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Abstract

We consider the linear programming relaxation
of an energy minimization problem for Markov
Random Fields. The dual objective of this prob-
lem can be treated as a concave and uncon-
strained, but non-smooth function. The idea
of smoothing the objective prior to optimiza-
tion was recently proposed in a series of papers.
Some of them suggested the idea to decrease
the amount of smoothing (so called temperature)
while getting closer to the optimum. However,
no theoretical substantiation was provided.

We propose an adaptive smoothing diminishing
algorithm based on the duality gap between re-
laxed primal and dual objectives and demonstrate
the efficiency of our approach with a smoothed
version of Sequential Tree-Reweighted Message
Passing (TRW-S) algorithm. The strategy is ap-
plicable to other algorithms as well, avoids ad-
hoc tuning of the smoothing during iterations,
and provably guarantees convergence to the opti-
mum.

1 INTRODUCTION

We consider the problem of computing the most likely con-
figuration x for a given graphical model, i.e. a distribution
pG(x; θ) ∝ exp(−EG(θ, x)). The problem to compute the
most likely labeling x (MAP labeling problem) amounts to
minimizing the energy function1

min
x∈X

EG(θ, x) = min
x∈X

{∑
v∈V

θv,xv +
∑
uv∈E

θuv,xuv

}
. (1)

While problem (1) is known to be NP-hard, we will con-
centrate mainly on the linear programming (LP) relaxation

1We describe our notation in Section 2.

of the problem, originally proposed by Schlesinger [16] –
see [24] for a recent review.

A popular approach for solving the relaxed problem is
based on maximization of its dual objective, which con-
stitutes a lower bound for the initial objective (1). It is
well-known that the dual can be treated as a concave but
non-smooth unconstrained problem (see e.g. [17]). There
are a number of algorithmic schemes targeting it in its orig-
inal non-smooth form, e.g. [16, 24, 8, 17, 9, 4]. Some of
them, namely sub-gradient algorithms [17, 9] are guaran-
teed to reach its solution, but are extremely slow, others –
message passing (e.g. [8, 4, 11]) – typically perform faster,
but may get stuck in non-optimal points, since they can be
considered as (block-)coordinate ascent.

Slow convergence of sub-gradient methods and stalling of
message-passing ones are caused by the non-smoothness
of the objective. Hence the idea of applying smoothing
was proposed in a series of recent papers [6, 25, 7, 15].
However to reach a good approximate solution of the ini-
tial non-smooth objective the smoothing degree should be
selected properly. There are two approaches how this can
be done:
(i) Precision oriented smoothing approach [7, 15], follow-
ing the fundamental paper [12]. The smoothing degree de-
pends on the precision to be achieved and is selected and
held fixed (or it changes only slightly) during the algorithm
iterations.
(ii) Iterative or diminishing smoothing approach follows
the idea to decrease the smoothing degree as the current it-
erate gets closer to the optimum. So far we are not aware of
any algorithm employing this scenario for the problem (1),
although the basic idea is mentioned in several papers,
cf. [6, 25].

The idea of the diminishing smoothing corresponds to the
following intuition: as long the iterate is far from the op-
timum one can use a coarse (very smooth) approximation
of the objective, since it allows for faster optimization. The
closer the iterate is to the optimum, the finer (and thus less
smooth and computationally more costly) the approxima-
tion is required to guarantee a certain solution accuracy.



Both, precision oriented and diminishing smoothing ap-
proaches operate with the smoothing gap i.e. the largest
difference between an objective function and its smooth
approximation. The smoothing gap however can be con-
trolled only indirectly via some smoothing parameter. In
its turn the smoothing parameter can be set based on a
worst-case analysis describing its influence on the smooth-
ing gap. Alternatively this influence can be estimated
adaptively, as discussed in [15].

For our diminishing smoothing approach some method for
estimating the upper bound for the LP relaxation of the
energy minimization problem is required. There are sev-
eral recent papers addressing this issue [26, 18, 15] and
we found that the method proposed in [15] fits our needs
best. Our algorithm itself was inspired by [13], but in con-
trast we consider a purely dual optimization instead of the
primal-dual one (to avoid massive memory allocation for
the primal problem). Furthermore we focus on efficiency
of the algorithm on average rather than in the worst-case
by exploiting the specific structure of our problem.

We demonstrate the efficiency of our approach with a
smooth version of the Sequential Tree-Reweighted Mes-
sage Passing (S-TRWS) algorithm evaluated on the Mid-
dlebury database [20] and a series of computer generated
examples. This algorithm, proposed for fixed smoothing
in [11] and partially analyzed in [25] estimates the tree-
reweighted free energy and can be considered as a smooth
version of TRW-S [8]. Contrary to the fixed smoothing
we consider a diminishing sequence of the smoothing pa-
rameter and show that this solves the LP relaxation of
the energy minimization problem (1) up to a given preci-
sion. We compare our approach to the S-TRWS algorithm
with a final precision oriented smoothing and a Nesterov
first-order smoothing based optimization scheme proposed
in [7] and [15] and show that it significantly outperforms
all of them.

Without loss of generality, we concentrate on the common
special case of grid-structured models here (as the bench-
mark [20] deals with this setting), but our results apply to
non-grid-structured graphs as well.

Contribution. The contribution of this paper is four-fold:

1. We describe a diminishing smoothing algorithm for
the LP relaxation of the problem (1), based on the du-
ality gap of the relaxed problem.

2. We analyze the method of adaptive selection of the
smoothing parameter proposed in [15] and show that
in general it does not guarantee attainment of the pre-
scribed precision (as implicitly stated in [15]). We
propose a modification of the method, which elimi-
nates this disadvantage, while preserves its efficiency.

3. Additionally, we propose a method for obtaining the
sound stopping criterion for algorithms which max-

imize the tree-reweighted free energy [22] via mini-
mizing its dual [5, 3, 11]. To this end we provide a
method for computing a primal bound from a current
dual iterate. This bound approaches the optimum of
the tree-reweighted free energy together with the dual
iterates.

4. We evaluate the S-TRWS algorithm with different
smoothing selection strategies as a method for solv-
ing the LP relaxation of the MRF energy minimization
problem (1).

Paper Organization. Section 2 briefly describes basic no-
tions. Section 3 is devoted to estimation of upper (primal)
bounds for the dual objective and its smooth approxima-
tion. Section 4 describes possible strategies of smoothing
selection. And finally Sections 5 and 6 contain results of
experimental evaluation and conclusions respectively.

2 PRELIMINARIES

We denote by G = (V, E) the undirected graph with nodes
V and edges E ⊂ V × V . Associated with the nodes
v ∈ V are finite sets of labelsXv . The Cartesian product set
X = ⊗v∈VXv is the space of possible labelings x ∈ X , i.e.
a labeling is a collection (xv : v ∈ V) of labels. We use the
short-hand notation xuv for a pair of labels (xu, xv), and
Xuv for the corresponding space Xu × Xv . The cost func-
tions θv : Xv → R, v ∈ V , and θuv : Xuv → R, uv ∈ E ,
are referred to as unary and pairwise potentials, respec-
tively, with the complete set of potentials associated with
the graph denoted as θ.

As mentioned in the introduction, our objective function
is the dual of a linear programming relaxation of the en-
ergy minimization problem (1). As is widely known (see
e.g. [24]), the linear programming relaxation of the prob-
lem (1) reads

min
µ

∑
v∈V

∑
xv∈Xv

θv,xvµv,xv +
∑
uv∈E

∑
xuv∈Xuv

θuv,xuvµuv,xuv

s.t.


∑
xv∈V µv,xv = 1, v ∈ V ,∑
xv∈V µuv,xuv = µu,xu , xu ∈ Xu, uv ∈ E ,∑
xu∈V µuv,xuv = µv,xv , xv ∈ Xv, uv ∈ E ,

µuv,xuv ≥ 0, xuv ∈ Xuv, uv ∈ E .

(2)

Such a formulation in terms of relaxed indicator vectors µ
is commonly referred to as the overcomplete representa-
tion of a discrete graphical model, in which the local poly-
tope L(G), as defined by the constraints of (2), represents
a simpler outer bound to the marginal polytope, i.e. the
convex hull of all indicator vectors of allowable labelings,
cf. [23]. The linear program (2) can be written in short as
minµ∈L(G) 〈θ, µ〉. Abusing notation we will denote 〈θ, µ〉
by E(µ).

It turns out that a dual problem for (2) has a simpler struc-
ture and less variables, hence its optimization is easier than



the direct optimization of (2). There are several ways how
the dual problem can be derived and represented. We will
follow a dual decomposition approach [21, 9], since it al-
lows for efficient optimization of real-sized problems (see a
comparison in [19]). For the sake of simplicity we consider
a special case typical for grid graphs.

Let Gi = (Vi, E i), i ∈ {1, 2}, be two acyclic subgraphs
of the master graph G. Let V1 = V2 = V , E1

⋃
E2 = E

and E1
⋂
E2 = ∅ (e.g. if G is a grid graph, E1 may contain

all horizontal edges of G and E2 all vertical ones). Then
the overall energy becomes the sum of the energies corre-
sponding to these subgraphs,

EG(θ, x) =

2∑
i=1

∑
v∈Vi

θiv,xv +
∑
uv∈Ei

θiuv,xuv

= EG1(θ1, x) + EG2(θ2, x), (3)

provided θiuv = θuv, uv ∈ E i, i = 1, 2 and θ1
v,xv+θ2

v,xv =
θv,xv , ∀v ∈ V, xv ∈ Xv . The latter condition can be rep-
resented in a parametric way as θ1

v,xv =
θv,xv

2 + λv,xv and
θ2
v,xv =

θv,xv
2 − λv,xv , v ∈ V, xv ∈ Xv , where λv,xv ∈ R.

The dual space {λv,xv ∈ R|v ∈ V, xv ∈ Xv} will be de-
noted as Λ. Thus we consider θi as a function of λ and
obviously have

min
x∈X

EG(θ, x) ≥ max
λ∈Λ

2∑
i=1

min
x∈X

EGi(θ
i(λ), x). (4)

It has been shown [10] that all decompositions into acyclic
subgraphs which cover the original graph yield the same
lower bound as the one in (4). Furthermore, it is estab-
lished that this bound equals the solution of the linear pro-
gramming problem (2).

Hence, in order to solve the relaxed problem (2) we will
maximize its dual, the concave but non-smooth function U
defined by the maximand of (4), i.e.

U(λ) =

2∑
i=1

min
x∈X

EGi(θ
i(λ), x) . (5)

We note that the function U(λ) can be easily evaluated by
dynamic programming for any acyclic graph Gi.

Smoothed Dual Objective and its Primal Counterpart.
There is a number of approaches to maximize (5). Along
with [6, 25, 7, 15] we propose to use a smoothing tech-
nique [12] to obtain a smooth approximation of U(λ). This
would allow both to utilize powerful smooth optimization
algorithms (e.g. [15]) and to obtain guarantees for conver-
gence to the optimum of the smooth (and as we will see
strictly convex) function for efficient (block-)coordinate
descent methods similar to TRW-S [8].

The way we construct the smooth approximation is dictated
by the need to preserve the efficiency of the decomposition.

The smooth function should be easily computable over sub-
graphs Gi, like its non-smooth counterpart U .

Each summand in (5) may be written as the inner product
of the potential vector θi and a suitable binary indicator
vector φ(x), i.e.

U i(λ) := min
x∈X

EGi(θ
i(λ), x) = min

x∈X

〈
θi(λ), φ(x)

〉
. (6)

As this minimum is non-smooth in λ, the same holds for the
objective function (5). To obtain a smooth approximation,
we replace min (or rather −max) by the well-known log-
sum-exp (or soft-max) function (cf. [12]), yielding

Ũ iρ(λ) = −ρ log
∑
x∈X

exp
〈
−θi(λ)/ρ, φ(x)

〉
(7)

with smoothing parameter ρ. The resulting function Ũ iρ
uniformly approximates U i, that is

Ũ iρ(λ) + ρ log |X | ≥ U i(λ) ≥ Ũ iρ(λ). (8)

This directly implies

Ũρ(λ) + 2ρ log |X | ≥ U(λ) ≥ Ũρ(λ) (9)

for Ũρ :=
∑2
i=1 Ũ

i
ρ.

Please note that for acyclic graphs Gi evaluating Ũ iρ (and
thus Ũρ) is as easy as U i, and can be done by dynamic
programming.

Inequality (9) provides a possibility to exchange optimiza-
tion of the non-smooth function U with the optimization
of its smooth approximation Ũρ. Selecting the smoothing
parameter ρ small enough (see Section 4.1) or properly de-
creasing it during optimization (Section 4.2), one can guar-
antee attainment of the optimum of U with a given preci-
sion.

Additionally for ρ = 1 the function Ũρ has another impor-
tant meaning: it is a dual function for the tree-reweighted
free energy [22] and can be used to estimate approximate
marginals [5, 3, 11].

Let us denote by Nuv the number of subgraphs containing
the edge uv ∈ E and by Nv the number of subgraphs con-
taining the node v ∈ V . In our special case Nuv = 1 and
Nv = 2.

Theorem 1 ([22, 25]) The tree-reweighted free energy

Ẽρ(µ) := 〈θ, µ〉 − ρ
(∑
v∈V

∑
xv∈Xv

Nvµv,xv logµv,xv

+
∑
uv∈E

∑
xuv∈Xuv

Nuvµuv,xuv log
µuv,xuv

µv,xvµu,xu

)
(10)

defined over L(G) is a Lagrange dual for Ũρ(λ). And since
strict duality holds min

µ∈L(G)
Ẽρ(µ) = max

λ∈Λ
Ũρ(λ).



S-TRWS Algorithm There are a number of approaches to
optimize Ũρ (see e.g. [11, 15, 5]). In this paper we evaluate
the S-TRWS algorithm originally devoted to computation
of the function Ũρ with a fixed value ρ = 1 [11]. Con-
trary to this we will operate ρ in a way to obtain a good
(up to a given precision) approximation for the maximum
of the non-smooth function U . We selected this algorithm
because its original, non-smoothed analogue [8] is one of
the most efficient schemes for optimizing U . The second
advantage of S-TRWS is that it is guaranteed to converge
to the optimum of Ũρ for any fixed ρ contrary to TRW-S,
which does not converge to the optimum of U in general.

We introduce vector of “marginals“
νiρ(λ) ∈ R

∑
w∈V∪E |Xw|, i ∈ {1, 2} by

νiρ(λ)
w,xw

:=

∑
x′∈X ,x′w=xw

exp
〈
−θi(λ)/ρ, φ(x′)

〉
exp(−Ũ iρ(λ)/ρ)

. (11)

It is well-known (see e.g. [15, Lemma 1]), that the coordi-
nates of the gradient∇Ũρ ∈ R

∑
v∈V |Xv| are equal to

∇Ũρ(λ)v,xv = ν1
ρ(λ)v,xv − ν2

ρ(λ)v,xv . (12)

The S-TRWS algorithm is a specially organized coordinate
descent procedure applied to the smoothed function Ũρ. It
sequentially updates variables λ according to the rule

λv,xv := λv,xv+(log ν1
ρ(λ)v,xv−log ν2

ρ(λ)v,xv )/2 . (13)

Applying this rule corresponds to a coordinate ascent step
w.r.t. variable λv,xv . The power of this algorithm stems
from an extremely efficient way of processing updates (13).
Namely, updates are done sequentially, but the computa-
tional cost to perform all these

∑
v∈V |Xv| updates is ba-

sically the same as just computing gradient coordinates
νiρ(λ) (see [8] for details), which makes it superior to any
general-purpose gradient based algorithm. Due to (12), it
is easy to see that an optimum of Ũρ is a fix-point of this
algorithm. We refer to [11] for a proof of convergence. We
also note that the implementation of this algorithm is far
from trivial because of the necessity to exponentiate very
large numbers, corresponding to small values of ρ in (11).
We coped with this difficulty efficiently based on the idea
provided in [12, p.140].

3 UPPER BOUNDS ESTIMATION

There are at least two reasons why it is important to be
able to reconstruct a sequence of primal feasible points
µt ∈ L(G) converging to a solution of the problem (2)
or (10), from a sequence λt converging to the maximum
of the corresponding dual objective. The first reason is the
values µt themselves: for ρ = 1 they can be considered
as approximate marginal probabilities [27, 22]. The second

reason is an upper bound E(µt) or Ẽρ(µt), which can be
used for sound stopping criteria [15]. We will use the upper
bound to construct a diminishing sequence of smoothing
parameters ρ to get an ε-approximation for a maximum of
the non-smooth function U via optimization of its smooth
approximation Ũρ, see Section 4.2.

Primal LP Objective Estimation The simplest (and thus
quite popular) way of computing upper bounds for maxi-
mum of (5) is rounding schemes [14]. It allows to estimate
an integer solution x ∈ X , from a dual iterate λ. However,
the energy E(θ, x) corresponding to the integer solution x
may not achieve the minimal value of objective (2) even in
case the labeling was estimated based on the optimal value
λ∗ delivering the maximum of the dual objective U .

Alternatively we use the primal LP-bound con-
struction introduced in [15]. We denote by
R+(G) = R

∑
v∈V |Xv|+

∑
uv∈E |Xuv|

+ a nonnegative linear
half-space containing the local polytope L(G). Addition-
ally we use the notation Luv(µu, µv) ⊂ R|Xuv|+ for the
domain of pairwise marginals µuv, uv ∈ Xuv satisfying
the constraints of (2) for given unary marginals µu, µv . We
use the following reformulation of [15, Thm. 2]:

Theorem 2 Let µ̂ρ(λ) ∈ R+(G) be computed as

µ̂ρ(λ)v,xv =
ν1
ρ(λ)v,xv + ν2

ρ(λ)v,xv
2

, (14)

µ̂ρ(λ)uv,xuv = arg min
µuv,xuv∈Luv(µ̂ρ(λ)u,µ̂ρ(λ)v)

〈θuv, µuv〉 . (15)

Then for λ̃ = arg maxλ∈Λ Ũρ(λ) holds

U(λ̃) + 2ρ log |X | ≥ E(µ̂ρ(λ̃)) ≥ U(λ), λ ∈ Λ . (16)

The inequality (16) basically states that the bound
E(µ̂ρ(λ̃)) becomes exact as ρ vanishes.

As noted in [15], evaluating (15) constitutes a transporta-
tion problem – a well-studied class in linear programing.
Since the size of each individual problem is small, these
can be easily solved by any appropriate method of linear
programming. We found a specialization of the simplex
method [1] to be quite efficient in our case.

Tree-Reweighted Free Energy Estimation. The upper
bound for the minimum of the tree-reweighted energy (10)
can be estimated in the same manner as in Theorem 2.

Theorem 3 Let µ̃ρ(λ) ∈ R+(G) be computed as

µ̃ρ(λ)v,xv =
ν1
ρ(λ)v,xv + ν2

ρ(λ)v,xv
2

,

µ̃ρ(λ)uv,xuv = arg min
µuv,xuv∈Luv(µ̃ρ(λ)u,µ̃ρ(λ)v)

〈θuv, µuv〉

− ρ
∑

xuv∈Xuv

Nuvµuv,xuv log
µuv,xuv

µv,xvµu,xu
. (17)



Then Ẽρ(µ̃ρ(λ)) ≥ U(λ′) for any λ, λ′ ∈ Λ and for
λ̃ = arg maxλ∈Λ Ũρ(λ) holds U(λ̃) = Ẽρ(µ̃ρ(λ̃)).

Please note that evaluating (17) constitutes a small-sized
convex problem (an entropy maximization kind problem)
with linear constraints. It can be efficiently solved e.g. by
interior point methods.

As we already mentioned, Theorem 3 defines a method for
estimating an upper bound for the optimal value of the tree-
reweighted energy (10), which can be utilized to construct-
ing a sound stopping criterion based on the duality gap for
algorithms maximizing Ũρ.

4 SMOOTHING SCHEDULING

In this section we will discuss how to estimate an optimum
of U via optimization of its smooth approximation Ũρ, i.e.
how the smoothing parameter ρ can be selected or/and up-
dated to guarantee the achievement of an ε-approximate so-
lution of U .

We consider two approaches of controlling the smoothing
gap ∆ = maxλ∈Λ U(λ) − Ũρ(λ): precision oriented and
diminishing smoothing. Each of them will be considered
in connection to both worst-case and adaptive estimation
of the smoothing parameter ρ for a given value of ∆.

4.1 PRECISION-ORIENTED SMOOTHING

Precision-Oriented Worst-Case Smoothing Parameter
Selection. The simplest way to select the parameter ρ is
to fix it small enough. Let λ∗ and λ̃ denote optimal points
of U and Ũρ respectively. By applying the inequality (9) to
λ̃ and λ∗ and taking into account that Ũρ(λ̃) ≥ Ũρ(λ∗) and
U(λ∗) ≥ U(λ̃) we obtain

Ũρ(λ̃) + 2ρ log |X |︸ ︷︷ ︸
=:∆(ρ)

≥ U(λ∗) ≥ Ũρ(λ̃) . (18)

Hence if the inequality

∆(ρ) < ε (19)

holds, the optimal value U(λ∗) can be estimated with pre-
cision ε by optimizing Ũρ. Inequality (19) can be trans-
formed into a range of allowed values for the smoothing
parameter: 0 ≤ ρ < ε

2 log |X | . However selecting an opti-
mal value ρ from this range is not straightforward and de-
pends on the algorithm used for the optimization of Ũρ.
Lemma 3 in [15] claims that if the convergence rate of the
optimization algorithm reads O( 1

ρ ) as a function of ρ, then
the optimal value of ρ equals to a half of the upper bound
of the range, i.e.

ρ =
ε

4 log |X |
. (20)

However since little is known about the convergence rate of
the considered S-TRWS algorithm, we employ this lemma
as a hypothesis.

Precision-Oriented Adaptive Smoothing Parameter Se-
lection. Indeed, as mentioned in [15], the estimation
2ρ log |X | for the smoothing gap is typically loose. Hence
it was proposed by the authors to perform a local estimation
the smoothing gap as

∆̂t(ρ) := max
t
U(λt)− Ũρ(λt) (21)

for iterates λt of the optimization algorithm. The value ρ
has to be selected such that ∆̂t(ρ) < ε, even more, using
Lemma 3 in [15] it was proposed to select ρ to satisfy

∆̂t(ρ) <
ε

2
. (22)

Since this simple (and seemingly quite natural!) approach
guarantees fulfillment of (19) only locally with respect to
the sequence {λt}, it does not guarantee attainment of

(i) precision ε in general. Latter can be demonstrated by
an example, when the difference U(λ̃) − Ũρ(λ̃) in an op-
timum λ̃ of the smoothed function Ũρ is smaller than the
one U(λ∗)− Ũρ(λ∗) in the optimum λ∗ of the non-smooth
one, U , and U(λ∗) − Ũρ(λ̃) > ε. Starting an algorithm
optimizing Ũρ in the point λ̃ with

∆̂t(ρ) = U(λ̃)− Ũρ(λ̃) <
ε

2
(23)

makes it stall in the starting point, since (a) the point λ̃ is
already an optimum of Ũρ and the algorithm can not get
better with respect to Ũρ; (b) changing of the smoothing ρ
is not performed since (22) holds.

(ii) the stopping condition E(µρ(λ
t)) − U(λt) ≤ ε even

if (22) holds together with

U(λ∗)− Ũρ(λ̃) ≤ ε

2
. (24)

Condition (24) guarantees only the attainment of the accu-
racy ε for the dual objective U , but not for the duality gap.

Even though we did not encounter such unfortunate cases
in practice, there is a general cure for these. Due to Theo-
rem 3 we can estimate the Lagrange dual function Ẽρ for
Ũρ and decrease ρ by a factor η > 1 together with restarting
the algorithm from the current point as soon as

Ẽρ(µ̃ρ(λ
t))− Ũρ(λt) >

ε

2
(25)

is not satisfied. In other words, one has to select the
smoothing parameter ρ such that both conditions (22)
and (25) hold. We prove this in the supplementary mate-
rial because of the space limitations.



Algorithm 1 Generic diminishing smoothing algorithm.

• Given: target solution accuracy ε

• Initialize: λ0 ∈ Λ, ρ0 > 0, E0
min = E(µ̂ρ0(λ0)).

• Iterate (for t ≥ 0):

1. If Etmin − U(λt) < ε Exit and return λt.

2. ρt+1 := min
{
ρt, F (Etmin, Ũρt(λ

t))
}

.

3. λt+1 := ψ[Ũρt+1 ](λt).
4. Et+1

min := min{Etmin, E(µ̂ρt+1(λt+1))}.
5. t := t+ 1. Goto 1.

4.2 DIMINISHING SMOOTHING

Instead of using a fixed value of ρ satisfying (19) or keeping
it rarely changed when estimation ∆̂(ρ) of the smoothing
gap does not satisfy (22), we will construct a diminishing ρ-
sequence depending on the duality gap. This idea is based
on the assumption that maximization of Ũρ is more efficient
for larger values of ρ.

Let us consider a generic algorithm - Algorithm 1 - for the
diminishing smoothing. Step 1 checks the stopping con-
dition based on the duality gap. Minimization in steps 2
and 4 is required to ensure monotone decreasing of ρ and to
keep the best upper bound Etmin so far. A (for the moment)
unknown mapping F : R × R → R+ determines how the
smoothing parameter ρ should be updated. The mapping
ψ[Ũρ] corresponds to one or more iterates of the S-TRWS
algorithm (see (11) and (13)) applied to the function Ũρ.

Our goal is to determine such mappings F , which at least
guarantee convergence of Algorithm 1 iterates to the opti-
mum of the non-smooth function U .

Definition 1 A mapping ψ[Ũ·] : R+ × Λ→ Λ is called an
optimizing mapping if
(i) for any ρ > 0 and any λ0 ∈ Λ the iterative process
λt+1 = ψ[Ũρ](λ

t) converges to the set Λ∗(Ũρ) of optimal
solutions of Ũρ;
(ii) Ũρ(ψ[Ũρ](λ)) ≥ Ũρ(λ), moreover for λ /∈ Λ∗(Ũρ)

holds Ũρ(ψ[Ũρ](λ)) > Ũρ(λ),
(iii) ψ[Ũρ](λ) is continuous w.r.t. ρ for any λ ∈ Λ.

Due to continuity of exp,
∑

and log, the iterates of the S-
TRWS algorithm depend continuously on ρ. Theorem 6
in [25] proves that every iteration of the algorithm strictly
increases the value of Ũρ for a fixed ρ; the convergence
of the S-TRWS algorithm to the optimum of the function
Ũρ for any fixed ρ is proved in [11]. Hence one or more
iterations of the algorithm satisfy the conditions of Def. 1.
We explain the practical importance of using more than a
single iteration of the algorithm at the end of this paragraph.

Theorem 4 Let ψ[Ũ·] : R+ × Λ → Λ be an optimizing
mapping and let the mapping F : R × R → R+ satisfy
the condition

∆
(
F (Etmin, Ũρt(λ

t))
)
≤
Etmin − Ũρt(λt)

2
(26)

where equality holds only when Etmin− Ũρt(λt) = 0. Then
iterates λt of Algorithm 1 converge to the optimum of the
function U .

Proof. From the first property of an optimizing mapping
(see Def. 1) follows that it suffices to prove that ρt t→∞−−−→ 0
and ρt > 0, ∀t. Since E(µ) > Ũρ(λ) for any µ, λ /∈
Λ∗(U) and ρ ≥ 0, from step 2 follows that ρt > 0, ∀t.
Sequence ρt is monotone and bounded by 0 from below,
thus it converges to some ρ∗ ≥ 0. We will prove that
ρ∗ = 0. Let ρ∗ 6= 0. From (26), which is strict while
Etmin − Ũρt(λt) 6= 0, follows that Ũρt(λt) + ∆(ρt+1) <
E(µ̂ρ(λ

t))−∆(ρt+1). Taking the limit as t tends to infin-
ity, denoting λ̃ = arg minλ∈Λ Ũρ∗(λ) and using continuity
in ρ and λ of U(λ), Ũρ(λ), E(µ̂ρ(λ)) and ψ we obtain
Ũρ∗(λ̃) + ∆(ρ∗) < E(µ̂ρ∗(λ̃)) − ∆(ρ∗). Since ∆(ρ) =

2 log |X |, from (16) follows E(µ̂ρ∗(λ̃)) − ∆(ρ∗) ≤ U(λ̃)

and thus Ũρ∗(λ̃) + ∆(ρ∗) < U(λ̃). From (9) follows the
contradiction, which implies ρ∗ = 0. �

As follows from the proof nothing prevents to improve the
upper bound Etmin by using any available method of its es-
timation align with the one provided by Theorem 2. In our
experiments we use rounding schemes [14], which some-
times allows to get better estimation of Etmin and hence
speed-up Algorithm 1.

Number of cycles of the S-TRWS algorithm, used for com-
puting the optimizing mapping ψ, should be carefully se-
lected because of the fact, that performing 1 cycle of the
S-TRWS without prior change of the smoothing parameter
is computationally 2 times cheaper than performing it with
the change. This is caused by peculiarities of the S-TRWS
algorithm. Namely, to compute values νiρ(λ)

v,xv
(see (11))

it has to perform both so-called forward and backward
moves of a dynamic programming algorithm. And if after a
given run no changes where made to smoothing, the result
of the forward (backward) move do not need to be recom-
puted. It means, that computing n cycles of the S-TRWS
algorithm with a constant smoothing costs only n + 1 or-
acle calls (additional one oracle call for the initial forward
move) instead of 2n.

Diminishing Worst-Case Smoothing Parameter Selec-
tion. Theorem 4 implies that for some γ > 1

F (Etmin, Ũρt(λ
t)) = ∆−1(

Etmin − Ũρt(λt)
2γ

) , (27)

at the step 2 of Algorithm 1. Here γ is some con-
stant (which indeed can differ from iteration to iteration)



and ∆−1(·) denotes the inverse mapping to ∆(·). Since
∆(ρ) = 2ρ log |X | it reads ∆−1(A) = A

2 log |X | . Hence

F (Etmin, Ũρt(λ
t)) =

Etmin − Ũρt(λt)
4γ log |X |

, γ > 1 , (28)

and Algorithm 1 is defined up to a parameter γ. We refer
to Section 5 for experimental evaluation of this parameter.

Diminishing Adaptive Smoothing Parameter Selection.
As we already mentioned the estimate 2ρ log |X | for the
smoothing gap is often too loose in practice, which can po-
tentially slow down optimization algorithms. In this sec-
tion we show how the adaptive estimate (21) can be used
together with an appropriate approximation of the inverse
mapping ∆−1 to speed up the algorithm. Additionally we
will use a procedure similar to the one presented in (25) to
prevent the algorithm from stalling.

The method is based on a local approximation of ∆̂t(ρ)
near the current point λwith an affine function ∆̂t(ρ) := δ ·
ρ+ α, where δ = ∂∆̂t

∂ρ =
∂(U−Ũρ)

∂ρ = −∂Ũρ∂ρ and assigning

∆̂−1(d) := (d− α)/δ. Hence step 2 of Algorithm 1 takes
the form

δt := −
∂Ũρt

∂ρ
(λt), αt := ∆̂t − δtρt, (29)

ρt+1 := min

{
ρt,

(
Etmin − Ũρt(λt)

2δtγ
− αt

δt

)}
. (30)

Parameter αt of this approximation depends on the esti-
mate ∆̂t defined by (21).

To avoid stalling of the algorithm one should decrease ρ as
soon as

Ẽρ(µρ(λ
t))− Ũρ(λt) ≤

Etmin − Ũρt(λt)
2γ

. (31)

The proof for that is based on comparing (23) and (25)
to (27) and (31). Note that they become equivalent when
ε = (Etmin − Ũρt(λt))/γ.

We sum up the above considerations in Algorithm 2. This
algorithm additionally depends on the parameter η defining
how much the smoothing parameter ρ should be decreased.
In our experiments we use η = 2, but we observed the
inequality (31) being fulfilled only for γ close to 1 (which
we found to be non-optimal) and thus the value η does not
influence results of our experiments.

It remains only to note that the derivative
∂Ũρt (λ

t)

∂ρ can be
computed efficiently, since it is given by a ready-to-apply
formula in the following proposition.

Proposition 1 Let νiρ(λ) ∈ R
∑
w∈V∪E |Xw| be defined

Algorithm 2 Adaptive diminishing smoothing (ADSal)

• Given: a prescribed solution accuracy ε.

• Initialize: λ0 ∈ Λ, ρ0 > 0, γ > 1, η > 1,
E0

min = E(µ̂ρ0(λ0)).

• Iterate (for t ≥ 0):

1. If Etmin − U(λt) < ε Exit and return λt.

2. δt := −∂Ũρt∂ρ (λt), αt := ∆̂t − δtρt.

3. ρt+1 := min

{
ρt,

(
Etmin−Ũρt (λ

t)

2δtγ − αt

δt

)}
.

4. If Ẽρ(µ̃ρ(λt)) − Ũρ(λ
t) ≤ Etmin−Ũρt (λ

t)

2γ then

ρt+1 := ρt+1

η .

5. λt+1 := ψ[Ũρt+1 ](λt).
6. Et+1

min := min{Etmin, E(µ̂ρt+1λt+1)}.
7. t := t+ 1. Goto 1.

by (11). Then

∂Ũρ(λ)

∂ρ
=
Ũρ(λ)

ρ
−1

ρ

2∑
i=1

∑
w∈Vi∪Ei

∑
xw∈Xw

θi(λ)w,xwν
i
ρ(λ)w,xw .

5 EXPERIMENTAL EVALUATION

For an experimental evaluation we used datasets from the
Middlebury MRF benchmark [20] (datasets tsukuba, venus,
family) and a computer generated grid model of size 256×
256 with 4 labels. The unary and pairwise factors of this
model were randomly selected uniformly in the interval
[0, 1]. This dataset will be denoted as artificial. Complete
results of all our experiments are present in the supplemen-
tary material. In the main body of the paper we present
only subset of plots and a summary Table 5 to save space.

We consider the following four smoothing-based algo-
rithms described in the paper: (i) adaptive diminishing
smoothing algorithm (A-DSal) – Algorithm 2; (ii) dimin-
ishing worst-case smoothing (WC-DSal) is defined by Al-
gorithm 1, where the mapping F is specified by (28);
(iii) precision oriented adaptive smoothing (A-STRWS),
where the smoothing degree is controlled by (21), (22)
and (25); (iv) precision oriented worst-case smoothing
(WC-STRWS), where the smoothing degree is fixed and
given by (20). In all cases we use the S-TRWS algorithm
as an optimizing mapping.

We compare our approaches also to the original TRW-S
code [8] and to the accelerated first-order Nesterov opti-
mization scheme [15] (NEST), for which an implementa-
tion was kindly provided by the authors.

Additionally to the upper ∆(ρ)-bound computed due to



Table 1: Results of algorithms evaluation. Req. OC 0.1% and Req. OC 1 – number of oracle calls required to achieve the
relative precision 0.1% and the absolute precision 1 respectively; primal/dual bound–the best upper/lower bounds achieved
during the iterations: about 8000-10000 oracle calls for NEST, TRW-S and other methods. In case the best primal bound
is an integer one we print it without decimal point. Please note that A-DSal turned out to be the most efficient solver for
all datasets except family We did not mark ”dual bounds winner” for tsukuba dataset, because in this case all algorithms
except TRW-S were terminated as soon as the duality gap dropped below 1.

Algorithm A-DSal WC-DSal A-STRWS WC-STRWS NEST TRWS

ts
uk

ub
a req. OC 0.1% 52 47 45 33 576 266

req. OC 1 107 151 405 789 6244 >10000
primal bound 369218 369218 369218 369218 369218 369252
dual bound 369217.38 369217.12 369217.99 369217.99 369217.99 369217.58

ve
nu

s req. OC 0.1% 111 131 123 129 1746 266
primal bound 3047993.47 3048546.82 3048411 3048534.23 3050376 3048098
dual bound 3047965.20 3047920.27 3047936.20 3047934.25 3047938.84 3047929.95

fa
m

ily req. OC 0.1% >8516 >10006 >8013 >8001 >9023 3012
primal bound 186636 184927 185144.02 185142.87 6136365 184825
dual bound 184769.13 184742.11 184735.80 184734.96 145396.26 184788.00

ar
tifi

ci
al req. OC 0.1% 514 >10004 639 >8001 1515 >10000

primal bound 56785.86 56838.03 56956.08 57258.31 56815.01 81118
dual bound 56779.98 56777.10 56764.87 56724.52 56780.24 56720.56

Theorem 2 we also estimate a so-called integer upper
bound, which corresponds to integer values of variables
µ in (2). The latter bound turns to be often better at the
beginning of the optimization process, but contrary to the
non-integer one it does not posses a crucial property of con-
vergence to the optimum of the relaxed problem (2).

Since the performance of the precision-oriented smooth-
ing algorithms (A-STRWS, WC-STRWS and NEST) de-
pends on the target precision we run each algorithm on each
dataset twice: with target relative precision 0.1% and with
target absolute precision 1. Since potentials of all consid-
ered problem from the Middlebury benchmark are integers,
getting an integer upper bound within the latter precision
would mean solving the corresponding problem exactly in
its original, non-relaxed formulation (1). Indeed it has hap-
pen for the tsukuba dataset – see below.

We use the notion of oracle calls for measuring the speed of
the algorithms to eliminate the influence of different imple-
mentations. One oracle call corresponds to a single (either
forward or backward) move of the S-TRWS algorithm. It
requires approximately 1.5 seconds for the tsukuba dataset,
3.5 s for venus, 4.5 s for the family and less than 0.5 s for the
artificial dataset, on a 2.5GHz machine. Such an oracle call
approximately corresponds to the oracle call used in NEST,
it is 5 times slower than a single (either forward or back-
ward) move of the original non-smooth TRWS algorithm in
our implementation and 10 times slower than the original
implementation by Kolmogorov [8] for general-form pair-
wise potentials. The non-smooth TRWS is faster because
of the evaluation of the exp-operation needed for smooth-
ing. Preliminary experiments show that simply switching

to GPU would already reduce this operation’s cost to that
of a simple multiplication operation. Hence we ignore the
mentioned time difference and consider a single move of
the TRW-S algorithm as an oracle call. Additionally we
count computations needed to estimate a primal solution
µ̂ρ(λ

t) according to (14)-(15) as an oracle call, since the
time it requires is close to that of a single oracle call.

For different values of γ and different numbers of inner S-
TRWS iterations we measured the number of oracle calls
of the A-DSal and WC-DSal algorithms to attain precision
1%. We found γ = 4 and 3 inner iterations (4 oracle calls)
in the optimizing mapping ψ to be optimal for both A-DSal
and WC-DSal. Indeed we found the algorithms quite in-
sensitive to the value of γ, unlike for instance the step-size
selection in subgradient-based schemes. Our experiments
show similar performance for the interval 2 ≤ γ ≤ 5.

Tsukuba dataset. Fig. 1(bottom left) This dataset seems
to be the easiest among investigated. The relative precision
0.1% was achieved by all algorithms within few dozens of
oracle calls. Moreover, all algorithms except TRW-S at-
tained the optimum of the non-relaxed problem (1). Num-
ber of oracle calls for that, i.e. to get the duality gap less
than 1 is the smallest for A-DSal. Other algorithms, de-
scribed in the paper perform not much worse and indeed
much faster than NEST.

Venus dataset. Fig. 1 (top left) Contrary to tsukuba there
remains a big (� 1) relaxation gap between obtained in-
teger solutions and the lower (dual) bound. Simultane-
ously the upper (primal) bound for the relaxed LP problem
demonstrates a fast convergence to the lower one, which
makes A-DSal quite efficient. Other algorithms described
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Figure 1: Venus (top left), artificial (top right), tsukuba (bottom left) and family (bottom right) datasets. Precision-oriented
smoothing algorithms A-STRWS, WC STRWS and NEST were run with a target precision 0.1%. The curves show pri-
mal (upper) (pLP) and dual (lower) (dLP) LP bounds, as well as the best integer primal bound (ILP) achieved. Colors
correspond to different algorithms – see legend. For all datasets except tsukua the A-DSal demonstrates one of the best
convergence rates. For the family the primal LP bound of A-DSal shows a very slow convergence, which makes the
algorithm significantly less efficient.

in the paper show significantly worse performance. TRW-
S is a bit slower at the beginning, but at the end shows the
second good result after A-DSal in terms of both upper and
lower bounds.

Family dataset. Fig. 1(bottom right) This dataset seems
to be quite difficult for dual methods (methods considered
in the paper and NEST, TRW-S) because the pairwise fac-
tors contain infinite (very large) numbers. This makes dual
variables λ badly conditioned, i.e. a small change in their
values corresponds to a big change of the estimated primal
objective. This is why the estimations of the upper (pri-
mal) bound constructed according to Theorem 2 converge
very slow and thus the smoothing parameter, selected ac-
cording to the duality gap estimation, takes too large val-
ues. This influences A-DSal at most because it uses ad-
ditionally adaptive smoothing parameter selection, which
makes ρ even larger. However even for this setting the
lower bound attained by A-DSal outperforms lower bound
of all other approaches except TRW-S (see Table 5), which
does not suffer from bad primal estimates.

Artificial dataset. Fig. 1 (top right) This dataset targets
the situations when there is no local evidence in the data.
This could be a typical setting when the inference is used in
a loop of a learning algorithm, e.g. the structural SVM [2].
At the beginning of the learning process the potentials to
be learned could take nearly random values, which makes

the problem harder. This dataset clearly shows advantage
of methods with an adaptive selection of the smoothing pa-
rameter: only those methods attained the precision 0.1%.
The A-SDal again shows the best performance, whereas
TRW-S – the worst one.

Summary. As our experiments show, the proposed adap-
tive diminishing smoothing algorithm (A-DSal) is compet-
itive to or even outperforms the state-of-the-art methods,
except in the case when the pairwise factors contain very
large values. This issue has to be considered in future work.

6 CONCLUSIONS

We proposed an adaptive diminishing smoothing optimiza-
tion algorithm for an LP relaxation of the energy minimiza-
tion problem. The algorithm enjoys provable and fast con-
vergence to the optimum, and often outperforms even one
of the fastest state-of-the-art methods – TRWS, but con-
trary to that does never get stuck in non-optimal points.
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SUPPLEMENTARY MATERIAL to “Efficient MRF Energy Minimization via Adaptive
Diminishing Smoothing “

Proof of the Condition (25)

The condition (25) stems from the following considerations. Let ε be the target accuracy, λ∗ be an optimal point of U and
λ̃ the optimal point of Ũρ. Let also for an iterate λt holds (22), but (25) does not. We prove that from this follows either
that

U(λ∗)− Ũρ(λ̃) >
ε

2
(32)

and thus our estimation (22) of the smoothing gap does not hold for the optimal point λ∗ (the algorithm could get stuck
due to the situation (i)) or

U(λ∗)− U(λt) ≤ ε , (33)

which would mean that we achieved the desired precision, but the duality gap estimation E(µρ(λ
t))−U(λt) is still greater

than ε. This denotes that we could being trapped into the situation (ii).

Suppose it is not the case and we have
U(λ∗)− U(λt) > ε (34)

and
U(λ∗)− Ũρ(λ̃) ≤ ε

2
and thus Ũρ(λ̃)− U(λ∗) ≥ −ε

2
. (35)

Since Ũρ(λt) ≤ U(λt), from (34) follows
U(λ∗)− Ũρ(λt) ≥ ε . (36)

Summing up the latter inequality and the second one in (35) we obtain

Ũρ(λ̃)− Ũρ(λt) ≥
ε

2
. (37)

Taking into account that Ẽρ(µ̃ρ(λt)) ≥ Ũρ(λ̃) we obtain (25), which is a contradiction, since we supposed it is not satisfied.



PLOTS

The curves show primal (upper) (pLP) and dual (lower) (dLP) LP bounds, as well as the best integer primal bound (ILP)
achieved. Colors correspond to different algorithms – see legend. For all datasets except tsukua the A-DSal demonstrates
one of the best convergence rates. For the family the primal LP bound of A-DSal shows a very slow convergence, which
makes the algorithm significantly less efficient.

6.1 Tsukuba Dataset
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6.2 Venus Dataset
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6.3 Family Dataset
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6.4 Artificial Dataset
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EXTENDED RESULT TABLE

The table reports the number of oracle calls (OC) to reach a relative precision of 0.1% (if achieved), as well as the overall
best primal and dual LP bounds and integer bounds achieved by the algorithm run. Suffices -01r and -1a after algorithm
names A-STRWS, NEST correspond to the target relative precision 0.1% or absolute precision 1 respectively. The algo-
rithm WC-STRWS runs only for the target relative precision 0.1%.

Algorithm req. OC 0.1% primal LP bound dual LP bound integer bound

ts
uk

ub
a

A-DSal 52 369400.64 369217.38 369445
WC-DSal 47 369375.00 369217.12 369481
A-STRWS-01r 45 371324.41 369161.38 369408
A-STRWS-1a 45 369244.26 369217.99 369430
WC-STRWS 33 369244.74 369218.00 369430
NEST-01r 576 371861.00 369209.21 369521
NEST-1a 3554 369400.98 369218.00 369578
TRWS 266 369252.00 369217.58 369441

ve
nu

s

A-DSal 111 3047993.47 3047965.20 3054677
WC-DSal 131 3048546.82 3047920.27 3051790
A-STRWS-01r 123 3050863.52 3047884.92 3055949
A-STRWS-1a 136 3048411.24 3047936.20 3050935
WC-STRWS 129 3048534.23 3047934.25 3051261
NEST-01r 1746 3050954.06 3047921.30 3059436
NEST-1a 9011 3057517.88 3047938.84 3050376
TRWS 266 3048098.00 3047929.95 3049965

fa
m

ily

A-DSal >8516 191751.09 184769.13 186636
WC-DSal >10006 185141.50 184742.11 184927
A-STRWS-01r >8013 185159.23 184756.40 186340
A-STRWS-1a >8013 185144.02 184735.80 186340
WC-STRWS >8001 185142.87 184734.96 186340
NEST-01r >9023 9323366.31 172359.10 1353574
NEST-1a >9027 26253155.43 145396.26 6136365
TRWS 3012 184825.00 184788.00 184825

ar
tifi

ci
al

A-DSal 514 56785.86 56779.98 58332
WC-DSal >10004 56838.03 56777.10 58200
A-STRWS-01r 639 56827.39 56770.77 58280
A-STRWS-1a >8017 56956.08 56764.87 58200
WC-STRWS >8001 57258.31 56724.52 58181
NEST-01r 1515 56829.17 56772.64 60214
NEST-1a 7546 56815.01 56780.24 60345
TRWS >10000 81118.39 56720.56 81118


