the center relative to a feature varies with object
scale. Without noise, all voting lines from an object intersect in a single point in scale space, (d).
For all other scales this point is blurred as indicated by the dotted outline

estimates. Clustering avoids a local search through hypothesis space [77] and the
pairwise setting circumvents having to specify the number of objects ahead of time.
Moreover, clustering voting lines deals with the large number of false positives
[57] which point votes produce and that hamper the commonly used local search
heuristics such as binning [77].

4 Conclusion

In this contribution, we have given a brief overview of some areas of image
processing and computer vision in which parameter estimation plays a central role.
We have not attempted to give a complete and exhaustive overview. However, we
have outlined some of the approaches and techniques commonly used in the area and
demonstrated them on typical applications. From our overview it becomes apparent
that most parameter estimation problems in image processing and computer vision
are highly non-linear. Inherent are often large amounts of image data and the
requirement of fast computation times. Therefore, the presented applications would
profit from algorithmic and conceptual advances.
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