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Abstract. A method for exploiting the information in low-level image segmen-
tations for the purpose of object recognition is presented. The key idea is to use
a whole ensemble of segmentations per image, computed on different random
samples of image sites. Along the boundaries of those segmentations that are
stable under the sampling process we extract strings of vectors that contain lo-
cal image descriptors like shape, texture and intensities. Pairs of such strings are
aligned, and based on the alignment scores a mixture model is trained which di-
vides the segments in an image into fore- and background. Given such candidate
foreground segments, we show that it is possible to build a state-of-the-art object
recognition system that exhibits excellent performance on a standard benchmark
database. This result shows that despite the inherent problems of low-level image
segmentation in poor data conditions, segmentation can indeed be a valuable tool
for object recognition in real-world images.

1 Introduction

The goal of image segmentation is the detection of meaningful structures from a clut-
tered scene. Most current segmentation techniques take a bottom-up approach, where
local image properties such as feature similarity (brightness, texture, motion etc) are
used to detect coherent units. Unfortunately, image segmentation becomes very diffi-
cult in poor data conditions like shadows, occlusions and noise. In such situations, the
detected coherent units often do not coincide with our perception of objects in a scene.

The automatic detection and recognition of visual objects in images, on the other
hand, has been among the prime objectives of computer vision for several decades.
Large intra-category variations of appearances and instantiations within object classes
turn learning category models into a key challenge. Therefore, common characteristics
of an object class have to be captured while offering invariance with respect to vari-
abilities or absence of these features. In principle, segmentation algorithms might help
to solve the object detection task by partitioning the image into meaningful parts that
might serve as the inputs of a classification system. Many papers on image segmenta-
tion contain statements of the form “segmentation is an important preprocessing step
for object recognition”. Due to the above limitations, however, the practical usefulness
of low-level segmentation algorithms for the purpose of object recognition is question-
able and, indeed, the currently best approaches to object recognition do not employ
low-level segmentation, see e.g. [1–5].



In order to circumvent the obvious problems of segmentation, it has been proposed
to treat segmentation and recognition in an interleaved manner, e.g.[6]. Approaches of
this kind typically mix bottom-up strategies with top-down elements based on back-
propagating hypotheses about the objects down to the segmentation level. These meth-
ods seem to work well, if the initial segmentation is of “reasonable” quality, which is
often the case if one considers moving objects in videos where the motion information
supports the segmentation process. Good performance can also be achieved, if only a
small number of classes is considered for which relatively strong initial object hypothe-
ses can be build by including additional side information. For the task of detecting
objects in still images, however, the recognition performance of these methods is still
rather limited, particularly if there are many potential object classes.

Despite the generally poor quality of bottom-up segmentations in real-world im-
ages, we demonstrate that it is possible to exploit low-level segmentations for building
a very powerful object recognition system. The key idea is to use not only one segmen-
tation, but a whole ensemble of segmentations which often captures at least parts of the
objects in a scene. Such partial matches of the objects boundaries can be successfully
used for discriminating between foreground/background segments.

Given the candidate foreground segments, we show that it is often possible to recog-
nize the object class. We propose two different approaches: the direct approach exclu-
sively relies on the low-level segmentations by computing majority votes over all stable
segments in an image, whereas the combined approach uses the predicted foreground
segments as input of a hierarchical classification scheme. The latter learns to group
parts of the image foreground segments into a hierarchy of category-specific composi-
tions, and binds them together using a probabilistic shape model to recognize objects in
scenes. The foundation for this approach is laid by the principle of compositionality [7]:
As observed in cognition in general and especially in human vision, complex entities are
perceived as compositions of comparably few, simple, and widely usable parts. Objects
are represented based on their components and the relations between them. Composi-
tion models bridge the semantic gap between low level image features and high level
scene categorizations [3, 4] by establishing intermediate hidden layer representations.
Our experiments with the caltech 101 database [8] show that both the direct and the
combined approach allow us to build a highly competitive object recognition system.

2 Ensembles of Low-level Segmentations

For segmenting the images we use an adapted version of the algorithm proposed in
[9] which combines both the ideas of partitioning and feature combination/selection.
The latter aspect turns out to be very important for finding good segmentations, since
segment-specific information is often spread over different cues like color and texture.
The core of this algorithm consists of a Gaussian mixture model with built-in relevance
detection which automatically selects important features by maximizing a constrained
likelihood criterion. In order to find reasonable settings for the free model parameters,
we devise a resampling-based model selection strategy which follows largely [10, 9].
The key idea is to draw resamples of the object set, to train the segmentation model
on the individual resamples and to compare the resulting solutions. Adapted to our



image segmentation problem, this strategy translates into sampling different image sites,
inferring a segmentation on the basis of these sites and identifying stable segmentations
(i.e. those which can be reproduced on many different random samples of image sites).
We repeat this procedure for different numbers of mixture modes, and finally we receive
a stability-ranked list of prototypical segmentations, see [9] for further details.

In addition to selecting these stable segmentations, we also overlay all individual
segmentations to compute a probabilistic boundary map that encodes for each pixel its
probability of being part of a segment boundary, see figure 1 for a schematic overview.
Despite the fact that many individual segmentations are often of rather poor quality,
the ensemble approach has two important advantages: (i) Within the subgroup of stable
segmentations we often find relatively good partitions; (ii) the aggregated boundary
map typically captures many details of the object in the image. To highlight the latter
issue, we have additionally plotted the response of a Canny edge-detector in the right
panel of figure 1. Due to the local character of the edge detection process, the Canny
edges are much more noisy than the aggregated segment boundaries.

(Canny)

Fig. 1. Ensembles of segmentations. Left: input image and extracted features (top: three texture
channels, bottom: LUV color channels). Middle: resampled image sites and corresponding seg-
mentations. Top right: probabilistic boundary map found by overlaying all individual segment
boundaries. Bottom right: Canny-edges for comparison.

3 Foreground/background Learning

In the following we assume that we are given a set of training images with category
labels. Additional information about the location of the objects, however, is not avail-
able. We further assume that there exists a background category with images that be-
long to none of the categories. Such a situation is e.g. given for the popular caltech
101 dataset [8] that contains images from 101 categories. For all experiments we used
the images from 20 categories in caltech 101: anchor, umbrella, barrel, trilobite, wrench,
windsor chair, tick, stapler, electric guitar, gramophone, stop sign, cup, lobster, crayfish, wa-
ter lilly, crab, starfish, wild cat, pyramid, pagoda. This choice was guided by two criteria:
we wanted a subset that is reasonably small ( � 1000 images) to explore a new method
and that is sufficiently difficult to reliably evaluate the performance. The chosen cate-
gories are a mixture of artificial and natural object classes and they contain some classes
that are very difficult to separate like lobster and crayfish. From all classes we randomly
pick a training set of 25 images each. The remaining images are exclusively used for
performance evaluation.



Based on ensembles of segmentations, we now introduce a method for identify-
ing foreground segments. This foreground learning takes place in a pairwise setting.
We first randomly pick two categories. For all training images belonging to these two
categories, we consider all segmentations which exceed a certain stability threshold
(see section 2) and we extract the boundary of each connected component. On regu-
larly spaced points along these curves, vectors of local image descriptors are extracted.
Thus, each connected segment is represented as a string of vectors. The same proce-
dure is applied to the training images in the background class. Putting all such strings
together we obtain a dataset consisting of � boundary strings from two categories and
the background class. We then compute local string alignments for all pairs of these �
strings. The final �������
	 matrix of alignment scores is transformed into a valid Mercer
kernel. In order to discriminate between fore- and background segments, we learn a
Gaussian mixture model with three modes on these data which are represented by the
kernel matrix. The estimated membership probabilities in one of the modes are used for
identifying foreground segments: those segments that have a high probability for the
correct image category are treated as foreground areas.

Boundary extraction and string representation. After the segmentation process,
each pixel in an image has a group label. In a first step, connected pixels which share the
same group label are extracted. For simplicity, we will refer to such connected groups
of pixels as segments in the sequel. For each of these segments, we compute a chain-
code representation of the segment boundary. We call such a boundary closed if the
segment is entirely contained in the image, i.e. if it does not hit the image borders. For
such closed segments the boundary chain is extended to two full circulations, which
guarantees us that the alignment score between two such segments becomes indepen-
dent of the starting point (note that we use local alignments). If a segment is not closed,
we start at the image border and continue the chain until the border is hit again. Figure
2 depicts examples of such segment boundaries.

Fig. 2. Boundary extraction. Left: original image; middle: most stable segmentation; right: three
extracted segments (blue) and their boundaries (red).

On regular intervals along the segment boundaries, we then extract a vector of image
descriptors. The components of such a vector contain three different descriptor types:
a shape context histogram, a texture patch and a gray-value patch. The shape context
descriptor [11] consists of a log-polar histogram with 60 bins (10 angles, 6 scales)
which is centered at the current position along the boundary. Each bin represents the
(weighted) sum of those pixels in the map of aggregated segment boundaries which fall
into the bin-specific part of the polar histogram and which are “close” to the segment,
i.e. which lie in a close vicinity of the segment, see the green tube around the segment



in figure 3. The texture- and gray-value patches consist of locally averaged values of
Gabor filter responses and image intensities respectively. In analogy to the shape context
descriptor, a polar grid is used for defining the areas over which the averaging takes
place. This polar geometry has the advantage that we can easily incorporate rotation
invariance into the alignment process by simply shifting the indices of the descriptors.

texture grey textureshapeshape grey

Fig. 3. String representation of segments. Left to right: chain of vectors containing local image
descriptors (schematic), segment boundary (red) and vicinity around the segment (green), polar
histogram of the shape context descriptor (yellow), polar gray-value patch, polar texture patch.

String alignments. Having extracted a string for each of the � segments, we then
compute the ����� matrix of pairwise local alignments by way of the Smith-Waterman
algorithm [12]. Contrary to the typical setting in which this algorithm is used, in our
case we do not have a fixed alphabet of symbols for which a predefined scoring table for
aligning pairs of these symbols is available. We rather have “strings” which are ordered
collections of vectors with real-valued entries. Instead of looking up the symbol-wise
scores in a table, in each step of the algorithm we evaluate a scoring function for two
vectors. The components of these vectors consist of 60 bins of a shape context his-
togram, 60 locally averaged texture measurements and 60 locally averaged gray-values.
Thus, a vector is composed of three subvectors ����� shape �  text �  gray 	��

In the experiments below we use a simple aggregation of these three cues that com-
bines ��� distances between shape context histograms with correlation scores for texture
and intensity patches: the scoring function for two vectors �� �  � has the form

� �� � �  � 	������ �"!$#&%�')(*�� shape� �  shape� 	,+-%/.0.1�� text� �  text� 	
+2%/.0.&�� gray� �  gray� 	�3 � (1)

with the � � distance %�' ( ��*� �  � 	 and the cross correlation distance % .0. ��*� �  � 	"�546�7 8:9<; ��*� �  � 	 7 , with
8:9<; ��=� �  � 	 being the correlation between the vectors >� and  � .

Note that distances are transformed into similarities, so that a high score means that
two strings are similar. The constants ���?4A@)B � �"�?4<@AC were selected empirically.

Since the extracted segments often capture only parts of the objects, the alignment
scores are divided by the length of the alignment. In order to avoid high scores for very
short “random” alignments, we consider such length-normalized alignments as “valid”
only if the total alignment length exceed a certain threshold. In our experiments we
require that two strings must be aligned at more that 15 consecutive positions, otherwise
the score is down-weighted by a factor of ten. For a better geometric interpretation, we
have depicted such positions which align to each other in figure 4 below as blue lines.

To further decrease the sensitivity to local segmentation errors, we allow gaps in the
alignments. Such gaps are penalized by a predefined cost value D . In our experiments we



use D���EGFH4 which means that the current alignment score is decreased by EGFH4 whenever
a position in one string is aligned with a gap in the other. For two strings I ��J with
lengths K � KML the alignment algorithm recursively fills the ��KN�OKPLQ	 matrix R :

R/��S �UT 	��WV/XAY[Z1E � R/��S$�\4 �UT �24<	$+ � ��I^] �_J<` 	 � R/��S,�a4 �UT 	
�bD � R/��S �PT �\4<	
�bDdc=F (2)

Backtracking from the highest value in R yields the optimal alignment, see [12] for
details. Recall that the S -th position of string I is a shape/texture/intensity-vector, and
that � �e! � !f	 denotes the scoring function defined in (1). An example alignment matrix for
the categories “wrench” and “windsor chair” is depicted in the right panel of figure 4,
which shows a distinct block structure.

wrench chair backgr.

Fig. 4. String alignments. Left: alignment of two boundary strings (top: schematic, bottom: 2 seg-
ments from the “windsor chair” category). The blue lines connect aligned vectors. Right: pairwise
alignment matrix for segments from the categories “wrench”,“windsor chair” and “background”.

Detecting foreground segments. In the final step in our foreground-detection pro-
cess a Gaussian mixture model is learned for the � segments. These segments are repre-
sented in form of a ���g�h�
	 matrix i of pairwise alignment scores. If this matrix would
be positive semidefinite we could identify it as a Mercer kernel and train a mixture
model in the kernel-induced space as proposed e.g. in [13]. It is well known that prob-
abilistic alignment models such as pair hidden Markov models produce scores which
fulfill the requirements of a valid Mercer kernel. For simplicity, however, we used a
deterministic alignment model which might violate the positive-semi-definiteness con-
dition. Moreover, the length-normalization of scores can lead to additional negative
eigenvalues of i . In practice, however, we observe that there are typically only very
few negative eigenvalues which are all of small magnitude. In order to transform it
into a valid Mercer kernel, we use the kernel PCA idea [14] to find a decompositionij�lk�mnk�� with a diagonal matrix m of eigenvalues. Discarding all negative eigen-
values we form a valid kernel i L �okqprmnp�k��p .

Based on this kernel matrix i we now learn a Gaussian mixture model with 3 mix-
ture modes. For initialization we label all segments in an image according to its category
label, despite the fact that some segments might belong to the background class. Dur-
ing further iterations of the EM algorithm (see [13] for details), we re-estimate these
membership probabilities in one of the three classes (two categories + background) for
each segment. It is interesting that the selection of foreground segments does not vary



significantly if different pairs of categories or if more than two categories are selected.
Examples of detected foreground segments are depicted in figure 5.

To predict foreground segments in the test images we first reduce the size of the
training set by extracting from each of the 25 training images per category only the two
highest scoring foreground segments. Based on the string representations of these 2 !
25 ! 20 segments (2 segments/image, 25 images/category, 20 categories), we compute a
new pairwise alignment matrix of size 4sEtE*E��u4sE*EtE which now represents all training
images. Discarding negative eigenvalues we again arrive at a valid kernel matrix i L �kqp�mnprk��p �hvdwxwy� that allows us to form a vectorial representation of the segments
as the rows of the matrix w . Based on this data matrix and the corresponding category
labels of the training images we learn a probabilistic 20-class kernel classifier. In the
experiments we used a multi-class variant of nonlinear kernel discriminant analysis
described in [15], which allows us to predict foreground segments in test images.

Fig. 5. Detecting foreground segments. From left to right in triplets: image, detected foreground
segment (the one with the highest probability), corresponding stable segmentation.

4 Object Recognition

In order to exploit the results of the foreground identification for the purpose of object
recognition, we use the classifier that was learned on the basis of the training images as
described above to predict foreground segments in the test images. For this purpose we
align each segment in a test image with all �y�z4sEtE*E training segments. The resulting
1000-dimensional alignment vector is projected onto the set of eigenvectors k p of i L .
Appropriate scaling by the eigenvalues (see [14]) yields a vectorial representation I${ of
the test segment, for which the classifier predicts a set of membership probabilities in
each of the 20 image categories. Segments that can be clearly assigned to one of the cat-
egories (i.e. which have a high membership probability) are considered as hypothetical
foreground segments in a test image.

These hypotheses are now used for predicting the category labels of the test images
in two different ways: the direct approach computes a weighted majority vote over all



segments in a test image. When assigning each image the most probable category label,
the average retrieval rate of the direct approach is |)}qF C>~ . Among the two most probable
categories, we find the correct one in ����4<~ , and among the three most probable in�o�)�=~ . Taking into account that the direct approach only uses low-level segmentations
and that for roughly 1/4 of all images it seems to be very difficult to find any good
segmentations, these retrieval rates are amazingly high. For comparison: our reference
implementation [4] (which currently is one of the best methods on the caltech 101
database) achieves an average retrieval rate of �G4tF }=~ when trained exclusively on these
20 categories. For analyzing the effect of using many segmentations per image (we
used 100 in the experiments), we repeated the whole processing pipeline with only 5
segmentations per image. In this setting, the average retrieval rate drops down to B)�>~
which effectively demonstrates the advantage of using large ensembles.

The combined approach uses the boundaries of the predicted foreground segments
as input for a compositionality-based recognition system which implements a variant of
the model in [4]. The segment boundary contours are first split into shorter subcurves
before encoding them using localized feature histograms from [3]. Top-down group-
ing of segment boundaries yields compositions of curves with increased discriminative
power compared to their original constituents. The conceptual idea is to group image
parts not based on their similarity but based on the familiarity of their composition. As-
sume for the moment that groupings which are distinctive for categories have already
been learned from the training data. The objective of top-down grouping is then to form
a hierarchy of compositions by combining those constituents whose composition has
highest category posterior. The goal is now to automatically learn and represent mod-
els for top-down grouping in the case of large numbers of object classes. We tackle
this problem by first estimating category dependent co-occurrence statistics of fore-
ground curve segments in the training images. Using this distribution, the curves are
then grouped. The resulting compositions are used to update the previously estimated
category dependent grouping statistics and to learn a global shape model. This shape
model is used for coupling all the established compositions in a final step. Due to limited
space we refer the interested reader to [4] for details about the model and its practical
implementation in form of a graphical model employing believe propagation.

Our first experiments with this combined approach yielded an average retrieval rate
of �*BGF C>~ which is at least competitive to the reference model [4] (however, the increase
in performance is probably not statistically significant). Figure 6 shows the correspond-
ing category confusion table. This result shows that despite the difficulties of low-level
segmentation, it is possible to exploit the information contained in ensembles of seg-
mentations for building state-of-the-art recognition systems.

5 Discussion

Despite the fact that bottom-up image segmentation is sometimes considered as an im-
portant preprocessing step for object recognition, the actual usefulness of such an ap-
proach in real-world recognition scenarios is still an ongoing debate. For real-world
scenes it is often difficult to find segmentations of sufficiently high quality that would
allow to reliably extract object-specific information like shape, color distribution, tex-
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Fig. 6. Category confusion table of the compositional model with �1�)� �<� retrieval rate.

ture features etc. It is, thus, not surprising that the currently best object recognition
systems do not use low-level segmentations.

In this work we show that it is indeed possible to build state-of-the-art recogni-
tion systems on the basis of low-level image segmentations. The key idea is to use not
only one single segmentation per image, but ensembles of many segmentations that are
computed on different random samples of image sites. Although most of the individ-
ual segmentations might be of rather poor quality, the combination of many segmen-
tations helps to overcome problems induced by poor data conditions in two ways: (i)
analyzing the variation of segmentation solutions under the sampling process, we can
identify subsets of stable segmentations that in many cases are of much higher quality
than single-segmentation solutions. (ii) Aggregating all segment boundaries, we build
probabilistic boundary maps. Compared with standard edge-detectors, the aggregated
segment boundaries often encode at least parts of the “true” objects in the image.

Segmentations that have been identified as stable are represented by local image de-
scriptors along their boundaries. These descriptors encode shape, intensities and texture
in the form of histograms of segment boundaries, gray-value patches and local Gabor
filter responses. Based on this string representation, all stable segments are compared
utilizing a string alignment algorithm. From the matrix of alignment scores, a Mercer
kernel is derived on which a (kernelized) Gaussian mixture model is trained which is
used to build hypotheses about foreground segments. The hypothetical foreground seg-
ments are then used for recognizing the objects in test images in two different ways: the
direct approach exclusively relies on the low-level segmentation information by build-
ing weighted majority votes over all segments in an image. In the combined approach,
the segment boundaries serve as inputs for a compositionality-based recognition system
which aggregates curves (or parts thereof) to category-specific compositions.

On a 20-category subset of the caltech 101 database we compare these two ap-
proaches with one of the currently best recognition systems which yields a retrieval rate



of 61.8 % on the considered images. We observe that even the direct approach which
“naively” works on the segments without building any compositions achieves a very
good performance of 58.2% (a “bag-of features” approach on the hypothetical fore-
ground segments yields only 49%). First experiments with the combined approach even
slightly outperform the base-line system (although not in a statistically significant way).
As more important than the exact retrieval rates, however, we consider the following:
(i) Low-level segmentations can indeed be used for building competitive object recog-
nition systems for real-world images. (ii) The use of large ensembles of segmentations
is essential (otherwise the performance drops down significantly). (iii) A comparison
with the performance of the method from [4] indicates that the segmentation process
concentrates relevant image information in few boundary curves and mainly discards
non-discriminative image regions. (iv) We believe that both the direct- and the com-
bined approach can be substantially improved by systematically searching for advanced
local image descriptors and improved scoring functions in the alignment process.
Acknowledgments. This work was supported in part by the Swiss national fund under
contract no. 200021-107636.
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